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Summary

A tool is introduced that uses a novel technique to enable users to explore two-dimensional
views of high dimensional gene expression data sets. Unlike other such tools, the interface
is intuitive and efficient, allowing the user to easily select views that meet their require-
ments. The tool is tested on publicly available gene expression data sets and demonstrated
to find views that show the seperation of gene expression data sets into classes more effec-
tively than standard dimension-reduction methods.

1 Introduction

This paper considers the problem of exploring and visulising high dimensional gene expression
data. There are many powerful automatic techniques for analysing such data, but visualisation
represents an essential part of the analysis as it facilitates the discovery of structures, features,
patterns and relationships, enables human exploration and communication of the data and en-
hances the generation of hypotheses, diagnoses, and decision making.

Visualising gene expression data requires representing the data in two (or occasionally one or
three) dimensions. Therefore techniques are required to accurately and informatively show
these very high-dimensional data structures in low dimensional representations.

There are many established techniques for reducing the dimensionality of data for visualisation
purposes. Among these, multi-dimensional scaling (MDS), including Sammon mapping, finds
a view of the data that best preserves the distances between points [6]; VizStruct is a technique
based on radial coordinates [18]; dendrograms may be used to linearly arrange and display
clustered gene expression data [5]; and projection pursuit [13] finds linear projections that
optimise some measure of their quality.

Each of these techniques has limitations and advantages. MDS is able to scale to very high
dimensional data spaces – though Figure 5 below illustrates one limitation on this – but is
a map-based, rather than projection-based, technique in which adding single datum requires
creating a new view of the entire set; thus it is not possible to visualise the relationships of new
or unclassified samples to existing ones. VizStruct is not optimized for viewing classifications
of the data, and is also only able to accurately visualize data across relatively small numbers of
genes (e.g. 12) – hence is reliant on reducing the dimensionality of the original data through
some form of feature selection. Dendrograms use linear arrangements of the data and so are
restricted to a single dimension for display.

A fundamental advantage of using linear projections for visualisation compared to, for example,
MDS, is that they define a transform that can be applied to any point in gene-space. In particular,
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the projection contains information about the respective significance of each gene, and how they
can be best combined to perform functions such as classification and genetic feature selection,
or to identify gene expression signatures [14].

Nonetheless, each of these techniques produces a single static view of the data, possibly opti-
mised for a particular application. Here we present a tool that allows the user to truly ‘explore’
high dimensional data sets using an interface that is intuitive, efficient, and powerful. The inter-
face presents the user with a two dimensional view of the data which they can then manipulate
using mouse actions. The tool then dynamically finds linear projections of the data that best
match the user’s requirements.

The tool has been implemented in prototype and compared quantitatively and qualitatively
with other dimension reduction techniques at the task of visually seperating classified gene
expression data sets. It is found to outperform all alternatives in this task.

The prototype tool, along with example data sets, is publicly available from the associated
web-site1.

2 Targeted Projection Pursuit Tool

Friedman and Tukey introduced the term projection pursuit to describe the process of finding
interesting linear projections by optimizing some function (the projection pursuit index)[8].
The definition of what makes a projection ‘interesting’ depends on the projection pursuit index
and on the application or purpose. For example, Lee et al [13] discuss a projection pursuit
index that measures how well each projection shows the seperation of classes in the data.

The problem here is that all such techniques rely on a pre-determined notion of ‘interest’.
Different projections may be available but, at best, they will be presented to the user as a fixed
menu of possibilities. One alternative to the static views produced by projection pursuit is
Asimovs Grand Tour [1] – described as an attempt to look at the data ‘from all possible angles.
A Grand Tour is a video sequence in which each frame shows the result of a single projection
of the data, with the sequence as a whole including all possible projection planes. However,
the Grand Tour replaces the quality of projection pursuit with quantity: a grand tour in high
dimensional space may be long and mostly uninformative.

