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1. Introduction 
A class of mathematical models based on differential 

equations plays a big role in all areas of life, such as 
physics, engineering, agriculture, and medicine, etc. In 
this research, we use biological mathematical models in 
the studying of the growth and reproduction of bacteria or 
decay. It is well known that the bacteria are tiny bodies, 
generally made of a cell that does not have chlorophyll. 
But for the virus, it is the little things of life on Earth. 
Bacteria are likely to multiply very quickly under 
favorable conditions, the formation of settlements of 
millions or even billions of organisms in such a tiny space 
like a drop of water. Any bacteria have a particular 
temperature rank that can survive. For a particular rather 
bacteria, this range can be too high, too low, or someplace 
in between, although it is still a narrow range [1]. 

Results extension and predictions of mathematical 
models must be considered for further understanding of 
the different processes. These results are essential in more 
fields like science and engineering. An example is the 
application of differential equations for growth and 
bacterial cell division [2]. Humans have learned to exploit 
bacteria and other microbe beneficial uses, such as 
genetically engineered human insulin. Right now it is 
more convenient to insert the human insulin gene in 
bacteria and let produced in large industrial enzymes. It is 
therefore important achieve bacterial growth [3]. 

A class of fractional differential equations manipulates 
a big role in almost all sciences such as engineering, 
medicine, economics, social, linguistic and physics. This 
area is the more general field of mathematical analysis. It 

includes, fractional order that is, the value of 1.ι α ι< < +  
This field is not new, but older age ranges between 200 
and 300 years, but now has become the subject of studies 
and concerns because it gives effective results and more 
general, and therefore, we find a lot of scholars working in 
this field ([4,5]). The significance of differential equations 
was that polls hybrid entails a number of dynamic systems 
treated as special cases ([6,7]). Dhage and Lakshmikantham 
[8], Dhag and Jadhav [9], showed some of the main results 
of the hybrid linear differential equations of the first order 
and disturbances of second type. [10]. A good mathematical 
model for growth bacteria is described by iterative differential 
equation. Ibrahim [11] established the existence of a class 
of fractional iterative differential equation (Cauchy type) 
utilizing the non-expansive operator technique. This class 
is generated by the authors [12]. 

This paper deals with the mathematical model of biological 
experiments, that have an affect on our lives. We impose a 
mathematical model involving fractional differential operator, 
type hybrid iterative fractional differential equations. Our 
method is based on monotonous iterative in the nonlinear 
analysis. The monotonous sequences described extremal 
solutions converging for hybrid monotonous fractional 
iterative differential equations. We employ the 
monotonous iterative method under appropriate conditions 
to show that the existence of extreme solutions. The tool 
relies on the Dhage fixed point Theorem. This theorem is 
required in biological studies in which increasing or 
decreasing know freshly split bacterial and could control. 

2. Preliminaries 
Recall the following preliminaries: 
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Definition 2.1 The definition of fractional (arbitrary) 
order derivative function ( )tψ  of order 0α >  for 
Riemann-Liouville is 
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in which ι  is a whole number and α  is a real number. 
Definition 2.2 In which the function ψ  is defined such as 

[ [: 0,ψ ∞ →R,  fractional (arbitrary) order derivative 

function ( )ψ  of order 0α >  for the Caputo is 
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in which ι  is a whole number and α  is a real number. 
Definition 2.3 The fractional (arbitrary) integral of order 

0α >  for Riemann-Liouville is defined by the formula 
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Based on the Riemann-Liouville differential operator, 
we impose the following useful definitions: 
Definition 2.4 We said that ( ),C Iι ∈ R  is a function 
which is a lower solution for the equation introduced on 
I  if 
1. ( ) ( )( ) ( )( )( )( ), , ,s s s s sι ψ ι ι ι−  is continuous, and 

2. ( ) ( ) ( )( )( ) ( )( ) ( )( )( ), , , ,D s s v s v v s s s sα ι ψ ι ι ι − ≥ℵ  , 

( )0 0, .s I s vι∈ ≥  

Definition 2.5 We said that ( ),C Iτ ∈   is a function 
which is an upper solution for the equation introduced on I 
if 
1. ( ) ( )( ) ( )( )( )( ), , ,s s s s sτ ψ τ τ τ−  is continuous, and 

