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Abstract

Despite the apparent randomness of the Internet� we dis�
cover some surprisingly simple power�laws of the Internet
topology� These power�laws hold for three snapshots of the
Internet� between November ���� and December ����� de�
spite a ��	 growth of its size during that period� We show
that our power�laws 
t the real data very well resulting in
correlation coe�cients of ��	 or higher�
Our observations provide a novel perspective of the struc�

ture of the Internet� The power�laws describe concisely
skewed distributions of graph properties such as the node
outdegree� In addition� these power�laws can be used to
estimate important parameters such as the average neigh�
borhood size� and facilitate the design and the performance
analysis of protocols� Furthermore� we can use them to gen�
erate and select realistic topologies for simulation purposes�

� Introduction

�What does the Internet look like�� �Are there any topolog�
ical properties that don�t change in time�� �How will it look
like a year from now�� �How can I generate Internet�like
graphs for my simulations�� These are some of the questions
motivating this work�
In this paper� we study the topology of the Internet and

we identify several power�laws� Furthermore� we discuss
multiple bene
ts from understanding the topology of the
Internet� First� we can design more e�cient protocols that
take advantage of its topological properties� Second� we can
create more accurate arti
cial models for simulation pur�
poses� And third� we can derive estimates for topological
parameters e�g� the average number of neighbors within h
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hops� that are useful for the analysis of protocols and for
speculations of the Internet topology in the future�
Modeling the Internet topology� is an important open

problem despite the attention it has attracted recently� Pax�
son and Floyd consider this problem as a major reason �Why
We Don�t Know How To Simulate The Internet� ����� Sev�
eral graph�generator models have been proposed ���� ��� �����
but the problem of creating realistic topologies is not yet
solved� the selection of several parameter values are left to
the intuition and the experience of each researcher�
As our primary contribution� we identify three power�

laws for the topology of the Internet over the duration of a
year in ����� Power�laws are expressions of the form y � xa�
where a is a constant� x and y are the measures of interest�
and� stands for �proportional to�� Some of those exponents
do not change signi
cantly over time� while some exponents
change by approximately ��	� However� the important ob�
servation is the existence of power�laws� i�e�� the fact that
there is some exponent for each graph instance� During
����� these power�laws hold in three Internet instances with
good linear 
ts in log�log plots� the correlation coe�cient of
the 
t is at least ��	 and usually higher than ��	� In ad�
dition� we introduce a graph metric to quantify the density
of a graph and propose a rough power�law approximation of
that metric� Furthermore� we show how to use our power�
laws and our approximation to estimate useful parameters
of the Internet� such as the average number of neighbors
within h hops� Finally� we focus on the generation of real�
istic graphs� Our power�laws can help verify the realism of
synthetic topologies� In addition� we measure several crucial
parameters for the most recent graph generator �����

Our work in perspective� Our work is based on three In�
ternet instances over a one�year period� During this time�
the size of the network increased substantially ��	�� De�
spite this� the sample space is rather limited� and mak�
ing any generalizations would be premature until additional
studies are conducted� However� the authors believe that
these power�laws characterize the dynamic equilibrium of
the Internet growth in the same way power�laws appear to
describe various natural networks such as the the human
respiratory system ����� and automobile networks ���� At a
more practical level� the regularities characterize the topol�
ogy concisely during ����� If this time period turns out to
be a transition phase for the Internet� our observations will
obviously be valid only for ����� In absence of revolutionary

�In this paper
 we use the expression �the topology of the Inter�
net�
 although the topology changes and it would be more accurate to
talk about �Internet topologies�� We hope that this does not mislead
or confuse the reader�



changes� it is reasonable to expect that our power�laws will
continue to hold in the future�
The rest of this paper is structured as follows� In Sec�

tion �� we present some de
nitions and previous work on
measurements and models for the Internet� In Section �� we
present our Internet instances and provide useful measure�
ments� In Section �� we present our three observed power�
laws and our power�law approximation� In Section �� we
explain the intuition behind our power�laws� discuss their
use� and show how we can use them to predict the growth
of the Internet� In Section �� we conclude our work and
discuss future directions�

� Background and Previous Work

The Internet can be decomposed into connected subnet�
works that are under separate administrative authorities�
as shown in Figure �� These subnetworks are called do�
mains or autonomous systems�� This way� the topology of
the Internet can be studied at two di�erent granularities� At
the router level� we represent each router by a node �����
At the inter�domain level� each domain is represented by
a single node ���� and each edge is an inter�domain inter�
connection� The study of the topology at both levels is
equally important� The Internet community develops and
employs di�erent protocols inside a domain and between
domains� An intra�domain protocol is limited within a do�
main� while an inter�domain protocol runs between domains
treating each domain as one entity�

Symbol De
nition

G An undirected graph�

N Number of nodes in a graph�

E Number of edges in a graph�

� The diameter of the graph�

dv Outdegree of node v�
�d The average outdegree of the nodes of a

graph� �d � � E�N

Table �� De
nitions and symbols�

Metrics� The metrics that have been used so far to de�
scribe graphs are mainly the node outdegree� and the dis�
tances between nodes� Given a graph� the outdegree of a
node is de
ned as the number of edges incident to the node
see Table ��� The distance between two nodes is the num�
ber of edges of the shortest path between the two nodes�
Most studies report minimum� maximum� and average val�
ues and plot the outdegree and distance distribution� We
denote the number of nodes of a graph by N � the number
of edges by E� and the diameter of the graph by ��

Real network studies� Govindan and Reddy ���� study
the growth of the inter�domain topology of the Internet be�
tween ���� and ����� The graph is sparse with ��	 of the
nodes having outdegrees less or equal to two� They distin�
guish four groups of nodes according to their outdegree� The
authors observe an increase in the connectivity over time�
Pansiot and Grad ���� study the topology of the Internet in

�The de�nition of an autonomous system can vary in the literature

but it usually coincides with that of the domain ����

���� at the router level� The distances they report are ap�
proximately two times larger compared to those of Govindan
and Reddy� This leads to the interesting observation that�
on average� one hop at the inter�domain level corresponded
to two hops at the router level in �����

Generating Internet Models� Regarding the creation of
realistic graphs� Waxman introduced what seems to be one
of the most popular network models ����� These graphs are
created probabilistically considering the distance between
nodes in a Euclidean sense� This model was successful in
representing small early networks such as the ARPANET�
As the size and the complexity of the network increased
more detailed models were needed ��� ����� In the most re�
cent work� Zegura et al� ���� introduce a comprehensive
model that includes several previous models �� They call
their model transit�stub� which combines simple topologies
e�g� Waxman graphs and trees� in a hierarchical structure�
There are several parameters that control the structure of
the graph� For example� parameters de
ne the total num�
ber and the size of the stubs� An advantage of this model
lies in its ability to describe a number of topologies� At the
same time� a researcher needs experimental estimates to set
values to the parameters of the model�

Power�laws in communication networks� Power�laws have
been used to describe the tra�c in communications net�
works� but not their topology� Actually� both self�similarity�
and heavy tails appear in network tra�c and are both re�
lated to power�laws� A variable X follows a heavy tail distri�
bution if P �X � x� � kax�a Lx�� where k � �� and Lx� is
a slowly varying function� limt���Ltx��Lx�� � � ���� �����
A Pareto distribution is a special case of a heavy tail dis�
tribution with P �X � x� � ka x�a� It is easy to see that
power�laws� Pareto and heavy�tailed distributions are inti�
mately related� In a pioneering work� Leland et al� ���� show
the self�similar nature of Local Area Network LAN� tra�c�
Second� Paxson and Floyd ���� provide evidence of self simi�
larity in Wide Area Network WAN� tra�c� In modeling the
tra�c� Willinger et al� ���� provide structural models that
describe LAN tra�c as a collective e�ect of simple heavy�
tailed ON�OFF sources� Finally� Willinger et al� ���� bring
all of the above together by describing LAN andWAN tra�c
through structural models and showing the relation of the
self�similarity at the macroscopic level of WANs with the
heavy�tailed behavior at the microscopic level of individual
sources� In addition� Crovella and Bestavros use power�laws
to describe tra�c patterns in the World Wide Web ���� At
an intuitive level� the previous works seem to attribute the
heavy�tailed behavior of the tra�c to the heavy�tailed dis�
tribution of the size of the transmitted data 
les� and to the
heavy�tailed characteristics of the human�computer interac�
tion� Recently� Chuang and Sirbu ��� use a power�law to
estimate the size of multicast distribution trees� Note that
in a follow�up work� Philips et al� ���� verify the reason�
able accuracy of the Chuang�Sirbu scaling law for practical
purposes� but they also propose an estimate that does not
follow a power�law�

� Internet Instances

In this section� we present the Internet instances we ac�
quired and we study their evolution in time� We examine
the inter�domain topology of the Internet from the end of
���� until the end of ����� We use three real graphs that
correspond to six�month intervals approximately� The data

�The graph generator software is publicly available �����
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Figure �� The structure of Internet at a� the router level and b� the inter�domain level� The hosts connect to routers in LANs�
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Figure �� The growth of the Internet� the number of do�
mains versus time between the end of ���� until the end of
�����

is provided by the National Laboratory for Applied Net�
work Research ���� The information is collected by a route
server from BGP� routing tables of multiple geographically
distributed routers with BGP connections to the server� We
list the three datasets that we use in our paper� and we
present more information in Appendix A�

� Int������� the inter�domain topology of the Internet
in November of ���� with ���� nodes� ���� edges� and
���� avg� outdegree�

� Int������� the inter�domain topology of the Internet
in April of ���� with ���� nodes� ���� edges� and ����
avg� outdegree�

� Int������� the inter�domain topology of the Internet
in December of ���� with ���� nodes� ���� edges� and
���� avg� outdegree�

Note that the growth of the Internet in the time pe�
riod we study is ��	 see Figure ��� The change is signif�
icant� and it ensures that the three graphs re�ect di�erent
instances of an evolving network�
Although we focus on the Internet topology at the inter�

domain level� we also examine an instance at the router

�BGP stands for the Border Gateway Protocol ����
 and it is the
inter�domain routing protocol�

level� The graph represents the topology of the routers of
the Internet in ����� and was tediously collected by Pansiot
and Grad �����

� Rout���� the routers of the Internet in ���� with ����
nodes� ���� edges� and an average outdegree of �����

Clearly� the above graph is considerably di�erent from the

rst three graphs� First of all� the graphs model the topology
at di�erent levels� Second� the Rout��� graph comes from a
di�erent time period� in which Internet was in a fairly early
phase�
To facilitate the graph generation procedures� we ana�

lyze the Internet in a way that suits the graph generator
models ����� Namely� we decompose each graph in two com�
ponents� the tree component that contains all nodes that
belong exclusively to trees and the core component that con�
tains the rest of the nodes including the roots of the trees�
We report several interesting measurements in Appendix A�
For example� we 
nd that �����	 of the nodes belong to
trees� Also� ��	 the trees have a depth of one� while the
maximum tree depth is three�

� Power�Laws of the Internet

In this section� we observe three of power�laws of the In�
ternet topology� Namely� we propose and measure graph
properties� which demonstrate a regularity that is unlikely
to be a coincidence� The exponents of the power�laws can
be used to characterize graphs� In addition� we introduce a
graph metric that is tailored to the needs of the complexity
analysis of protocols� The metric re�ects the density or the
connectivity of nodes� and we o�er a rough approximation
of its value through a power�law� Finally� using our ob�
servations and metrics� we identify a number of interesting
relationships between important graph parameters�
In our work� we want to 
nd metrics or properties that

quantify topological properties and describe concisely skewed
data distributions� Previous metrics� such as the average
outdegree� fail to do so� First� metrics that are based on
minimum� maximum and average values are not good de�
scriptors of skewed distributions� they miss a lot of infor�
mation and probably the �interesting� part that we would
want to capture� Second� the plots of the previous metrics
are di�cult to quantify� and this makes di�cult the com�
parison of graphs� Ideally� we want to describe a plot or a
distribution with one number�



Symbol De
nition

fd The frequency of an outdegree� d� is the num�
ber of nodes with outdegree d�

rv The rank of a node� v� is its index in the order
of decreasing outdegree�

P h� The number of pairs of nodes is the total num�
ber of pairs of nodes within less or equal to
h hops� including self�pairs� and counting all
other pairs twice�

NNh� The average number of nodes in a neighbor�
hood of h hops�

� The eigen value of a square matrix A� �x �
RN and Ax � �x�

i The order of �i in �� � �� � � � � �N

Table �� Novel de
nitions and their symbols�

To express our power�laws� we introduce several graph
metrics that we show in Table �� We de
ne frequency� fd�
of some outdegree� d� to be the number of nodes that have
this outdegree� If we sort the nodes in decreasing outdegree
sequence� we de
ne rank� rv� to be the index of the node
in the sequence� while ties in sorting are broken arbitrarily�
We de
ne the number of pairs of nodes P h� to be the total
number of pairs of nodes within less or equal to h hops�
including self�pairs� and counting all other pairs twice� The
use of this metric will become apparent later� We also de
ne
NNh� to be the average number of nodes in a neighborhood
of h hops� Finally� we recall the de
nition of the eigenvalues
of a graph� which are the eigenvalues of its adjacency matrix�
In this section� we use linear regression to 
t a line in a

set of two�dimensional points ����� The technique is based
on the least�square errors method� The validity of the ap�
proximation is indicated by the correlation coe�cient which
is a number between ���� and ���� For the rest of this paper�
we use the absolute value of the correlation coe�cient� ACC�
An ACC value of ��� indicates perfect linear correlation� i�e��
the data points are exactly on a line�

��� The rank exponent R

In this section� we study the outdegrees of the nodes� We
sort the nodes in decreasing order of outdegree� dv� and plot
the rv� dv� pairs in log�log scale� The results are shown
in Figures � and �� The measured data is represented by
diamonds� while the solid line represents the least�squares
approximation�
A striking observation is that the plots are approximated

well by the linear regression� The correlation coe�cient is
higher than ����� for the inter�domain graphs and ����� for
the Rout��� graph� This leads us to the following power�law
and de
nition�

Power�Law � �rank exponent� The outdegree� dv�
of a node v� is proportional to the rank of the node� rv�
to the power of a constant� R�

dv � rRv

De�nition � Let us sort the nodes of a graph in decreasing
order of outdegree� We de�ne the rank exponent� R� to be

the slope of the plot of the outdegrees of the nodes versus the
rank of the nodes in log�log scale�

For the three inter�domain instances� the rank exponent�
R� is ������ ����� and ����� in chronological order as we
see in Appendix B� The rank exponent of the Rout��� graph�
������ is di�erent compared to that of the 
rst three graphs�
This is something that we expected� given the di�erences in
the nature of the graphs� On the other hand� this di�erence
suggests that the rank exponent can distinguish graphs of
di�erent nature� although they both follow Power�Law ��
This property can make the rank exponent a powerful metric
for characterizing families of graphs� see Section ��
Intuitively� Power�Law � most likely re�ects a principle

of the way domains connect� the linear property observed in
our four graph instances is unlikely to be a coincidence� The
power�law seems to capture the equilibrium of the trade�
o� between the gain and the cost of adding an edge from
a 
nancial and functional point of view� as we discuss in
Section ��

Extended Discussion � Applications� We can esti�
mate the proportionality constant for Power�Law �� if we
require that the minimum outdegree of the graph is one
dN � ��� This way� we can re
ne the power�law as follows�

Lemma � The outdegree� dv� of a node v� is a function of
the rank of the node� rv and the rank exponent� R� as follows

dv �
�

NR
rRv

Proof� The proof can be found in Appendix C�
Finally� using lemma �� we relate the number of edges

with the number of nodes and the rank exponent�

Lemma � The number of edges� E� of a graph can be es�
timated as a function of the number of nodes� N � and the
rank exponent� R� as follows�

E �
�

� R� ��
��

�

NR��
� N

Proof� The proof can be found in Appendix C�
Note that Lemma � can give us the number of edges as

a function of the number of nodes for a given rank expo�
nent� We tried the lemma in our datasets and the estimated
number of edges di�ered by �	 to ��	 from the actual num�
ber of edges� More speci
cally for the Int������� the lemma
underestimates the number of edges by ��	� We can get
a closer estimate ���	� by using a simple linear interpola�
tion in the number of edges given the number of nodes� Note
that the two prediction mechanisms are di�erent� our lemma
does not need previous network instances� but it needs to
know the rank exponent� However� given previous network
instances� we seem to be better o� using the linear inter�
polation according to the above analysis� We examined the
sensitivity of our lemma with respect to the value of rank
exponent� A �	 increase decrease� in the absolute value of
the rank exponent increases decreases� the number of edges
by ��	 for the number of nodes in Int�������

��� The outdegree exponent O

In this section� we study the distribution of the outdegree
of the graphs� and we manage to describe it concisely by a
single number� Recall that the frequency� fd� of an outde�
gree� d� is the number of nodes with outdegree d� We plot
the frequency fd versus the outdegree d in log�log scale in
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Figure �� The rank plots� Log�log plot of the outdegree dv versus the rank rv in the sequence of decreasing outdegree�


gures � and �� In these plots� we exclude a small percent�
age of nodes of higher outdegree that have frequency of one�
Speci
cally� we plot the outdegrees starting from one until
we reach an outdegree that has frequency of one� As we saw
earlier� the higher outdegrees are described and captured by
the rank exponent� In any case� we plot more than ��	 of
the total number of nodes� The solid lines are the result of
the linear regression�
The major observation is that the plots are approxi�

mately linear see Table ��� The correlation coe�cients are
between ���������� for the inter�domain graphs and �����
for the Rout���� This leads us to the following power�law
and de
nition�

Power�Law � �outdegree exponent�
The frequency� fd� of an outdegree� d� is proportional
to the outdegree to the power of a constant� O�

fd � dO

De�nition � We de�ne the outdegree exponent� O� to be
the slope of the plot of the frequency of the outdegrees versus
the outdegrees in log�log scale�

The second striking observation is that the value of the
outdegree exponent is practically constant in our graphs of
the inter�domain topology� The exponents are ������ �����
and ����� as shown in Appendix B� It is interesting to note
that even the Rout��� graph obeys the same power�law Fig�
ure ��b� with an outdegree exponent of ������ These facts
suggest that Power�Law � describes a fundamental property
of the network�
The intuition behind this power�law is that the distri�

bution of the outdegree of Internet nodes is not arbitrary�
The qualitative observation is that lower degrees are more
frequent� Our power�law manages to quantify this observa�
tion by a single number� the outdegree exponent� This way�
we can test the realism of a graph with a simple numeri�
cal comparison� If a graph does not follow Power�Law ��
or if its outdegree exponent is considerably di�erent from
the real exponents� it probably does not represent a realistic
topology�

��� The hop�plot exponent H

In this section� we quantify the connectivity and distances
between the Internet nodes in a novel way� We choose to
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study the size of the neighborhood within some distance�
instead of the distance itself� Namely� we use the total num�
ber of pairs of nodes P h� within h hops� which we de
ne
as the total number of pairs of nodes within less or equal
to h hops� including self�pairs� and counting all other pairs
twice�
Let us see the intuition behind the number of pairs of

nodes P h�� For h � �� we only have the self�pairs� P �� �
N � For the diameter of the graph �� h � �� we have the self�
pairs plus all the other possible pairs� P �� � N�� which is
the maximum possible number of pairs� For a hypothetical
ring topology� we have P h� � h�� and� for a ��dimensional
grid� we have P h� � h�� for h � �� We examine whether
the number of pairs P h� for the Internet follows a similar
power�law�
In 
gures � and �� we plot the number of pairs P h� as a

function of the number of hops h in log�log scale� The data
is represented by diamonds� and the dotted horizontal line
represents the maximum number of pairs� which is N�� We
want to describe the plot by a line in least�squares 
t� for
h � �� shown as a solid line in the plots� We approximate
the 
rst � hops in the inter�domain graphs� and the 
rst ��
hops in the Rout���� The correlation coe�cients are is ����

for inter�domain graphs and ����� for the Rout���� as we
see in Appendix B� Unfortunately� four points is a rather
small number to verify or disprove a linearity hypothesis ex�
perimentally� However� even this rough approximation has
several useful applications as we show later in this section�

Approximation � �hop�plot exponent� The to�
tal number of pairs of nodes� P h�� within h hops�
is proportional to the number of hops to the power of
a constant� H�

P h� � hH� h� �

De�nition � Let us plot the number of pairs of nodes� P h��
within h hops versus the number of hops in log�log scale� For
h � �� we de�ne the slope of this plot to be the hop�plot
exponent�H�

Observe that the three inter�domain datasets have prac�
tically equal hop�plot exponents� ���� ���� and ���� in chrono�
logical order� as we see in Appendix B� This shows that the
hop�plot exponent describes an aspect of the connectivity of
the graph in a single number� The Rout��� plot� in 
g� ��b�
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Figure �� The hop�plots� Log�log plots of the number of pairs of nodes P h� within h hops versus the number of hops h�

has more points� and thus� we can argue for its linearity
with more con
dence� The hop�plot exponent of Rout���
is ���� which is much di�erent compared to those of the
inter�domain graphs� This is expected� since the Rout��� is
a sparser graph� Recall that for a ring topology� we have
H � �� and� for a ��dimensional grid� we have H � �� The
above observations suggest that the hop�plot exponent can
distinguish families of graphs e�ciently� and thus� it is a
good metric for characterizing the topology�

Extended Discussion � Applications� We can re
ne
Approximation � by calculating its proportionality constant�
Let us recall the de
nition of the number of pairs� P h��
For h � �� we consider each edge twice and we have the
self�pairs� therefore� P �� � N � � E� We demand that
Approximation � satis
es the previous equation as an initial
condition�

Lemma � The number of pairs within h hops is

P h� �

�
c hH� h� �
N�� h � �

where c � N � � E to satisfy initial conditions�

In networks� we often need to reach a target without
knowing its exact position ��� ���� In these cases� selecting
the extent of our broadcast or search is an issue� On the
one hand� a small broadcast will not reach our target� On
the other hand� an extended broadcast creates too many
messages and takes a long time to complete� Ideally� we want
to know how many hops are required to reach a �su�ciently
large� part of the network� In our hop�plots� a promising
solution is the intersection of the two asymptote lines� the
horizontal one at level N� and the asymptote with slope H�
We calculate the intersection point using Lemma �� and we
de
ne�

De�nition � �e	ective diameter� Given a graph with N
nodes� E edges� and H hop�plot exponent� we de�ne the ef�
fective diameter� �ef � as�

�ef �

�
N�

N � � E

���H

Intuitively� the e�ective diameter can be understood as
follows� any two nodes are within �ef hops from each other
with high probability� We veri
ed the above statement ex�
perimentally� The e�ective diameters of our inter�domain
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Table �� The relative error of the two estimates for the
average neighborhood size with respect to the real value�
Negative error means under�estimate�

graphs was slightly over four� Rounding the e�ective diam�
eter to four� approximately ��	 of the pairs of nodes are
within this distance� The ceiling of the e�ective diameter is

ve� which covers more than ��	 of the pairs of nodes�
An advantage of the e�ective diameter is that it can be

calculated easily� when we know N � and H� Recall that we
can calculate the number of edges from Lemma �� Given
that the hop�plot exponent is practically constant� we can
estimate the e�ective diameter of future Internet instances
as we do in Section ��
Furthermore� we can estimate the average size of the

neighborhood� NNh�� within h hops using the number of
pairs P h�� Recall that P h� � N is the number of pairs
without the self�pairs�

NNh� �
P h�

N
� � ��

Using Equation � and Lemma �� we can estimate the
average neighborhood size�

Lemma � The average size of the neighborhood� NNh��
within h hops as a function of the hop�plot exponent� H�
for h� �� is

