Lecture 1

Introduction: Poisson processes,
generalisations and applications

Reading: Part A Probability; Grimmett-Stirzaker 6.1, 6.8 up to (10)
Further reading: Ross 4.1, 5.3; Norris Introduction, 1.1, 2.4

This course is, in the first place, a course for 3rd year undergraduates who did Part A
Probability in their 2nd year. Other students such as MSc students are welcome, but should
note the prerequisites of the course. These are essentially an introductory course in probability
not based on measure theory. It will be an advantage if this included the central aspects of
discrete-time Markov chains. This will be relevant by the time we get to Lecture 5 in week 3.

The aim of Lecture 1 is to give a brief overview of the course. To do this at an appropriate
level, we begin with a review of Poisson processes, which were treated at the end of the Part A
course. The material most relevant to us is again included here, and some more is on the first
assignment sheet.

This is a mathematics course. The name “Applied probability” suggests that we apply
probability. However, there is more to it. This course is about “probability” and “applications”
or application-driven probability theory. In particular, it is not just Part A Probability that we
apply, but also further probability building on Part A. Effectively, we will be spending a fair
share of our time developing theory so that we can analyse certain examples and applications.

For the rest of the course, let N = {0,1,2,...} denote the natural numbers including zero.
Apart from very few exceptions, all stochastic processes that we consider in this course will
have state space N (or a subset of N). Specifically, we have in mind that we are counting, and
studying the evolution of, numbers of people in a population, affected by a disease, of a certain
genetic type, in a queue, etc. or just balls in an urn, bacteria in a dish, numbers of claim-free
years for a motor insurance, the wealth of a gambler, numbers of defective items in a production
line.

However, most results in the theory of Markov chains will be treated for any countable, i.e.
finite or countably infinite, state space S. This does not pose any complications as compared with
N, since we can always enumerate all states in S and hence give them labels in N. Important
examples are Z, N? and finite sets such as {bachelor, married, divorced, widowed} or a set of
colours, car makes, universities, shops, or indeed sets like {0,1}". For uncountable state spaces,
however, several technicalities arise that are beyond the scope of this course, at least in any
generality — we will naturally come across a few examples of Markov processes in R towards the
end of the course.

1.1 Poisson processes

There are many ways to define Poisson processes. We will use the following definition. We write
Z ~ Exp()\) to say “Z is an exponentially distributed random variable with probability density
function Ae=*, t > 07, for some \ > 0.

Definition 1 Let Z, ~ Exp(\), n > 0, independent, for some X\ > 0. Let T, = Zo+ -+ Z,,—1,
n > 1. Then the process X = (X;,t > 0) defined by

Xy =#{n>1T, <t} t >0,
is called Poisson process with rate X\, abbreviated PP()).
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Note that (X;,t > 0) is not just a family of (dependent!) random variables but indeed
t — X; is a random right-continuous function. This point of view is very useful since it is the
formal justification for pictures of “typical realisations” of X.

Think of T;, as arrival times of customers (arranged in increasing order). Then X} is counting
the numbers of arrivals up to time ¢ for all ¢ > 0 and we study the evolution of this counting
process. Instead of customers, one might be counting particles detected by a Geiger counter or
cars driving through St. Giles, etc. Something more on the link and the important distinction
between real observations (cars in St. Giles) and mathematical models (Poisson process) will
be included in Lecture 2. For the moment we have a mathematical model, well specified in the
language of probability theory. Starting from a simple sequence of independent random variables
Zn, n > 0, we have defined a more complex object (X¢, ¢ > 0), that we call the Poisson process.

Let us collect some properties that, apart from some technical details (to do with handling
uncountably many random variables), can serve as an alternative definition of the Poisson pro-
cess.

Remark 2 A process X ~ PP()) has the following properties:
(i) X¢ ~ Poi(At) for all ¢ > 0, where Poi(At) refers to the Poisson distribution with mean At.

(ii) X has independent increments, i.e. for all tg < --- <t,, the random variables X;, — Xy, ,,
1 < j <n, are independent.

(iii) X has stationary increments, i.e. X5 — Xy ~ X, for all t > 0, s > 0, where ~ means
“has the same distribution as”.