Ideally we would have some way of allowing user to guide the tour, to use their perception
of the data to find projections of interest. Cook and Buja ([2][3]) proposed and implemented
an interface that allows the user to not only pause and rewind a given Grand Tour, but also to
amend the resulting view by controlling the input from each dimension independently. The
problem is that projection component manipulation is an opaque interface in the sense that
it is rarely possible for the user to anticipate the effect of their actions. Where the user has
strong intuitions about the nature of the structure of interest in data, and its relationship with
the underlying coordinate system, then it may be possible for them to determine how best to
use component-based controls to reveal structure in the data more clearly. In other words, once
the user knows what they are looking for, then such an interface will help them find it. But it
is unsuited to true exploration of the data. The user has n controls to manipulate (one for each
dimension of the original data set), the effect of each will be unknown and which will have

1http://computing.unn.ac.uk/staff/CGJF1/tpp/tool.html
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Figure 1: The use of targeted projection pursuit for interactive data exploration. a An initial view
of the data with two partial clusters and an outlier. b The user hypothesises that the outlier is part
of the upper cluster and drags it into place. c If the data supports such a clustering then the tool
finds a view of the data that matches the hypothesis. d The data does not support the hypothesis
and moving the point disrupts the partial clusters.

unpredictable effects in combination. The user can do little more than random search – which
has its place, but is of little use when faced with a truly large dimensionality set.

The basis of our alternative projection pursuit tool is that the user should manipulate their view
of the data directly, rather than manipulate the projection that produces that view. This uses
a novel method we call Targeted Projection Pursuit in which a linear projection is found that
produces a view of the data that best matches an ideal target view [7]. The proposed tool works
as follows (see Figure 1). When the tool is started, the user sees an initial two-dimensional view
of the data. Suppose the user can discern some kind of pattern, for example if there appears
to be some clustering in the data, albeit with many outliers (Figure 1a). If this is the case the
user would hypothesise that the clustering is due to a genuine regularity in the data and that
the outliers are simply a product of the particular projection – for example, due to the inclusion
of a component of the data comprised mostly of noise. In this case the user would select an
outlier and attempt to drag it into the nearest cluster (Figure 1b). The tool then attempts to find
a projection of the data that best matches this revised view, and redisplays the data. If such a
view can be found then it will be displayed and the clusters will ‘fall into place’ (Figure 1c), for
example by removing the contribution of the noisy component. Otherwise the partial clusters
will be revealed to have been solely been an artefact of the initial projection (Figure 1d).

As well as manipulating the projections to find clusters, the user can also try dragging and
dropping points into curvilinear relationships, or linearly separable regions. And, rather than
single points, the user can select a region including a cluster of points, to fix or move. Alter-
natively, if the data is already classified into known classes then the tool may be used to find
low-dimensional views in which those classes are most clearly shown, and to identify outliers.
(It is this latter application that is used to test the tool below.)
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3 Tool Implementation

The tool described in Section 2 was implemented using Java, incorporating data-handling func-
tionality from Weka [16] and neural net functionality from Gurel [11]. Linear projections that
best match the target views are found using the method discussed in [7]. Although it is currently
at the prototype stage, the tool can be used as follows.

First, the user loads a classified data sets from a standard .arff format file [16], and an initial
view of the data is presented using the first two principal components ([17], however the par-
ticular choice of initial view is unimportant). Each class in the data set is represented by points
of a particular colour. Subsets of data points can be selected using a rectangular ‘rubber band’
and then dragged in the X and Y directions; the closest possible projection is then found dy-
namically and the resulting data positions redisplayed. Mouse drags can also be used to expand
or contract the area of the selected points.

An example interaction is shown in Figure 3. When the tool is started, the data is displayed
using the first two principal components. In this particular case the majority of points are
bunched into one corner. The user would like a projection that more clearly shows the ‘bunched’
points, so selects a region enclosing those points and drags the corner of the bounding box to
expand it. The tool then finds a view of the data that produces a better ‘spread’ of the selected
data. The user would then like to see whether a subset of points can separated to form a distinct
cluster, so selects those points and drags the region away from other points. The tool again
manages to find a view that better approximates the users requirements.

On a standard desktop PC2, the tool is able to calculate projections of 100 data points of 1000
dimensions and display them at approximately 5 frames per second.