2. ( ) ( ) ( )( )( ) ( )( ) ( )( )( ), , , ,s s v s v v sD s s sα τ ψ τ τ τ− ≤ℵ   , 

( )0 0, .s I s vτ∈ ≤  
Definition 2.6 [14] Let 0.α >  The function Eα  
introduced by 
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provided that the series converging be called the Mittag-
Leffer function of order .α  
Remark 2.1 The exponential function corresponding to 

1.α =  Figure 1 shows the Mittag Leffer function for 
different values of α . More general class of functions 
follows: 
Definition 2.7 Let 1 2, 0.α α >  The function ,1 2Eα α  
introduced by 
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provided that the series converges is called Mittag- Leffer 
function two parameters with parameters 1α  and 2α . 

 
Figure 1. The Mittag-Leffler Function for different , 1α β =  

Remark 2.2 Clearly the Mittag-Leffer functions a 
parameter can be defined in terms of their counterparts in 
two parameters using the relationship in ,1 .E u E uα α=  

Cases. [15] Some special cases of the Mittag-Leffer 
function E uα  as follow: 

1. ( )0
1 , 1,

1
E u u

u
= <

−
 

2. ( )1 ,uE u e=  

3. ( ) ( )
1 , ,MuE Mu e M C= ∈  

4. ( )2 cos , ,E u h u u C= ∈  

5. ( )2
2 cos , .E u u u C− = ∈  

Definition 2.8 Assume the closed period bounded interval 
[ ]0 0,I s s a= +  in R  ( R  the real line), for some 

0 ,s ∈R  .a∈R  The initial value problem of fractional 
iterative hybrid differential equations (FIHDE) can be 
formulated as 
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with ( )0 0 ,v s v=  where , : Iψ ℵ × →R R are continuous. 

A solution ( ),v C I∈ R  of the FIHDE (6) can be defined by 

1. ( )( ), ,s v s v v vψ−  is a function which is continuous 
,v∀ ∈R  and 

2. v  contented the equations in (6). In which ( ),C I R  
space is of real-valued continuous functions defined on I. 

Also, our definition of the fractional iterative of hybrid 
equation integrated FIHIE as following: 
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Note that the fractional hybrid differential equations 
can be found in [16]. 

2.1. Assumptions 
In the following assumptions relating to function ψ  is 

very important in the studying of Eq(6). 
(a0) The function ( )( )( )0 , ,v v s v v vψ−  is injective 

in .R  
(b0) ℵ  is a bounded real-valued function on .I ×R  
(a1) The function ( )( )( ), ,v v s v v vψ−  is increasing 

in R  for all .s I∈   
(a2) There is a constant 0>l  so that 

 ( )( ) ( )( ), , , , , 0,
v z

s v v v s z z z M
M v z

ψ ψ
−

− ≤ >
+ −

l  

,s I∀ ∈  ,v z∈R  and .M≤l  
(b1) There is a constant 0κ >  o that ( )( ), ,s v v vℵ  

s Iκ≤ ∀ ∈  and v∀ ∈R.   
(b2) The function ( )( ), ,v s v v vℵ  is nondecreasing 
in ,R  .s I∀ ∈   
(b3) There is a real number 0M >  so that 
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,s I∀ ∈  and ,v z∈R  with .v z≥  
(b4) There is a constant 0κ >  so that 
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for each s I∈  and v∈R.  

3. Main Results 
In this section, our purpose is to discuss the technique 

of monotone iterative to FIHDE(6) some under 
appropriate conditions are charged solutions proving the 
existence of extreme. 
Lemma 3.1 [17] Let 0 1α< <  and ( )1 0, .z T−∈ l  

1. The equality ( ) ( )D I z s z sα α =  achieves 
2. The equality 
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exerted on nearly throughout in I. 
Lemma 3.2 Suppose the assumptions (a0)-(b0) are 
achieved. Thereafter for any ( ),C Iξ ∈ R  and 0 1,α< <  