NNh� �
c

N
hH � �

where c � N � � E to satisfy initial conditions�

The average neighborhood is a commonly used parame�
ter in the performance of network protocols� Our estimate
is an improvement over the commonly used estimate that

uses the average outdegree ���� ��� which we call average�
outdegree estimate�

NN�h� � �d  �d� ��h��

In 
gure �� we plot the actual and both estimates of the
average neighborhood size versus the number of hops for the
Int������ graph� In Table �� we show the normalized error
of each estimate� we calculate the quantity� p� r��r where
p the prediction and r the real value� The results for the
other inter�domain graphs are similar� The superiority of
the hop�plot exponent estimate is apparent compared to the
average�outdegree estimate� The discrepancy of the average�
outdegree estimate can be explained if we consider that the
estimate does not comply with the real data� it implicitly
assumes that the outdegree distribution is uniform� In more
detail� it assumes that each node in the periphery of the
neighborhood adds �d � � new nodes at the next hop� Our
data shows that the outdegree distribution is highly skewed�
which explains why the use of the hop�plot estimate gives a
better approximation�
The most interesting di�erence between the two esti�

mates is qualitative� The previous estimate considers the
neighborhood size exponential in the number of hops� Our
estimate considers the neighborhood as an H�dimensional
sphere with radius equal to the number of hops� which is a
novel way to look at the topology of a network�� Our data
suggests that the hop�plot exponent�based estimate gives
a closer approximation compared to the average�outdegree�
based metric�

��� The eigen exponent E

In this section� we identify properties of the eigenvalues of
our Internet graphs� There is a rich literature that proves
that the eigenvalues of a graph are closely related to many
basic topological properties such as the diameter� the num�
ber of edges� the number of spanning trees� the number of
connected components� and the number of walks of a certain
length between vertices� as we can see in ��� and ���� All of
the above suggest that the eigenvalues intimately relate to
topological properties of graphs�
We plot the eigenvalue �i versus i in log�log scale for the


rst �� eigenvalues� Recall that i is the order of �i in the
decreasing sequence of eigenvalues� The results are shown in
Figure �� and Figure ��� The eigenvalues are shown as dia�
monds in the 
gures� and the solid lines are approximations
using a least�squares 
t�
Observe that in all graphs� the plots are practically lin�

ear with a correlation coe�cient of ����� as we see in Ap�
pendix B� It is rather unlikely that such a canonical form
of the eigenvalues is purely coincidental� and we therefore
conjecture that it constitutes an empirical power�law of the
Internet topology�

Power�Law � �eigen exponent� The eigenvalues�
�i� of a graph are proportional to the order� i� to the
power of a constant� E�

�i � iE

De�nition 
 We de�ne the eigen exponent� E� to be the
slope of the plot of the sorted eigenvalues versus their order
in log�log scale�

�Note that our results focus on relatively small neighborhoods
compared to the diameter h � �� Other experimental studies focus
on neighborhoods of larger radius �����
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A surprising observation is that the eigen exponents of
the three inter�domain graphs are practically equal� ������
����� and ����� in chronological order� This means that
the eigen exponent captures a property of the Internet that
characterizes all three instances despite the increase in size�
On the other hand� the eigen exponent of the routers graph is
signi
cantly di�erent������� from the previous slopes� This
shows that the eigen exponent can distinguish di�erences
between families of graphs�

� Discussion

In this section� we discuss the practical uses of our power�
laws and our approximation� We also present the intuition
behind the existence of such power�laws in a chaotic envi�
ronment such as the Internet� In addition� we discuss the
scope of the predictions that are based on our work�

Describing Graphs� Exponents versus Averages� We pro�
pose a new way to describe topological properties using
power�laws� Our observations show that most of the distri�
butions of interest are skewed� typically following a power�
law� Average values falsely imply a uniform distribution�
and they can be misleading� For example� ��	 of the nodes

in Int������ have outdegree less than the average outdegree�
We propose to use the exponents of power�laws� which man�
age to capture the trend of a property in a single number�

Protocol Performance� Our work can facilitate the de�
sign� and the performance analysis of protocols� As we
saw� our power�laws help us estimate useful graph metrics�
We provide formulas for the e�ective diameter� the average
neighborhood size� and the number of edges� in De
nition
�� Lemma � and Lemma � respectively� Our O �d hH� es�
timate for the average neighborhood size is a fundamental
improvement over the commonly used O �dh�� This way� we
can 
ne�tune and analyze the performance and the complex�
ity of several protocols��

Predictions and Extrapolations� Our power�laws o�er
guidelines for answering �what�if� questions� First� we can
scrutinize the plausibility of a hypothesis� if they contradict
our power�laws� Second� we can predict useful parameters
of the Internet under di�erent hypotheses and assumptions�
Actually� given just a hypothesis for the number of nodes�
we can estimate the number of edges from Lemma �� and

