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Abstract. In this paper we propose a novel approach for detecting interest points invariant to scale and affine
transformations. Our scale and affine invariant detectors are based on the following recent results : (1) Interest points
extracted with the Harris detector can be adapted to affine transformations and give repeatable results (geometrically
stable). (2) The characteristic scale of a local structure is indicated by a local extremum over scale of normalized
derivatives (the Laplacian). (3) The affine shape of a point neighborhood is estimated based on the second moment
matrix.

Our scale invariant detector computes a multi-scale representation for the Harris interest point detector and then
selects points at which a local measure (the Laplacian) is maximal over scales. This provides a set of distinctive
points which are invariant to scale, rotation and translation as well as robust to illumination changes and limited
changes of viewpoint. The characteristic scale determines a scale invariant region for each point. We extend the
scale invariant detector to affine invariance by estimating the affine shape of a point neighborhood. An iterative
algorithm modifies location, scale and neighborhood of each point and converges to affine invariant points. This
method can deal with significant affine transformations including large scale changes. The characteristic scale and
the affine shape of neighborhood determine an affine invariant region for each point.

We present a comparative evaluation of different detectors and show that our approach provides better results
than existing methods. The performance of our detector is also confirmed by excellent matching results; the image
is described by a set of scale/affine invariant descriptors computed on the regions associated with our points.
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1. Introduction

Local features have been shown to be well suited to
matching and recognition as well as to many other ap-
plications as they are robust to occlusion, background
clutter and other content changes. The difficulty is to
obtain invariance to viewing conditions. Different solu-
tions to this problem have been developed over the past
few years and are reviewed in Section 1.1. These ap-
proaches first detect features and then compute a set of
descriptors for these features. In the case of significant
transformations, feature detection has to be adapted
to the transformation, as at least a subset of the fea-

tures must be present in both images in order to allow
for correspondences. Features which have proved to
be particularly appropriate are interest points. How-
ever, the Harris interest point detector is not invari-
ant to scale and affine transformations (Schmid et al.,
2000). In this paper we give a detailed description of
a scale and an affine invariant interest point detector
introduced in Mikolajczyk and Schmid (2001, 2002).
Our approach combines the Harris detector with the
Laplacian-based scale selection. The Harris-Laplace
detector is then extended to deal with significant
affine transformations. Previous detectors partially
handle the problem of affine invariance since they
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assume that the localization and scale are not affected
by an affine transformation of the local image struc-
tures. The proposed improvements result in better re-
peatability and accuracy of interest points. Moreover,
the scale invariant Harris-Laplace approach detects dif-
ferent regions than the DoG detector (Lowe, 1999). The
latter one detects mainly blobs, whereas the Harris de-
tector responds to corners and highly textured points,
hence these detectors extract complementary features
in images.

If the scale change between images is known, we
can adapt the Harris detector to the scale change
(Dufournaud et al., 2000) and we then obtain points,
for which the localization and scale perfectly reflect
the real scale change between two images. If the scale
change between images is unknown, a simple way to
deal with scale changes is to extract points at several
scales and to use all these points to represent an im-
age. The problem with a multi-scale approach is that
in general a local image structure is present in a certain
range of scales. The points are then detected at each
scale within this range. As a consequence, there are
many points, which represent the same structure, but
the location and the scale of the points is slightly differ-
ent. The unnecessarily high number of points increases
the probability of mismatches and the complexity of the
matching algorithms. In this case, efficient methods for
rejecting the false matches and for verifying the results
are necessary.

Our scale invariant approach solves this problem by
selecting the points in the multi-scale representation
which are present at characteristic scales. Local ex-
trema over scale of normalized derivatives indicate the
presence of characteristic local structures (Lindeberg,
1998). Here we use the Laplacian-of-Gaussian to se-
lect points localized at maxima in scale-space. This
detector can deal with significant scale changes, as pre-
sented in Section 2. To obtain affine invariant points,
we adapt the shape of the point neighborhood. The
affine shape is determined by the second moment ma-
trix (Lindeberg and Garding, 1997). We then obtain
a truly affine invariant image description which gives
stable/repeatable results in the presence of arbitrary
viewpoint changes. Note that a perspective transforma-
tion of a smooth surface can be locally approximated
by an affine transformation. Although smooth surfaces
are almost never planar in the large, they are always
planar in the small that is, sufficiently small surface
patches can always be thought of as being comprised
of coplanar points. Of course this does not hold if the

point is localized on a depth boundary. However, such
points are rejected during the subsequent steps, for ex-
ample during matching. An additional post-processing
method can be used to separate the foreground
from the background (Borenstein and Ullman, 2002;
Mikolajczyk and Schmid, 2003b). The affine invari-
ant detector is presented in Section 3. To measure the
accuracy of our detectors we introduce a repeatability
criterion which we use to evaluate and compare our
detectors to existing approaches. Section 4 presents
the evaluation criteria and the results of the compar-
ison, which shows that our detector performs better
then existing ones. Finally, in Section 5 we present
experimental results for matching.

1.1. Related Work

Many approaches have been proposed for extracting
scale and affine invariant features. These are reviewed
in the following.

Scale Invariant Detectors. There are a few ap-
proaches which are truly invariant to significant scale
changes. Typically, such techniques assume that the
scale change is the same in every direction, although
they exhibit some robustness to weak affine deforma-
tions. Existing methods search for local extrema in
the 3D scale-space representation of an image (x, y
and scale). This idea was introduced in the early
eighties by Crowley (1981) and Crowley and Parker
(1984). In this approach the pyramid representation
is computed using difference-of-Gaussian filters. A
feature point is detected if a local 3D extremum is
present and if its absolute value is higher than a
threshold. The existing approaches differ mainly in the
differential expression used to build the scale-space
representation.

Lindeberg (1998) searches for 3D maxima of scale
normalized differential operators. He proposes to use
the Laplacian-of-Gaussian (LoG) and several other
derivative based operators. The scale-space represen-
tation is built by successive smoothing of the high res-
olution image with Gaussian based kernels of different
size. The LoG operator is circularly symmetric and it
detects blob-like structures. The scale invariance of in-
terest point detectors with automatic scale selection has
also been explored by Bretzner and Lindeberg (1998)
in the context of tracking.

Lowe (1999) proposed an efficient algorithm for
object recognition based on local 3D extrema in
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the scale-space pyramid built with difference-of-
Gaussian (DoG) filters. The input image is successively
smoothed with a Gaussian kernel and sampled. The
difference-of-Gaussian representation is obtained by
subtracting two successive smoothed images. Thus, all
the DoG levels are constructed by combined smoothing
and sub-sampling. The local 3D extrema in the pyramid
representation determine the localization and the scale
of the interest points. The DoG operator is a close ap-
proximation of the LoG function but the DoG can sig-
nificantly accelerate the computation process (Lowe,
1999). A few images per second can be processed with
this algorithm.

The common drawback of the DoG and the LoG rep-
resentation is that local maxima can also be detected in
the neighborhood of contours or straight edges, where
the signal change is only in one direction. These max-
ima are less stable because their localization is more
sensitive to noise or small changes in neighboring tex-
ture. A more sophisticated approach, solving this prob-
lem, is to select the scale for which the trace and the
determinant of the Hessian matrix (H) simultaneously
assume a local extremum (Mikolajczyk, 2002). The
trace of the H matrix is equal to the LoG but detect-
ing simultaneously the maxima of the determinant pe-
nalizes points for which the second derivatives detect
signal changes in only one direction. A similar idea
is explored in the Harris detector, although it uses the
first derivatives. The second derivative gives a small
response exactly in the point where the signal change
is most significant. Therefore the maxima are not lo-
calized exactly at the largest signal variation, but in its
neighborhood.

