
Universidad Nacional del Sur - June 27, 2002 1

A Primer on Zero Knowledge Protocols

Gerardo I. Simari
gis@cs.uns.edu.ar

Departamento de Ciencias e Ingenieŕıa de la Computación

Licenciatura en Ciencas de la Computación
Universidad Nacional del Sur

Abstract

It is a common weakness among traditional communication protocols to be vulnerable to
impersonation attacks. Every time this sort of protocol is executed, the system degradates
because of the threat of an eavesdropper listening in on the communication. Zero Knowl-
edge Protocols, presented by Goldwasser, Micali, and Rackoff, are an improvement on
these situations. The objective is to obtain a system in which it is possible for a prover to
convince a verifier of his knowledge of a certain secret without disclosing any information
except the validity of his claim. This article will cover the basics of zero knowledge systems,
explaining the main properties and characteristics. A series of examples, in growing level
of difficulty, will also be presented, to see the main areas of application of such protocols.

1 Introduction and Motivation

Traditional protocols for the identification of parties in a transaction suffer from
flaws that are inherent to the process used to achieve the objective. In simple
password protocols, a claimant A gives his password to a verifier B . If certain
precautions are not taken, an eavesdropper can get hold of the password that was
transfered, and from there on he can impersonate A to his liking. Other protocols
try to improve on this, as in the case of challenge-response systems. In this sort
of protocols, A responds to B ’s challenge to prove knowledge of a shared secret.
Of course, the challenge is changed every time the protocol is used; therefore, an
eavesdropper can, in time, gather enough partial information about the shared
secret to try an impersonation attack like the one described above.

In this article, we will discuss Zero Knowledge Protocols (abbreviated ZKP from
here on), which are designed to defeat the disadvantages described above. In ZKP,
a prover will try to demonstrate knowledge of a certain secret to a verifier. The
main idea is to allow the proof to take place without revealing any information
whatsoever about the proof itself, except of course for the fact that it is indeed a
valid one. Zero Knowledge Proofs can be compared to an answer obtained from a
trusted oracle.

It must be noted that the concept of proof in ZKP is different from the traditional
mathematical concept. Mathematical proofs are strict, using either self evident
statements or statements obtained from proofs established beforehand. ZK proofs

2 Gerardo I. Simari

are more similar to the dynamic process used by humans to establish the truth
of a statement throughout the exchange of information. Furthermore, in a ZKP,
instead of presenting a static proof for a statement, the prover involves the verifier
in a process in which he tries to convince the verifier of the truth of the statement
interactively.

1.1 ZKP Parties

As hinted earlier, there are two parties involved in ZKP:

• Pat, the prover: Pat wishes to convey a proof of certain knowledge to Vani,
but it is not in his wish to let Vani in on his secret.

• Vani, the verifier: Vani asks Pat a series of questions, which help her decide
if Pat really knows what he claims to know. Vani cannot learn anything from
this interaction, even if she were to cheat, or engage in activities outside the
protocol itself. We will return to this aspect of ZKPs later on.

1.2 A simple example

Before going on with the presentation, we will present a classic example of ZKP.
There exists a series of examples that adequately express the main features of ZKP,
some of which can be found in (Koblitz, 1994; Menezes et al., 1996; Schneier, 1995).

Consider, for the sake of example, a cave consisting of a circular tunnel. Diametri-
cally opposite to the entrance of this cave, there is a door which can only be opened
by password. Although this situation is probably not a real life scenario, it is quite
useful in the display of the basic properties of ZKP. Now Pat knows the password
to this door, and he wants to prove this to Vani without actually dislcosing it to
her. They set off to complete the task as follows:

• Pat goes into a random branch of the cave (that is, left or right). He does this
without Vani knowing which branch he chose.

• Standing at the entrance to the cave, Vani calls out a random branch (again,
either left or right), where she wants Pat to come out from.