To justify (i), calculate
E (th) = Z q"P(X; =n)
n=0

o
= > ¢"P(T, < t,Tpi1 > 1)

n=0

= S (BT < 1) — BT < 1)
n=0
— 13 BT <)
j=1

t N .
= 1—/ P71 - q)——2 e Mz
0 ; ( )(J - 1!
t

= 1- / (1- q))\e_)‘z"')‘qzdz — e—At(l—q),
0

where we used the well-known result that 7}, as a sum of independent Exp(\)-variables has a
Gamma(n, A) distribution. This is the probability generating function of the Poisson distribu-
tion with parameter Af. We conclude by the Uniqueness Theorem for probability generating
functions. Note that we interchanged summation and integration. This may be justified by an
expansion of e~ into a power series and using uniform convergence of power series twice. We
will see another justification in Lecture 3.

(ii)-(iii) can be derived from the following Proposition 3, see also Lecture 4.



Lecture 1: Introduction: Poisson processes, generalisations, applications 3

1.2 The Markov property

Let S be a countable state space, typically S = N. Let II = (75), scs be a Markov transition
matrix on S. An S-valued stochastic process M = (M,,n > 0) is called a discrete time Markov
chain with transition matriz 11 starting from ig € S if for all n > 1 and 4y,...,i, €S

n
P(My =iy, My =in) = [ mi,_, -
j=1

It is often convenient to capture the initial state by writing IP;, instead of P. We then say that
M is starting from iy under P;,. We will use notation such as M, (M,,n > 0) and (M,)n>0
interchangeably. Markov chains have the Markov property, which can be stated in several useful
ways:

e For all paths ig,...,i,+1 € S of positive probability P(My = g, ..., M, = i,) > 0, we have

P(Mn+1 = ’in+1|MO = io, ey Mn = ’Ln) = P(Mn+1 = ’in+1|Mn = ’Ln) = ﬂ-inyin+1‘

e For all k& € S and events {(M;)o<j<n € A} and {(Mpim)m>0 € B}, we have: if
P(M,, = k,(M;)o<j<n € A) > 0, then

P((Mntm)m>0 € BIMy, = k, (Mj)o<j<n € A) = P(Mnim)m>0 € B|My, = k) =Pi(M € B).

e The processes (M;)o<j<n and (Mp4m)m>0 are conditionally independent given M,, = k,
for all k£ € S. Furthermore, given M,, = k, the process (My4m)m>0 is a Markov chain with
transition matrix II starting from k.

Informally: no matter how we got to a state, the future behaviour of the chain is as if we
were starting a new chain from that state. This is one reason why it is vital to study Markov
chains not starting from one initial state but from any state in the state space S.

Similarly, we will here study Poisson processes X starting from any initial state Xo =k € N
(under Py), by which we just mean that we consider Xy = k + #{n > 1:T,, < t}, t > 0, where
T,.=Zo+ -+ Z,_1 and Z,, n > 0, are as in Definition 1.

Proposition 3 (Markov property) Let X ~ PP()\), i.e. X is a Poisson process starting from
Xy =0, and consider a fized time t > 0. Then the following hold.

(i) Foralls>0,0<rm <--<rp,<tand0<i3 <---<i, <k</,
P(Xpys =0 X =k, Xy =i1,..., Xy, =) =P(Xpgs = | Xy = k) =Pr(Xs = 0).

More generally, for all k € N and events {(X,)r<t € A} and {(Xi+s)s>0 € B}, we have:
Zf P(Xt = k’, (Xr)rgt S A) > 0, then

P((Xt1s)s>0 € Bl Xt =k, (Xy)r<t € A) = P((Xt15)s>0 € B| Xy = k) = Pr((Xs)s20 € B).

(ii) The processes (X;)r<t and (Xiis)s>0 are conditionally independent given X; = k, for all
k € N. Furthermore, given Xy = k, the process (Xi4s)s>0 is a Poisson process with rate
starting from k.

(ili) (Xits — Xt)s>0 is a Poisson process with rate A starting from 0, (unconditionally) inde-
pendent of (X;)r<t.
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We will prove a more general Proposition 18 in Lecture 4. Also, in Lecture 2, we will revise
and push further the notion of conditioning. For this lecture we content ourselves with the
formulation of the Markov property and proceed to the overview of the course.