4 Method

The tool is designed to be a general purpose method for exploring and visualising high di-
mensional data sets, but in order to compare it objectively and quantitatively with standard
dimension-reduction techniques it was tested for its effectiveness in one particular task: finding
views of classified gene expression data sets,

In this task the user was presented with views of classified gene expression data sets, in which
each class of sample is represented by points of differing colours. They were then invited to
use the tool to find views that best show the separation between classes. The resulting two-
dimensional view of the data was then tested using a standard statistical measure of class sep-
aration (ILDA, a version of Wilks’ Lamda [13]); and by seeing how effectively a classification
algorithm can use that view alone – rather than the original high-dimensional data – to classify
the samples (K Nearest Neighbours with k = 5).

The following dimension reduction techniques were compared

• TPP: The view generated by the prototype Targeted Projection Pursuit described above,
using non-orthogonal projections.

21.8GHz Pentium 4 CPU, 800MB RAM, Windows XP OS.
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Figure 3.1: Prototype Tool Interface: the initial
view of the chosen data set showing the first two

principal components.

Figure 3.2: Prototype Tool Interface: the user
expands a region to distinguish bunched points.

Figure 3.3: Prototype Tool Interface: the user
selects points that may form a cluster.

Figure 3.4: Prototype Tool Interface: the user
successfully separates the chosen cluster of points.
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• PP: The linear projection produced by search-based projection pursuit [13]. This al-
gorithm uses simulated annealing to search the space of all possible linear projections,
maximising a ‘projection pursuit index’ that measures how effectively each projection
seperates each class of sample.

• SAM: The map of the data produced by a Sammon Mapping – a multidimensional scaling
techniques that finds a 2D arrangement of points that best preserves the distances between
samples in the original data [6].

• VS: The result of a VizStruct non-linear projection based on radial coordinates [18].

The following data sets were used:

• LEUK: This dataset is the result of a study of gene expression in two types of acute
leukemia: acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) [10].
The samples consist of 38 cases of B-cell ALL, 9 cases of T-cell ALL, and 25 cases of
AML with the expression levels of 7219 genes measured. Note that, following [13], the
B-cell and T-cell ALL samples are considered as separate classes.

• SRBCT: This dataset comprises cDNA microarray analysis of small, round blue cell
childhood tumors (SRBCT), including neuroblastoma (NB), rhabdomyosarcoma (RMS),
Burkitt Lymphoma (BL; a subset of non-Hodgkin lymphoma) and members of Ewing
family of tumors (EWS). Expression levels from 6567 genes for 83 samples were taken
[12].

• NCI: This dataset records the variation in gene expression among the 60 cell lines from
the National Cancer Institute’s anticancer drug screen [15]. It consists of 8 different tissue
types where cancer was found: 9 breast, 5 central nervous system (CNS), 7 colon, 6
leukemia, 8 melanoma, 9 non-small-cell lung carcinoma (NSCLC), 6 ovarian, 2 prostate,
8 renal. 9703 cDNA sequences were used.

No additional normalisation was applied to the data. Initial feature selection reduced the di-
mensionality of the data set by finding the 50 genes with the highest Between-Group to Within-
Group Sum of Squares [4].

5 Results

The quantitative comparison of the four projections on the three data sets is shown in Table 1,
and a sample of the resulting views are given in Figure 5. (A complete set of views are available
on the associated web-site.)

The first aspect of the results to note is that the choice of dimension-reduction technique can
alter radically the resulting view of the data, judged both quantitatively and qualitatively. The
structure and relationship between clusters appears very differently in each view, resulting in
very different performances of classification algorithms. The choice of dimension reduction
technique clearly matters in visualising high dimensional data such as gene expression data.
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Figure 5.1: Two-Dimensional View of LEUK data
set produced by TPP method showing a clear

separation between all classes.

