
Static Dataow and Heterochronous Dataow with Hierarchical

FSMs in Ptolemy II

Brian K. Vogel

vogel@eecs.berkeley.edu

EE249 Final Project Report

December 9, 1999

Abstract

*charts is a formalism for combining �nite state machines (FSMs) with various concur-
rent models of computation. In *charts, the emphasis is on separating the FSM semantics
from the concurrency model semantics. Instead of de�ning concurrency models, *charts shows
how to combine hierarchical FSMs with various existing concurrency models. This paper dis-
cusses an implementation of a subset of the *charts formalism under Ptolemy II. The particular
subset implemented consists of static dataow (SDF) combined with hierarchical FSMs and
heterochronous dataow (HDF) combined with hierarchical FSMs.

1 Introduction

1.1 Overview of Ptolemy II

Ptolemy II [1] is software (implemented in Java) supporting heterogeneous, concurrent modeling
and design for embedded systems. Ptolemy II uses a component view of design, where a model is
constructed as a set of interacting components. A model of computation is then used to describe
the semantics of the interaction between the components. In Ptolemy II, a model of computation
is implemented by a domain. Ptolemy II currently contains domains for several models of compu-
tation, such as static dataow (SDF) and discrete events (DE). One of the objectives of Ptolemy II
is to support the construction of heterogeneous models, i.e., models that use more than one model
of computation.

1.2 Project Goals

Prior to this project, some Ptolemy II domains, such as SDF and DE, could be combined. However,
other arguably useful combinations, such as SDF and FSM could not. At the onset of this project,
the FSM domain itself was in an early state of development by another student, Xiaojun Liu. The
SDF domain, however, was considered to be fairly mature. The primary objective of this project
was to implement an interaction semantics between SDF and FSM, allowing Ptolemy II models
to combine these models of computation. Another objective was to implement an interaction
semantics between heterochronous dataow (HDF) [2] and FSM. HDF, a generalization of SDF
and cyclostatic dataow (CSDF), is a somewhat experimental model of computation. The *charts

1

[2] formalism was used to describe the semantics of the interaction between SDF (or HDF) and
hierarchical FSMs. A �nal objective was to construct some (hopefully interesting) demos and test
cases using SDF/HDF with FSMs to verify the correct functioning of the code.

2 Motivations for Combining FSMs with Concurrency Models

Finite state machines are excellent for describing control ow. However, many complex systems
require numerical computations in addition to control ow. Concurrency models such as dataow
are typically better suited to performing numerical computations. For many practical systems, it
is therefore necessary to combine FSMs with concurrent models of computation.

There are a number of models that combine FSMs with concurrent models of computation.
Examples include Harel's Statecharts model [3], codesign �nite state machines (CFSMs) [4], The
MathWork's Simulink, Hybrid systems [5], and *charts (pronounced \starcharts") [2]. Unlike the
other models mentioned above, *charts does not de�ne a concurrency model. Rather, *charts
de�nes an interaction semantics for FSMs and several existing concurrency models. This is exactly
what is desired in Ptolemy II, since it would allow Ptolemy II models to combine the FSM domain
with one or more concurrent domains. That is, in Ptolemy II, one might wish to construct a
heterogeneous model that composes FSMs with another concurrency model such as SDF. It would
be desirable to be able to describe a model using a single FSM domain and the concurrent domain(s)
of choice instead of requiring the use of a separate specialized domain for each combination of FSM
and concurrency model.

This project involved implementing the *charts interaction semantics for hierarchical FSMs with
SDF and hierarchical FSMs with HDF. Another student, Xiaojun Liu, is currently implementing
the *charts interaction semantics for the other Ptolemy II concurrent domains (Discrete Events
and Continuous Time).

3 Semantics of SDF with Hierarchical FSMs

In *charts, there are two possible ways to combine SDF with FSMs. In the �rst case, an actor in
an SDF graph may re�ne to an FSM. In the second case, a state in an FSM may re�ne to an SDF
graph. In *charts, an FSM must externally have the semantics of its master. Therefore, if SDF is
to be combined with hierarchical FSMs, then the top level of a model must be SDF.

Apart from the above constraint that the top level be SDF, *charts supports arbitrary nesting
of SDF and FSM subsystems in a model. Figure 3 shows an example of SDF combined with FSMs.

3.1 SDF Re�ning to FSM

*charts speci�es an operational semantics for the case where an SDF actor in an SDF graph re�nes
to an FSM. When an SDF actor re�nes to an FSM, the FSM must externally have SDF semantics.
The slave FSM must therefore consume a (�xed) number of tokens from each port, corresponding
to the consumption/production rates of its master, when is �red.