Markov models (stochastic processes that have the Markov property and that model real-life
evolutions, natural or man-made) are useful in a wide range of applications, e.g. price processes
in Mathematical Finance, evolution of genetic material in Mathematical Biology, evolutions of
particles in space in Mathematical Physics. The Markov property is a property that makes the
model somewhat simple (not easy, but it could be much less tractable). We will develop tools
that support this statement.

1.3 Brief summary of the course

Two generalisations of the Poisson process and several applications make up this course.

e The Markov property of Proposition 3(i)-(ii) can be used as a starting point to a bigger class
of processes, so-called continuous-time Markov chains. They are analogues of discrete-time
Markov chains, and they are often better adapted to applications. On the other hand, new
aspects arise that did not arise in discrete time, and connections between the two will be
studied. Roughly, the first half of this course is concerned with continuous-time Markov
chains. Our main reference book will be Norris’s book on Markov Chains.

e The Poisson process is the prototype of a counting process. For the Poisson process,
“everything” can be calculated explicitly. In practice, though, this is often only helpful
as a first approximation. E.g. in insurance applications, the Poisson process is used as
a model to count claim arrivals. However, there is empirical evidence that inter-arrival
times are neither exponentially distributed nor independent nor identically distributed.
The second approximation is to relax exponentiality of inter-arrival times but to keep
their independence and identical distribution. These counting processes are called renewal
processes. Since exact calculations are often impossible or not helpful, the most important
results of renewal theory are limiting results. Our main reference will be Chapter 10 of
Grimmett and Stirzaker’s book on Probability and Random Processes.

e Many applications that we discuss are in queueing theory. The easiest, so-called M /M /1
queue consists of a server and customers arriving according to a Poisson process. Inde-
pendently of the arrival times, each customer has an exponential service time for which he
will occupy the server, when it is his turn. When the server is busy, customers queue until
being served. Everything has been designed so that the queue length is a continuous-time
Markov chain, and various quantities can be studied or calculated (equilibrium distribu-
tion, lengths of idle periods, waiting time distributions etc.). More complicated queues
arise if the Poisson process is replaced by a renewal process or the exponential service
time distribution by any other distribution. There are also systems with £k = 2,3,...,00
servers. Abstract queueing systems can be applied in telecommunications, computing
networks, etc.

e Some other applications include insurance ruin models and the propagation of diseases.



Lecture 2

Conditioning and stochastic
modelling

Reading: Grimmett-Stirzaker 3.7, 4.6
Further reading: Grimmett-Stirzaker 4.7, CT4 Unit 1

This lecture consolidates the ideas of conditioning and modelling. Along the way, we explain
the full meaning of statements such as the Markov properties of Lecture 1.

2.1 Modelling of events

As in the Prelims and Part A courses, random variables are defined as functions on a probability
space (2, F,P), where € is the sample space, F is a collection of subsets of Q) called events, the
probability measure P assigns a probability in [0, 1] to each event. A probability space satisfies

o QcF; e AcF = A°=Q\AcF, e A, €Fn>1, = U, An€F.
e P(Q)=1; o Ay € Fyn > 1, disjoint = P(U,>1 An) = 2,51 P(An).

Random variables X:Q — X, where X is typically either R or S, but can also be a space of
functions such as X = {f:[0,00) — S right-continuous}, are such that

e (XeB}=X!B)={weXxX(w)eB}eF forall (measurable) B C X.

This course is not based on measure theory, and in fact we will only occasionally have to refer
back to these properties for clarity of argument.

Modelling means specifying a mathematical model for a real-world phenomenon. Stochastic
modelling include some randomness, i.e. some real-world events are assigned probabilities or
some real-world observables are assigned distributions. At first, real-world events can be named
e.g. A1 =“the die shows an even number” and A, =“the first customer arrives before 10am”. A
stochastic model identifies such an event as a subset of a sample space 2 and assigns probabilities.
We seem to be able to write down some probabilities directly without much sophistication
(P(A1) = 0.57 still making implicit assumptions about the fairness of the die and the conduct
of the experiment). Others require less obvious specification of a stochastic model (P(Ag) =7).

Hardly any real situations involve genuine randomness. It is rather our incomplete percep-
tion/information that makes us think there was randomness. Nevertheless, assuming a specific
random model to inform our decision-making can be very helpful and lead to decisions that are
sensible/good /beneficial in some sense.