• If Pat is not lying about his knowledge of the secret password, he can obey
Vani every time, using the door if necessary. If he doesn’t know the password,
he has a 50% of initially fooling Vani.

A Primer on Zero Knowledge Protocols 3

Now, the key to this protocol lies in the repetition of the above steps. If Vani is
happy with a 1 in 256 chance that Pat is cheating, they will repeat the steps eight
times. This can be proved using basic probability theory, noting that one series of
steps is completely independent from another series.

This example also demonstrates another feature of ZKP; Vani is now (probabilis-
tically) convinced that Pat can indeed open the door to his desire, but he cannot
convince anybody else, since she doesn’t know the secret. Suppose Vani were to
videotape the whole process. Such a recording is useless, because to an outsider
it appears identical to a forged videotape, where Pat and Vani agreed in advance
about the sequence of chosen branches. Absolutely no information flowed to Vani
throughout the execution of the protocol, except for the fact that Pat knows the
password.

1.3 Features

Zero Knowledge Protocols have the following properties, some of which were already
described above:

• The verifier cannot learn anything from the protocol. The verifier does
not learn anything in the process of the proof that he could derive from public
information by himself. This is the central concept of zero knowledge, i.e.,
zero amount of knowledge is transferred. There are similar protocols, called
Minimum Disclosure Protols, which relax this property trying to maintain
the flow of information to a mininum.

• The prover cannot cheat the verifier. If Pat doesn’t know the secret,
he can only fool Vani with an incredible amount of luck. The odds that an

4 Gerardo I. Simari

impostor can cheat the verifier can be made as low as necesary by increasing
the number of rounds executed in the protocol.

• The verifier cannot cheat the prover. Vani can’t get any information
out of the protocol, even if she doesn’t stick to the rules. The only thing
Vani can do is decide when she accepts that Pat actually knows the secret.
The prover will always reveal one solution of many; by doing this he insures
that the secret remains intact. This point will become more clear after the
presentation of some more complicated systems below.

• The verifier cannot pretend to be the prover to a third party. As
stated earlier, no information flows from Pat to Vani. This precludes Vani
from trying to masquerade as Pat to a third party. Nevertheless, some ZKP
protocols are vulnerable to man-in-the-middle attacks, in which an eavesdrop-
per relays traffic to achieve the desired impersonation effect. OF course, other
cryptographic services (outside the scope of this article) can be used to pre-
vent this type of attack. See (Schneier, 1995; Menezes et al., 1996) for more
on this topic.
Like we said above, a recording of the execution of the protocol is worthless
in convincing a third party. Such a recording is identical to a faked one, in
which Pat and Vani agreed on the steps beforehand.

In our effort to obtain a definition of Zero Knowledge Protocol, we will discuss a
few properties that must be satisfied in order to ensure the behavior promised for
such systems. These properties include soundness and completeness, in the context
of Interactive Proof Systems.

2 Interactive Proof Systems

Zero Knowledge Protocols are instances of Interactive Proof Systems, wherein a
prover and a verifier exchange challenges and responses, typically dependent on
random numbers (ideally, the outcomes of fair coin tosses) which they are allowed
to keep secret. Like we said above, the proofs in this context are probabilistic rather
than absolute as in the mathematical sense. These proofs need only be correct with
a certain bounded probability (although this probability can be made arbitrarily
close to 1). Interactive proofs are sometimes called proofs by protocol.

Interactive proofs used for identification may be formulated as proofs of knowl-
edge. P has a secret s, and he wishes to convince V that he has knowledge of s
by responding correctly to queries (such queries involve publicly known inputs and
agreed upon functions) that require knowledge of s to answer. It is worth noting
that it is quite different to prove knowledge of s than it is to prove existence of s.
For example, proving that a certain x is a quadratic residue modulo n differs from
proving knowledge of the square root of x modulo n.

An interactive proof is said to be a proof of knowledge if it has the properties
of soundness and completeness. These properties are defined next, as in (Menezes
et al., 1996).