�	
������

�� ��	 
� ��	

Figure 5.2: Two-Dimensional View of SRBCT data
set produced by TPP method, showing clear

separation between all clasess.
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Figure 5.3: Two-Dimensional View of SRBCT data
set produced by SAM method showing one aspect of

the ‘curse of dimensionality’: the small variance
between points in high dimensional space produces

a reduced view with little ‘bunching’.
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Figure 5.4: Two-Dimensional View of SRBCT data
set produced by VS method with very little class

separation.
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Figure 5.5: Two-Dimensional View of NCI data set
produced by TPP method: most classes are clearly

seperated, albeit with outliers.
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Figure 5.6: Two-Dimensional View of NCI data set
produced by PP method: only leukemia and

melanoma cases are separated.
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Table 1: Comparison of class separability following dimension reduction for visualisation. Each
technique (TPP, PP, SAM and VS) is evaluated on each data set (LEUK, SRBCT,NCI), and the
separability of the resulting view tested using 5-Nearest Neighbours classification (generalisation
error in %) and a version of Wilks Lamda (0 < ILDA < 1).

Data Set LEUK SRBCT NCI
Class Separation Measure ILDA 5NN ILDA 5NN ILDA 5NN

TPP .997 100.0 .999 100.0 .994 96.7
Dimension Reduction Technique: PP .972 98.6 .988 100.0 .981 62.3

SAM .959 97.2 .911 95.2 .927 67.2
V S .952 95.8 .637 56.6 .838 32.8

The second aspect to note is that finding views that show distinct classes is harder the more
classes there are in the data: the classification performance resulting from each technique drops
almost monotonically as the number of classes increases.

Overall, VizStruct performed least well in separating classes. Although the difference between
VizStruct and the other techniques was least for the case with fewer classes (LEUK), the dif-
ference became more marked as the number of classes increased. This poor performance is un-
surprising, since this technique is not explicitly designed to accentuate classifications (though
see [18]).

The Sammon mapping performed well in separating classes, but its output was marked by the
‘curse of dimensionality’: i.e. in high dimensional spaces, the variance in distances between
randomly distributed points decreases. Sammon mapping attempts to preserve the distance
between data points, and hence the resulting views tend to be evenly distributed, with little
bunching of points belonging to a single class. Classification algorithms may succeed in as-
cribing points to classes – and hence the classification scores for SAM are similar to those for
the linear mappings produced by TPP and PP – but this may not be an accurate reflection of the
perceived class seperation.

Both projection pursuit techniques performed well, which is unsurprising since they are specifi-
cally designed for this task; however in each case targeted projection pursuit using the prototype
tool outperformed all other techniques, including search-based projection pursuit, in visually
seperating sample classes.

Conventional search-based projection pursuit also suffered from unreliability. Since it is partly
a stochastic technique, the results could differ. Over a sequence of 100 trials, the values for
ILDA for PP applied to the NCI set ranged from 0.935 to 0.992 (mean=0.978, standard devia-
tion=0.00924). The values for ILDA and 5NN shown in Table 1, and the view show in Figure 5
are for a projection of near-mean ILDA value.

6 Discussion

The wealth of data produced by high-volume experimental techniques such as DNA microarray
analysis brings its own problems. Many computational techniques have been developed, and
many existing techniques have been applied, to their analysis; but for the experimenter or ana-
lyst there is still no substitute for getting a ‘feel’ of a data set. In this paper we have introduced
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a tool that allows a user to do just that, and have tested its efficacy on a particular task. Initial
results are extremely encouraging

Targeted projection pursuit using the prototype tool was able to produce views of gene expres-
sion data that separated sample classes better than all other techniques. This is unexpected,
since it may be supposed that a computational technique, such as search-based projection pur-
suit, would outperform a human user in searching a large space of possible projections. How-
ever, the tool is so designed to combine the strengths of human pattern recognition with a
computer’s ability to optimise sets of linear equations.

(It may be supposed that for simpler problems – ie where the number of gene/dimensions is
lower – then search-based techniques may prove more capable. See [7].)

The tool is currently in prototype, but the authors are using the experience of these initial ex-
periments to produce a more fully featured version; to explore how it can be used in the experi-
mental process; and to explore applications in feature selection and unsupervised classification.
Early examples of such applications can be seen on the associated web-site3.
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