A different approach for the scale selection was pro-
posed by Kadir and Brady (2001). They explore the
idea of using local complexity as a measure of saliency.
The salient scale is selected at the entropy extremum
of the local descriptors. The selected scale is therefore
descriptor dependent. The method searches for scale lo-
calized features with high entropy, with the constraint
that the scale is isotropic.

Affine Invariant Detectors. An affine invariant de-
tector can be seen as a generalization of the scale in-
variant detector. In the case of an affine transformation
the scaling can be different in each direction. The non-
uniform scaling has an influence on the localization, the
scale and the shape of a local structure. Therefore, the
scale invariant detectors fail in the case of significant
affine transformations.

An affine invariant algorithm for corner detection
was proposed by Alvarez and Morales (1997). They
apply affine morphological multi-scale analysis to ex-
tract corners. For each extracted point they build a chain
of points detected at different scales, but associated
with the same local image structure. The final loca-
tion and orientation of the corner is computed using
the bisector line given by the chain of points. A similar
idea was previously explored by Deriche and Giraudon
(1993). The main drawback of these approaches is that
an interest point in images of natural scenes cannot
be approximated by a model of a perfect corner, as it
can take any form of a bi-directional signal change.
The real points detected at different scales do not move
along a straight bisector line as the texture around the
points significantly influences the location of the local
maxima. This approach cannot be a general solution
to the problem of affine invariance but gives good re-
sults for images where the corners and multi-junctions
are formed by straight or nearly straight step-edges.
Our approach makes no assumption on the form of a
local structure. It only requires a bi-directional signal
change.

Recently, Tuytelaars and Van Gool (1999, 2000) pro-
posed two approaches for detecting image features in
an affine invariant way. The first one starts from Harris
points and uses the nearby edges. Two nearby edges,
which are required for each point, limit the number of
potential features in an image. A parallelogram region
is bounded by these two edges and the initial Harris
point. Several intensity based functions are used to de-
termine the parallelogram. In this approach, a reliable
algorithm for extracting the edges is necessary. The sec-
ond method is purely intensity-based and starts with ex-
traction of local intensity extrema. Next, the algorithm
investigates the intensity profiles along rays going out
of the local extremum. An ellipse is fitted to the re-
gion determined by significant changes in the intensity
profiles. A similar approach based on local intensity
extrema was introduced by Matas et al. (2002). They
use the water-shed algorithm to find intensity regions
and fit an ellipse to the estimated boundaries.

Lindeberg and Garding (1997) developed a method
for finding blob-like affine features with an iterative
procedure in the context of shape from texture. The
affine invariance of shape adapted fixed points was also
used for estimating surface orientation from binocular
data (shape from disparity gradients). This work pro-
vided the theory for the affine invariant detector pre-
sented in this paper. It explores the properties of the
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second moment matrix and iteratively estimates the
affine transformation of local patterns. The authors pro-
pose to extract the points using the maxima of a uniform
scale-space representation and to iteratively modify the
scale and the shape of points. However, the location of
points is detected only at the initial step of the algo-
rithm, by the circularly symmetric, not affine invariant
Laplacian measure. Therefore, the spatial location of
the maximum can be slightly different if the pattern un-
dergoes a significant affine deformation. This method
was also applied to detect elliptical blobs in the con-
text of hand tracking (Laptev and Lindeberg, 2001).
The affine shape estimation was used for matching and
recognition by Baumberg (2000). He extracts interest
points at several scales using the Harris detector and
then adapts the shape of the point neighborhood to
the local image structure using the iterative procedure
proposed by Lindeberg. The affine shape is estimated
for a fixed scale and fixed location, that is the scale
and the location of the points are not extracted in an
affine invariant way. The points as well as the associ-
ated regions are therefore not invariant in the case of
significant affine transformations (see Section 4.1 for a
quantitative comparison). Furthermore, there are many
points repeated at the neighboring scale levels (Fig. 2),
which increases the probability of false matches and
the complexity. Recently, Schaffalitzky and Zisser-
man (2002) extended the Harris-Laplace detector
(Mikolajczyk and Schmid, 2001) by affine normaliza-
tion proposed by Baumberg (2000). However, the loca-
tion and scale of points are provided by the scale invari-
ant Harris-Laplace detector (Mikolajczyk and Schmid,
2001), which is not invariant to significant affine
transformations.

2. Scale Invariant Interest Point Detector

The evaluation of interest point detectors presented in
Schmid et al. (2000) demonstrate an excellent perfor-
mance of the Harris detector compared to other exis-
ting approaches (Cottier, 1994; Forstner, 1994; Heitger
et al., 1992; Horaud et al., 1990). However this detec-
tor is not invariant to scale changes. In this section
we propose a new interest point detector that combines
the reliable Harris detector (Harris and Stephens, 1988)
with automatic scale selection (Lindeberg, 1998) to ob-
tain a scale invariant detector. In Section 2.1 we intro-
duce the methods on which we base the approach. In
Section 2.2 we discuss in detail the scale invariant
detector and present an example of extracted points.

2.1. Feature Detection in Scale-Space

Scale Adapted Harris Detector. The Harris detector
is based on the second moment matrix. The second
moment matrix, also called the auto-correlation matrix,
is often used for feature detection or for describing local
image structures. This matrix must be adapted to scale
changes to make it independent of the image resolution.
The scale-adapted second moment matrix is defined by:

µ(x, σI , σD) =
[

µ11 µ12

µ21 µ22

]

= σ 2
D g(σI ) ∗

[
L2

x (x, σD) Lx L y(x, σD)

Lx L y(x, σD) L2
y(x, σD)

]
(1)

where σI is the integration scale, σD is the differen-
tiation scale and La is the derivative computed in the
a direction. The matrix describes the gradient distri-
bution in a local neighborhood of a point. The local
derivatives are computed with Gaussian kernels of the
size determined by the local scale σD (differentiation
scale). The derivatives are then averaged in the neigh-
borhood of the point by smoothing with a Gaussian
window of size σI (integration scale). The eigenvalues
of this matrix represent two principal signal changes
in the neighborhood of a point. This property enables
the extraction of points, for which both curvatures are
significant, that is the signal change is significant in the
orthogonal directions i.e. corners, junctions etc. Such
points are stable in arbitrary lighting conditions and are
representative of an image. One of the most reliable in-
terest point detectors, the Harris detector (Harris and
Stephens, 1988), is based on this principle. The Harris
measure combines the trace and the determinant of the
second moment matrix:

cornerness = det(µ(x, σI, σD))

− αtrace2(µ(x, σI, σD)) (2)

Local maxima of cornerness determine the location of
interest points.

Automatic Scale Selection. Automatic scale selec-
tion and the properties of the selected scales have been
extensively studied by Lindeberg (1998). The idea is to
select the characteristic scale of a local structure, for
which a given function attains an extremum over scales.
In relation to automatic scale selection, the term char-
acteristic originally referred to the fact that the selected
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scale estimates the characteristic length of the corre-
sponding image structures, in a similar manner as the
notion of characteristic length is used in physics. The
selected scale is characteristic in the quantitative sense,
since it measures the scale at which there is maximum
similarity between the feature detection operator and
the local image structures. This scale estimate will (for
a given image operator) obey perfect scale invariance
under rescaling of the image pattern.