A Primer on Zero Knowledge Protocols 5

Definition 2.1 (Completeness Property)
An interactive proof protocol is complete if, given an honest prover and an honest
verifier, the protocol succeeds with overwhelming probability (i.e., the verifier ac-
cepts the prover’s claim). The definition of overwhelming, of course, depends on the
application, but generally implies that the probability of failure is not of practical
significance.

Definition 2.2 (Soundness Property)
An interactive proof protocol is sound if there exists an expected polynomial time
algorithm M with the following property: if a dishonest prover (impersonating P)
can with non-negligible probability execute the protocol with V , then M can be
used to extract from this prover the knowledge (essentially equivalent to P ’s secret)
which with overwhelming probability allows subsequent protocol executions.

Since any party capable of impersonating P must in fact have knowledge equival-
ent to the secret itself, the soundness property guarantees that the protocol is in fact
providing a proof of knowledge (in order to succeed, you must count on knowledge
equivalent to the secret). This property therefore prevents a dishonest prover from
succeeding. A standard method used to prove that a certain protocol is sound is to
assume the existence of a dishonest prover who is capable of successfully executing
the protocol, and show how this allows to compute the secret in polynomial time.

This “proof of knowledge” idea is the foundation of zero knowledge proofs. How-
ever, it is clear that neither of these properties say anything about zero knowledge
itself. A ZKP should, in addition, have the property that no amount of knowledge
should pass between the prover and the verifier that the verifier couldn’t figure
out without the help of the prover. This property is simply called the zero knowl-

edge property, and will be defined after introducing the concept of simulator, as
discussed below.

2.1 Simulators

Lets consider our cave example once again. Suppose Vani sends a videotape of the
sequence of steps taken with her proof with Pat to her friend, Vincenza. We will
call such a tape a view (or transcript) of the proof session. Vincenza accuses Vani
of faking the tape, and it is clear that she can do nothing to convince her otherwise.
Vani posseses no unforgeable, non-repudiable proof that Pat indeed knows the secret
password to the door. All she can do is ask Pat to demonstrate it once again for
Vincenza, who will pick her own sequence of challenges for Pat (which assures
randomness). If there is a way to forge a proof that is indistinguishable from a
genuine one (as in the case of the vidotape), we say that there is a simulator for
the proof in question.

Definition 2.3 (Simulator)
A simulator is a method or procedure that generates fake (generated without the
prover) views that are indistinguishable from a genuine (generated with the prover)
view of a proof (Mikucki, 1999).

6 Gerardo I. Simari

The concept of simulator is key to the definition of the zero knowledge property
mentioned above.

Definition 2.4 (Zero Knowledge Property)
A proof of knowledge has the zero knowedge property if there exists a simulator for
the proof (Mikucki, 1999).

This formalizes what has been said in previous sections. In the context of a ZKP,
the verifier does not obtain further information about the secret other than its
validity. Furthermore, a much desired property of this type of protocols is that the
number of times that the prover participates in them does not vary the chances
of success of impersonation attacks (as it might in password or challenge-response
protocols). The Zero Knowledge Property allows us to arrive to the definition of
Zero Knowledge Proof as follows.

Definition 2.5 (Zero Knowledge Proof)
A zero knowledge proof is a proof of knowledge that also has the zero knowledge
property (Mikucki, 1999).

2.2 Extensions to the definition of Zero Knowledge Proof

A few extensions to the basic definition of ZKP have been studied. Some of the
most important of these extensions are defined next.

Definition 2.6 (Perfect Zero Knowledge)
A protocol is said to be perfect zero knowledge if real and simulated transcripts are
completely indistinguishable from one another.

Definition 2.7 (Computational Zero Knowledge)
A protocol is computationally zero knowledge if an observer restricted to proba-
bilistic polynomial time tests cannot distinguish real from simulated transcripts.

Definition 2.8 (Statistical Zero Knowledge)
A protocol is statistical zero knowledge if there is a negligible difference between
the probability distributions of real and simulated transcripts.