( ),v C I∈ R  is function which is a solution of the FIHDE 

 ( ) ( ) ( )( )( ) ( ), , ,D v s s v s v v s s s Iα ψ ξ − = ∈   (8) 

and 

 ( )0 0v s v=  (9) 

if and only if v must be the solution of the fractional 
iterative of hybrid equation integrated FIHIE 
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Proof. Firstly we suppose that v is a solution for the 
Cauchy problem (6) defined on I. Since the Riemann-
Liouville fractional integral Iα  operator is a monotonous, 
then operating Eq.(6) by Iα . In view of Lemma 3.1, we 
obtain 
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followed by (9), we obtain 
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namely 
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Therefore, (10) is satisfied. 
On the contrary, suppose that the function v fulfills the 

Eq(10) in I. Thus the application Dα  on either side of 
(10), (8) holds. Again, substituting in (10) by 0s s=  
income 

 ( ) ( ) ( )( )( ) ( )( )0 0 0 0 0 0 0 0, , , ,v s s v s v v s v s v v vψ ψ− = −  

the map ( )( ), ,v v s v v v→ −  is increasing in R.  ,s I∀ ∈  

the map ( )( ), ,v v s v v v→ −  is injective in R,  and 

( )0 0.v s v=  This completes the proof. 
Theorem 3.1 Let 0ι  and 0τ  be the lower and upper 
solutions respectively fulfilling ( ) ( )0 0s sι τ≤  on I and let 
the assumptions (a1)-(a2) and (b3)-(b4) achieved. Then 
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there exist monotone sequences { }tι  and { }tτ  so that 

tι ι→  and tτ τ→  regularly on I, in which ι  is minimal 
and τ  is maximal solutions for the FIHDE(6) on I and 

 0 1 2 1 0... ... .t tι ι ι ι τ τ τ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤  (11) 

Proof. For any ( ),C Iµ ∈ R  with ( ) ( ) ( )0 0s s sι µ τ≤ ≤  
on I, deem fractional iterative hybrid differential equation, 
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Presently the Eq(12) is tantamount the issue 
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Integrating factor using the equation above can be 
formed 
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where ( )1
MsE Ms e=  is called Mittag-Leffer function see 

to some special cases above and by Lemma 3.2 the 
iterative differential equation up is equivalent to hybrid 
FIHIE(7) 
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By hypothesis (b4), there is one solution ( ),v C I∈ R  
of the FIHDE(6) defined in I due to the principle of 
Banach contraction. 

Define the map W on [ ]0 0,ι τ  by .W vµ =  Such a 

mapping will utilize for defining sequences { }tι  and { }tτ . 
Let us presently show that 

1. 0 0Wι ι≤  and 0 0 ,Wτ τ≤   
2. W is monotonous operator in this sector 

 [ ] ( ) ( ) ( ) ( ){ }0 0 0 0, , | , .v C I R s v s s s Iι τ ι τ= ∈ ≤ ≤ ∈  

To show (1), set 0 1,Wι ι=  in which 1ι  be a unique 
solution of the Eq(12) on I with 0µ ι= . Indicate Θ  as 
follows: 
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for ( ),C IΘ∈ R . Then ( ) ( ) ( )( )( )0 0 0 0, , 0s s s sψΘ − Θ Θ Θ ≥ , 
and 
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This proves that 
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and than from (14), we get 
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.s I∀ ∈  Since assumption (a1) achieves, ( ) ( )0 1 ,s s s Iι ι≤ ∀ ∈  
or, equivalently, 0 0.Wι ι≤  Similarly, we can show that 

0 0.Wτ τ≤  
To show (2), let [ ]1 2 0 0, ,µ µ ι τ∈  be such that 1 2µ µ≤  

on I . Therefore, we obtain 
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for all s I∈ . 
Assume that 1 1v Wµ=  and 2 2v Wµ=  and set 
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for certain ( ), .C IΘ∈ R  Then,  

 ( ) ( ) ( )( )( )0 0 0 0, , 0s s s sψΘ − Θ Θ Θ ≥  

and 
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As above, the foregoing inequality yields that 2 1v v≥  
on I which implicates that 2 1W Wµ µ≥  prove (2). 
Presently we defined both sequences { }tι  and { }tτ  by 

 1 1, ,t t t tW and Wι ι τ τ− −= =  

for 1, 2,...t = . The monotony of the operator W implies that 

 0 1 1 1 0... ... .t t tι ι ι τ τ τ τ−≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤  