Given a point in an image and a scale selection op-
erator we compute the operator responses for a set
of scales σn (Fig. 1). The characteristic scale corre-
sponds to the local extremum of the responses. Note
that there might be several maxima or minima, that
is several characteristic scales corresponding to differ-
ent local structures centered on this point. The char-
acteristic scale is relatively independent of the image
resolution. It is related to the structure and not to the
resolution at which the structure is represented. The
ratio of the scales at which the extrema are found for
corresponding points is the actual scale factor between
the point neighborhoods. In Mikolajczyk and Schmid
(2001) we compared several differential operators and
we noticed that the scale-adapted Harris measure rarely
attains maxima over scales in a scale-space representa-
tion. If too few interest points are detected, the image
content is not reliably represented. Furthermore, the
experiments showed that Laplacian-of-Gaussians finds
the highest percentage of correct characteristic scales

Figure 1. Example of characteristic scales. The top row shows two images taken with different focal lengths. The bottom row shows the
response Fnorm(x, σn) over scales where Fnorm is the normalized LoG (cf. Eq. (3)). The characteristic scales are 10.1 and 3.89 for the left and
right image, respectively. The ratio of scales corresponds to the scale factor (2.5) between the two images. The radius of displayed regions in
the top row is equal to 3 times the characteristic scale.

to be found.

|LoG(x, σn)| = σ 2
n |Lxx (x, σn) + L yy(x, σn)| (3)

When the size of the LoG kernel matches with the
size of a blob-like structure the response attains an ex-
tremum. The LoG kernel can therefore be interpreted
as a matching filter (Duda and Hart, 1973). The LoG is
well adapted to blob detection due to its circular sym-
metry, but it also provides a good estimation of the
characteristic scale for other local structures such as
corners, edges, ridges and multi-junctions. Many pre-
vious results confirm the usefulness of the Laplacian
function for scale selection (Chomat et al., 2000;
Lindeberg, 1993, 1998; Lowe, 1999).

2.2. Harris-Laplace Detector

In the following we explain in detail our scale invariant
feature detection algorithm. The Harris-Laplace detec-
tor uses the scale-adapted Harris function (Eq. (2)) to
localize points in scale-space. It then selects the points
for which the Laplacian-of-Gaussian, Eq. (3), attains
a maximum over scale. We propose two algorithms.
The first one is an iterative algorithm which detects
simultaneously the location and the scale of character-
istic regions. The second one is a simplified algorithm,
which is less accurate but more efficient.
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Harris-Laplace Detector. The algorithm consists of
two steps: a multi-scale point detection and an iterative
selection of the scale and the location. We first build
a scale-space representation with the Harris function
for pre-selected scales σn = ξ nσ0, where ξ is the scale
factor between successive levels (set to 1.4 (Lindeberg,
1998; Lowe, 1999)). At each level of the representation
we extract the interest points by detecting the local
maxima in the 8-neighborhood of a point x. A threshold
is used to reject the maxima of small cornerness, as they
are less stable under variations in imaging conditions.
The matrix µ(x, σn) is computed with the integration
scale σI = σn and the local scale σD = sσn , where s
is a constant factor (set to 0.7 in our experiments). For
each point we then apply an iterative algorithm that
simultaneously detects the location and the scale of
interest points. The extrema over scale of the LoG are
used to select the scale of interest points. We reject the
points for which the LoG response attains no extremum
and for which the response is below a threshold. Given
an initial point x with scale σI , the iteration steps are:

1. Find the local extremum over scale of the LoG for
the point x(k), otherwise reject the point. The inves-
tigated range of scales is limited to σ

(k+1)
I = tσ (k)

I
with t ∈ [0.7, . . . , 1.4].

2. Detect the spatial location x(k+1) of a maximum of
the Harris measure nearest to x(k) for the selected
σ k+1

I .
3. Go to Step 1 if σ

(k+1)
I �= σ

(k)
I or x(k+1) �= x(k).

The initial points are detected with the multi-scale
Harris detector with a large change between two suc-
cessive detection scales, i.e. 1.4. A small scale change
(1.1) is used in the iterative algorithm and provides bet-
ter accuracy for the location x and scale σI . Given the
initial points detected with the scale interval ξ = 1.4,
the iterative loop scans the range of scales tσI with
t ∈ [0.7, . . . , 1.4], which corresponds to the gap be-
tween two scale-space levels neighboring the initial
point scale σI . Note that the initial points detected on
the same local structure but at different scales converge
to the same location and the same scale (see Fig. 6). It
is straightforward to identify these points based on the
coordinates and scales. To represent the structure it is
sufficient to keep only one of them.

Simplified Harris-Laplace. The Harris-Laplace al-
gorithm can be simplified in order to accelerate the
detection of interest points (Mikolajczyk and Schmid,
2001). As before the initial points are detected with the

multi-scale Harris detector; we build the scale-space
representation with the Harris function and detect lo-
cal maxima at each scale level. We then verify for each
of the initial points whether the LoG attains a maxi-
mum at the scale of the point, that is the LoG response
is lower for the finer and the coarser scale. We reject
the points for which the Laplacian attains no extremum
or the response is below a threshold. In this way we ob-
tain a set of characteristic points with associated scales.
For some points the scale peak might not correspond to
the selected detection scales of an image. These points
are either rejected, due to the lack of a maximum, or
the location and the scale are not very accurate. Thus
the scale interval between two successive levels should
be small (i.e. 1.2) to find the location and scale of an
interest point with high accuracy.

The Harris-Laplace approach provides a compact
and representative set of points which are character-
istic in the image and in the scale dimension. The first
approach provides higher accuracy in the location and
the scale of the interest points. The second approach
is a trade-off between accuracy and computational
complexity.

Example of Scale Invariant Points. In Fig. 2 we
present two examples of points detected with the sim-
plified Harris-Laplace method. The top row shows
points detected with the multi-scale Harris detector
used for initialization. Here, we manually selected the
points corresponding to the same local structure. The
detection scale is represented by a circle around the
point with radius 3σI . Note how the interest point,
which is detected for the same image structure, changes
its location relative to the detection scale in the gradi-
ent direction. One could determine the chain of points
and select only one of them to represent the local
structure (Alvarez and Morales, 1997; Deriche and
Giraudon, 1993). Similar points are located in a small
neighborhood and can be determined by comparing
their descriptors. However, for local structures exist-
ing over a wide range of scales the information content
can change (Kadir and Brady, 2001). In our approach
the LoG measure is used to select the representative
points for such structures. Moreover, the LoG enables
the corresponding characteristic points to be selected
(bottom row) even if the transformation between im-
ages is significant. Sometimes, two or more points are
selected from the multi-scale set, but given no prior
knowledge about the scale change between images we
have to keep all the selected points. As we can see, the



Scale & Affine Invariant Interest Point Detectors 69

Figure 2. Scale invariant interest point detection: (Top) Initial multi-scale Harris points (selected manually) corresponding to one local structure.
(Bottom) Interest points selected with the simplified Harris-Laplace approach.

location and the scale of points is correct with respect
to the transformation between the images.

3. Affine Invariant Interest Point Detector

The scale invariant approach can be extended to make
it affine invariant. In the following we show how
the Harris-Laplace detector behaves in the case of
affine transformations of the image. We then introduce
the theory which provides a method for estimating the
affine shape of a local structure. Each step of the de-
tection algorithm is then discussed in detail and an out-
line of the iterative procedure is presented. An example
of affine invariant points detected with this method is
presented.

3.1. Motivation

In the case of affine transformations the scale change
is, in general, different in each direction. The Harris-
Laplace detector is designed to deal with uniform scale
changes and it will therefore fail in the case of signif-
icant affine transformations. Figure 3 presents a pair
of points detected in images between which there is
an affine transformation. The top row shows points de-
tected with the multi-scale Harris detector. The scale,
selected with the LoG, is displayed in black. In the
bottom row, the Harris-Laplace regions are displayed
in black and the superposed white ellipses are the

corresponding regions projected from the other im-
age with the affine transformation. We can see that
the regions detected with the Harris-Laplace approach
do not cover the same part of the affine deformed
image.