Mathematical models always make assumptions and reflect reality only partially. The fol-
lowing situation is quite common: the better a model represents reality, the more complicated
it is to analyse. There is a trade-off here. In any case, we must base all our calculations on the
model specification, the model assumptions. Translating reality into models is at least partly a
non-mathematical task. Analysing a model is purely mathematical.

Models have to be consistent, i.e. they must not contain contradictions. This statement may
seem obvious, but the point is that not all contradictions are immediately apparent. There
are models that have undesirable features that cannot be easily removed, least by postulating
the contrary. E.g., you may wish to specify a model for customer arrival where arrival counts
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over disjoint time intervals are independent, arrival counts over time intervals of equal lengths
have the same distribution (cf. Remark 2 (ii)-(iii)), and times between two arrivals have a non-
exponential distribution. Well, such a model does not exist (we won’t prove this statement now,
it’s a bit too hard at this stage). On the other hand, within a consistent model, all properties
that were not specified in the model assumptions have to be derived from these. Otherwise it
must be assumed that the model may not have the property.

Suppose we are told that a shop opens at 9.30am, and on average, there are 10 customers per
hour. One model could be to assume that a customer arrives exactly every six minutes. Another
model could be to assume customers arrive according to a Poisson process at rate A = 10 (time
unit=1 hour). Whichever model we use, we can “calculate” P(A3), and it is not the same in
the two models, so we should reflect this in our notation. Since Ao does not really change from
one model to the other, it had better be P that changes, and we may wish to write P for the
second model. The probability measure P should be thought of as defining the randomness.
Similarly, we can express dependence on a parameter by P™, dependence on an initial value
by Px. Informally, for a Poisson process model, we set Pi(A) := P(A| Xy = k) for all events A
(formally, this should make us wonder whether P(Xy = k) > 0, and in fact, we first define Py,
and could then write P(A| Xy = k) := Px(A) as a long-hand notation).

Aside: Technically, we cannot in general call all subsets of Q events if Q is uncountable, but we will
not worry about this, since it is hard to find examples of non-measurable sets. w should be thought of as
a scenario, a realisation of all the randomness, which we typically express in terms of random variables
X(w). What matters are (joint!) distributions of random variables, not usually the precise form of
(Q, F,P). It is important, though, that (2, F,P) exists for all our purposes to make sure that the random
objects we study exist. We will assume that all our random variables can be defined as (measurable)
functions on some (2, F,P). This existence can be proved for all our purposes, using measure theory.

In fact, when we express complicated families of random variables such as a Poisson process (X;);>0
in terms of a countable family (Z,)n>1 of independent random variables, we do this for two reasons.
The intuitive reason may be apparent: countable families of independent variables are conceptually
easier than uncountable families of dependent variables. The formal reason is that a result in measure
theory says that there exists a probability space (Q, F,P) on which we can define countable families of
independent variables whereas any more general result for uncountable families or dependent variables
requires additional assumptions or other caveats.

It is very useful to think about random variables Z,, as functions Z,(w), because it im-
mediately makes sense to define a Poisson process X;(w) as in Definition 1, by defining new
functions in terms of old functions. A certain class of probability problems can be solved by
applying analytic rules to calculations involving functions of random variables (transformation
formula for densities, expectation of a function of a random variable in terms of its density or
probability mass function, etc.). Here we are dealing more explicitly with random variables and
events themselves, operating on them directly.

This course is not based on measure theory, but you should be aware that some of the proofs
are only mathematically complete if based on measure theory. Ideally, this only means that we
apply a result from measure theory that is intuitive enough to believe without proof. In a few
cases, however, the gap is more serious. We will identify technicalities, but without drawing
attention away from the probabilistic arguments that we develop in this course and that are
useful for applications.

B8.1 Martingales Through Measure Theory provides as pleasant an introduction to measure
theory as can be given. That course nicely complements this course in providing the formal
basis for probability theory in general and hence for this course in particular. However, it is by
no means a co-requisite, and when we do refer to this course, it is likely to be to material that
has not yet been covered there. Williams’ Probability with Martingales is the recommended
book reference.
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2.2 Conditional probabilities, densities and expectations

Conditional probabilities were introduced in Prelims as

_P(BnA)
P(B|A) = “P(4)
where we require P(A) > 0.