It is plain to demonstrate that the sequences { }tι  and 

{ }tτ  are regularly bounded and equi-continuous on I: 

Clearly, { }tι  and { }tτ  are the solutions in from 

 

( ) ( ) ( )( )( )
( ) ( )( )( )

( ) ( ) ( )( )( )
( )0 0

, ,

, ,

, ,
1

t t t t

t t t

t t t t

t

D s s s s

s s s

M s s s s
T

s v

α

α

ι ψ ι ι ι

ι ι ι

ι ψ ι ι ι

ι

  − 
=ℵ


 − −  +
 =

 (17) 

and 

 

( ) ( ) ( )( )( )
( ) ( )( )( )
( ) ( ) ( )( )( )

( ) ( ) ( )( )( )
( )

1 1

1 1 1

0 0

, ,

, ,

, ,

1 , ,

t t t t

t t

t t t

t t t

t

D s s s s

s s s

s s s sM
T s s s s

s v

α

α

τ ψ τ τ τ

τ τ τ

τ ψ τ τ τ

τ ψ τ τ τ

τ

− −

− − −

  − 
=ℵ


  −
 −
  + − − 

 =

 (18) 

To demonstrate that ι  and τ  are solution of extremes 
for FIHDE(6) on I, we should check that if v is any another 
solution for FIHDE(6), so that ( ) ( ) ( )0 0 0 ,s v s sι τ≤ ≤  
s I∈  then 

 ( ) ( ) ( ) ( ) ( )0 0 , .s s v s s s s Iι ι τ τ≤ ≤ ≤ ≤ ∈  

Presume that for some ,t N∈  t tvι τ≤ ≤  on I and set 

 

( ) ( ) ( )( )( )
( ) ( ) ( )( )( )( )
( ) ( ) ( )( )( )( )1 1 1

, ,

, ,

, ,t t t

s s s s

v s s v s v v s

s s s s

ψ

ψ

ι ψ ι ι ι+ + +

Θ − Θ Θ Θ

= −

− −

 

for some  

 ( ) ( ) ( ) ( )( )( )0 0 0 0, , , 0,C I s s s sψΘ∈ ⇒Θ − Θ Θ Θ =R  

and 

 

( ) ( ) ( )( )( )
( ) ( ) ( )( )( )
( ) ( ) ( )( )( )

( ) ( )( )( ) ( ) ( )( )( )
( ) ( ) ( )( )( )( )
( ) ( ) ( )( )( )( )
( ) ( ) ( )( )( )( )
( ) ( ) ( )( )( )( )

( )

1 1 1

1 1 1

1

, ,

, ,

, ,

, , , ,

, ,

1 , ,

, ,

1 , ,

,

1

t t t

t

t t t

t t t

t t t

t

D s s s s

D v s s v s v v s

D s s s s

s v s v v s s s s

s s s sM
T s s s s

v s s v s v v sM
T s s s s

s sM
T

α

α

α

α

α

α

ψ

ψ

ι ψ ι ι ι

ι ι ι

ι ψ ι ι ι

ι ψ ι ι ι

ψ

ι ψ ι ι ι

ι ψ ι

+ + +

+ + +

+

 Θ − Θ Θ Θ 
 = − 
 − − 

=ℵ −ℵ

 −
 −  + − −  
 −
 ≥ −  + − −  

−
+

+

( ) ( )( )( )( )
( ) ( ) ( )( )( )( )
( ) ( ) ( )( )( )

1 1,

, ,

, , .
1

t t

t t t

s s

s s s s

M s s s s
Tα

ι ι

ι ψ ι ι ι

ψ

+ +
 
 
 − −  

 = − Θ − Θ Θ Θ +

 (19) 

This yields that ( ) ( )1t s v sι + ≤  for the whole .s I∈  In 

the same way, it proves that ( ) ( )1tv s sτ +≤  for the whole 
.s I∈  Since 0 0vι τ≤ ≤  on I , we have, by induction 

precept which t tvι τ≤ ≤  on I for all ,t  0,1,2,....t =  
Taking the limit as t →∞ , we conclude which vι τ≤ ≤  
on I. Thus ι  and τ  are straightly the minimal and 
maximal solutions for the FIHDE(6) on I. 
Corollary 3.1 Let 0ι  and 0τ  are straightly the solutions 
of lower and upper for the FIHDE(6) on I fulfilling 
( ) ( )0 0s sι τ≤  on I and that all conditions of Theorem 3.1 

are fulfilled assumptions (b4) substituted for (b2). And the 
FIHDE(6) provides extreme solutions on I. 