In the case of an affine transformation, when the
scale change is not necessarily the same in every di-
rection, automatically selected scales do not reflect the
real transformation of a point. It is well known that the
spatial locations of Harris maxima change relatively
to the detection scale (Figs. 2 and 3). If the detection
scales do not correspond to the real scale factor be-
tween the images a shift error is introduced between
corresponding points and the associated regions do not
correspond. The detection scales have to vary indepen-
dently in orthogonal directions in order to deal with
any affine scaling. Hence, we face the problem of com-
puting the second moment matrix in affine Gaussian
scale-space where a circular point neighborhood is re-
placed by an ellipse. In the next section we show how
to deal with this problem.

3.2. Affine Second Moment Matrix

The second moment matrix can be used for estimating
the anisotropic shape of a local image structure. This
property was explored by Lindeberg (1998) and later
by Baumberg (2000) to find the affine deformation of
an isotropic structure. In the following we show how
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Figure 3. Scale invariant interest point detection in affine transformed images: (Top) Initial interest points detected with the multi-scale Harris
detector and their characteristic scales selected by Laplacian scale peak (in black—Harris-Laplace). (Bottom) Characteristic point detected with
Harris-Laplace (in black) and the corresponding point from the other image projected with the affine transformation (in white).

to determine the anisotropic shape of a point neighbor-
hood.

In affine scale-space the second moment matrix µ,
at a given point x is defined by:

µ(x, �I , �D) = det (�D) g(�I )

∗ ((∇L)(x, �D)(∇L)(x, �D)T ) (4)

where �I and �D are the covariance matrices which
determine the integration and differentiation Gaussian
kernels. Clearly, it is unpractical to compute the ma-
trix for all possible combinations of kernel parameters.
With little loss of generality we can limit the number
of degrees of freedom by setting �I = s�D , where s is
a scalar. Hence, the differentiation and the integration
kernels will differ only in size and not in shape.

Affine Transformation of Second Moment Matrix.
Consider a point xL transformed by a linear transfor-
mation xR = AxL . The matrix µL computed in the

point xL is then transformed in the following way:

µ(xL , �I,L , �D,L ) = AT µ(xR, �I,R, �D,R)A

= AT µ(AxL , A�I,L AT , A�D,L AT )A (5)

If we denote the corresponding matrices by:

µ(xL , �I,L , �D,L ) = ML µ(xR, �I,R, �D,R) = MR

these matrices are then related by:

ML = AT MR A MR = A−T ML A−1 (6)

In this case the differentiation and integration kernels
are transformed by:

�R = A�L AT

Let us suppose that the matrix ML is computed in such
a way that:

�I,L = σI M−1
L �D,L = σD M−1

L (7)
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where the scalars σI and σD are the integration and
differentiation scales respectively. We can then derive
the following relation:

�I,R = A�I,L AT = σI
(

AM−1
L AT

)
= σI (A−T ML A−1)−1 = σI M−1

R (8)
�D,R = A�D,L AT = σD

(
AM−1

L AT
)

= σD(A−T ML A−1)−1 = σD M−1
R

This shows that imposing the conditions, defined in
Eq. (7) leads to the relations 8, under the assumption
that the points are related by an affine transformation
and the matrices are computed for corresponding scales
σI and σD . We can now invert the problem and suppose
that we have two points related by an unknown affine
transformation. If we estimate the matrices �R and
�L such that the matrices verify conditions 7 and 8,
then relation 6 will be true. This property enables the
transformation parameters to be expressed directly by
the matrix components. The affine transformation can
then be defined by:

A = M−1/2
R RM1/2

L

where R is an orthogonal matrix which represents an
arbitrary rotation or mirror transformation. In the next
section we present an iterative algorithm for estimat-
ing the matrices �R and �L . The affine transformation
can be estimated up to a rotation between two cor-
responding points without any prior knowledge about
this transformation. Furthermore, the matrices ML and
MR , computed under conditions 7 and 8, determine
corresponding regions defined by xT Mx = 1. If the
neighborhood of points xR and xL are normalized by
transformations x′

R = M1/2
R xR and x′

L = M1/2
L xL , re-

spectively, the normalized regions are related by a sim-
ple rotation x′

L = Rx′
R (Baumberg, 2000; Garding and

Lindeberg, 1994).

xR = AxL = M−1/2
R RM1/2

L xL ,

M1/2
R xR = RM1/2

L xL (9)

The matrices M ′
L and M ′

R in the normalized frames are
equal to a pure rotation matrix (see Fig. 4). In other
words, the intensity patterns in the normalized frames
are isotropic in terms of the second moment matrix.

Isotropy Measure. The second moment matrix can
also be interpreted as an isotropy measure. Without

Figure 4. Diagram illustrating the affine normalization based on the
second moment matrices. Image coordinates are transformed with
matrices M−1/2

L and M−1/2
R . The transformed images are related by

an orthogonal transformation.

loss of generality we suppose that a local anisotropic
structure is an affine transformed isotropic structure.
To compensate for the affine deformation, we have to
find the transformation that projects the anisotropic pat-
tern to the isotropic one. Note that rotation preserves
the isotropy of an image patch, therefore, the affine
deformation of an isotropic structure can be deter-
mined up to a rotation factor. This rotation can be reco-
vered by methods based on the gradient orientation
(Lowe, 1999; Mikolajczyk, 2002). The local isotropy
can be measured by the eigenvalues of the second mo-
ment matrix µ(x, σI , σD). If the eigenvalues are equal
we consider the point isotropic. To obtain a normalized
measure we use the eigenvalue ratio:

Q = λmin(µ)

λmax(µ)
(10)

The value of Q varies in the range [0 . . . 1] with 1 for
a perfect isotropic structure. This measure can give a
slightly different response for different scales as the
matrix µ is computed for a given integration and dif-
ferentiation scale. These scales should be selected in-
dependently of the image resolution. The scale selec-
tion technique (see Section 2.1) gives the possibility
to determine the integration scale related to the lo-
cal image structure. The differentiation and integration
scales can be related by a constant factor s, σD = sσI .
For obvious reasons the differentiation scale should al-
ways be smaller than the integration scale. The factor
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s should not be too small, otherwise the smoothing is
too significant with respect to the differentiation. On the
other hand s should be small enough, that a Gaussian
window of size σI can average the covariance matrix
µ(x, σD, σI ) in the point neighborhood. The idea is to
suppress the noise without suppressing the anisotropic
shape of the observed image structures. The solution
is to select the differentiation scale σD independently
of the scale σI , that is to vary factor s for example
in the range [0.5, . . . , 0.75]. These values are close to
those chosen experimentally in the context of the Harris
detector (Harris and Stephens, 1988; Schmid and Mohr,
1997). Given the integration scale we search for the
scale σD for which the response of the isotropy mea-
sure attains a local maximum. Thus, the shape selected
for the observed structure is closer to an isotropic one. A
similar approach for selecting local scale was proposed
by Almansa and Lindeberg (2000) and Lindeberg and
Garding (1997).

3.3. Harris-Affine Interest Point Detector

In the following we describe our affine invariant ap-
proach. We initialize the affine detector with interest
points extracted by the multi-scale Harris detector. To
determine the spatial localization of the interest points
we use the Harris detector, which is also based on the
second moment matrix, thus it naturally fits in this
framework. To obtain the shape matrix for each interest
point we compute the second moment descriptor with
automatically selected integration and differentiation
scales. In our approach the integration and differentia-
tion matrices are related by a scalar �D = s�I to limit
the search space. The outline of our detection method
is presented in the following:

• the spatial localization of an interest point at a given
scale and shape is determined by the local maximum
of the Harris function,

• the integration scale is selected at the extremum over
scale of the normalized Laplacian,

• the differentiation scale is selected at the maximum
of normalized isotropy,

• the shape adaptation matrix is estimated with the
second moment matrix and is used to normalize the
point neighborhood.