It is clear that computational zero knowledge is a relaxation of the basic concept.
It is still quite useful, though, because in practice the “enemy” is usually considered
in possession of polynomial time capability to perform attacks on our systems. Other
extensions have been defined, such as non-interactive zero knowledge protocols,
in which the prover need not be present in order to convince the verifier of his
knowledge. These extensions will not be covered in this article. See (Goldreich,
2001) for a treatment on this subject.

Other types of proofs that are not actually zero knowledge are “no use” zero

knowledge, and minimum disclosure proofs. What varies in these proofs is the
amount (and type) of information that is allowed to flow from prover to verifier
in the execution of the protocol.

A Primer on Zero Knowledge Protocols 7

2.3 Remarks and observations

It is clear that the zero knowledge property and the soundness property have no
say in the level of security that a system presents. It is of key importance to the
security of a given protocol for it to depend on computationally difficult problems.
No proofs exist for the most commonly used problems (e.g., integer factorization,
knapsack problem, discrete logarithm, etc.), so the security of the systems that use
them are directly dependent on future developments in the field of Computational
Complexity. This type of system is commonly referred to as provably secure.

A few points can be made in the difference between zero knowledge and public
key (PK) techniques. These are:

• No degradation with usage: Repeated use of a ZK protocol does not present
degradation. ZK protocols are also resistant to chosen text attacks. This leads
a ZK protocol which is not provably secure to be considered against a PKP
which is provably secure.

• Efficiency: ZK protocols are usually less efficient than PK protocols. This is
an important factor to consider in certain application environments where
(hard or soft) real time computations are to be ensured.

• Unproven assumptions: Most ZK and PK protocols depend on the same as-
sumptions (quadratic residuosity, factoring, discrete log, etc).

3 NP ∈ ZKP

This section includes a brief introduction to the computational complexity classes P
and NP . This is necesary in understanding the result that every problem in NP has
a zero knowledge proof associated with it. The proof of this result will be outlined
at the end of the section by means of a simple protocol for proving knowledge of a
solution to an NP-complete problem.

3.1 Introduction to NP-completeness

There are many problems for which there is no known efficient algorithm. Clas-
sic examples of these problems include satisfying a boolean formula, the travelling
salesman problem, the knapsack problem, etc. It is not yet known if efficient so-
lutions to these problems even exist. Maybe we don’t have the tools to build the
solutions; maybe the solutions don’t exist and we don’t have the tools to prove that
they don’t.

One of the most amazing results in computational complexity theory is that an
efficient algorithm to solve any of the problems listed above would automatically
provide us with efficient solutions for their whole class.

At the heart of this theory lies the idea that there may be problems which are
genuinely hard to solve, but the validity of a proposed solution is easily tested. For
example, consider the Hamiltonian Cycle Problem: this problem is believed to be
hard, but it is very easy to verify if a sequence of nodes is a hamiltonian cycle. For
the purpose of the definitions below (extracted from (Brassard & Bratly, 1996)), we

8 Gerardo I. Simari

will focus on decision problems, that is, those problems that have a binary (yes/no)
answer.

Definition 3.1 (The Class P)
P is the class of decision problems that can be solved by a polynomial-time algo-
rithm.

Definition 3.2 (The Class NP)
NP is the class of decision problems X that admit a proof system F ⊆ X × Q s.t.
there exists a polynomial p(n) and a polynomial-time algorithm A such that:

• ∀ x ∈ X ∃q ∈ Q s.t. (x , q) ∈ F and moreover, the size of q is at most p(n),
where n is the size of x .

• For all pairs (x , q), algorithm A can verify whether or not (x , q) ∈ F .

The next definition is concerned with the transformation of solutions of one
problem in solutions to other problems. This is called reduction, and if the trans-
formation can be done in polynomial time, then we are talking about polynomial

reduction.