When execution begins, the FSM will start in an initial state. State transitions are allowed to
occur only between iterations of the SDF graph in which the FSM is embedded. The semantics
is that when an FSM is �red, it �res its current state (which may re�ne to another FSM or
an SDF diagram). The FSM will consume and produce tokens on its input and output ports,

2

respectively, corresponding to the type signature of its master. After the last �ring of the iteration,
the guard expressions of the current state's outgoing transitions are evaluated. If a transition's
guard expression evaluates to true, a state transition will then occur.

3.2 FSM Re�ning to SDF

*charts speci�es an operational semantics for the case where a state in an FSM digram re�nes to
an SDF subdiagram. Since the FSM must externally obey SDF semantics, it is required that an
FSM state's re�nement have a the same type signature as the SDF actor that the FSM re�nes. For
example, in Figure 3, both of the states re�ne to SDF actors with the same type signature as the
FSM's master. Note that the \Const" actors implicitly contain an input port with a consumption
rate of one, even though it is not explicitly shown in the �gure.

4 HDF with Hierarchical FSMs

Consider the case where an SDF actor re�nes to an FSM and each of the FSM states re�nes to SDF
diagrams. It is required that all of the re�ning FSM states have the same type signature (that of
the top level SDF actor). An interesting generalization occurs when the re�ning states are allowed
to have distinct type signatures. Since the FSM externally has the type signature of its current
state's re�nement, this means that the FSM no longer obeys SDF semantics. The FSM now has a
�nite number of type signatures corresponding to the distinct type signatures of its re�ning states.
The external semantics of such an FSM is that of the heterochronous dataow (HDF) model of
computation [2]. HDF is a generalization of SDF since the type signature of an actor is allowed
to change. HDF is similar to cyclo-static dataow (CSDF) in that an actor has a �nite number of
distinct type signatures. Unlike CSDF, however, an HDF actor is not restricted to cycling through
its type signatures. HDF is therefore also a generalization of CSDF.

In HDF, an actor is only allowed to change its type signature between iterations. In general, the
order in which the di�erent type signatures are used is not predictable. In the *charts formalism
for hierarchical FSMs with HDF, the type signature may change when a state transition occurs
in the re�ning FSM. Note that it is not necessarily the case that an HDF actor must explicitly
re�ne to an FSM. For example, a language with imperative semantics, such as Java, may be used
to implement an HDF actor.

The HDF model of computation is interesting because it is more general (and more expressive)
than SDF, yet HDF retains the desirable decidability properties of SDF. Since each actor in an
HDF diagram has only a �nite number of type signatures which can only change between iterations,
it is possible to compute all possible schedules statically (at compile-time). As a result, deadlock
and bounded memory are decidable. Note that the number of schedules may increase exponentially
with the number of actors.

One possible drawback to HDF is that it may be diÆcult (non-intuitive) to use, since a global
schedule determines when state transitions are allowed to occur. Another potential drawback is
that there might not be many interesting applications for which HDF can represent the model
elegantly. It remains to be determined whether there exists a suÆciently large class of systems for
which there are compelling reasons to use HDF with FSMs over SDF with FSMs.

Figure 1 shows one interesting system implemented using HDF. Given two strictly increasing
sequences of integers, the (deterministic) system combines the two sequences to produces a single

3

Figure 1: HDF system that performs a (deterministic) merge of two strictly increasing integer
sequences into a single strictly increasing sequence. The numbers in parenthesis denote the tokens
consumption and production rates. Note that the top level HDF actor has two distinct type
signatures.

strictly increasing sequence on its output. Figure 2 shows a trace of this system for one possible pair
of input sequences. This system illustrates that one potentially useful feature of HDF is the ability
of an actor to have ports that alternate between zero and non-zero consumption or production
rates. This example illustrates the increase in expressiveness that HDF o�ers over FSMs combined
with SDF. The system in Figure 1 can be implemented in an elegant way using hierarchical FSMs
with HDF. However, it is not possible to represent this system using *charts hierarchical FSMs
with SDF. This system can be represented using the more general dynamic dataow or process
networks models of computation. However, these more general models of computation lack the
desirable decidability properties of HDF.

5 Ptolemy II Implementation

For this project, a subset of the *charts formalism was implemented under Ptolemy II. The partic-
ular subset implemented consists of static dataow (SDF) combined with hierarchical FSMs and
heterochronous dataow (HDF) combined with hierarchical FSMs.

5.1 State of Ptolemy II at Project Onset

At the start of this project, Ptolemy II had a fairly mature SDF domain (implemented by Steve
Neuendorfer) and partially functioning FSM domain (implemented by Xiaojun Liu) in an early
state of development. These domains could be used separately, but not combined to create models.