In the following we discuss in detail each step of the
algorithm.

Shape Adaptation Matrix. Our iterative shape adap-
tation method works in the transformed image domain.
We transform the image and apply a circular kernel
instead of applying the affine Gaussian kernel. This
enables the use of a recursive implementation of the
Gaussian filters for computing Lx and L y . The sec-
ond moment matrix is computed according to Eq. (1).
A local window W is centered at interest point x and
transformed by the matrix:

U =
∏

k

(
µ− 1

2
)(k)

U (0) (11)

in step (k) of the iterative algorithm. In the follow-
ing we refer to this operation as U -transformation.
Note, that a new µ matrix is computed at each iter-
ation and the U matrix is the concatenation of square
roots of the second moment matrices. We ensure that
the original image is correctly sampled by setting the
larger eigenvalue λmax(U ) = 1, which implies that the
image patch is enlarged in the direction of λmin(U ).
For any given point, the integration and the differen-
tiation scale determine the second moment matrix µ.
These scale parameters are automatically selected in
each iteration. Thus, the resulting µ matrix is inde-
pendent of the initial scale and the resolution of the
image.

Integration Scale. For any given spatial point we au-
tomatically select its characteristic scale. In order to
preserve invariance to size changes we select the in-
tegration scale σI at which the normalized Laplacian
(Eq. (3)) attains a local maximum over scale. In the
presence of large affine deformations the scale change
is very different in each direction. Thus, the charac-
teristic scale detected in the original image and in its
U -transformed version can be significantly different.
Therefore, it is essential to select the integration scale
in each iteration after applying the U transformation.
We use a procedure similar to the one in the Harris-
Laplace detector. The initial points converge toward a
point where the scale and the second moment matrix
do not change any more.

Differentiation Scale. We select the local differenti-
ation scale using the integration scale and the isotropy
measure Q (Section 3.2). This solution is motivated
by the fact that the local scale has an important influ-
ence on the convergence of the second moment matrix.
The iterative procedure converges toward a matrix with
equal eigenvalues. The smaller the difference between
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the eigenvalues (λmax(µ), λmin(µ)) of the initial matrix,
the closer the final solution and the faster the conver-
gence. Note that the Harris measure (Eq. (2)) already
selects the points with two large eigenvalues. A large
difference between the eigenvalues leads to a large scal-
ing in one direction by the U -transformation. In this
case the point does not converge to a stable solution
due to noise. The selection of the local scale enables
a reasonable eigenvalue ratio to be obtained and the
points to converge.

Note that the local differentiation scale can be set
proportional to the integration scale σD = sσI , where
s is a constant factor. This significantly accelerates the
iterations but some points do not converge due to a
large difference between the eigenvalues.

Spatial Localization. We have already shown how
the local maxima of the Harris measure change their
location if the detection scale changes (Fig. 2). We can
also observe this effect when the scale change is dif-
ferent in each direction. In our approach the detection
with different scales in x and y directions is replaced by
applying the same scale in both directions on the trans-
formed image. Consequently, we re-detect the maxi-
mum in the affine normalized window W . Thus, we
obtain a vector of displacement to the nearest maxi-
mum in the U -normalized window W . The location
of the initial point is corrected with the displacement
vector back-transformed to the original image domain:

x(k) = x(k−1) + U (k−1) · (
x(k)

w − x(k−1)
w

)

where xw is the point in the coordinates of the U -
transformed image.

Convergence Criterion. The important part of the it-
erative procedure is the stopping criterion. The con-
vergence measure can be based on either the U or the
µ matrix. If the criterion is based on µ computed in
each iteration, we stop iterating when the matrix is
sufficiently close to a pure rotation. This implies that
λmax(µ) and λmin(µ) are equal. In practice we allow for
a small error εC = 0.05.

1 − λmin(µ)

λmax(µ)
< εC (12)

Another possibility is to decompose the matrix U =
RT · D · R into rotation R and scaling D and compare
the consecutive U -transformations. We stop the iter-
ation if the consecutive R and D transformations are

sufficiently similar. Both termination criteria give the
same final results. Another important point is to stop
in the case of divergence. In theory there is a singular
case when the eigenvalue ratio tends to infinity i.e. on
a step-edge. Therefore, the point should be rejected if
the ratio is too large (i.e. εl = 6), otherwise it leads to
unstable elongated structures.

λmax(D)

λmin(D)
> εl (13)

The convergence properties of the shape adaptation al-
gorithm has been extensively studied by Lindeberg and
Garding (1997), who showed that except for the singu-
lar case the point of convergence is always unique. In
general, the procedure converges provided that the ini-
tial estimate of the affine deformation is sufficiently
close to the true deformation, and the integration scale
is correctly selected with respect to the size of the local
image structure.

Detection Algorithm. We propose an iterative proce-
dure that allows the initial points to converge to affine
invariant points and regions. To initialize our algorithm
we use points extracted by the multi-scale Harris detec-
tor. These points are not detected in an affine invariant
way due to a non-adapted Gaussian kernel, but provide
an approximate location and scale for further search.
For a given initial interest point x(0) we apply the fol-
lowing procedure:

1. initialize U (0) to the identity matrix
2. normalize window W (xw) = I (x) centered on

U (k−1)x(k−1)
w = x(k−1)

3. select integration scale σI at point x(k−1)
w

4. select differentiation scale σD = sσI , which
maximizes λmin(µ)

λmax(µ) , with s ∈ [0.5, . . . , 0.75] and
µ = µ(xw

(k−1), σI , σD)
5. detect spatial localization x(k)

w of a maximum of the
Harris measure (Eq. (2)) nearest to x(k−1)

w and com-
pute the location of the interest point x(k)

6. compute µ
(k)
i = µ− 1

2 (x(k)
w , σI , σD)

7. concatenate transformation U (k) = µ
(k)
i ·U (k−1) and

normalize U (k) to λmax(U (k)) = 1
8. go to Step 2 if 1 − λmin(µ(k)

i )/λmax(µ(k)
i ) ≥ εC

Although the computation may seem to be very time
consuming, note that most time is spent on computing
Lx and L y , which is done only once in each step if
the relation between the integration and local scales is
constant. The iteration loop begins with selecting the
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Figure 5. Iterative detection of an affine invariant interest point in the presence of an affine transformation (top and bottom rows). The first
column shows the points used for initialization. The consecutive columns shows the points and regions after iterations 1, 2, 3 and 4. Note that
the points converge after 4 iterations and that the ellipses converge to corresponding image regions.

integration scale because we have noticed that this part
of the algorithm is most robust to small localization
errors of the interest point. However, scale σI changes
if the shape of the patch is transformed. Given an ini-
tial approximate solution, the presented algorithm it-
eratively modifies the shape, the scale and the spatial
location of a point and converges to a local structure.
Figure 5 shows affine points detected in consecutive
steps of the iterative procedure. After the fourth itera-
tion the location, scale and shape of the point do not
change any more. We can notice that the final ellipses
cover the same image region despite strong affine de-
formation.

Selection of Similar Affine Points. We can suppose
that the features are stable if they are present at a wide
range of scales. These features are identified by sev-
eral points which converge to the same structure. Pro-
vided that the normalized region is isotropic, there is
one spatial maximum of the Harris measure and one
characteristic scale for the considered local structure.
Therefore, several initial points corresponding to the
same feature but detected at different scale levels con-
verge toward one point location and scale. It is straight-
forward to identify these points by comparing their lo-
cation (x, y), scale σI , stretch λmin(U )/λmax(U ) and
skew. The skew is recovered from the rotation matrix
R, where U = RT · D · R. We define a point as sim-
ilar if each of these parameters is within a threshold
to the parameters of the reference point. Finally, we
compute the average parameters and select the most

similar point from the identified set of points. As a re-
sult, for a given image we obtain a set of points where
each one represents a different image location and
structure.