Definition 3.3 (Polynomial Reduction)
Let A and B be two problems. We say that A is polynomially Turing reducible to B
if there exists an algorithm for solving A in a time that would be polynomial if we
could solve arbitrary instances of problem B at unit cost. This is denoted A ≤p

T B
(or simply A ≤ B).

Now, the concept of reducibility is central in reaching the notions necesary to
comprehend the result that we want to show. The notion of NP-complete problem
is the last definition we need to establish this section’s main result.

Definition 3.4 (NP-complete problem)
A decision problem X is NP-complete if

• X ∈ NP ; and
• Y ≤p

T X for every problem Y ∈ NP .

It was shown in (Goldreich et al., 1991; Goldreich, 1995) that if there exists
a non-uniform polynomial time encryption scheme then every NP language has
a computational zero knowledge interactive proof system. This can essentially be
proven by showing a zero knowledge proof system for any NP-complete language,
such as graph three colorability (G3C). Since any problem in NP can be reduced
to G3C (from the above definition), the proof below ensures us that any language
in NP has associated with it a zero knowledge proof system.

3.2 G3C ∈ ZKP

Suppose the prover wishes to convince a verifier that he knows a three coloring
for a certain graph, without revealing such coloring. The prover could do this in a
sequence of |E2| stages (where E is the set of edges), each of which involves the
following steps, as shown in (Jain, n.d.; Koblitz, 1994):

A Primer on Zero Knowledge Protocols 9

• Pat permutes the three colors at random. This allows him to conceal the true
coloring throughout the repetition of the steps.

• Pat “hides” the coloring from Vani (perhaps using encryption schemes).
• Vani selects an edge of the graph at random.
• Pat reveals the colors of the two nodes for which the selected edge is incident.
• Vani confirms that the two colors are valid, i.e., different.

If everything is in order (that is, the graph is three-colorable and Pat knows a
coloring), then Vani can never choose an edge that is not labeled correctly. If the
graph is not three-colorable (or Pat is lying about his claim), then there is a 1

|E|
chance on each stage that Pat will be caught in his attempt to fool Vani. This
chance is exponentially small after |E2| stages.

The history of the communication between Pat and Vani is the concatenation of
the messages that were exchanged. Based on the assumption that secure encryption
is possible, it is possible to prove that the probability distribution defined over these
valid histories is indistinguishable in polynomial time from a distribution that Vani
could create by herself without the help of Pat. This allows us to conclude that Vani
gains zero additional knowledge from the execution of the above protocol, other
than the fact that the graph is three-colorable. The fact that the distributions are
indistinguishable in polynomial time means (as defined above) that the system is
computationally zero knowledge.

This outlines the proof that every language in NP has a zero knowledge proof
system.

4 Applications

In this section we will see actual ZK systems at work. One of the main applications
of ZKP is in obtaining the cryptographic objective of authentication. ZKPs can
be a good solution to security problems in financial or other security critical ap-
plications, where systems such as smart cards are not secure enough. Smart cards
are vulnerable to reverse engineering to extract vital information. A zero knowl-
edge proof system can be implemented to withstand such attacks. Furthermore,
as we have seen, ZKPs can be adapted in various degrees of relaxation to fit the
application.

In this section we will examine two examples: the first is related to authentication,
while the second is a system that can be used to prove (in the context of ZKP)
knowledge of graph isomorphisms.

4.1 Feige-Fiat-Shamir Proof of Identity

One of the classic authentication zero knowledge schemes is the Feige-Fiat-Shamir
scheme (Feige et al., 1987). The version presented below (adapted from (Jain, n.d.))
is a basic one, and would not be applied in practice for reasons of efficiency. Nev-
ertheless, the modifications introduced to make it efficient are not relevant to the
details that are of interest to us. The main difference with the systems actually

10 Gerardo I. Simari

used are the amount of challenges issued per round; in order to obtain higher per-
formance rates, a greater level of parallelism is required.