4

d 0 1 2 3 5 20 29 30 50 100 101 109

a 1 x 2 3 5 100 x x x x 109 x

b x 20 x x x x 29 30 50 101 x 200

c 0 1 20 20 20 20 100 10 100 100 101 109

state s0 s1 s0 s0 s0 s0 s1 s1 s1 s1 s0 s1

e 1 20 20 20 20 100 100 100 100 101 109 200

Figure 2: One possible trace for the HDF model in Figure 1. The pair of input sequences are:
a=f1, 2, 3, 5, 100, 109g, and b=f20, 29, 30, 50, 101, 200g. The output sequence is produced on d.

5.2 Implementation Details

Most of the implementation work of this project consisted of extending and enhancing the FSM
domain to implement *charts interaction semantics when FSMs are combined with SDF. It was
then relatively straightforward to allow FSMs to be combined with HDF.

The current implementation allows arbitrary nesting of FSM and SDF/HDF subdiagrams. The
main constraints are that the top level of a model must be an SDF or HDF diagram, and that all
FSM states must eventually re�ne to an SDF or HDF subdiagram. This behavior is required since
*charts requires that an FSM must externally obey SDF or HDF semantics when FSM is combined
with SDF or HDF, respectively.

This implementation uses the Ptolemy II expression language to express the guard expressions
of state transitions. For this project, the FSM domain was extended to allow a token syntax in
guard expressions similar to that described in [2]. In the current implementation, it is possible
for transition guard expressions to reference a history of tokens read or written through an FSM's
containing actor. A port name is followed by a \$" and a nonnegative integer to specify its position
in the history. As an example, suppose that an SDF actor with an input port called \a" re�nes
to an FSM with the guard expression: \a$0 && a$2". In this example, \a$0" refers to the token
most recently read in port \a" and \a$2" refers to the third most recently read token. If \a" is a
boolean input, then a state transition will occur if the guard expression evaluates to \true" after
the �nal �ring of an iteration.

Several simple test case demos have been run to verify the correct functioning of the implemen-
tation.

5.3 Demos

A somewhat interesting Ptolemy II demo of hysteresis that uses hierarchical FSMs with SDF is
shown in Figure 3. Figure 4 shows a plot of the input signal (blue) and the output signal (red).

6 Conclusions

In this project, the *charts interaction semantics for hierarchical FSMs with SDF, and hierarchical
FSMs with HDF were implemented in Ptolemy II. Several test cases have been constructed to test
the correct functioning of the implementation, and an interesting (but simple) demo applet has
been created.

5

Figure 3: Hysteresis system using hierarchical FSMs with SDF. Note that all SDF actors are
homogeneous.

Figure 4: Plot of the output of the system in Figure 3. The input signal is shown in blue, and the
output signal is shown in red.

6

There are several possibilities for future work. One area is performance optimizations. In some
cases, token transfer can involve a large overhead. For the HDF case, it may be interesting to
investigate alternative scheduling methods, such as computing all possible schedules at compile-
time, or caching schedules computed dynamically. It my also be desirable to precompute all possible
schedules for the purpose of determining whether deadlock can occur or whether bounded memory
usage is possible. The current implementation computes schedules dynamically, but does not cache
them.

For the HDF case, it may be useful to allow a port of an HDF actor to alternate between zero
and non-zero consumption/production rates, as is done in the system in Figure 1. The current
implementation does not allow a port to have a consumption or production rate of zero. Only
positive integer rates are currently allowed.

For both the case of hierarchical FSMs with SDF and hierarchical FSMs with HDF, it may be
interesting to consider changes to the state transition guard expression syntax and semantics. It
is hoped that the process of implementing several interesting and/or practical designs using this
implementation will lead to insights that will lead to improvements in the implementation. Al-
though several test cases have been constructed to test more sophisticated implementation features
such as non-homogeneous SDF and HDF actors, and several levels of hierarchy, interesting demo
applications that use these features have not yet been created.

References

[1] John Davis II, Mudit Goel, Christopher Hylands, Bart Kienhuis, Edward A. Lee, Jie Liu,
Xiaojun Liu, Lukito Muliadi, Steve Neuendor�er, John Reekie, Neil Smyth, Je� Tsay and Yuhong
Xiong, "Overview of the Ptolemy Project," ERL Technical Report UCB/ERL No. M99/37, Dept.
EECS, University of California, Berkeley, CA 94720, July 1999.

[2] A. Girault, B. Lee, and E. A. Lee, \Hierarchical Finite State Machines with Multiple Concur-
rency Models," April 13, 1998.

[3] D. Harel, Statecharts: A visual formalism for complex systems, Sci. Comput. Program., vol. 8,
pp. 231 274, 1987.

[4] M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, and A. Sangiovanni-Vincentelli,
Hardware-software codesign of embedded systems, IEEE Micro, pp. 26 36, Aug. 1994.

[5] T. A. Henzinger, The theory of hybrid automata, in Proc. 11th Annu. IEEE Symp. Logic in
Computer Science (LICS), 1996, pp. 278 292.

7