Example of Affine Invariant Points. Figure 6 illus-
trates the detection of affine invariant points. Column
(a) displays the points used for initialization, which are
detected by the multi-scale Harris detector. The circles
show the detection scales, where the radius of the circle
is 3σI . The circles in black show the points selected by
the Harris-Laplace detector. Note that there is a signifi-
cant displacement between points detected at different
scales and the circles in corresponding images (top and
bottom row) do not cover the same part of the image.
In column (b) we show the Harris-Laplace points with
estimated affine regions (in black) (Schaffalitzky and
Zisserman, 2002). The scale and the location of points
is constant during iterations. The projected correspond-
ing regions are displayed in white and clearly show the
difference in location and region shape. The initial scale
is not correctly detected due to the use of a circular (not
affine adapted) Laplacian operator. Similarly, the point
locations differ by 3–4 pixels. The points in column (a),
which correspond to the same physical structure, but
are detected at different locations due to scale, converge
to the same point location and region and are displayed
in column (c). We can see that the method converges
correctly even if the location and the scale of the initial
point is relatively far from the point of convergence.
Convergence is in general obtained in less than 10 it-
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Figure 6. Affine invariant interest point detection: (a) Initial interest points detected with the multi-scale Harris detector and their characteristic
scale selected by the Laplacian scale peak (in black—Harris-Laplace). (b) Affine regions detected for the Harris-Laplace points (in black) and
the regions projected from the corresponding image (in white). (c) Points and corresponding affine regions obtained with the iterative algorithm
applied to the initial multi-scale Harris points. Note that points corresponding to the same structure converge to the same solution. (d) Selected
average affine points (in black) and its corresponding projected points (in white). (e) Point neighborhoods normalized with the estimated matrices
to remove stretch and skew.

erations. Typically, about 40% of the initial points do
not converge due to the lack of characteristic scales or
to the large difference between the eigenvalues of the
matrix U (λmax(U )/λmin(U ) > 6). About 30% of the
remaining points are selected by the similarity mea-
sure. About 20–30% of the initial multi-scale Harris
points are then used to represent an image. Column (d)
displays the selected points (in black) and projected
points from the corresponding image (in white). The
minor differences between the regions in column (d)
are caused by the imprecision of the scale estimation
and the error εC . Column (e) shows the selected points
normalized with the estimated matrices to remove the
stretch and the skew. We can clearly see that the regions
correspond between the two images (top and bottom
row).

4. Comparative Evaluation of Interest Points

In this section we compare our scale and affine invari-
ant detectors to other existing approaches presented in
Section 1.1. The stability and accuracy of detectors is
evaluated using the repeatability criterion introduced in
Schmid et al. (2000). We also discuss the performance
of different detectors. The important parameters char-
acterizing a feature detector are:

1. The average number of corresponding points de-
tected in images under different geometric and pho-
tometric transformations.

2. The accuracy of localization and region estimation.

We present quantitative measures in Section 4.1.
Another important parameter is the distinctiveness

of the feature, however this is also a function of the
descriptor used. The reader is referred to Mikolajczyk
and Schmid (2003a), for a detailed evaluation of differ-
ent descriptors computed on scale and affine invariant
regions.

4.1. Repeatability

Repeatability Criterion. The repeatability score for a
given pair of images is computed as the ratio between
the number of point-to-point correspondences and the
minimum number of points detected in the images. We
take into account only the points located in the part of
the scene present in both images. We use test images
with homographies to find the corresponding regions.
We consider that two points xa and xb correspond if:

1. The error in relative point location is less than 1.5
pixel: ‖xa − H · xb‖ < 1.5, where H is the homog-
raphy between the images.
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2. The error in the image surface covered by point
neighborhoods is εS < 0.4. In the case of scale
invariant points the surface error is:

εS =
∣∣∣∣1 − s2 min

(
σ 2

a , σ 2
b

)
max(σ 2

a , σ 2
b

)
∣∣∣∣

where σa and σb are the selected point scales and
s is the actual scale factor recovered from the
homography between the images (s > 1).

The surface error for affine regions is:

εS = 1 − µa ∩ (AT µb A)

(µa ∪ AT µb A)

where µa and µb are the elliptic regions defined
by xT µx = 1. The union of the regions is (µa ∪
(AT µb A)) and (µa ∩ (AT µb A)) is their intersec-
tion. A is the locally linearized homography H in
point xb. The location error of 1.5 pixel is toler-
ated by descriptors and can be neglected because
it introduces a relatively small error between corre-
sponding regions compared to the error introduced
by the inaccuracy of the shape estimation. Given
the scale interval 1.4 between two successive scale-
space levels the maximum scale estimation inaccu-
racy is

√
1.4. We allow for a slightly larger error

1.3, that is εs < |1 − 1/1.32|, which corresponds to
εs < 0.4.

Data Set. The evaluation is done on real images1

taken by a digital camera. A significant amount of
noise is added during the acquisition process (zoom,
viewpoint, light changes, Jpeg compression). The zoom
changes involve a change in pixel intensity as automatic
camera settings are used. Jpeg compression addition-
ally introduces artifacts. Some of the image pairs are
displayed in Section 5.2. In order to use a homogra-
phy for verification we used planar scenes or 3D scenes
with a fixed camera position. The homography between
images was estimated using manually selected corre-
sponding points. Each scale change sequence consists
of scaled and rotated images, for which the scale fac-
tor varies from 1.4 to 4.5. For the viewpoint change
sequences the viewpoint varies in the horizontal direc-
tion between 0 and 70 degrees. There are 10 images in
each sequence representing different scenes. The ex-
periments were carried out using 10 scale change se-
quences and 6 viewpoint change sequences of real im-
ages, one of the sequences is displayed in Fig. 9. There

are 160 images in total and approximately 100 000 in-
terest points are detected in these images and used to
evaluate the detectors.

Scale Invariant Detectors. In the following we com-
pute the repeatability score for different scale invari-
ant detectors. We compare the detection methods pro-
posed by Lindeberg and Garding (1997) (Laplacian,
Hessian and gradient), Lowe (1999) (DoG) as well
as our Harris-Laplace and Harris-Affine detector. To
show the gain obtained by scale invariance, we also
present the results for the standard Harris detector (not
adapted to scale changes). Figure 7 shows the repeata-
bility score for the compared methods. The best re-
sults are obtained for the Harris-Laplace method. Its
repeatability score is 68% for a scale factor of 1.4. The
repeatability is not 100% because some points cannot
be detected in the corresponding image due to the fixed
range of detection scales, which is the same for each
image. The points which are extracted at finer scales
in the high resolution image and at coarser scales in
the coarse resolution image do not have corresponding
points. The repeatability score is also influenced by ro-
tation and illumination changes as well as the camera
noise. The repeatability of the non-adapted Harris de-
tector is acceptable only for scale changes up to a factor
of 1.4. As we might expect LoG and DoG give similar
results. The slightly better results for the LoG are due
to the artifacts and inaccuracy introduced by sampling
of pyramid levels in the DoG approach (Lowe, 1999).
The scale invariant detectors perform better than the

Figure 7. Repeatability of interest point detectors with respect to
scale changes. The regions extracted by the detectors are different,
therefore the detectors are complementary.
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Figure 8. Detection error of corresponding points extracted with scale invariant detectors: (a) relative location and (b) surface intersection εS .

Figure 9. Images of one test sequence with perspective deformations. The corresponding viewpoint angles are indicated below the images.

