EELRU: Simple and Effective Adaptive Page Replacement

Yannis Smaragdakis, Scott Kaplan, and Paul Wilson
Deparment of Computer Sciences
University of Texas at Austin

{smaragd, sfkaplan, wilson}@cs.utexas.edu

Abstract

Despite the many replacement algorithms proposed throughout the years, approximations of
Least Recently Used (LRU) replacement are predominant in actual virtual memory management
systems because of their simplicity and efficiency. LRU, however, exhibits well-known performance
problems for regular access patterns of size larger than the main memory. In this paper we present
Early Eviction LRU (EELRU): an adaptive replacement algorithm based on the principle of de-
tecting when the LRU algorithm underperforms (i.e., when the fetched memory pages are often the
ones evicted lately). In simulations, EELRU proves to be quite effective for many memory sizes and
several applications, often decreasing paging by over 30% for programs with large-scale reference
patterns and by over 10% for programs with small-scale patterns. Additionally, the algorithm is
very robust, rarely underperforming LRU. Our experiments are mostly with traces from the recent
research literature to allow for easy comparison with previous results.

1 Introduction and Overview

Despite the lower prices and higher capacities of RAM, virtual memory replacement algorithms remain
as relevant as ever. For one thing, the performance gap between memory and disks has increased—
secondary storage speed is among the slowest growing parameters of modern computer systems. For
another, the ubiquity of virtual memory has changed the way programs are written. More and more
programs assume a plentiful and well-managed virtual memory. Representative workloads have changed
significantly: old-style programs (e.g., TeX, which explicitly stages computation and produces inter-
mediate results in files) are less common, while new-style programs (e.g., javac, which often requires
64Mbytes of memory for large inputs) become part of everyday use. To make matters worse, modern
systems come in a larger variety of configurations than ever before: the same personal computer OS is
used in practice with main memories ranging from 32Mbytes to over 1Gbyte. It is a challenge for oper-
ating system designers to improve virtual memory policies to obtain the best attainable performance,
regardless of system configuration.

Getting good performance for all different applications and configurations is hard. Currently most
operating systems use replacement algorithms that are approximations of Least Recently Used (LRU)
replacement (e.g., segmented FIFO implementations [TuLe81, BaFe83]). Although very good in most
cases, the performance of LRU-based algorithms suffers for regular access patterns larger than the size
of main memory. Such patterns are quite common in programs. For instance, a linear loop “touching”
more memory pages than the memory capacity incurs faults for every page: the page to be touched
next is not among the most recently touched ones and, hence, has been evicted from memory. One
way to look at this phenomenon is that LRU keeps pages in memory for long, but cannot keep all of
them for long enough. Evicting some of the pages early allows other pages that will be used soon to
remain in memory. This is the intuition behind Early Eviction LRU (EELRU). EELRU performs LRU
replacement by default and diverges from LRU only when recent paging behavior indicates that LRU
consistently underperforms.

EELRU is based on a novel combination of two ideas. The first is that replacement decisions
should be made based on extensive recency information (i.e., information indicating how many other
pages were touched since a page was last touched). EELRU uses recency information, even for pages
not in memory, to detect large memory reference patterns. In particular, EELRU detects that LRU
underperforms when many of the fetched pages had just been evicted. The second idea is that any
adaptive algorithm should update its state information in a timescale relative way. Program behavior
can be studied at many timescales (for instance, real-time, number of instructions executed, number of
memory references performed, etc.). Timescale relativity advocates that the timescale of a study should
express only events that matter for the studied quantity. For instance, a typical hardware cache should
examine different events than a replacement policy. A loop over 600KB of data is very important for
the former but may be completely ignored by the latter. Timescale relativity comes into play because
real programs exhibit strong phase behavior. EELRU tries to adapt to phase changes by assigning
more weight to “recent” events. Recency (and time, in general) is defined in EELRU as the number
of “relevant events” that occur. Relevant events are only references to pages that are not among the
most recently touched. Intuitively, EELRU ignores all high-frequency references as these do not affect
replacement decisions.

We argue that these two ideas represent sound principles upon which program locality studies should
be based. This includes not only the analysis of replacement algorithms but also the overall evaluation
of program locality. We examine some previous replacements algorithms under this light (Section 2).
Also, we propose that a special kind of plots, called recency-reference graphs are appropriate for
studying program locality behavior (Section 4).

In this study we applied EELRU to fourteen program traces and examined its performance. Most
of the traces (eight) are of memory-intensive applications and come from the recent experiments of
Glass and Cao [G1Ca97]. Glass and Cao used these traces to evaluate SEQ, an adaptive replacement
algorithm that attempts to detect linear (not in recency but in address terms) faulting patterns. This
set of traces contains representatives from three trace categories (identified in [GlCa97]): traces with
large memory requirements but no clear memory access patterns, with small access patterns, and with
large access patterns. An extra six traces were collected as representatives of applications that are not
memory-intensive but may have small-scale reference patterns.

The results of our evaluation are quite encouraging: EELRU performed at least as well as LRU in
almost all situations and significantly better in most. Results of more than 30% fewer faults compared
to LRU were common for a wide range of memory sizes and for applications with large-scale reference
patterns. A comparison with the SEQ algorithm [GlCa97] was also instructive: SEQ is based on
detecting patterns in the address space, while EELRU detects patterns in the recency distribution.
Although our simulation was quite conservative (see Section 4), EELRU managed to obtain significant
benefit even for traces for which SEQ did not. On the other hand, SEQ is by nature an aggressive
algorithm and performed better for programs with very clear linear (in address terms) access patterns.
Even in these cases, however, EELRU captured a large part of the available benefit.

Overall, EELRU is a simple, soundly motivated, effective replacement algorithm. As the first
representative of an approach to studying program behavior based on recency and timescale relativity,
it proves quite promising for the future.

2 Motivation and Related Work

The main purpose of this section is to compare and contrast the approach taken by EELRU to other
replacement policies. Management of memory hierarchies has been a topic of study for several decades.
Because of the volume of work on the subject, we will limit our attention to some relevant references.

The two principles behind EELRU—recency and timescale relativity—offer distinct benefits for
replacement studies. For instance, a recency-based standpoint (see also [Spi76, FeLW78, WoFL83])

ensures that looping patterns of several different kinds are treated the same. Note that access patterns
that cause LRU to page excessively do not necessarily correspond to linear patterns in the memory
address space. For instance, a loop may be accessing records connected in a linked list or a binary tree.
In this case, accesses are regular and repeated, but the addresses of pages touched may not follow a linear
pattern. That is, interesting regularities do not necessarily appear in memory arrangements but in how
recently pages were touched in the past. The SEQ replacement algorithm [G1Ca97] is one that bases
its decisions on address information (detecting sequential address reference patterns). Consequently,
it is lacking in generality (e.g., cannot detect loops over linked lists connecting interspersed pages).
Section 4 compares EELRU and SEQ) extensively.

Timescale relativity helps EELRU detect (and adapt to) phase changes. In the past, several re-
placement algorithms based on good ideas have yielded rather underwhelming results because they
were affected by events at the wrong timescale. For instance, EELRU uses reference recency informa-
tion to predict future reference patterns. This is similar to the approach taken by Phalke [Pha95] with
the inter-reference gap (IRG) model. Phalke’s approach attempts to predict how soon pages will be
referenced in the future by looking at the time between successive past references. A simpler version
of the same idea is the well-known Atlas loop detector [BFH68] that examines only the last succes-
sive references. The loop detector fails because time is measured as the number of memory references
performed. A timescale relative treatment would (for instance) define time in terms of the number of
pages touched that have not been touched recently. Note the importance of this difference: time-based
approaches, like IRG and the loop detector, do not filter out high-frequency information. If a loop
repeats with significant variation per iteration (loops may perform different numbers of operations per
step during different iterations—as is, for instance, the case with many nested loop patterns), the time
between successive references will vary a lot. The Atlas loop detector would then fail to recognize the
regularity. More complex (higher order) IRG models (such as those studied by Phalke) can detect
significantly more regularities in the presence of variation. This complexity, however, makes them
prohibitive for actual implementations. At the same time, the reference pattern in timescale relative
terms may be extremely regular.

A view based on recency and timescale relativity can be applied to other work in the literature. Most
work on replacement policies deals with specific formal models of program behavior. Indeed EELRU
itself is inspired by the LRU stack model (LRUSM) [Spi76], as we will discuss in Section 3.2. LRUSM is
an independent events model, where events are references to pages identified by their recency (i.e., the
number of other pages touched after the last touch to a page). An optimal replacement algorithm for
LRUSM is that of Wood, Fernandez, and Lang [WoFL83]. Unfortunately, programs cannot be modeled
accurately as independent recency events. On the other hand, short program phases can be modeled
very closely using LRUSM. Hence, a good online recency algorithm needs to be adaptive (to detect
phase changes). Timescale relativity (as in EELRU) is crucial for providing such adaptivity reliably.

Other well-known models are those in the class of Markov models (e.g., [CoVa76, FrGu30]). The
straightforward case of a 0-th order Markov model corresponds to the well known independent reference
model (IRM) [ADUT71]. An optimal replacement algorithm for Markov models can be found in [KPR92].
We believe that replacement algorithms based on Markov models fail in practice because they try to
solve a far harder problem than that at hand. A replacement algorithm is a program using past data
to answer a simple question: “which memory page will be first referenced furthest into the future?”
Markov models express the probability of occurence for specific sequences of references. Most of the
pages referenced by real programs, however, are re-referenced very soon and often. The number and
order of re-references is not relevant for replacement decisions. In other words, the model tries to
predict program behavior at the wrong (much more detailed) timescale. This makes Markov model-
based replacement too brittle for actual use—the model cannot offer any accuracy at a large enough
timescale (such as that of memory replacement decisions).

<— LRU memory = <— early region =<— lateregion ---->

region (potentia
\ / l//// eviction points)
1 e M
(MRU page) (early eviction point) (main memory size)

Figure 1: General EELRU scheme: LRU axis and correspondence to memory locations.

3 The EELRU Algorithm

3.1 General Idea
The structure of the early-eviction LRU (EELRU) algorithm is quite simple:
1. Perform LRU replacement unless many pages fetched recently had just been evicted.

2. If many pages fetched recently had just been evicted, apply a fallback algorithm: either evict
the least recently used page or evict the e-th most recently used page, where e is a pre-determined
recency position.

To turn this idea into a concrete algorithm, we need to define the notions of “many”, “recently”, etc.,
(highlighted above), as well as an exact fallback algorithm. By changing these aspects we obtain a
family of EELRU algorithms, each with different characteristics. In this paper we will only discuss a
single fallback algorithm (one that is particularly simple and has a sound theoretical motivation). The
algorithm is described in Section 3.2. We have, however, experimented with several (both deterministic
and probabilistic) fallback algorithms. In this section we describe the main flavor of the EELRU
approach, which remains the same regardless of the actual fallback algorithm used.

Figure 1 presents the main elements of EELRU schematically, by showing the reference recency azis
(also called the LRU azis) and the potential eviction points. The reference recency axis is a discrete
axis where point 7 represents the i-th most recently accessed page (written r(¢)). As can be seen in
Figure 1, EELRU distinguishes three regions on the recency axis. The “LRU memory region” consists
of the first e blocks, which are always in main memory. (Note that the name may be slightly misleading:
the “LRU region” holds the most recently used blocks. The name comes from the fact that this part of
the buffer is handled as a regular LRU queue.) Position e on the LRU axis is called the early eviction
point. The region beginning after the early eviction point and until the memory size, M, is called the
“early region”. The “late region” begins after point M and its extent is determined by the fallback
algorithm used (e.g., see Section 3.2).

Recall that, at page fault time, EELRU will either evict the least recently used page or the page
at point e on the recency axis (i.e., the e-th most recently used page). The latter is called an early
eviction and its purpose is to keep not-recently-touched pages in memory for a little longer, with the
hope that they will soon be referenced again. The challenge is for EELRU to adapt to changes in
program behavior and decide reliably which of the two approaches is best in every occasion.

EELRU maintains a queue of recently touched pages (ordered by recency), in much the same way
as plain LRU. The only difference is that the EELRU queue also contains records for pages that are
not in main memory but were recently evicted. EELRU also keeps the total number of page references
per recency region (i.e., two counters). That is, the algorithm counts the number of recent references
in the “early” and “late” regions (see Figure 2a). This information enables a cost-benefit analysis,
based on the expected number of faults that a fallback algorithm would incur or avoid. That is, the
algorithm makes the assumption that the program recency behavior will remain the same for the near

@ (b)

(evictions from €)

11 A | S e

HHHHHHHHHHH\HH HHHHHHHHD]D]D] DD]]D

pages in memory

pages in memory

Figure 2: Example recency distribution: evicting early yields benefits.

future and compares the page faults that it would incur if it performed LRU replacement with those
that it would incur if it evicted pages early.

Section 3.2 demonstrates in detail how this analysis is performed, but we will sketch the general
idea here by means of an example. Consider Figure 2a: this shows the recency distribution for a phase
of program behavior. That is, it shows for each position on the recency axis how many hits to pages on
the position have occured lately. The distribution changes in time, but remains fairly constant during
separate phases of program behavior. The EELRU adaptivity mechanism is meant to detect exactly
these phase changes.

If the distribution is monotonically decreasing, LRU is the best choice for replacement. Nevertheless,
large loops could cause a distribution like that in Figure 2a, with many more hits in the late region
than in the early region. This encourages EELRU to sacrifice some pages in order to allow others to
stay in memory longer. Thus, EELRU starts evicting pages early so that eventually more hits in the
late region will be on pages that have stayed in memory (Figure 2b).

EELRU is not the first algorithm to attempt to exploit such recency information for eviction
decisions (e.g., see [FeLW78]). Its key point, however, is that it does so adaptively and succeeds in
detecting changes in program phase behavior. In the description of the general idea behind EELRU we
used the word “recently”. The implication is that the cost-benefit analysis performed by EELRU assigns
more weight to “recent” faulting information (the weight decreases gradually for older statistics). The
crucial element is the timescale of relevant memory references. The EELRU notion of “recent” refers
neither to real time nor to virtual time (memory references performed). Instead, time in EELRU is
defined as the number of relevant events for the given memory size. The events considered relevant
can only be the ones affecting the page faulting behavior of an application (i.e., around size M).
These events are the page references (both hits and misses) in either the early or the late region.
High-frequency events (hits to the e most recently referenced pages) are totally ignored in the EELRU
analysis. The reason is that allowing high-frequency references to affect our notion of time dilutes our
information to the extent that no reliable analysis can be performed. The same number of memory
references may contain very different numbers of relevant events during different phases of program
execution.

The basic EELRU idea can be straightforwardly generalized by allowing more than one instance of
the scheme of Figure 1 in the same replacement policy. This can be viewed as having several EELRU
eviction policies online and choosing the best for each phase of program behavior. For instance, multiple
early eviction points may exist and only the events relevant to a point would affect its cost-benefit
analysis. The point that yields the highest expected benefit will determine the page to be replaced.
Section 3.2 discusses this in more detail.

Finally, we should point out that the simplicity of the general EELRU scheme allows for quite
efficient implementations. Even though we have not provided an in-kernel version of EELRU, we

(potential eviction point) (potential eviction point)

LRU memory
- . —
__ Tregion / 1 | /

T

[1 (MRU page) é M | (late eviction point)
(early eviction point) (main memory size)

Figure 3: EELRU with WFL fallback: LRU axis and correspondence to memory locations.

speculate that it is quite feasible. In particular, EELRU can be approximated using techniques identical
to standard in-kernel LRU approximations (e.g., segmented FIFO [TuLe81, BaFe83]). References to
the most recently used pages do not matter for EELRU statistics and incur no overhead. Compared
to LRU, the only extra requirement of EELRU is maintaining recency information even for pages that
have been evicted. Since this information only changes at page fault time, the cost of updating it is
negligible.

3.2 A Concrete Algorithm

The first step in producing a concrete instance of EELRU is choosing a reasonable fallback algorithm.
This will in turn guide our cost-benefit analysis, as well as the exact distribution information that
needs to be maintained. An obvious candidate algorithm would be one that always evicts the e-th most
recently used page. This is equivalent to applying Most Recently Used (MRU) replacement to the early
region and clearly captures the intention of maintaining less recent pages in memory. Nevertheless real
programs exhibit strong phase behavior (e.g., see the findings of [Den80]) which causes MRU to become
unstable (pages which may never be touched again will be kept indefinitely).

The algorithm of Wood, Fernandez, and Lang [FeLW78, WoFL83] (henceforth called WFL !) is a
simple modification of MRU that eliminates this problem. The WFL replacement algorithm specifies
two parameters representing an early and a late eviction point on the LRU axis. Evictions are performed
from the early point, unless doing so means that a page beyond the late eviction point will be in memory.
Thus the algorithm can be written simply as:

if r(l) is in memory

and the fault is on a less recently accessed page
then evict page r(l)
else evict page r(e)

(where e is the early and [the late eviction point). Figure 3 shows some elements of the WFL algorithm
schematically.

It has been shown (see [WoFL83]) that there exist values for e and ! such that the WFL algorithm
is optimal for the LRU stack model of program behavior [Spi76] (that is, an independent-events model
where the events are references to positions on the LRU axis). Again, however, program phase behavior
(even for well-defined, long lasting phases) can cause the algorithm to underperform. This is not
surprising: WFL is not an adaptive algorithm. Instead it presumes that the optimal early and late
points are chosen based on a known-in-advance recency distribution. Thus, the adaptivity provided
by EELRU is crucial: it is a way to turn WFL into a good online replacement algorithm. This is
particularly true when multiple pairs of early and late eviction points exist and EELRU chooses the
one yielding the most benefit (see subsequent discussion).

'The WFL algorithm is called GLRU (for “generalized LRU”) in [FeLW78]. To avoid confusion, we will not use this
acronym, since it has been subsequently overloaded (e.g., to mean “global” LRU).

P(n)

(M-e)/(I-€)

0
0
1 eetl M I
(MRU page) (early eviction (main memory size) (late eviction
point) point)

Figure 4: Probability of being in memory for a page with a given recency.

Even though entire programs cannot be modeled accurately using the LRU stack model, shorter
phases of program behavior can be very closely approximated. Under the assumptions of the model,
the WFL algorithm has the additional advantage of simplifying the cost-benefit analysis significantly.
One of the properties of WFL is that when the algorithm reaches a steady state, the probability P(n)
that the n-th most recently accessed page (i.e., page r(n)) is in memory is:

1 ifn<e
Pn)=X (M—e)/(l—e) ife<n<=l
0 otherwise

The probability distribution is shown in Figure 4. Now the cost-benefit analysis for EELRU with WFL
fallback is greatly simplified: we can estimate the number of faults that WFL would incur (at steady
state) and compare that number to LRU. We will call total the number of recent hits on pages between
e and [(in reference recency order). Similarly, we will call early the number of recent hits on pages
between e and M. The eviction algorithm then becomes:

if total (M —e)/(l —e) < early
or (r(l) is in memory
and the fault is on a less recently accessed page)
then evict the least recently accessed page
else evict page r(e)

We can now consider the obvious generalization of the algorithm where several instances of WFL,
each with different values of e and [, are active in parallel. By e;, l;, total;, and early; we will denote
the e, [, total and early values for the ¢-th instance of the algorithm. Then, the instance of WFL that
will actually decide what page is to be evicted is the one that maximizes the expected benefit value
total; - (M —e)/(l — e)— early;. If all such values are negative, plain LRU eviction is performed. Note
that in the case of multiple early and late eviction points, EELRU adaptivity performs a dual role.
On one hand, it produces online estimates of the values of e and [for which the algorithm performs
optimally (also, plain LRU is no more than another case for these values). On the other hand, the
adaptivity allows detecting phase transitions and changing the values accordingly.

In the case of multiple early and late eviction points, one more modification to the basic WFL
algorithm makes sense. Since not all late eviction points are equal, it is possible that when the i-th
instance of WFL is called to evict a page, there is a page r(n) in memory, with n > [;. In that case, the
algorithm should first evict all such pages (to guarantee that, in its steady state, all pages less recently
referenced than /; will not be in memory). Note that this modification of the basic WFL algorithm does

not affect its steady state behavior (and, consequently, its proof of optimality for the LRU stack model,
as presented in [WoFL83]). Taking the change into account, our final eviction algorithm becomes:

let benefit be the maximum of the values
total; - (M —e;)/(l; — e;) — early;
and j be the index for which this value occurs

if benefit <0
or apage r(n), n > l;is in memory
or (r(lj) is in memory
and the fault is on a less recently accessed page)
then evict the least recently accessed page
else evict page 7(e;)

This form of EELRU is the one used in all experiments described in this paper.

4 Experimental Assessment

4.1 Settings and Methodology

To assess the performance of EELRU, we used fourteen program traces, covering a wide range of
memory access characteristics. Eight of the traces are of memory-intensive applications and were used
in the recent experiments by Glass and Cao [G1Ca97]. Another six traces were collected individually
from programs that do not exhibit large memory reference patterns.

The eight traces from [G1Ca97] are only half of the traces used in that study. The rest of the exper-
iments could not be reproduced because the reduced trace format used by Glass and Cao sometimes
omitted information that was necessary for accurate EELRU simulation. To see why this happens,
consider the behavior of EELRU: at any given point, early evictions can be performed, making the
algorithm replace the page at point e on the LRU axis. Thus, the trace should have enough information
to determine the e-th most recently accessed page. This is equivalent to saying that the trace should
be sufficiently accurate for an LRU simulation with a memory of size e. The reduced traces of Glass
and Cao have limitations on the memory sizes for which LRU simulation can be performed. Thus, the
minimum simulatable memory size for EELRU (which is larger than the minimum simulatable size for
LRU) may be too large for meaningful experiments. For instance, consider an EELRU simulation for
which the “earliest” early eviction point is such that the early region is 60% of the memory (that is,
40% of the memory is managed using strict LRU). Then the minimum memory for which EELRU can
be simulated will be 2.5 times the size of the minimum simulatable LRU memory. For some traces, this
difference makes the minimum simulatable memory size for EELRU fall outside the memory ranges
tested in [G1Ca97]. For example, the “gcc” trace was in a form that allowed accurate LRU simulations
only for memories larger than 475 pages (see [G1Ca97]). Using the above early eviction assumptions,
the minimum EELRU simulatable memory size would be 1188 pages, well outside the memory range
for this experiment (the trace causes no faults for memories above 900 pages).

To reproduce as many experiments as possible, we picked early eviction points such that at least
40% of the memory was managed using strict LRU. This makes our simulations quite conservative: it
means that EELRU cannot perform very early non-LRU evictions. As mentioned earlier, simulations
for eight of the traces are meaningful for this choice of points 2 (i.e., the simulated memory ranges
overlap significantly with those of the experiments of Glass and Cao). The table of Figure 5 contains
information on these traces. It us worth noting that the above set of traces contains representatives

*Two more traces from [G1Ca97], “es” and “fgm”, satisfy the restrictions outlined above but were not made available
to us.

Program |Description Min. simulatable
LRU memory
(4KB pages)
applu |Solve 5 coupled 608
parabolic/elliptic PDEs
gnuplot |Postscript graph 388
generation
ijpeg |Image conversion 278
into JPEG format
m88ksim | Microprocessor 491
cycle-level simulator
murphi |Protocol verifier 533
perl Interpreted scripting 2409
language
trygtsl |Tridiagonal matrix 611
calculation
wave5 |Plasma simulation 913

Figure 5: Information on traces used in [G1Ca97]

from all three program categories identified by Glass and Cao. These are programs with no clear
patterns (murphi, m88ksim), programs with small-scale patterns (perl), and programs with large-scale
reference patterns (the rest of them). An extra six traces were used to supply more data points. These
are traces of executions that do not consume much memory. Hence, all their memory patterns are,
at best, small-scale. The applications traced are espresso (a circuit simulator), gcc (a C compiler),
ghostscript (a PostScript engine), grobner (a formula-rewrite program), lindsay (a communications
simulator for a hypercube computer), and p2c (a Pascal to C translator).

All of the simulations were performed using twelve combinations (pairs) of early and late eviction
points. Three early points were used, at 20%, 40%, and 60% of the memory size (that is, the early
region was at most 60% of the memory, with the other 40% handled by pure LRU). The late points were
chosen so that the probability P(n) for e < n <=1 took the values 2/3, 1/2, 1/3, and 1/4. One more
parameter affects simulation results significantly. Recall that replacement decisions should be guided
by recent program reference behavior. To achieve this, distribution values need to be “decayed”. The
decay is performed in a memory-scale relative way: the values for all our statistics are multiplied by
a weight factor progressively so that the M-th most recent reference (M being the memory size) has
one third of the weight of the most recent one.

4.2 Locality Analysis

To show the memory reference characteristics of our traces, we plotted recency-reference graphs. Such
graphs are scatter plots that map each page reference to the page position on the recency axis. High-
frequency references (i.e., references to pages recently touched) are ignored, thus resulting in graphs that
maintain the right amount of information at the most relevant timescale for a clear picture of program
locality. For instance, consider the recency-reference graph for the waveb trace, plotted below. The
graph is produced by ¢gnoring references to the 1000 most recently accessed pages. If such references
were taken into account, the patterns shown in the graph could have been “squeezed” to just a small
part of the resulting plot: interesting program behavior in terms of locality is usually very unevenly