Corollary 3.1 comes from Theorem 3.1 by substituting 
the constant M assumptions (b3) with M = 0. Therewith, 
we discuss the case when ( )( ), ,s v v vℵ  is non-increasing 

in nearly v throughout for .s I∈  Let 0ι  and 0τ  are 
straightly the solutions of lower and upper for the 
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FIHDE(6) on I. Now consider the two sequences tι  and 

tτ  iterations definite in the following way: 

 
( ) ( ) ( )( )( )( )

( ) ( )( )( ) ( )
1 1 1

1 0 0

, ,

, , , , ;

t t t

t t

D s s s s

s s s s I s

α ι ψ ι ι ι

ι ι ι ι ι

+ + +

+

 − 

=ℵ ∈ =
 (20) 

and 

 
( ) ( ) ( )( )( )( )

( ) ( )( )( ) ( )
1 1 1

1 0 0

, ,

, , , , ;

t t t

t t

D s s s s

s s s s I s

α τ ψ τ τ τ

τ τ τ τ τ

+ + +

+

 − 

=ℵ ∈ =
 (21) 

for 0,1, 2,3,...t =  
Next we shown that every sequences of tι  and tτ  

having two alternating sequences converging uniformly 
and monotonously with the solutions of extremal for 
FIHDE(6) on I. We need the following result, which can 
be found in [18] 
Lemma 3.3 Let ( ), ,C Iι τ ∈ R  be lower and upper 

solutions of FIHDE(6) satisfying ( ) ( )s sι τ≤ , s I∈  and 
let the assumptions (a1)-(a2) and (b1) achieved. Then, 
there is a solution v(s) of (6), in the closed set ,  
satisfying 

 ( ) ( ) ( ) , .s v s s s Iι τ≤ ≤ ∈  

Theorem 3.2 Let the assumptions (a1)-(a2), (b1) and (b4) 
achieved. Then either, 

1. { }tι  iterates presented by Eq(20) and a unique 
solution v of FIHDE(6) introduced in I fulfill: 

 ( )0 2 4 2 2 1 5 3 1... ...t tv sι ι ι ι ι ι ι ι+≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ (22) 

for every ,s I∈  if ( ) ( )0 2 ,ts sι ι≤  .s I∈  

Moreover, the sequence { }2tι  and { }2 1tι +  and 
monotonically converge uniformly toward ι◊  and

ι◊  fulfilling vι ι◊◊ ≤ ≤  for all ;s I∈  or 
2. { }tt  iterates given by Eq(21) and a unique 

solution v of FIHDE(6) posed in I fulfill: 

 ( )0 2 4 2 2 1 5 3 1... ...t tv sτ τ τ τ τ τ τ τ+≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ (23) 

for every ,s I∈  if ( ) ( )0 2 ,ts sτ τ≤  .s I∈  In 

addition, the sequence { }2tτ  and { }2 1tτ +  
converge uniformly monotonically toward τ◊  

and τ ◊  fulfilling vτ τ ◊◊ ≤ ≤  for all .s I∈  
Actually as extreme solutions are unique, ι τ ι◊ ◊= =  

and ι τ τ◊ ◊ ◊= =  on I fulfilling 

 ( ) ( ) ( ) , .s v s s s Iι τ≤ ≤ ∈  

Proof. By Lemma 3.3, there exist a lower solution 0 ,ι  an 
upper solution 0τ  and a solutio v for the FIHDE(6), such 
that 

 ( ) ( ) ( )0 0 , .s v s s s Iι τ≤ ≤ ∈  

We will just demonstrate that case (1), since the 
demonstrate of case(2) followers with similar arguments. 
Presume 0 2ι ι≤  on I. First we demonstrate that 

 ( ) ( ) ( ) ( ) ( )0 2 3 1 , .s s v s s s s Iι ι ι ι≤ ≤ ≤ ≤ ∈  (24) 

Set Θ  as follows: 
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( ) ( ) ( )( )( )( )