Harris-Affine approach, but these detectors are appro-
priate for the uniform scale changes, whereas the affine
detector can handle more complex image transforma-
tions. Figure 8 shows the accuracy of point locations
and scale estimation for Harris-Laplace and the sim-
plified Harris-Laplace. The accuracy is limited by the
scale interval which is 1.1 for Harris-Laplace and 1.4
for the simplified Harris-Laplace. In order to measure
the accuracy of the localization (Fig. 8(a)) we accept
points with localization errors up to 3 pixels. Similarly,
for the error of region intersection (Fig. 8(b)), we ac-
cept points with the surface error up to 60% and then
compute the average error value. We can notice the
gain in scale accuracy obtained with iterative Harris-
Laplace. The errors are systematically smaller than for
the simplified Harris-Laplace.

Affine Invariant Detectors. We have done a sim-
ilar comparison for Harris-Affine, Harris-Laplace
and the approach proposed by Schaffalitzky and

Zisserman (2002) referred to as Harris-AffineRegions.
Harris-AffineRegions applies the iterative estimation
of the affine point neighborhood to Harris-Laplace
points. The location and scale of a point remain fixed
during iterations.

Figure 10 displays the repeatability rate and Fig. 11
shows the localization and the intersection error for
corresponding points. Corresponding points used for
computing these errors are determined by the homog-
raphy. We used the same criteria to compute the local-
ization and intersection error as for the scale invariant
detectors. The affine transformation for the error esti-
mation is computed with a local approximation of the
homography.

We notice in Fig. 10 that our affine detector signifi-
cantly improves the results in the case of strong affine
deformations. We can notice the breakdown point of
the Harris-Laplace detector at a viewpoint change of
40 degrees. The performance of Harris-Laplace con-
tinue to decrease, whereas Harris-Affine still provides
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Figure 10. Repeatability of detectors: Harris-Affine—approach
proposed in this paper, Harris-AffineRegions—Harris-Laplace de-
tector with affine normalization of the point neighborhood,
Harris-Laplace—multi-scale Harris detector with characteristic scale
selection.

sufficient corresponding features. The accuracy of the
feature localization and shape is critical for local de-
scriptors, for example, differential descriptors fail if
this error is significant (Mikolajczyk and Schmid,
2003a). The improvement is with respect to localization
as well as region intersection (Fig. 11). These results
clearly show that the location of the maximum of the
Harris measure and the extremum over scale are sig-

Figure 11. Detection error of corresponding points extracted with affine invariant detectors: (a) relative location (the same for Harris-Laplace
and Harris-AffineRegions) and (b) surface intersection εS .

nificantly influenced by affine transformations. In the
presence of weak affine distortions the Harris-Laplace
and the Harris-AffineRegions detectors achieve the best
results. The localization error is the same for these two
detectors. The difference in the surface error is insignif-
icant for small viewpoint changes. The affine adapta-
tion does not improve the location, the scale, and the
region shape because the scaling is almost the same in
every direction. The circular Gaussian kernel is well
suited for this case. The other scale invariant detectors
give worse results than those of Harris-Laplace, if ap-
plied on images with affine transformations. Note, that
the relative rank of detectors does not change compared
to Fig. 7. For clarity we show the results only for the
Harris-Laplace.

4.2. Computational Complexity

The complexity and efficiency of a feature detector is
an important issue in particular when applying the de-
tectors to image sequences or large image databases.
Table 1 shows a comparison of the computation time
required by the detectors. Here, each detector is ap-
plied to an image of size 800 × 640 (displayed in
Fig. 12). Detection is done on a Pentium II 500 MHz.
The first column lists the detectors and the second col-
umn shows the main operations required for detecting
the initial points. The points are detected at 12 scale
levels. Note that to obtain the Hessian or the second
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Table 1. Complexity of the detectors. g(I ) denotes Gaussian smoothing. H (I ) denotes
the Hessian matrix and µ(I ) the second moment matrix computed for every image point.
(dxx + dyy ) is a convolution of a point neighborhood with a 2D Laplacian kernel. #n denotes
the number of iterations per point patch, and can vary for different initial points.

Operation Operation Operation
on image on patch on patch Run time Number

Detector (initial points) (scale) (shape) seconds of points

DoG #12 g(I ) 0.7 1527

Hessian #12 H (I ) 0.9 1832

H-L simplified #12 µ(I ) #3 (dxx + dyy ) 1.4 1625

H-L #12 µ(I ) #n (dxx + dyy ) 7 1438

H-AR #12 µ(I ) #3 (dxx + dyy ) #n µ(x) 12 1463

H-A #12 µ(I ) #7n (dxx + dyy ) #5n µ(x) 36 1123

moment matrix we compute and smooth the deriva-
tives for each image point. In this implementation we
use recursive filters to accelerate the Gaussian filter-
ing. We have compared this recursive implementation
with non-optimized Gaussian filtering. The number of
detected points differ by 0.5% due to slightly differ-
ent responses of regular Gaussian filters. The shape of
the second moment matrices remains the same. Every
initial point is processed independently. The simpli-
fied Harris-Laplace approach requires 3 convolutions
(σn−1, σn, σn+1) of a point neighborhood with a 2D
Laplacian kernel to select the scale (third column).
The number of convolutions is larger for the iterative
Harris-Laplace method and varies for each initial point.
Typically, #n is less than 5, and the maximum number
of iterations is limited to 10. The Harris-AffineRegion
method selects the scale and then iterates on local
shape, therefore it computes the second moment ma-
trix at each iteration step. Typically, #n is less than 10,
and the maximum number of iterations is limited to 15.
The Harris-Affine approach probes 7 integration scales
(third column) and 5 differentiation scales (fourth col-
umn) at each iteration to find local extrema. The num-
ber of iterations is similar to the Harris-AffineRegion
method. The fifth column shows the run time in sec-
onds and the sixth the number of points provided by the
detectors. The run time is the computational time re-
quired by a Pentium II 500 MHz to detect features in a
800×640 image. This time can slightly vary depending
on the number of features in the image.

The fastest detector is DoG since it only smooths,
subtracts and samples the image. The Harris-Affine (H-
A) detector is the one with the highest complexity. It
can be significantly accelerated by fixing the ratio be-
tween the differentiation and integration scales. This

will reduce the number of iterations on µ(x) from #5n
to #n times, where 5 is the number of probed differenti-
ation scales. The scale selection and the point localiza-
tion can be done at the first iteration only, in a similar
manner to the Harris-AffineRegion method. All these
simplifications can significantly reduce the detection
time but at the cost of accuracy.

5. Applications

In this section we present an example application
for our interest point detectors and show how they
can be used to match image pairs with significant
scale or viewpoint changes. For examples of other
applications the reader is referred to Lazebnik et al.
(2003), Rothganger et al. (2003), and Schaffalitzky
and Zisserman (2002). In Section 5.1 we describe our
matching approach. Section 5.2 shows the results for
scale and affine invariant features.

5.1. Matching Algorithm

Given an image we detect a set of interest points
and compute the point descriptors. The descriptors are
then compared with a similarity measure. The result-
ing similarity is used for finding the corresponding
points.

Descriptors and Similarity Measure. Our descrip-
tors are Gaussian derivatives computed in the lo-
cal neighborhood of interest points. Derivatives are
computed on image patches normalized with the ma-
trix U (Eq. (11)), which is estimated independently
for each point. Invariance to rotation is obtained by
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Figure 12. Robust matching: Harris-Laplace detects 190 and 213 points in the left and right images, respectively (a). 58 points are initially
matched (b). There are 32 inliers to the estimated homography (c), all of which are correct. The estimated scale factor is 4.9 and the estimated
rotation angle is 19 degrees.
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“steering” the derivatives in the direction of the gra-
dient (Freeman and Adelson, 1991). To obtain a sta-
ble estimate of the gradient direction, we use the av-
erage gradient orientation in a point neighborhood
(Mikolajczyk, 2002). Invariance to affine intensity
changes is obtained by dividing the higher order deriva-
tives by the first derivative. We obtain descriptors of
dimension 12 by using derivatives up to 4th order.

To measure the similarity between the descriptors we
use the Mahalanobis distance. The covariance matrix
is estimated over a large set of images and incorpo-
rates signal noise, variations in photometry as well as
inaccuracy of the interest point location.

Matching. To robustly match the images, we first de-
termine point-to-point correspondences using the sim-
ilarity measure. We select for each descriptor in the
first image the most similar descriptor in the second
image using the Mahalanobis distance. If the distance
is below a threshold the match is potentially correct.
A set of initial matches is obtained. In the second step
of verification we apply cross-correlation, which re-
jects low-score matches. Finally, a robust estimation of
the transformation between the two images based on
RANdom SAmple Consensus (RANSAC) enables the
selection of the inliers. In our experiments the transfor-
mation is either a homography or a fundamental matrix.
A model selection algorithm (Kanatani, 1998; Triggs,
2001) can be used to automatically decide which trans-
formation is the most appropriate.

5.2. Experimental Results for Matching

In this section, we present matching results in the pres-
ence of scale and viewpoint changes. The results are
obtained with the Harris-Laplace and the Harris-Affine
detector. We show the matched points which are in-
liers to the estimated transformations. The number of
correctly matched descriptors is limited by the num-
ber of corresponding features provided by the detec-
tor and depends on the accuracy of the detectors. The
matching approach is based on the distance measure
between the descriptors and RANSAC. If the fraction
of inliers among the initial matches is too small then
RANSAC fails. Note that there are points which are
correctly detected but are rejected by the distance mea-
sure. However, these points could be matched by using
a more distinctive descriptor or by applying semi-local
constraints.

Scale Change. Figure 12 illustrates the consecutive
steps of the matching algorithm. In this example two
images are taken from the same viewpoint, but with a
zoom change and camera rotation. The multi-scale Har-
ris detector provides 1382 and 926 points for the im-
ages, respectively. The best ratio inliers/initial matches
obtained by varying the distance threshold was 41/220.
The fraction of outliers is too significant and RANSAC
fails. This ratio for Harris (not adapted to scale changes)
is 4/140. Moreover, these 4 points are accidentally
matched since the size of the point neighborhood used
to compute the descriptors is the same for both images.
This clearly shows that the multi-scale Harris detector
needs a more efficient matching strategy and the non-
adapted Harris detector cannot deal with scale changes.
The ratio inliers/initial matches for Harris-Laplace is
32/58 with a distance threshold fixed for all image pairs.
The top row shows the interest points detected with the
Harris-Laplace detector. There are 190 and 213 points
detected in the left and right images respectively. These
numbers are about equivalent to the number of points
which are usually detected with the standard Harris
detector applied at the finest level of the scale-space
representation. Note that there are about 10 times more
points if the multi-scale Harris detector is used. This
clearly shows the selectivity of our method. Row (b)
shows the 58 matches obtained by the initial match-
ing with the similarity measure. Row (c) displays the
32 inliers to the estimated homography, all of which
are correct. The estimated scale factor between the two
images is 4.9 and the rotation angle is 19 degrees.

Another example is displayed in Fig. 14(a). There is
a scale change of 3.9 and a rotation of 17◦ between the
images. There are 118 correctly matched points. In the
presence of uniform scale changes the Harris-Laplace
detector performs better than the Harris-Affine detec-
tor. The Harris-Affine approach estimates the affine de-
formation of features, which rejects many points with
correct scale and location but with highly anisotropic
shape. The affine invariant points are also less
distinctive.

Viewpoint Change. Figure 13 illustrates the match-
ing results with features provided by Harris-Affine
detector. In order to separate the detection and the
matching results, we present in row (a) all the possible
point-to-point correspondences established with the es-
timated homography. There are 78 corresponding pairs
among the 287 and 325 points detected in the first and
the second image, respectively. After matching with the



82 Mikolajczyk and Schmid

Figure 13. Robust matching: (a) 78 pairs of possible matches are found among the 287 and 325 points detected by Harris-Affine. (b) 43
points are matched based on the descriptors and the cross-correlation score. 27 of these matches are correct. (c) 27 are inliers to the estimated
homography. All of them correct.
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Figure 14. Correctly matched images using scale and affine regions. The displayed matches are the inliers to a robustly estimated homography
or fundamental matrix. There are (a) 118 matches (b) 34 matches and (c) 22 matches. All of them are correct.
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Figure 15. Example of an image pair, for which our matching approach fails. However, there are correctly detected corresponding points which
we have manually selected. The failure is therefore due to descriptors.

similarity measure, we obtain 53 matches (29 correct
and 24 incorrect). Next, we apply the additional verifi-
cation based on the cross-correlation of affine normal-
ized image patches. This verification rejects 10 matches
(2 correct and 8 incorrect). The remaining 43 matches
(27 correct and 16 incorrect) are displayed in row (b).
Finally, there are 27 inliers to the robustly estimated ho-
mography, which are presented in row (c). Note, that
there is a large perspective transformation between the
images. The limited benefit of using cross-correlation
can be explained by a high sensitivity of this method
to different types of errors introduced by the feature
detector such as inaccuracy in the feature localiza-
tion, scale and affine normalization. Other examples
are presented in Fig. 14(b) and (c). The images show
a 3D scene and a planar scene taken from different
viewpoints. Points are detected with Harris-Affine and
there are 34 inliers to a robustly estimated fundamen-
tal matrix (Fig. 14(b)) and 22 inliers to a homography
(Fig. 14(c)).

In Fig. 15, we show a pair of images for which our
matching procedure fails. It shows that there are at least
23 similar regions that could be matched. The failure
is therefore not due to the Harris-Affine detector, but to
the matching procedure. It is true that affine-invariant
descriptors are less distinctive. For example, corners of
sharp or wide angles, of light or dark intensity are al-
most the same once normalized to be geometrically as
well as photometrically invariant. Therefore, improv-
ing the matching is necessary to match these two im-
ages. This can be achieved by using (i) more distinctive
descriptors (see Mikolajczyk and Schmid, 2003a for a
performance evaluation of different descriptors com-
puted for affine-invariant regions) or (ii) semi-local ge-

ometric consistency (Dufournaud et al., 2000; Pritchett
and Zisserman, 1998; Tell and Carlsson, 2002).

6. Conclusions and Future Work

In this paper we have proposed two novel approaches
for scale and affine invariant interest point detection.
Our algorithm simultaneously adapts location, scale
and shape of a point neighborhood to obtain affine
invariant points. None of the previous methods si-
multaneously solves for all of these parameters in a
feature extraction algorithm. The experimental results
for wide baseline matching show the performance
of our approach. The scale invariant detector can
deal with larger scale changes than the affine invari-
ant detector but it fails for images with large affine
transformations. The affine invariant points provide
for reliable matching even for images with signifi-
cant perspective deformations. However, the stabil-
ity and convergence of affine regions is the subject
of further investigation as well as their robustness to
occlusions.

The invariance to geometric and photometric affine
transformations removes some of the information that
the points convey, therefore the design of a more ro-
bust and distinctive descriptor is required. It might then
be combined with semi-local constraints (Dufournaud
et al., 2000; Pritchett and Zisserman, 1998; Schmid and
Mohr, 1997; Tell and Carlsson, 2002) to improve the
results. A future area of work will also be the use of the
proposed approaches in different applications, as for
example, shot matching in a video sequence, recogni-
tion of object classes and tracking.
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Note

1. http://www.inrialpes.fr/lear/people/Mikolajczyk/Database
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