As before, the objective here is for Pat to prove to Vani his identity by demon-
strating his knowledge of a certain secret s. This secret s is associated with Pat
through authentified public data, as we shall see below. The security of the Fiege-
Fiat-Shamir system rests on the supposed difficulty of extracting square roots mod-
ulo large composite integers of unknown factorization.

Feige-Fiat-Shamir proof of identity:

• Precalculation (setup): An arbitrator (a trusted, independent entity) gener-
ates a random number n to be used as modulus. This modulus, a product of
two large primes, will be in practice a 512-1024 bit number. The arbitrator
then generates a public and private key pair for Pat. He does this by choosing
a number v , which is a quadratic residue modulo n (i.e., x2 ≡ v (mod n) has
a solution, and v−1 mod n exists). The public key will then be v , and the

private key is the smallest s for which s =
√

1
v mod n.

• The two parties then proceed: Pat picks a random number r s.t. gcd(r , n) =
1. He then computes x = r2 mod n and sends it to Vani.

• Vani sends a random bit, b, to Pat.
• If b = 0, Pat sends Vani r . If b = 1, he sends her y = r ∗ s mod n.
• If b = 0, Vani verifies that x ≡ r2 mod n, proving that Pat knows

√
x = r .

If the bit was 1, she verifies that x ≡ y2 ∗ v mod n, proving that Pat knows√
x
v .

This protocol ensures that if an impostor is trying to pose as Pat, he can prepare
(in his choice of r) to answer one (and only one) of the challenges. This gives the
impostor a 50% chance per round of succeding in his masquerade. Like in the case
of the cave discussed above, Vani can challenge Pat any number of times until she
is convinced that he knows the secret s.

It is worth noting that Pat should always choose a new r in each round. If he did
not do this, Vani could gather (by manipulating the “random” bits) enough pairs
of responses to try and mount an impersonation attack on the protocol with a third
party. Another point that should be noted is that this protocol does in fact reveal
a bit of information: in the case that the answer is y = r ∗ s, this is supporting
evidence that v is indeed a square modulo n, and because this is a sound protocol,
after a certain amount of iterations we can conclude that this is true.

4.2 Graph Isomorphism

The classic problem of Graph Isomorphism in mathematics is basically the question:
Given two graphs G1 and G2, is there a bijection between their sets of nodes that
preserves edges? In other words, can we rename G1’s nodes and arrive at G2?

Following the general lines presented so far, we will be interested in showing a
proof system that allows us to convince a verifier that we know a certain isomor-

A Primer on Zero Knowledge Protocols 11

phism without revealing it. Finally, we will look into an algorithm that produces
forged transcripts of our proofs (Mikucki, 1999).

Suppose we have two graphs: G1 and G2. Both sets of nodes are labeled from 1
to 5. Suppose Pat knows the secret permutation σ = {5, 4, 3, 2, 1} that yields the
isomorphism, that is, σ maps G1’s nodes {5,4,3,2,1} into G2’s nodes {1, 2, 3, 4,5}.
The protocol works as follows:

1. Pat selects a random permutation π of the set {1, · · ·, 5}. He obtains a new
graph, H , that is the image of G1 under π, and sends it to Vani.

2. Vani sends a random integer i ∈ {1, 2} to Pat.
3. Pat computes a permutation ρ of the set {1, · · ·, 5} such that H is the image

of Gi under ρ. If i = 1, Pat uses ρ = π. If i = 2, Pat uses ρ = σ ◦ π,
where σ is the fixed permutation such that G1 = σ(G2) (that is, the secret
isomorphism).

4. Vani checks that H is the image of Gi .

The protocol might proceed between Pat and Vani as follows:

• Round 1:

1. Pat secretly selects π = {1, 4, 3, 2, 5}. He then sends H = π ◦ G1 =
{1, 4, 3, 2,5} to Vani.

2. Vani selects i = 1 and sends it to Pat.
3. Pat sends Vani ρ = π.
4. Vani verifies that H = {1, 4, 3, 2, 5}= ρ ◦ G1 = {1, 4, 3, 2,5}.