1 1 1

0 0 0
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, ,
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s s s s

s s s s

ψ

ι ψ ι ι ι

ι ψ ι ι ι

Θ − Θ Θ Θ

= −

−

 (25) 

for .s I∈  Next, 
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1 1 1

0 0 0
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0
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α

α

α

ψ

ι ψ ι ι ι

ι ψ ι ι ι

ψ ι ι ι

ψ ι ι ι

 Θ − Θ Θ Θ 
 = − 
 −  

≥ℵ

−ℵ

=

 

and ( )0 0.sΘ =  Hence, 

 ( ) ( ) ( )( )( ) ( ) ( ) ( )( )( )1 1 1 0 0 0, , , ,s s s s s s s sι ψ ι ι ι ι ψ ι ι ι− ≥  

.s I∀ ∈  In view of the assumption (a1), we obtain 

( ) ( )1 0s sι ι≥  on I. Let 

 

( ) ( ) ( )( )( )
( ) ( ) ( )( )( )( )
( ) ( ) ( )( )( )( )1 1 1

, ,

, ,

, ,

s s s s

v s s v s v v s

s s s v s

ψ

ψ

ι ψ ι ι

Θ − Θ Θ Θ

= −

× −

 (26) 

for .s I∈  Consequently, we have 
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ψ

ι ψ ι ι

ι ι ι

 Θ − Θ Θ Θ 
 = − 
 − − 

=ℵ −ℵ

≤

 

and ( )0 0.sΘ =  Hence, 

( ) ( ) ( )( )( ) ( ) ( ) ( )( )( )1 1 1, , , ,v s s v s v v s s s s v sψ ι ψ ι ι− ≤ −  

.s I∀ ∈  Since assumption (a1) achieved, one has 

( ) ( )3v s sι≤  on I. By employing similar procedures, we 
may prove respectively that 

 ( ) ( ) ( ) ( ) ( ) ( )2 3 1 3 , .s v s s s and v s s s Iι ι ι ι≤ ≤ ≤ ∈， ，  

In order to demonstrate Eq(22), the induction principle 
is applied, i.e suppose that Eq(22) is true for some t and 
demonstrate that it is true for (t + 1). Let 



 Turkish Journal of Analysis and Number Theory 66 

 

( ) ( ) ( )( )( )
( ) ( ) ( )( )( )( )
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2 2 2 2 2 2

2 1 2 1 2 1
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ψ
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+ + +

+ + +

Θ − Θ Θ Θ
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− −

 

Next, using the monotonicity of ℵ , which 
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 Θ − Θ Θ Θ 
 = − 
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=ℵ −ℵ

≤

 

and ( )0 0.Θ =  This proves ( ) 0sΘ ≤  and thus 

( ) ( )2 2 2 1 .t ts sι ι+ +≤  The repetition of arguments similar 
we can obtain 

 0 2 4 2 2 2

2 3 2 1 5 3 1

...
...

t t

t tv
ι ι ι ι ι

ι ι ι ι ι
+

+ =

≤ ≤ ≤ ≤ ≤

≤ ≤ ≤ ≤ ≤ ≤ ≤
 

on I. Since Eq(22) is right for t = 1, it is following by 
principle of induction which Eq(22) achieved for all t. 
Obviously, that the sequences { }2 ,tι  { }2 1tι +  are 
equicontinuous and uniformly bounded; thus in virtue of 
the Arzela-Ascoli Theorem, they are uniformly converges 
and monotonously to ( ) ,sι◊  ( )sι◊  respectively and that 

( ) ( ) ( )s v s sι ι◊◊ ≤ ≤  on I. Case (2) yields with similar 
arguments. This completes the proof. 
Corollary 3.2 Let the hypothesis (a1) - (a2), (b1) and (b2) 
satisfied. Moreover, let 
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,s I∀ ∈  where ( ) ( )1 2s sι ι≥  on I. Then ( ) ( ) ( )s s v sι τ= =  
on I. 

Observed which in the show of Theorem 3.2, ( )sι  and 

( )sτ  are in quasi-solutions for the FIHDE(6), since we 
have that 
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( )0 0
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D s s s s s s s

s I s v
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(27) 

and 
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α τ ψ τ τ τ ι ι ι
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(28) 
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