
An Improved Lower Bound for the Time Complexity of
Mutual Exclusion�

(Extended Abstract)

James H. Anderson and Yong-Jik Kim
Department of Computer Science

University of North Carolina at Chapel Hill

fanderson, kimyg@cs.unc.edu

ABSTRACT
We establish a lower bound of
(logN= log logN) re-
mote memory references for N -process mutual exclu-
sion algorithms based on reads, writes, or comparison
primitives. Our bound improves an earlier bound of

(log logN= log log logN) established by Cypher.

1. INTRODUCTION
Recent work on mutual exclusion [6] has focused on the

design of \scalable" local-spin algorithms. Good scalability
is achieved in such algorithms by using spin loops in which
shared variables are read that are stored in a local cache
or memory module. Early work on local-spin algorithms fo-
cused on \queue locks" implemented with fetch-and-� prim-
itives. Several such algorithms were proposed in which only

O(1) remote memory references (i.e., references requiring a
traversal of the processor-to-memory interconnect) are re-
quired per critical-section access [3, 7, 8].
In later work, Yang and Anderson initiated a study of time

complexity bounds for local-spin algorithms, where \time"
is measured by only counting remote memory references

[2, 11]. One of their main contributions was an N -process
mutual exclusion algorithm with �(logN) time complexity
that uses only read and write operations [11]. In addition,
they proved several lower bounds for systems in which write-

or access-contention is restricted (i.e., systems for which a

bound exists on the number of processes that may be con-
currently enabled to write or access the same shared vari-
able). For example, they showed that if access-contention
is c, then
(log

c
N) remote operations are required for a

process to enter its critical section.
Yang and Anderson's lower bounds apply only to systems

with limited write- or access-contention. In particular, they

�Work supported by NSF grants CCR 9732916, CCR
9972211, CCR 9988327, and ITR 0082866.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2001 ACM 0-89791-88-6/97/05 ...$5.00.

left open the question of whether
(logN) is a lower bound
for mutual exclusion under read/write atomicity with ar-
bitrary write- and access-contention; such a bound would

imply that their �(logN) algorithm is time-optimal.
Cypher was the �rst to attempt to address this open

question [5]. He established a lower bound of
(log logN=
log log logN), which surprsingly is applicable not only to
algorithms based on reads and writes, but also to algo-

rithms that use comparison primitives such as test-and-set
and compare-and-swap.1 Given the fact that fetch-and-�
primitives can be used to implement mutual exclusion in
O(1) time, this result pointed to an unexpected weakness of
compare-and-swap, which is still widely regarded as being
the most useful of all primitives to provide in hardware.

Contributions of this paper. In this paper, we show
that Cypher's lower bound can be improved to
(logN=
log logN). Thus, we have almost succeeded in establish-
ing the optimality of Yang and Anderson's �(logN) algo-
rithm. Our lower bound suggests that it is likely that, from
an asymptotic standpoint, compare-and-swap and test-and-

set are no better than reads and writes when implementing
local-spin mutual exclusion algorithms. Moreover, the time
complexity gap that exists between comparison primitives
and fetch-and-� primitives is actually quite wide. Thus,
comparison primitives may not be the best choice to provide
in hardware if one is interested in scalable synchronization.

The rest of the paper is organized as follows. In Sec. 2, we
present our model of shared-memory systems. Our proof is
then sketched in Sec. 3 and presented in detail in Sec. 4 for
systems with read/write atomicity. Comparison primitives
are then considered in Sec. 5. We conclude in Sec. 6.

2. DEFINITIONS
Our system model is similar to that used in [2].

Shared-memory systems. A shared-memory system S =
(C;P; V) consists of a set of computations C, a set of pro-
cesses P , and a set of variables V . A computation is a �nite
sequence of events.

An event e is denoted [R;W; p], where p 2 P . The sets R
and W consist of pairs (v; �), where v 2 V . This notation
represents an event of process p that reads the value � from

1A comparison primitive conditionally updates a shared
variable after �rst testing that its value meets some con-
dition.

variable v for each pair (v; �) in R, and writes the value

� to variable v for each pair (v; �) in W . Each variable
in R (or W) is assumed to be distinct. We de�ne Rvar(e)
(Wvar (e)) to be the set of variables read (written) by e, i.e.,
Rvar(e) = fv : (v; �) 2 Rg andWvar (e) = fv : (v; �) 2 Wg.
We de�ne var(e), the set of all variables accessed by e, to
be Rvar (e) [Wvar(e). We say that event e accesses each

variable in var(e). We say that process p is the owner of e,
denoted owner(e) = p. For brevity, we sometimes use ep to
denote an event owned by process p.
Each variable is local to at most one process and is remote

to all other processes. (Note that a variable may be remote
to all processes.) An initial value is associated with each

variable. An event is local if it does not access any remote
variable, and remote otherwise.
We use he; : : :i to denote a computation that begins with

the event e, and hi to denote the empty computation. We use
H ÆG to denote the computation obtained by concatenating
computations H and G. The value of variable v at the end

of computation H, denoted value(v;H), is the last value
written to v in H (or the initial value of v if v is not written
in H). The last event to write to v in H is denoted writer

event(v;H),2 and its owner is denoted writer (v;H). If v is
not written by any event in H, then we let writer (v;H) = ?
and writer event (v;H) = ?.

For a computation H and a set of processes Y , H jY de-
notes the subcomputation of H that contains all events in
H of processes in Y . Computations H and G are equivalent
with respect to Y i� H j Y = G jY . A computation H is a
Y -computation i� H = H jY . For simplicity, we abbreviate

the preceding de�nitions when applied to a singleton set of
processes (e.g., H j p instead of H j fpg).
The following properties apply to any shared-memory sys-

tem.

(P1) If H 2 C and G is a pre�x of H, then G 2 C.

(P2) If H Æ hepi 2 C; G 2 C; G j p = H j p, and if value(v;
G) = value(v;H) holds for all v 2 Rvar(ep), then G Æ

hepi 2 C.

(P3) IfHÆhepi 2 C, G 2 C, G j p = H j p, thenGÆhe0pi 2 C
for some event e0p such that Rvar (e0p) = Rvar (ep) and
Wvar(e0p) = Wvar(ep).

(P4) For any H 2 C, H Æ hepi 2 C implies that � =

value(v;H) holds, for all (v; �) 2 Rvar(ep).

For notational simplicity, we make the following assump-
tion, which requires each remote event to be either an atomic
read or an atomic write. Later, in Sec. 5, we show that this
assumption can be relaxed to allow comparison primitives.

Atomicity Assumption: Each event of process p may ei-
ther read or write (but not both) at most one variable that

is remote to p. 2

Mutual exclusion systems. We now de�ne a special
kind of shared-memory system, namely mutual exclusion
systems, which are our main interest.

2We assume that multiple instances of the same event are
distinguishable from each other. (For simplicity, we do not
extend our notion of an event to include an additional iden-
ti�er for distinguishability.)

A mutual exclusion system S = (C;P; V) is a shared-

memory system that satis�es the following properties. Each
process p 2 P has a local variable statp that ranges over
fncs ; entry ; exitg.3 The variable statp is initially ncs and is
accessed only by the following events: Enterp = [fg; f(statp;
entry)g; p], CSp = [fg; f(statp; exit)g; p], and Exitp = [fg;
f(statp; ncs)g; p]. The allowable transitions of statp are as

follows: for all H 2 C,

H Æ hEnterpi 2 C i� value(statp; H) = ncs ;
H Æ hCSpi 2 C only if value(statp; H) = entry ;

H Æ hExitpi 2 C only if value(statp; H) = exit .

We henceforth assume each computation contains at most
one Enterp event for each process p, because this is suÆcient

for our proof. The remaining requirements of a mutual ex-
clusion system are as follows.

Exclusion: For all H 2 C, if both H Æ hCSpi 2 C and
H Æ hCS qi 2 C hold, then p = q.

Progress (starvation freedom): For all H 2 C,
if value(statp; H) 6= ncs, then there exists an X-
computation G such that H ÆGÆhepi 2 C, where X =
fq 2 P : value(statq ; H) 6= ncsg and ep is either CSp
(if value(statp; H) = entry) or Exitp (if value(statp;

H) = exit). 2

Cache-coherent systems. On cache-coherent systems, re-
mote variables may sometimes be accessed without causing

interconnect traÆc. Our proof applies to such systems with-
out modi�cation. This is because we do not count every
remote event, but only critical events, as de�ned below.

De�nition: Let S = (C;P; V) be a mutual exclusion sys-
tem. Let ep be an event in H 2 C. Then, we can write H as
F Æ hepi ÆG, where F and G are subcomputations of H. We

say that ep is a critical event in H i� one of the following
conditions holds:

Transition event: ep is one of Enter p, CSp, or Exitp.

Critical read: There exists v 2 Rvar (ep), remote to p,
that is not read by p in F j p.

Critical write: There exists v 2Wvar(ep), remote to p,
such that writer(v; F) 6= p. 2

Although state transition events do not actually cause
cache misses, categorizing them as critical allows us to com-
bine certain cases in our proof. A process executes only
three transition events per critical section execution, so this

has no asymptotic impact.
According to the above de�nition, a remote read of v by

p is critical if it is the �rst read of v by p. A remote write of
v by p is critical if (i) it is the �rst write of v by p; or (ii)
some other process has written to v since p's last write of v.

Note that if p both reads and writes v, then both its �rst
read of v and �rst write of v are considered critical. Depend-
ing on the system implementation, the latter of these two
events might not generate a cache miss. However, even in
such a case, the �rst such event will always generate a cache
miss, and hence at least half of all such critical reads and

3Each critical-section execution of p is captured by the single
event CSp, so statp changes directly from entry to exit .

writes will actually incur real global traÆc. Hence, our lower

bound remains asymptotically unchanged for such systems.
In a write-through cache scheme, writes always generate a

cache miss. On the other hand, with a write-back scheme,
a remote write to a variable v may create a cached copy of
v, so that subsequent writes to v do not cause cache misses.
In the de�nition above, if ep is not the �rst write to v by

p, then it is considered critical only if writer (v; F) = q 6= p
holds, which implies that v is stored in a local cache line of
another process q.4 In such a case, ep must either invalidate
or update the cached copy of v (depending on the system),
thereby generating global traÆc.
Note that the above de�nition of a critical event de-

pends on the particular computation that contains the event.
Therefore, when saying that an event is (or is not) critical,
the computation containing the event must be speci�ed.

3. PROOF STRATEGY
Our proof focuses on a special class of computations called

\regular" computations. A regular computation consists of
events of two groups of processes, \active processes" and

\�nished processes." Informally, an active process is a pro-
cess in its entry section, competing with other active pro-
cesses; a �nished process is a process that has executed its
critical section once, and is in its noncritical section. (These
properties follow from (RF4), given later in this section.)

De�nition: Let S = (C;P; V) be a mutual exclusion sys-
tem, and H be a computation in C. We de�ne Act(H), the
set of active processes in H, and Fin(H), the set of �nished
processes in H, as follows.

Act(H) = fp 2 P : H j p 6= hi and hExitpi =2 Hg

Fin(H) = fp 2 P : H j p 6= hi and hExitpi 2 Hg 2

In our proof, several other process groups are considered
as well. As explained below, Act(H) is partitioned into two
sets of processes, the \invisible" and \promoted" processes,

respectively. If H is regular, then all processes in Act(H)
are invisible; if H is non-regular, then Act(H) may include
both invisible and promoted processes. The set of promoted
processes is described below. For a process to be invisible,
it must be the case that no other process has knowledge of
it. Because all active processes in a regular computation

are invisible, we can \erase" any active process from such
a computation (i.e., remove its events from the computa-
tion) and still get a valid computation. The set of processes
that have been \erased" in this way constitutes another of
the processes groups of importance in our proof. These pro-

cess groups are depicted in Fig. 2 (the roll-forward set is
discussed below).
At the end of this section, a detailed overview of our proof

is given. Here, we give cursory overview, so that the de�-
nitions that follow will make sense. Our proof is based on
a combination two strategies, rolling forward and erasing

(also used elsewhere [1, 4, 9]), in which longer and longer
regular computations are inductively constructed. In each
induction step, we append to each active process (except at

4E�ectively, we are assuming an idealized cache of in�-
nite size: a cached variable may be updated or invalidated
but it is never replaced by another variable. (Note that
writer(v; F) = q implies that q's cached copy of v has not
been invalidated.) Cache size and associativity limitations
can only increase the number of cache misses.

most one) one future critical event. Such events may intro-

duce information ow among active processes, which may
be eliminated by erasing some active processes. Sometimes
erasing alone doesn't leave enough active processes for the
next induction step. In that case, some active processes are
\promoted" and allowed to \roll forward" by executing to-
gether until they all reach their noncritical sections (NCSs).

We erase some other active processes so that the remaining
active processes remain invisible. The invisible processes
(that are not erased) will constitute the set of active pro-
cesses for the next regular computation in the induction.
Although invisible processes may have knowledge of pro-
moted (and �nished) processes, once all promoted processes

have �nished execution, the regularity condition holds again
(i.e., all active processes are invisible).
The promoted and �nished processes together constitute

a \roll-forward set," which must meet the conditions de�ned
below. Informally, (RF1) ensures that an invisible process is
not known to any other processes; (RF2) and (RF3) bound

the number of possible conicts caused by appending a crit-
ical event; (RF4) ensures that the invisible, promoted, and
�nished processes behave as explained above; (RF5) ensures
that we can erase any invisible process.

De�nition: Let S = (C;P; V) be a mutual exclusion sys-
tem, H be a computation in C, and RFS be a subset of P

such that Fin(H) � RFS and H j p 6= hi for each p 2 RFS .
We say that RFS is a valid roll-forward set (RF-set) of H
i� the following conditions hold.

(RF1) Assume that H can be written as EÆhepiÆF ÆhfqiÆ
G. If p 6= q and there exists a variable v 2Wvar(ep)\
Rvar(fq) such that F does not contain a write to v
(i.e., writer event (v; F) = ?), then p 2 RFS . | Infor-

mally, if a process p writes to a variable v, and if another

process q reads that value from v, then p 2 RFS holds.

(RF2) For any event ep inH and any variable v in var(ep),
if v is local to another process q (6= p), then either
q =2 Act(H) or fp; qg � RFS . | Informally, if a process

p accesses a variable that is local to another process q, then

either q is not an active process in H, or both p and q

belong to the roll-forward set RFS .

(RF3) Consider a variable v 2 V and two di�erent events

ep and fq in H. Assume that both p and q are in
Act(H), p 6= q, there exists a variable v such that v 2
var (ep) \ var(fq), and there exists a write to v in H.
Then, writer(v;H) 2 RFS holds. | Informally, if a

variable v is accessed by more than one processes inAct(H),

then the last process in H to write to v (if any) belongs to

RFS .

(RF4) For any process p such that H j p 6= hi, value(statp;
H) is8<

:
entry if p 2 Act(H)� RFS

entry or exit if p 2 Act(H) \ RFS

ncs otherwise (i.e., p 2 Fin(H)):

Moreover, if p 2 Fin(H), then the last event of p in
H is Exitp. | Informally, if a process p participates in H

(H j p 6= hi), then at the end ofH, one of the following holds:

(i) p is in its entry section and has not yet executed its

critical section (p 2 Act(H)�RFS); (ii) p is in the process

All Processes

Erased Processes

(perform no events in the
computation under consideration)

Active Processes Finished Processes

Invisible Processes Promoted Processes

(will be empty for a
regular computation)

| {z }
Roll-Forward Set

(
(

(
(

(
(

(
((

h
h
h
h
h
h
h
hh

�

�
�

@

@
@

Figure 1: Process groups.

of \rolling forward" and is in its entry or exit section (p 2

Act(H)\RFS); or (iii) p has already �nished its execution

and is in its noncritical section (i.e., p 2 Fin(H)).

(RF5) Assume that H can be written as EÆhepiÆF ÆhfpiÆ
G. If there exists a variable v, remote to p, such that
v 2Wvar(ep)\Wvar(fp) and writer(v; F) = q, where
q 6= p and q 6= ?, then there exists a process r in RFS

such that F j r contains a write to v. | Informally, if

an event fp is a critical write to a variable v, and if fp is

not the �rst event of p to write to v, then there exists a

write to v by some process r in RFS between the previous

write to v by p (= event ep) and event fp. This condition

is used to show that the property of being a critical write is

conserved when considering certain related computations.

2

The invisible and promoted processes (which partition the
set of active processes) are de�ned as follows.

De�nition: Let S = (C;P; V) be a mutual exclusion sys-
tem, H be a computation in C, and RFS be a valid RF-set
of H. We de�ne InvRFS (H), the set of invisible processes in

H, and PmtRFS (H), the set of promoted processes in H, as
follows.

InvRFS (H) = Act(H)� RFS

PmtRFS (H) = Act(H) \ RFS 2

For brevity, we sometimes omit the speci�c RF-set if it
is obvious from the context, and simply use the notation
Inv(H) and Pmt(H). Finally, the regularity condition can
be de�ned succinctly as \all the processes we wish to roll
forward have �nished execution."

De�nition: A computation H in C is regular i� Fin(H) is
a valid RF-set of H. 2

Detailed proof overview. The structure of our proof is
depicted in Fig. 2. Initially, we start with H1, in which
Act(H1) = P , Fin(H1) = fg, and each process has one crit-
ical event. At the jth induction step, we consider a compu-

tation Hj such that Act(Hj) consists of n processes, each
of which executes j critical events in Hj . We show that
if j > c log n, where c is a constant to be speci�ed later,
then the lower bound has already been attained. Thus, in
the inductive step, we assume j � c log n. We construct a
regular computation Hj+1 such that Act(Hj+1) consists of

(n= log2 n) processes,5 each of which executes j + 1 criti-

cal events in Hj+1. The construction method, formally de-
scribed in Lemma 5, is explained below.
We show in Lemma 3 that, among the n processes in

Act(Hj), at least n� 1 processes can execute an additional

critical event before entering its critical section. We call
these events \future" critical events, and denote the corre-
sponding set of processes by Y .
The processes in Y collectively execute at most cn log n

critical events in Hj . Let E be the set of all these events plus
all the future critical events. Clearly, jEj � (c log n + 1)n.

Among the variables accessed by these events, we identify
VHC, the set of variables that experience \high contention,"
that is, those that are remotely accessed by at least d log2 n
critical events in E , where d is another constant to be spec-
i�ed. Because of the Atomicity Assumption, each event can
access at most one remote variable, so we have jVHCj �
(c logn+1)n

d log2 n
�

(c+1)n

d log n
. Next, we partition the processes in

Y depending on whether their future critical events access
a variable in VHC, as follows: PHC = fy 2 Y : y's future
critical event accesses some variable in VHCg, and PLC =
Y � PHC.
Because Hj is regular and Y � Act(Hj), we can erase

any process in Y . Hence, we can erase the smaller of PHC
and PLC and still have
(n) remaining active processes. We
consider these cases separately.

Erasing strategy. Assume that we erased PHC and saved
PLC. De�ne VLC as the set of variables remotely accessed
by the future critical events of PLC. Then clearly, every

variable in VLC is a \low contention" variable, and hence
is accessed by at most d log2 n di�erent critical events (and
hence, di�erent processes). Therefore, a future event by a
process in PLC can conict with at most d log2 n processes.
By generating a \conict graph" and applying Tur�an's theo-
rem (Theorem 1), we can �nd a set of processes Z such that

jZj =
(n= log2 n) and their critical events do not conict
with each other. By retaining Z and erasing all other ac-
tive processes, we can eliminate all conicts. Thus, we can
construct Hj+1.

Roll-forward strategy. Assume that we erased PLC and
saved PHC. Every future event by a process in PHC accesses

a variable in VHC. For each variable v 2 VHC, we arrange
the future critical events that access v by placing all writes
before all reads. Thus, the only information ow between
processes in PHC is that from the \last writer" of each such

5We use log2 n to denote (log n)2.

N
processes

H1

1 c.e. per
process

) � � �)

n processes
in Act(Hj)

Hj

total
nj = O(n log n)

c.e.'s

j c.e.'s per process,
where j = O(log n)

+

processes
in Fin(Hj)

events of Fin(Hj)

)

(n= log2 n)
processes

in Act(Hj+1)

Hj+1

events of Act(Hj)

� events of Pmt(Hj)
� events of erased processes

j + 1 c.e.'s per process

+

processes in
Fin(Hj+1)

events of Fin(Hj)
+ events of Pmt(Hj)

) � � �

Figure 2: Proof strategy. In this �gure, \c.e." stands for \critical event."

v to all the subsequent readers of v. Denote the set of last

writers by LW . Because jVHCj �
(c+1)n

d logn
, we have jLW j �

jVHCj �
(c+1)n

d log n
. We then roll the processes in LW forward

(i.e., promote their execution) by generating a computation
G fromHj such that Inv(G) = PHC�LW and LW [Fin(Hj)
is a valid RF-set of G.6

If any process p in Pmt(G) (= LW) executes at least log n
critical events before returning to its NCS, then the lower

bound easily follows. (It can be shown that log n =
(logN=
log logN). The formal argument is presented in Theorem 2.)
Therefore, we can assume that each process in LW performs
fewer than log n critical events while being rolled forward.

Because jLW j �
(c+1)n

d log n
, it follows that all the processes in

LW can be rolled forward with a total of O(n) critical events.

Appending to G a critical event of LW may generate in-
formation ow only if it reads a variable v that is written
by another process in G. (RF3) guarantees that if there are
multiple writers to v, the last writer in G belongs to the RF-
set. Because information ow inside the RF-set is allowed,

a conict arises only if there is a single process that writes
to v in G. Thus, each critical event of LW can conict with,
and thus erase, at most one process in Inv(G). (Append-
ing a noncritical event to G cannot cause any processes to
be erased. In particular, if a noncritical remote read by a
process p is appended, then p must have previously read

the same variable. By (RF3), if the last writer is another
process, then that process is in the RF-set.)
Therefore, the entire roll-forward procedure erases O(n)

processes from Inv(G). Because j Inv(G)j = �(n)� jLW j =
�(n), we can adjust constant coeÆcients so that
(n) pro-
cesses of Inv(G) survive after the entire procedure. Thus,

we can construct Hj+1.

4. LOWER BOUND PROOF
In this section, we present our lower-bound theorem for

systems satisfying the Atomicity Assumption, i.e., systems
under read/write atomicity. A corresponding lower bound
for systems with comparison primitives is established in
Sec. 5. We begin by stating several lemmas. Proof sketches
for Lemmas 1{4 can be found in an appendix. Lemma 1

states that we can safely \erase" any invisible process.

6In fact, the proof of Lemma 5 shows that Inv(G) is not
exactly the same as PHC � LW , because of minor conicts
that can erase O(n= log n) processes. However, this does not
change the asymptotic argument.

Lemma 1 Consider a computation H in C with a valid RF-

set RFS. For any set Y of processes such that RFS � Y , the

following hold: H jY 2 C; RFS is a valid RF-set of H jY ;

an event e in H jY is a critical event i� it is also a critical

event in H. 2

The next lemma gives us means for extending a compu-
tation by appending noncritical events.

Lemma 2 Consider a computation H in C with a valid

RF-set RFS and a set of processes Y = fp1; p2; : : : ; pmg,
where Y � InvRFS (H). Assume that, for each pj in Y , there

exists a pj-computation Lpj , such that H ÆLpj 2 C and Lpj
has no critical events in H Æ Lpj .
De�ne L to be Lp1 Æ Lp2 Æ � � � Æ Lpm . Then, the following

hold: H Æ L 2 C, RFS is a valid RF-set of H Æ L, and L
contains no critical events in H Æ L. 2

The next lemma states that if n active processes are com-

peting for entry into their critical sections, then at least
n�1 of them execute at least one more critical event before
entering their critical sections.

Lemma 3 Let H be a regular computation in C. De�ne

n = jAct(H)j. Then, there exists a subset Y of Act(H),
where n � 1 � jY j � n, satisfying the following: for each

process p in Y , there exist a p-computation Lp and an event

ep of p such that

� H Æ Lp Æ hepi 2 C;
� Lp contains no critical events in H Æ Lp;
� ep =2 fEnter p;CSp;Exitpg;
� ep is a critical event of p in H Æ Lp Æ hepi;

� Fin(H) is a valid RF-set of H Æ Lp. 2

According to the next lemma, if there exist promoted pro-
cesses, we can extend the computation with one more criti-
cal event of some promoted process, and erase at most one
invisible proess while doing that.

Lemma 4 Let H be a computation in C with a valid RF-set

RFS satisfying Fin(H) (RFS (i.e., Fin(H) is a proper sub-

set of RFS). Then, there exists a computation G satisfying

the following.

� RFS is a valid RF-set of G.
� G can be written as H j (Y [RFS) Æ L Æ hei, for some

choice of Y , L, and e such that

� Y is a subset of Inv(H) such that j Inv(H)j � 1 �

jY j � j Inv(H)j;
� Inv(G) = Y ;

� L is a Z-computation that has no critical events in

G, where Z = Pmt(H);
� e is an event of some process in Z, such that e is a

critical event in G.

� Pmt(G) � Pmt(H).
� An event in H j (Y [RFS) is a critical event i� it is also

a critical event in H. 2

The following theorem is due to Tur�an [10].

Theorem 1 (Tur�an) Let G = (V;E) be an undirected

graph, with vertex set V and edge set E. If the average de-

gree of G is d, then an independent set7 exists with at least

djV j=(d+ 1)e vertices. 2

The following lemma provides the induction step that

leads to the lower bound in Theorem 2.

Lemma 5 Let S = (C;P; V) be a mutual exclusion sys-

tem, and let H be a regular computation in C. De�ne n =
jAct(H)j. Assume that n > 1 and

� each process in Act(H) executes exactly c critical events

in H, where c � log n� 1. (1)

Then, one of the following propositions is true.

(Pr1) There exist a process p in Act(H) and a computation

F in C such that

� F Æ hExitpi 2 C;
� F does not contain hExitpi;

� p executes at least (c+ log n) critical events in F .

(Pr2) There exists a regular computation G in C such that

� Act(G) � Act(H);
� jAct(G)j � min(n

4
�

n

2 log n
�

1
2
; n�1

2�(8 log2 n+1)
); (2)

� each process in Act(G) executes exactly (c + 1) critical

events in G.

Proof: Because H is regular, by Lemma 3, there exists a
subset Y of Act(H) such that

n� 1 � jY j � n; (3)

and for each process p 2 Y , there exist a p-computation Lp
and an event ep such that

� H Æ Lp Æ hepi 2 C; (4)
� Lp contains no critical events in H Æ Lp; (5)
� ep =2 fEnter p;CSp;Exitpg; (6)

� ep is a critical event of p in H Æ Lp Æ hepi; (7)
� Fin(H) is a valid RF-set of H Æ Lp. (8)

If (Pr1) is satis�ed by any process in Y , then the theo-
rem is clearly true. Thus, we will assume, throughout the
remainder of the proof, that there is no process in Y that
satis�es (Pr1). De�ne EH as the set of critical events in H

of processes in Y .

EH = fe in H : e is critical in H and owner (e) 2 Y g

7An independent set of a graph G = (V;E) is a subset V 0
�

V such that no edge in E is incident to two vertices in V 0.

De�ne E = EH [fep : p 2 Y g, i.e., the set of all \past"

and \next" critical events of processes in Y . From (1) and
(3), it follows that

jEj = (c+ 1)jY j � (c+ 1)n: (9)

Now de�ne VHC, the set of variables that experience \high
contention" (i.e., those that are accessed by \suÆciently
many" events in E), as VHC = fv 2 V : there are at least
4 log2 n events in E that remotely access vg. Since each
event in E can access at most one remote variable, from (1)
and (9), we have

jVHCj �
jEj

4 log2 n
�

(c+ 1)n

4 log2 n
�

n

4 log n
: (10)

De�ne PHC, the set of processes whose \next" event ac-
cesses a variable in VHC, as follows.

PHC = fp 2 Y : ep accesses a variable in VHCg (11)

We now consider two cases, depending on jPHCj.

Case 1: jPHCj <
1
2
jY j (erasing strategy)

| In this case, we start with Y
0 = Y � PHC, which consists

of at least (n � 1)=2 active processes. We construct a \conict

graph" G, made of the processes in Y 0. By applying Theorem 1,

we can �nd a subset Z of Y 0 such that their critical events do not

conict with each other.

Let Y 0 = Y � PHC. Then, by (3), we have

jY
0
j � jY j=2 � (n� 1)=2: (12)

We construct a graph G = (Y 0; EG), where each vertex is

a process in Y 0. To each process y in Y 0 and each vari-
able v 2 var(ey) that is remote to y, we apply the following
rules: (R1) if v is local to a process z in Y 0, then introduce
edge (y; z); and (R2) if there exists an event f 2 E that
remotely accesses v, and if owner (f) 2 Y 0, then introduce
edge (y; owner(f)).

Because each variable is local to at most one process, and
since an event can access at most one remote variable, rule
(R1) can introduce at most one edge per process. Since
y 2 Y 0, we have y =2 PHC, which, by (11), implies v =2 VHC.
Hence, by the de�nition of VHC, it follows that there are at
most 4 log2 n� 1 events in E that access v. Therefore, since

an event can access at most one remote variable, rule (R2)
can introduce at most 4 log2 n� 1 edges per process.
Combining (R1) and (R2), at most 4 log2 n edges are in-

troduced per process. Thus, the average degree of G is at
most 8 log2 n. Hence, by Theorem 1, there exists an inde-

pendent set Z � Y 0 such that

jZj �
jY 0
j

(8 log2 n+ 1)
�

n� 1

2 �
�
8 log2 n+ 1

� ;
where the latter inequality follows from (12).
Next, we construct a computation G, satisfying (Pr2),

such that Act(G) = jZj.

Let H 0 = H j (Z [Fin(H)). For each z 2 Z, (4) implies
H Æ Lz 2 C. Hence, by (8), and applying Lemma 1 with
`H' H ÆLz, `RFS ' Fin(H), and `Y ' Z [Fin(H), we
have the following:

� H 0
Æ Lz 2 C (which, by (P1), implies H 0

2 C), and
� an event in H 0

Æ Lz is critical i� it is also critical in H Æ

Lz. (13)

By (5), the latter also implies that Lz contains no critical

events in H 0
Æ Lz.

Let m = jZj and index the processes in Z as Z = fz1; z2;
: : : ; zmg. De�ne L = Lz1 Æ Lz2 Æ � � � Æ Lzm . By applying
Lemma 2 with `H' H 0, `RFS ' Fin(H), and `Y ' Z,
we have the following:

� H 0
Æ L 2 C,

� Fin(H) is a valid RF-set of H 0
Æ L, and

� L contains no critical events in H 0
Æ L. (14)

By the de�nition of H 0 and L, we also have

� for each z 2 Z, (H 0
Æ L) j z = (H Æ Lz) j z. (15)

Therefore, by (4) and Property (P3), for each zj 2 Z,
there exists an event e0zj , such that

� G 2 C, where G = H 0
Æ L Æ E and E = he0z1 ; e

0

z2
; : : : ;

e0zmi;
� Rvar(e0zj) = Rvar(ezj), Wvar(e0zj) = Wvar (ezj), and

owner(e0zj) = owner(ezj) = zj .

Conditions (RF1){(RF5), with `RFS ' Fin(H), can be
individually checked to hold in G, which implies that G is
a regular computation. Since Z � Y 0

� Y � Act(H), com-
bining (1), (13), and (14), it follows that each process in Z
executes exactly c critical events in H 0

Æ L.

We now show that every event in E is critical in G, which
implies that G is a computation that satis�es (Pr2). Note
that, by (7), ez is a critical event in H Æ Lz Æ hezi. By (6),
ez is not a transition event. By (15), the events of z are the
same in both H Æ Lz and H 0

Æ L. Thus, if ez is a critical
read or a \�rst" critical write in H ÆLz Æ hezi, then it is also

a critical in G. The only remaining case is that ez writes
some variable v remotely, and is critical in H Æ Lz Æ hezi
because of a write to v prior to ez by another process not in
G. However, (RF5) ensures that in such a case there exists
some process in Fin(H) that writes to v before ez, and hence

ez is also critical in G.

Case 2: jPHCj �
1
2
jY j (roll-forward strategy)

| In this case, we start with PHC, which, by (3), consists of

at least (n�1)=2 active processes. We �rst erase the processes in

K, de�ned below, to satisfy (RF2). Appending the critical events

ep for each p in S = PHC�K gives us a non-regular computation

G. We then select a subset LW of PHC as the set of promoted

processes. We roll the processes in LW forward, inductively gen-

erating a sequence of computations G = G0; G1; : : : ; Gk, where

the last computation Gk is regular. We erase at most n=4 pro-

cesses during the procedure, which leaves �(n) active processes

in Gk.

De�ne K, the erased (or \killed") processes, S, the \sur-
vivors," and H 0, the resulting computation, as follows.

K = fp 2 P : there exists a variable v 2 VHC

such that v is local to pg (16)

S = PHC �K (17)

H
0

= H j (S [Fin(H)) (18)

Because each variable is local to at most one process, from
(10) and (16), we have

jKj � n=(4 log n): (19)

Using S � PHC � Y � Act(H), we also have

Act(H
0
) = S � Act(H) ^ Fin(H

0
) = Fin(H) (20)

Because H is regular, by Lemma 1,

� H 0
2 C, (21)

� Fin(H) is a valid RF-set of H 0, and (22)

� an event in H 0 is a critical event i� it is also a critical
event in H. (23)

We can arbitrarily index VHC as fv1; v2; : : : ; vsg, where
s = jVHCj. For 1 � j � s, de�ne Reader j = fp 2 S : vj 2
Rvar(ep)g, and Writer j = fp 2 S : vj 2 Wvar(ep)g. (16)
and (17) imply that no variable in VHC is local to any process

in S. By the Atomicity Assumption, the sets fReader j : 1 �
j � sg and fWriter j : 1 � j � sg form a disjoint partition
of S. Without loss of generality, we can assume that the
processes in S are indexed from y1 to ym, where m = jSj,
with the following order: processes in Writer 1, processes in
Reader 1, processes in Writer2, processes in Reader 2, . . . ,

processes in Writers, processes in Reader s.
For each y 2 S, let Fy = (H Æ Ly) j (S [Fin(H)). (4)

implies H Æ Ly 2 C. Hence, by (8), and applying Lemma 1
with `H' HÆLy, `RFS ' Fin(H), and `Y ' S[Fin(H),
we have the following: Fy 2 C, and an event in Fy is a
critical event i� it is also a critical event in H ÆLy. Since y 2

S and Ly is a y-computation, we have Ly j (S [Fin(H)) =
Ly. Thus, by (18), Fy = H 0

Æ Ly. Hence, by (5), we have

� H 0
Æ Ly 2 C, and (24)

� Ly does not have a critical event in H 0
Æ Ly. (25)

Let L = Ly1 ÆLy2 Æ � � � ÆLym . We now use Lemma 2, with

`H' H 0, `RFS ' Fin(H), and `Y ' S. The antecedent
of the lemma follows from (20), (21), (22), (24), and (25).
This gives us the following.

� H 0
Æ L 2 C;

� Fin(H) is a valid RF-set of H 0
Æ L;

� L contains no critical events in H 0
Æ L. (26)

By (18) and the de�nition of L, we also have

� for each y 2 S, (H 0
Æ L) j y = (H Æ Ly) j y. (27)

Therefore, by (4) and Property (P3), for each yj 2 S,
there exists an event e0yj , such that

� G 2 C, where G = H 0
Æ L Æ E and E = he0y1 ; e

0

y2
; : : : ;

e0ymi;
� Rvar(e0yj) = Rvar(eyj), Wvar(e0yj) = Wvar(eyj), and

owner(e0yj) = owner(eyj) = yj .

By (6) and (26), L Æ E does not contain any transition
events. Moreover, by the de�nition of L and E, (LÆE) j p 6=
hi implies p 2 S, for each process p. Combining these asser-
tions with (20), we have

Act(G) = Act(H
0
Æ L) = Act(H

0
) = S ^

Fin(G) = Fin(H
0
Æ L) = Fin(H

0
) = Fin(H): (28)

We now state and prove two claims regarding G.

Claim 1: There exists a valid RF-set RFS of G such that
jPmtRFS (G)j � n=(4 log n).

Proof of Claim 1: De�ne LW , the \last writers," as fy 2

S : y = writer (v;G) for some variable v 2 VHCg, and de�ne

RFS = LW [Fin(H). We claim that RFS is a valid RF-set
of G, in which case LW is the set of promoted processes.
The conditions (RF1){(RF5) can be individually checked
to hold in G. We now prove that RFS satis�es Claim 1.
Since, by (28), Fin(G) = Fin(H), PmtRFS (G) = LW holds
by de�nition. By the de�nition of LW , we have jLW j �

jVHCj. Hence, from (10), we have

jPmtRFS (G)j = jLW j � n=(4 log n): (29)

Thus, LW satis�es Claim 1. 2

Claim 2: Each process in S (= Act(G)) executes exactly
c+ 1 critical events in G.

Proof of Claim 2: Combining (1), (20), (23), and (26),

it follows that each process in S executes exactly c critical
events in H 0

Æ L. On the other hand, by (7), ey is a critical
event in H ÆLy Æ heyi. By (27), and using an argument that
is similar to that at the end of Case 1, we can prove that
each event e0y in E is a critical event in G. 2

We now let processes in LW �nish their execution by in-

ductively appending a critical event of some process in LW ,
thus generating a sequence of computations G = G0; G1;
: : : ; Gk such that at most one invisible process is erased at
each induction step (33), and the last computationGk is reg-
ular (34). Gk is obtained by inductively applying Lemma 4

until Fin(Gj) = RFS is established; thus, we have the fol-
lowing for each j:

� Gj 2 C;
� RFS is a valid RF-set of Gj ; (30)
� each process in InvRFS (Gj) executes exactly c+1 critical
events in Gj ; (31)

� the processes in LW collectively execute exactly jLW j �
(c+ 1) + j critical events in Gj ; (32)
� j InvRFS (Gj+1)j � j InvRFS (Gj)j � 1 if j < k; (33)
� Fin(Gj) (RFS if j < k, and Fin(Gj) = RFS if j = k.

(34)

We now show that k < n=4. Assume otherwise. By apply-

ing (32) to Gk, it follows that there exists a process p 2 LW

such that p executes at least c+1+k=jLW j critical events in
Gk. Because k � n=4, by (29), p executes at least c+1+log n
critical events in Gk. From (34) and p 2 LW � RFS , we get
p 2 Fin(Gk). Hence, by (RF4), the last event of p is Exitp.
Therefore, Gk can be written as F Æ hExitpi Æ � � � , where F

is a pre�x of Gk. But then p and F satisfy (Pr1), a contra-
diction.
Finally, we show that Gk satis�es (Pr2). The following

derivation establishes (2).

jAct(Gk)j

= j InvRFS (Gk)j

| by (34), RFS = Fin(Gk), which

implies that Act(Gk) = InvRFS (Gk).

� j InvRFS (G0)j � k

| by repeatedly applying (33).

= jAct(G)� RFS j � k

| by the de�nition of Inv; note that G = G0.

= jS � RFS j � k

| by (28).

= jS � (LW [Fin(H))j � k

| because RFS = LW [Fin(H).

= jS � LW j � k

| because S \ Fin(H) = fg.

= j(PHC �K)� LW j � k

| by (17).

� jPHCj � jKj � jLW j � k

� jY j=2 � n=(4 log n)� n=(4 log n)� n=4

| by Case 2, (19), (29), and k < n=4.

� (n� 1)=2 � 2 � n=(4 log n)� n=4

| by (3).

=
n

4
�

n

2 log n
�

1

2

Moreover, (30) and (34) imply that Gk is regular, and (31)
implies that each process in Act(Gk) = InvRFS (Gk) executes
exactly c + 1 critical events in Gk. Therefore, Gk satis�es
(Pr2). 2

Theorem 2 For any mutual exclusion system S = (C;P; V),
there exist a process p in P and a computation H in C
such that H Æ hExitpi 2 C, H does not contain Exitp, and

p executes
(logN= log logN) critical events in H, where

N = jP j.

Proof: Let H1 = hEnter 1; Enter 2; : : : ; EnterN i, where
P = f1; 2; : : : ; Ng. By the de�nition of a mutual exclusion
system, H1 2 C. It is obvious that H1 is regular and each
process in Act(H) = P has exactly one critical event in H1.
Starting with H1, we repeatedly apply Lemma 5 and con-

struct a sequence of computations H1; H2; : : : ; Hk, such
that each process in Act(Hj) has j critical events inHj . The
construction algorithm is shown in Fig. 3.
For each computation Hj such that 1 � j < k, we have

the following inequality:

nj+1 �
cnj

log2 nj
�

cnj

log2N
;

where c is some �xed constant. This in turn implies

log nj+1 � log nj � 2 log logN + log c: (35)

By iterating over 1 � j < k, and using n1 = N , (35) im-
plies

log nk � logN � 2(k � 1) log logN + (k � 1) log c: (36)

We now consider two possibilities, depending on how the
algorithm terminates. First, suppose that Hk satis�es k >
log nk � 1. Combining this inequality with (36), we have

k >
logN + 2 log logN � log c� 1

2 log logN � log c+ 1
= �

�
logN

log logN

�
:

Therefore, each process in Act(Hk) executes
(logN=

log logN) critical events in Hk. By the Progress property,
we can extend Hk to construct a computation that satis�es
the theorem.
The other possibility is that k � log nk � 1 holds and Hk

satis�es (Pr1). In this case, a process p and a computation F
exist such that F Æ hExitpi 2 C, F does not contain hExitpi,

and p executes at least k + log nk critical events in F . By

H1 := hEnter 1; Enter2; : : : ; EnterNi; n1 := N ; j := 1;

repeat forever
Loop invariant: Hj is regular, nj = jAct(Hj)j, and
each process in Act(Hj) executes j critical events in Hj .

if j > log nj � 1 then
let k := j, and exit the algorithm

else =� j � log n� 1 �=

apply Lemma 5 to Hj ;
if (Pr1) holds then

let k := j, and exit the algorithm
else =� (Pr2) holds �=

| There exists Z � Y , and a regular
comp. G in C, such that Z = Act(G),
jZj =
(nj= log

2 nj), and each process

in Z executes j + 1 critical events in G.
Hj+1 := G; nj+1 := jZj; j := j + 1

� �
od

Figure 3: Algorithm for constructing H1; H2; : : : ; Hk.

combining k � log nk � 1 with (36), it follows that log nk is

at least

logN + 4 log logN � 2 log c

2 log logN � log c+ 1
= �

�
logN

log logN

�
:

Therefore, computation F satis�es the theorem. 2

5. LOWER BOUND FOR SYSTEMS WITH
COMPARISON PRIMITIVES

In this section, we show how to adapt our lower bound
proof to apply to systems in which processes invoke com-
parison primitives. A comparison primitive is an atomic
operation on a variable v de�ned as follows.

Compare and fg(v; old ; new)

temp := v;
if v = old then v := f(old ; new) �;
return g(temp; old ; new)

For example, compare-and-swap can be de�ned such that
f(old ; new) = new and g(temp; old ; new) = (temp = old).
We call an invocation of such a primitive a comparison event.
When de�ning critical events, comparison events can be

treated much like ordinary writes. For example, the �rst
comparison event on a variable v by a process p is criti-
cal; a subsequent comparison event on v by p is critical if v
has been updated (by a write or comparison event) by an-
other process since p's last update (by a write or comparison

event) of v.
Since a comparison event can access only one remote vari-

able, all of the reasoning in the previous section remains
unchanged, except Case 2 of Lemma 5, where processes are
rolled forward. Consider the problem of appending to a com-
putation H a set of comparison events C, all on the same

variable v. The comparison events in C can be ordered so
that at most once succeeds in updating v. E�ectively, that
event can be treated like a remote write, and the other events
in C like remote reads. It follows that all information ow is
either from writer (v;H) or from the successful comparison
event (if any) in C. Hence, we can roll forward at most two

processes per variable to satisfy (Pr2) of Lemma 5, and the

asymptotic bound remains unchanged. Thus, we have the

following theorem.

Theorem 3 For any mutual exclusion system S = (C;P; V)
in which each remote event is either an atomic read, an

atomic write, or a comparison primitive invocation, there

exist a process p in P and a computation H in C such that

H Æ hExitpi 2 C, H does not contain Exitp, and p executes

(logN= log logN) critical events in H, where N = jP j. 2

6. CONCLUDING REMARKS
We have improved the
(log logN= log log logN) lower

bound of Cypher to
(logN= log logN). We conjecture that

(logN) is actually a tight lower bound for the class of al-
gorithms considered in this paper, which would imply that
the algorithm of [11] is optimal. We leave this conjecture
for future research.

Acknowledgement: We are grateful to Faith Fich for her com-

ments on an earlier draft of this paper.

7. REFERENCES
[1] Y. Afek, P. Boxer, and D. Touitou. Bounds on the

shared memory requirements for long-lived and adap-
tive objects. In Proceedings of the 19th Annual ACM

Symposium on Principles of Distributed Computing, pp.
81{89. July 2000.

[2] J. Anderson and J.-H. Yang. Time/contention tradeo�s
for multiprocessor synchronization. Information and

Computation, 124(1):68{84, Jan. 1996.

[3] T. Anderson. The performance of spin lock alternatives
for shared-memory multiprocessors. IEEE Transactions

on Parallel and Distributed Systems, 1(1):6{16, Jan.
1990.

[4] J. Burns and N. Lynch. Mutual exclusion using indivis-
ible reads and writes. In Proceedings of the 18th Annual

Allerton Conference on Communication, Control, and

Computing, pp. 833{842, 1980.

[5] R. Cypher. The communication requirements of mutual
exclusion. In Proceedings of the Seventh Annual Sym-

posium on Parallel Algorithms and Architectures, pp.
147{156, 1995.

[6] E. Dijkstra. Solution of a problem in concurrent
programming control. Communications of the ACM,
8(9):569, 1965.

[7] G. Graunke and S. Thakkar. Synchronization algo-

rithms for shared-memory multiprocessors. IEEE Com-

puter, 23:60{69, June 1990.

[8] J. Mellor-Crummey and M. Scott. Algorithms for
scalable synchronization on shared-memory multipro-

cessors. ACM Transactions on Computer Systems,
9(1):21{65, Feb. 1991.

[9] E. Styer and G. Peterson. Tight bounds for shared
memory symmetric mutual exclusion. In Proceedings of

the 8th Annual ACM Symposium on Principles of Dis-

tributed Computing, pp. 177{191. Aug. 1989.

[10] P. Tur�an. On an extremal problem in graph theory (in
Hungarian). Mat. Fiz. Lapok, 48:436{452, 1941.

[11] J.-H. Yang and J. Anderson. A fast, scalable mutual ex-
clusion algorithm. Distributed Computing, 9(1):51{60,
Aug. 1995.

Appendix: Proof Sketches for Lemmas 1-4
In this appendix, proof sketches are presented for Lem-
mas 1{4.

Lemma 1 Consider a computation H in C with a valid RF-

set RFS. For any set Y of processes such that RFS � Y , the

following hold: H jY 2 C; RFS is a valid RF-set of H jY ;
an event e in H jY is a critical event i� it is also a critical

event in H.

Proof sketch: Because H satis�es (RF1), if a process p is
not in RFS , no process other than p reads a value written
by p. Therefore, H jY 2 C. The conditions (RF1){(RF5)
can be individually checked to hold in H jY , which implies
that RFS is a valid RF-set of H jY .

To show that an event e in H j Y is a critical event i� it
is also a critical event in H, it is enough to consider critical
writes. (The other two cases are straightforward.) The only
problematic case for cricial writes is when an event e, which
writes v remotely, is critical in H because of a write to v
prior to e by another process that does not participate in

H jY (and hence does not write to v in H j Y). However,
(RF5) ensures that in such a case there exists some process
in RFS that writes to v before e. 2

Lemma 2 Consider a computation H in C with a valid

RF-set RFS and a set of processes Y = fp1; p2; : : : ; pmg,
where Y � InvRFS (H). Assume that, for each pj in Y , there

exists a pj-computation Lpj , such that H ÆLpj 2 C and Lpj
has no critical events in H Æ Lpj .
De�ne L to be Lp1 Æ Lp2 Æ � � � Æ Lpm . Then, the following

hold: H Æ L 2 C, RFS is a valid RF-set of H Æ L, and L
contains no critical events in H Æ L.

Proof sketch: For each j, de�ne Lj to be Lp1ÆLp2Æ� � �ÆLpj .
The lemma can be proved by induction on j. At each in-
duction step, it is assumed that H Æ Lj 2 C, RFS is a valid
RF-set of HÆLj , and Lj contains no critical events inHÆLj .
Because Lpj+1 contains no critical events in HÆLpj+1 , it can

be appended to H ÆLj and get H ÆLj+1 for the next induc-
tion step. (As mentioned at the end of Sec. 3, appending
a noncritical event cannot cause any undesired information
ow from invisible processes to processes in RFS .) 2

Lemma 3 Let H be a regular computation in C. De�ne

n = jAct(H)j. Then, there exists a subset Y of Act(H),
where n � 1 � jY j � n, satisfying the following: for each

process p in Y , there exist a p-computation Lp and an event

ep of p such that

� H Æ Lp Æ hepi 2 C; (37)

� Lp contains no critical events in H Æ Lp; (38)
� ep =2 fEnter p;CSp;Exitpg; (39)
� ep is a critical event of p in H Æ Lp Æ hepi;
� Fin(H) is a valid RF-set of H Æ Lp.

Proof sketch: First, we construct, for each process p in
Act(H), a computation Lp and an event ep that satisfy (37)

and (38). Then, we show that every event ep thus con-
structed, except at most one, satis�es (39). The other con-
ditions can be easily proved and will be omitted here.
De�ne Hp = H j (fpg [Fin(H)). Because H is regular,

Fin(H) is a valid RF-set of H. Hence, by Lemma 1, Hp is
in C and Fin(H) is a valid RF-set of Hp. Since p 2 Act(H),

we have Act(Hp) = fpg and Fin(Hp) = Fin(H). Therefore,

by the Progress property, there exists a p-computation Fp
such that Hp Æ Fp Æ hCSpi 2 C. If Fp has a critical event,
then let e0p be the �rst critical event in Fp, and let Lp be
the pre�x of Fp that precedes e

0

p (i.e., Fp = Lp Æ he
0

pi Æ � � �).
Otherwise, de�ne Lp to be Fp and e0p to be CSp.
Now we have a p-computation Lp and an event e0p of p,

such that Hp Æ Lp Æ he
0

pi 2 C, in which Lp has no critical

events and e0p is a critical event. Because Lp has no critical
events in Hp ÆLp, it can be shown that H ÆLp 2 C and that
Lp has no critical events in H Æ Lp. Because H Æ Lp and
Hp Æ Lp are equivalent with respect to p, by Property (P3),
there exists an event ep of p such that Rvar(ep) = Rvar(e0p),
Wvar(ep) = Wvar(e0p), and H Æ Lp Æ hepi 2 C.

We now claim that at most one process in Act(H) does
not satisfy (39). Because p 2 Act(H) and H is regular, ep
cannot be Enter p or Exitp. By the Exclusion property, there
can be at most one p 2 Act(H) such that ep = CSp. 2

Lemma 4 Let H be a computation in C with a valid RF-set

RFS satisfying Fin(H) (RFS (i.e., Fin(H) is a proper sub-

set of RFS). Then, there exists a computation G satisfying

the following.

� RFS is a valid RF-set of G.
� G can be written as H j (Y [RFS) Æ L Æ hei, for some

choice of Y , L, and e such that: Y is a subset of Inv(H)
such that j Inv(H)j � 1 � jY j � j Inv(H)j; Inv(G) = Y ;

L is a Z-computation that has no critical events in G,
where Z = Pmt(H); and e is an event of some process in

Z, such that e is a critical event in G.
� Pmt(G) � Pmt(H).
� An event in H j (Y [RFS) is a critical event i� it is also

a critical event in H.

Proof sketch: Arbitrarily choose a process r 2 Z. Let
H 0 = H jRFS . Then, by the de�nition of an active process,
Act(H 0) = Act(H) \ RFS = Pmt(H) = Z. By Lemma 1,
H 0
2 C and RFS is a valid RF-set of H 0. Thus, by (RF4),

value(stat r; H
0) is either entry or exit , and for any q 2

Fin(H) = Fin(H 0), value(statq; H
0) = ncs holds.

Therefore, by applying the Progress property, we can con-
struct a Z-computation F such that H 0

ÆF Æ h�ei 2 C, where
�e is either CS r or Exitr. If F has a critical event, then let e0

be the �rst critical event in F , and let L be the pre�x of F
that precedes e0 (i.e., F = L Æ he0i Æ � � �). Otherwise, de�ne
L to be F and e0 to be �e. Let owner(e0) = p. Because F is

a Z-computation, p 2 Z.
Now we have a Z-computation L and an event e0 of p 2

Z, such that H 0
Æ L Æ he0i 2 C, L has no critical events in

H 0
Æ L Æ he0i, and e0 is a critical event in H 0

Æ L Æ he0i. It
can be shown that H Æ L 2 C and that L has no critical

events in H Æ L. (Informally, this follows because H and
H 0 are equivalent with respect to Z.) Because H Æ L and
H 0
Æ L are equivalent with respect to p, by Property (P3),

there exists an event e00 of p such that Rvar(e00) = Rvar(e0),
Wvar(e00) = Wvar(e0), and H Æ L Æ he00i 2 C.
Because e0 is a critical event in H 0

ÆLÆhe0i and e00 accesses

the same variables as e0, it can be shown that e00 is a critical
event in H ÆL Æ he00i. Let v be the remote variable accessed
by e00. If v is local to a process q in Inv(H), or if q =
writer(v;H ÆL) is in Inv(H), then we can \erase" process q
and construct a computation G that satis�es the consequent
of Lemma 4. (If both conditions hold simultaneously, then

by (RF2), q is identical in both cases.) 2