Example 4 Let X be a Poisson process. Then

P(X; — Xy =3, Xs = k)
P(X, = k)

P(X;=k+j|Xs=k) = =P(X; — Xy =) =P(Xy—s =),

by the independence and stationarity of increments, Remark 2 (ii)-(iii).

Conditional densities were introduced in Part A as

Example 5 Let X be a Poisson process. Then, for t > s,

f (t) _ le,Tz(Svt) _ on,Z1(s>t - S) _ on(S)le(t - 3)
Telfi=s fri(s) F20(5) F20(5)

by the transformation formula for bivariate densities to relate fr, 1, to fz, 7, , and independence
of Zp and Z;.

= fz,(t—s) = /\e_>‘(t_8),

Conditioning has to do with available information. In the real world, we often observe a
process with time. When we have set up a stochastic model, e.g. a Poisson process witha known
parameter A > 0. (If we don’t know A, we should estimate A and update estimates as we observe
the real-world process, but we do not worry about this in this course.) It is instructive to think
of updating the stochastic process by its realisation in the real world as time evolves. If the first
arrival takes a long time to happen, this gives us information about the second arrival time 75,
simply since To = T7 + Z1 > T1. When we eventually observe T7 = s, the conditional density
of T given T7 = s takes into account this observation and captures the remaining stochastic
properties of T5. The result of the formal calculation to derive the conditional density is in
agreement with the intuition that if 77 = s, T = T + Z71 ought to have the distribution of Z;
shifted by s.

Example 6 Conditional probabilities and conditional densities are compatible in that
P(SeB|IT =t) = / fsir=i(s)ds = liﬁ)llP’(S EBIt<T <t+eg),
B 15

provided only that the distribution of (S,T) is sufficiently smooth. To see this, when fg7 is
sufficiently smooth, write for all intervals B = (a,b)

P(SeB,t<T<t+e) 1 ﬁ+€ fB fsr(s,u)dsdu

£

Pt<T<t+e)  1Pt<T<t+e)

P(SEBIt<T<t+e)=

and under the smoothness condition (by dominated convergence, Fubini-Tonelli etc.), this tends
to

E@;T—E:)’t)dg = /Bf5|T:t(8)ds =P(S € B|T =1t).
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Similarly, we can also define

P(X = KT =) =lmP(X =kt <T <t+2) and frix—(t) = lim 11@(75 <T<t+eX=k).
5 € g

One can define conditional expectations in analogy with unconditional expections, e.g. in the
latter case by

E(X|T =t) = Z]P = j|IT =1).
Proposition 7 (a) If X and Y are (dependent) discrete random variables in N, then

=Y KXY =n)P(Y =n).
n=0

(b) If X and T are jointly continuous random variables in (0,00) or

(¢c) if X is discrete and T is continuous, and if T has a right-continuous density, then
o
BX) = [ ECXT = 0fr(0)i
0

Proof: (c) We start at the right-hand side
| BT = setar= [ RC0 =T = o)fr(eyi
0 0 -
7=0

and calculate
=71t < <
P(X =j|T=t) = im X =5t <T<t+e)
€l0 ]P’(tSTSt-FE)
1 . )
Pt <T <t+elX =j)P(X = j)

= g IPt<T<t+e)
Jrix=;(t)P(X = j)
fr(t)

so that we get on the right-hand side

/ TS R(X = 1T = 1) f(t) Z]P -0 [ " fry (0t = E(X)
0 0

after interchanging summation and integration. This is justified by Tonnelli’s theorem that we
state in Lecture 3.

(b) is similar to (c).

(a) is more elementary and left to the reader. O

Statement and argument hold for left-continuous densities and approximations from the left,
as well. For continuous densities, one can also approximate {T' =t} by {t —e <T <t +¢} (for
e < t, and normalisation by 2e, as adequate).

Recall that we formulated the Markov property of the Poisson process as

P((Xiys)s>0 € Bl Xy =k, (Xi)r<t € A) = Pr((Xegs)s>0 € B)

for all events {(X; )<t € A} such that P(X; =k, (X, )r<t € A) > 0, and {(X¢+4)u>0 € B}. For
certain sets A with zero probability, this can still be established by approximation.
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2.3 Independence and conditional independence

Recall that independence of two random variables is defined as follows. Two discrete random
variables X and Y are independent if

P(X=4Y =k)=P(X =5)PY =k) for all 5,k € S.
Two jointly continuous random variables S and 1" are independent if their joint density factorises,
ie. if

fsr(s,t) = fs(s)fr(t) for all s,t € R, where fs(s) = /ngvT(s,t)dt.

Recall also (or check) that this is equivalent, in both cases, to
P(S <s,T<t)=P(S <s)P(T <) for all s,t € R.
In fact, it is also equivalent to
P(Se AT e B)=P(S e B)PT € B) for all (measurable) A, B C R,
and we define more generally:

Definition 8 Let X and Y be two random variables with values in any, possibly different spaces
X and Y. Then we call X and Y independent if

P(X € AY € B)=P(X € A)P(Y € B) for all (measurable) A C X and B C Y.

We call X and Y conditionally independent given a third random variable Z if for all z € S (if
Z has values in S) or z € [0,00) (if Z has values in [0, 00)),

P(X €AY € B|Z=2)=P(X € A|Z =2)P(Y € B|Z = 2).

Remark and Fact 9! Conditional independence is in many ways like ordinary (unconditional)
independence. E.g., if X is discrete, it suffices to consider A = {z}, = € X. If X is real-valued,
it suffices to consider A = (—oo,z], z € R. If X is bivariate, it suffices to consider all A of the
form A = Ay x As.

If X = (X,)r<t, it suffices to consider A = {X,, =21,...,X,, =a,}forall 0 <r; <--- <
rn <t, x1,...,2, € N, n > 1. This is how Proposition 3(ii) can be interpreted, applied and
proved.

We conclude by a fact that may seem obvious, but does not follow immediately from the
definitions. Also the approximation argument only gives some special cases.

Fact 10 Let X be any random variable, and T a real-valued random variable with right-continuous
density. Then, for all (measurable) f : X x [0,00) — [0,00), we have

E(f(X,T)|T = t) = E(f(X,t)|T = ¢).
Furthermore, if X and T are independent and g : X — [0,00) (measurable) we have
E(g(X)|T = t) = E(9(X)).
If X takes values in [0, 00) also, example for f are e.g. f(x,t) = 15144, Where 1y, 4y =1

A(z+t)

if v+t > s and 1g, 45, = 0 otherwise; or f(z,t) =e in which case the statements are

P(X +T > s|T =t) =P(X +t > s|T =t) and E(AX+D|T = ) = ME(M|T = 1),

and the condition {T" =t} can be removed on the right-hand sides if X and T" are independent.
This can be shown by the approximation argument.
The analogue of Fact 10 for discrete T is elementary.

'Facts are theorems that we cannot fully prove in this course. Note also that there is a grey zone between
theorems/propositions and facts, since partial proofs of facts or full proofs of theorems/propositions sometimes
appear on assignment sheets, in the main or optional parts.
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2.4 Method: One-step analysis, conditioning on 7;

The main conditioning method in this course is to condition on the first event. In the case of a
discrete-time Markov chain this is the value after the first step. In the case of a Poisson process
(or simple birth process or renewal process, as studied later), this is the time of the first arrival.
In the case of a continuous-time Markov chain, it will be a combination of the two.

Example 11 Let X ~ PP()\) and m(u) = E(X,), u > 0. Then by Proposition 7(c),
m(u) - E(Xu) = / E(XU|T1 = t)le (t)dt = / E(l + )?u—T1 |T1 = t)/\e_Mdt,
0 0

where X, = Xr1,4+s — 1is a PP()) independent of T} = Z, since X, = #{n > T, < s}, where
Zn = Zny1 ~ Exp(N), n > 0, are independent, and independent of Zy. By Fact 10, this yields

m(u) = /0 (14 E(Xy ) Ae Mdt =1 —e ™ + /0 m(r)Ae @ dp.

If we multiply this by e*, differentiate and cancel e’ again, we find m/(u) = A. Since also
m(0) = E(Xy) = 0, we obtain m(t) = At for all ¢ > 0, using a quite different argument from
Remark 2. The real power of this argument will be revealed when applied for processes other
than the Poisson process, for which many stronger tools yield stronger results.