• Round 2

1. Pat secretly selects π = {2, 4, 1, 3, 5}. He sends H = ρ ◦ G1 = {2, 4, 1, 3, 5}
to Vani.

2. Vani chooses i = 2 and sends it to Pat.
3. Pat computes ρ = π ◦ σ = {2, 4, 1, 3, 5} ◦ {5, 4, 3, 2, 1} = {4, 2, 5, 3, 1} and

sends it to Vani.
4. Vani verifies that H = {2, 4, 1, 3,5}= ρ ◦ G2 = {4, 2, 5, 3,1}◦ {1, 2, 3, 4, 5} =

{4, 2, 5, 3,1}

The rounds will continue until Vani is satisfied that the chance of a successful
cheat is small enough. We can point out that when i = 1, Pat is showing that
H = π ◦ G1, that is, H is isomorphic to G1. When i = 2, Pat shows that H = π

◦ G1 is isomorphic to (π ◦ σ) ◦ G2, i.e., a graph that is isomorphic to G1 (H) is
isomorphic to G2.

Now we must show that this protocol is indeed zero knowledge. An earlier result
established that if a simulator for a protocol exists, then that protocol satisfies the
zero knowledge property. We will now see a forgery algorithm that generates false
views of proofs that never took place. Such views shall be indistinguishable from
real ones, if we want to guarantee the zero knowledge property.

12 Gerardo I. Simari

Forgery Algorithm

1. T0 = (G1,G2)
2. Randomly select ib ∈ {1, 2}.
3. Create a random permutation Hb = ρb ◦ Gb .
4. Add (Hb, ib, ρb) to T (the transcript).
5. Repeat until the desired transcript length has been reached.

Following this algorithm, we can see that the transcripts that it generates are
perfectly possible ones, with probabilities identical to the occurrence of a real tran-
script. This does not allow us to prove anything to a third party, however, since we
haven’t learned anything from the protocol. The chances of responding correctly to
the challenges are very small, as we have seen in other examples. These facts allow
us to conclude that this is indeed a zero knowledge proof system (Goldreich, 2001).

References

Brassard, Gilles, & Bratly, Paul. (1996). Fundamentals of algorithmics. Prentice Hall.

Cormen, Thomas H., Leiserson, Charles E., & Rivest, Ronald L. (1990). Introduction to
algorithms. MIT Press.

Feige, U., Fiat, A., & Shamir, A. (1987). Zero knowledge proofs of identity. Proceedings of
the nineteenth anual acm symposium on theory of computing, new york, n.y., 210–217.

Goldreich, Oded. (1995). Foundations of cryptography (fragments of a book). Weizmann
Intitute of Science.

Goldreich, Oded. (2001). Foundations of cryptography: Basic tools. Cambridge University
Press, Cambridge, England.

Goldreich, Oded, Micali, Silvio, & Wigderson, Avi. (1991). Proofs that yield nothing but
their validity or all languages in np have zero knowledge proof systems. Journal of the
acm, 38(3), 691–729.

Goldwasser, S., Micali, S., & Rackoff, C. (1985). The knowledge complexity of interactive
proof systems. Proceedings of the seventeenth anual acm symposium on theory of
computing, rhode island, 291–304.

Jain, Gaurav. Zero knowledge proofs: A survey. Tech. rept. University of Pennsylvania,
http://www.cis.upenn.edu/ jaing/papers/znp.pdf.

Koblitz, Neal. (1994). A course in number theory and cryptography. Springer.

Menezes, Alfred J., van Oorschot, Paul C., & Vanstone, Scott. A. (1996). Handbook of
applied cryptography. CRC Press.

Mikucki, John J. (1999). Zero knowledge proofs: A survey. Tech. rept. Rochester Institute
of Technology, http://www.cs.rit.edu/ jjm7570/crypto/ZKP.dvi.

Schneier, Bruce. (1995). Applied cryptography. John Wiley and Sons, Inc.