�Some protocols that employ broadcasting or �ooding techniques
are the link�state protocols OSPF and MOSPF ��	�
 and the multicast
protocols DVMRP ����
 QoSMIC ���
 YAM ����



Year ���� ���� ���� ����
Nodes ���� ���� ���� ����

Edges ���� ����� ����� �����
E�ective diameter ���� ���� ���� ����

Table �� Internet prediction assuming linear node increase�
We predict the number of edges and e�ective diameter of
the Internet at the inter�domain level at the beginning of
each year�

Year ���� ���� ���� ����
Nodes ���� ���� ���� �����

Edges ���� ����� ����� �����
E�ective diameter ���� ���� ���� ����

Table �� Internet prediction assuming ��	 increase in the
number of nodes every year� We predict the number of edges
and e�ective diameter of the Internet at the inter�domain
level at the beginning of each year�

the e�ective diameter using De
nition �� Note that our tools
do not predict the number of nodes of the Internet� but for
the sake of the example we will examine two possible growth
patterns� We can assume that the number of nodes increases
a� linearly� or b� by ���� each year� The results our shown
in Table � for the linear growth and Table � for the ����
growth� Given the number of nodes� we calculate the num�
ber of edges using Lemma � with rank exponent of ������
which is the median of the three observed rank exponents�
We calculate the e�ective diameter using De
nition � with
a hop�plot exponent of ����� the median of the observed
values�
Predicting the evolution of a dynamic system such as

the Internet is not trivial� There are many social� economi�
cal� and technological factors that can alter signi
cantly the
topology of the network� Furthermore� systems often evolve
in bursts following social and technological breakthroughs�
In this paper� we claim that our power�laws characterize the
Internet topology during the year ����� However� given the
large number of natural distributions that follow power�laws�
the Internet topology will likely be described by power�laws
even in the future� In the absence of any other information�
a practitioner would reasonably conjecture that our power�
laws might continue to hold� at least for the near future� We
elaborate further on our intuition regarding power�laws and
natural systems in section ����

Graph Generation and Selection� Our power�laws can be
used to characterize graph topologies� This way� the power�
laws can be used as a composite �qualifying exam� for the
realism of a graph� Recall that some power�laws showed sig�
ni
cantly di�erent exponents in the inter�domain and the
router�level graphs� We conducted some preliminary exper�
iments with some arti
cial topologies and some real graphs
of di�erent nature e�g� web�site topology�� Some graphs
did not comply to the power�laws at all� while some oth�
ers showed large di�erences in the values of the exponents�
The observations for these graphs and the Internet graphs
in this paper suggest that our power�laws could be used to
characterize and distinguish graphs�
In addition� we provide measurements that are targeted

towards the current graph models ����� as we saw in Sec�
tion � and Appendix A� In an overview� we list the follow�
ing guidelines for creating inter�domain topologies� First� a
large but decreasing percentage of the nodes��	� ��	� and
��	� belong to trees� Second� more than ��	 of the trees
have depth one� and the maximum depth is three� Third�
the outdegree distribution is skewed following our power�
laws � and � within a range of � to ���� approximately� As
a 
nal step� the realism of the resulting graph can be tested
using our power�laws�

��� Finding Order in Chaos

Why would such an unruly entity like the Internet follow
any statistical regularities� Note that the high correlation
coe�cients exclude the role of coincidence� Intrigued by the
previous question� we attempt an intuitive explanation� The
topological structure of the Internet is the collective result
of many small forces in antagonistic and cooperative rela�
tionships� These forces 
nd an equilibrium in a state� and
it is this state that our power�laws capture� Let us think
of how change happens� New nodes are not just �glued�
on the existing graph� they trigger a chain of restructuring
changes� If many new nodes connect to an existing node� it
will probably have to increase its connectivity to accommo�
date the new demand in tra�c� In other words� the change
propagates to the rest of the network like a fading wave�
Therefore� at any time the topology is characterized by the
same fundamental properties� As an analogy� we can think
of a heap of sand that we create by dropping sand from one
point� At any given moment� the heap is a cone� though its
size changes and the grains are just dropped unorderly�
The above intuitive understanding of the network topol�

ogy is reinforced by the fact that this kind of dynamic equi�
librium� and power�laws characterize many natural systems�
First� power�laws govern the nature of various networks�
The tra�c of the Internet and the World Wide Web is char�
acterized by power�laws� as we already saw in section �� Fur�
thermore� power�laws describe the topology of multiple real
networks of biological and geographical nature such as the
human respiratory system ���� with a scaling factor of ����
and automobile networks ��� with an exponent of ���� Sec�
ond� power�laws are obeyed in diverse settings� like income
distribution the �Pareto law��� and the frequency distribu�
tion of words in natural text the �Zipf distribution� ������

� Conclusions

Our main contribution is a novel way to study the Inter�
net topology� namely through power�laws� These power�
laws capture concisely the highly skewed distributions of the
graph properties and quantify them by single numbers� the
power�law exponents� Our contributions can be summarized
in the following points�

� We discover three power�laws that characterize the
inter�domain Internet topology during the year of �����

� Our power�laws hold for three Internet instances with
high correlation coe�cients�

� We propose the number of pairs� P h�� within h hops�
as a metric of the density of the graph and approximate
it with the use of the hop�plot exponent� H�

� We derive formulas that link the exponents of our
power�laws with vital graph metrics such as the num�



ber of nodes� the number of edges� and the average
neighborhood size�

� We propose power�law exponents� instead of averages�
as an e�cient way to describe the highly�skewed graph
metrics which we examined�

Apart from their theoretical interest� we showed a num�
ber of practical applications of our power�laws� First� our
power�laws can assess the realism of synthetic graphs� and
enhance the validity of our simulations� Second� they can
help analyze the average�case behavior of network proto�
cols� For example� we can estimate the message complexity
of protocols using our estimate for the neighborhood size�
Third� the power�laws can help answer �what�if� scenar�
ios like �what will be the diameter of the Internet� when the
number of nodes doubles�� �what will be the number of edges
then��
In addition� we decompose and measure the Internet in

a way that relates to the state�of�the�art graph generation
models� This decomposition provides measurements that fa�
cilitate the selection of parameters for the graph generators�
For the future� we believe that our suggestion to look

for power�laws will open the �oodgates to discovering many
additional power�laws of the Internet topology� Our opti�
mism is based on two facts� a� power�laws are intimately re�
lated to fractals� chaos and self�similarity ���� and b� there
is overwhelming evidence that self�similarity appears in a
large number of settings� ranging from tra�c patterns in
networks ����� to biological and economical systems �����
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Int������ Int������ Int������

nodes ���� ���� ����

edges ���� ���� ����

avg�
outdegree

���� ���� ����

max�
outdegree

��� ��� ���

diameter � �� ��

avg� distance ���� ���� ����

Table �� The evolution of the Internet at the inter�domain
level�

Int������ Int������ Int������

 nodes in
trees 	�

����� ����� �����

 trees over
 nodes 	�

����� ����� ���

max depth � � �

avg� tree size ��� ��� ���

core
outdegree

��� ��� ���

Table �� The evolution of the Internet considering the core
and the trees�

A Decomposing the Internet

We analyze the Internet in a way that suits the graph genera�
tor models ����� The measurements we present can facilitate
the selection of parameters for these generators�
We study the graphs through their decomposition into

two components� the tree component that contains all nodes
that belong exclusively to trees and the core component that
contains the rest of the nodes including the roots of the
trees� We measure several parameters from this decomposi�
tion that are shown in Table �� These results leads to the
following observations�

� Approximately half of the nodes are in trees �����	

� The number of nodes in trees decreased with time by
��	 means that the Internet becomes more connected
all around�

� The maximum tree depth is �� however more than ��	
of the trees have depth one�

� More than ��	 of the tree�nodes have a degree of one�
This leads to the following interesting observation� if
we remove the nodes with outdegree one from the orig�
inal graph� we practically get the core component�

These observations can help users select appropriate values
for the parameters used in various graph generation tech�
niques �����

B The Exponents of Our Power�Laws

We present the exponents of our power�laws in Table ��

Exponent Int������ Int������ Int������ Rout���

rank ����� ����� ����� �����

ACC ����� ����� ����� �����

outdegree ����� ����� ����� �����

ACC ����� ����� ����� �����

hop�plot ���� ���� ���� ����

ACC ����� ����� ����� �����

eigen ������ ������ ������ �����

ACC ����� ����� ����� �����

Table �� An overview of all the exponents for all our graphs�
Note that ACC is the absolute value of the correlation coef�

cient�

C The Proofs

Here we prove the Lemmas we present in our paper�
Lemma �� The outdegree� dv� of a node v� is a function

of the rank of the node� rv and the rank exponent� R� as
follows

dv �
�

NR
rRv

Proof� We can estimate the proportionality constant�C� for
Power�Law �� if we require that the outdegree of the N �th
node is one� dN � ��

dN � C NR �

C � ��NR ��

We combine Power�Law � with Equation �� and conclude
the proof�

Lemma �� The number of edges� E� of a graph can be
estimated as a function of the number of nodes� N � and the
rank exponent� R� as follows�

E �
�

� R� ��
��

�

NR��
� N

Proof� The sum of all the outdegrees for all the ranks
is equal to two times the number of edges� since we count
each edge twice�

� E �

NX
rv��

dv

� E �

NX
rv��

rv�N�
R � ��N�R

NX
rv��

rRv

E 	
�

� NR

Z N

�

rRv drv ��

In the last step� above we approximate the summation
with an integral� Calculating the integral concludes the
proof�


