

OMICS Group International through its Open Access Initiative is committed to make genuine and reliable contributions to the scientific community. OMICS Group hosts over **400** leading-edge peer reviewed Open Access Journals and organizes over **300** International Conferences annually all over the world. OMICS Publishing Group journals have over **3 million** readers and the fame and success of the same can be attributed to the strong editorial board which contains over **30000** eminent personalities that ensure a rapid, quality and quick review process. OMICS Group signed an agreement with more than **1000** International Societies to make healthcare information Open Access.

OMICS Journals are welcoming Submissions

- OMICS Group welcomes submissions that are original and technically so as to serve both the developing world and developed countries in the best possible way.
- OMICS Journals are poised in excellence by publishing high quality research. OMICS Group follows an Editorial Manager® System peer review process and boasts of a strong and active editorial board.
- Editors and reviewers are experts in their field and provide anonymous, unbiased and detailed reviews of all submissions.
- The journal gives the options of multiple language translations for all the articles and all archived articles are available in HTML, XML, PDF and audio formats. Also, all the published articles are archived in repositories and indexing services like DOAJ, CAS, Google Scholar, Scientific Commons, Index Copernicus, EBSCO, HINARI and GALE.
- For more details please visit our website: <u>http://omicsonline.org/Submitmanuscript.php</u>

Flotation Chemistry and Mineral Processing

Xuming Wang ,PhD Department of Metallurgical Engineering University of Utah

Research Interests

- The research activities involve both fundamental and applied aspects of Mineral processing , and surface & colloid chemistry in the development of flotation technology,
- Flotation Chemistry of sulfide and nonsulfide mineral
- Molecular Dynamics simulation
- Hydrometallurgy
- Waster water treatment and recycling

Surface Chemistry Lab

ZetaPALS Zeta Potential Meter

LB film deposition

Surface tension meter

Contact angle meter

Determination of Flotation Mechanism

- Characterization
- Hydrophobicity
- Electrokinetic Studies
- Adsorption
- Interaction Forces

Spectroscopy Lab Adsorption

Infrared Spectroscopy

- Ex-Situ (without aqueous phase)
 - Transmission
 - Diffuse Reflectance
- In Situ (in presence of aqueous phase)
 - Internal Reflection Spectroscopy

In-situ FTIR/IRS

Real-time Spectra Data

Quantification

- Adsorption Density
- Adsorption Kinetics
- Adsorption Isotherms

Specification

- •Chemisorption
- Physiorption
- Precipitation

Orientation

- Conformation
- •Orientation Angle
- Aggregation State

Spectroscopy Lab

Sum Frequency Generation Vibrational Spectroscopy (SFVS)

SFVS is a surface-specific technique that provides vibrational spectra of molecules at interfaces. It relies on the non-linear optical phenomenon of sum frequency generation.

SFG is a Powerful tool to Analysis Molecular Adsorption Structure at Interfaces

Atomic Force Microscopy (AFM) Lab.

Instrument used to measure properties of Surfaces

AFM Topography Image Surfactant Head group Effect Hydrophilic Mica Surface

Tertiary amine – dodecyl dimethyl ammonium hydrogen chloride, short cylindrical worm like structures

(200 nm scan)

A Typical Colloid Probe

Force measurement between a particle and air Bubble

Molecular Dynamics Simulation (MDS) MD simulation of 40 DDA molecules near a quartz surface at pH 10

Monolayer formation

Red: Oxygen Yellow: Silicon Blue: Nitrogen Green: Sodium

Flotation Principles

Air is dispersed in the suspension. Hydrophobic particles attach to air bubbles and are collected in a froth phase while other hydrophilic particles remain in suspension

Metal Recovery

Waste Water Treatment

Flocculation and Flotation

Waste Paper Recycling

Deink Flotation

Many types of paper are subject to a deinking step in order to remove ink from the waste paper in preparation for producing new paper Several processes are used, most commonly flotation or washing.

Contact Information

Xuming Wang, Ph.D., Research Professor, Department of Metallurgical Engineering **College of Mines & Earth Science** University of Utah 135 South 1460 East, Room 412 Salt Lake City, Utah 84112, USA Phone: 801-585-1797 Email: x.wang@utah.edu

Powder Metallurgy & Mining Related Journals

- Journal of Chemical Engineering & Process
 Technology
- Journal of Material Sciences & Engineering
- ➢ Journal of Nanomaterials & Molecular

Nanotechnology

Powder Metallurgy & Mining Related Conferences

 <u>3rd International Conference and Exhibition on Material</u> <u>Science and Engineering 2014, San Antonio, USA</u>

OMICS Group Open Access Membership

- OMICS publishing Group Open Access Membership enables academic and research institutions, funders and corporations to actively encourage open access in scholarly communication and the dissemination of research published by their authors.
- For more details and benefits, click on the link below:
- <u>http://omicsonline.org/membership.php</u>

