
EELRU: Simple and E�ective Adaptive Page ReplacementYannis Smaragdakis, Scott Kaplan, and Paul WilsonDeparment of Computer SciencesUniversity of Texas at Austinfsmaragd, sfkaplan, wilsong@cs.utexas.eduAbstractDespite the many replacement algorithms proposed throughout the years, approximations ofLeast Recently Used (LRU) replacement are predominant in actual virtual memory managementsystems because of their simplicity and e�ciency. LRU, however, exhibits well-known performanceproblems for regular access patterns of size larger than the main memory. In this paper we presentEarly Eviction LRU (EELRU): an adaptive replacement algorithm based on the principle of de-tecting when the LRU algorithm underperforms (i.e., when the fetched memory pages are often theones evicted lately). In simulations, EELRU proves to be quite e�ective for many memory sizes andseveral applications, often decreasing paging by over 30% for programs with large-scale referencepatterns and by over 10% for programs with small-scale patterns. Additionally, the algorithm isvery robust, rarely underperforming LRU. Our experiments are mostly with traces from the recentresearch literature to allow for easy comparison with previous results.1 Introduction and OverviewDespite the lower prices and higher capacities of RAM, virtual memory replacement algorithms remainas relevant as ever. For one thing, the performance gap between memory and disks has increased|secondary storage speed is among the slowest growing parameters of modern computer systems. Foranother, the ubiquity of virtual memory has changed the way programs are written. More and moreprograms assume a plentiful and well-managed virtual memory. Representative workloads have changedsigni�cantly: old-style programs (e.g., TeX, which explicitly stages computation and produces inter-mediate results in �les) are less common, while new-style programs (e.g., javac, which often requires64Mbytes of memory for large inputs) become part of everyday use. To make matters worse, modernsystems come in a larger variety of con�gurations than ever before: the same personal computer OS isused in practice with main memories ranging from 32Mbytes to over 1Gbyte. It is a challenge for oper-ating system designers to improve virtual memory policies to obtain the best attainable performance,regardless of system con�guration.Getting good performance for all di�erent applications and con�gurations is hard. Currently mostoperating systems use replacement algorithms that are approximations of Least Recently Used (LRU)replacement (e.g., segmented FIFO implementations [TuLe81, BaFe83]). Although very good in mostcases, the performance of LRU-based algorithms su�ers for regular access patterns larger than the sizeof main memory. Such patterns are quite common in programs. For instance, a linear loop \touching"more memory pages than the memory capacity incurs faults for every page: the page to be touchednext is not among the most recently touched ones and, hence, has been evicted from memory. Oneway to look at this phenomenon is that LRU keeps pages in memory for long, but cannot keep all ofthem for long enough. Evicting some of the pages early allows other pages that will be used soon toremain in memory. This is the intuition behind Early Eviction LRU (EELRU). EELRU performs LRUreplacement by default and diverges from LRU only when recent paging behavior indicates that LRUconsistently underperforms. 1

EELRU is based on a novel combination of two ideas. The �rst is that replacement decisionsshould be made based on extensive recency information (i.e., information indicating how many otherpages were touched since a page was last touched). EELRU uses recency information, even for pagesnot in memory, to detect large memory reference patterns. In particular, EELRU detects that LRUunderperforms when many of the fetched pages had just been evicted. The second idea is that anyadaptive algorithm should update its state information in a timescale relative way. Program behaviorcan be studied at many timescales (for instance, real-time, number of instructions executed, number ofmemory references performed, etc.). Timescale relativity advocates that the timescale of a study shouldexpress only events that matter for the studied quantity. For instance, a typical hardware cache shouldexamine di�erent events than a replacement policy. A loop over 600KB of data is very important forthe former but may be completely ignored by the latter. Timescale relativity comes into play becausereal programs exhibit strong phase behavior. EELRU tries to adapt to phase changes by assigningmore weight to \recent" events. Recency (and time, in general) is de�ned in EELRU as the numberof \relevant events" that occur. Relevant events are only references to pages that are not among themost recently touched. Intuitively, EELRU ignores all high-frequency references as these do not a�ectreplacement decisions.We argue that these two ideas represent sound principles upon which program locality studies shouldbe based. This includes not only the analysis of replacement algorithms but also the overall evaluationof program locality. We examine some previous replacements algorithms under this light (Section 2).Also, we propose that a special kind of plots, called recency-reference graphs are appropriate forstudying program locality behavior (Section 4).In this study we applied EELRU to fourteen program traces and examined its performance. Mostof the traces (eight) are of memory-intensive applications and come from the recent experiments ofGlass and Cao [GlCa97]. Glass and Cao used these traces to evaluate SEQ, an adaptive replacementalgorithm that attempts to detect linear (not in recency but in address terms) faulting patterns. Thisset of traces contains representatives from three trace categories (identi�ed in [GlCa97]): traces withlarge memory requirements but no clear memory access patterns, with small access patterns, and withlarge access patterns. An extra six traces were collected as representatives of applications that are notmemory-intensive but may have small-scale reference patterns.The results of our evaluation are quite encouraging: EELRU performed at least as well as LRU inalmost all situations and signi�cantly better in most. Results of more than 30% fewer faults comparedto LRU were common for a wide range of memory sizes and for applications with large-scale referencepatterns. A comparison with the SEQ algorithm [GlCa97] was also instructive: SEQ is based ondetecting patterns in the address space, while EELRU detects patterns in the recency distribution.Although our simulation was quite conservative (see Section 4), EELRU managed to obtain signi�cantbene�t even for traces for which SEQ did not. On the other hand, SEQ is by nature an aggressivealgorithm and performed better for programs with very clear linear (in address terms) access patterns.Even in these cases, however, EELRU captured a large part of the available bene�t.Overall, EELRU is a simple, soundly motivated, e�ective replacement algorithm. As the �rstrepresentative of an approach to studying program behavior based on recency and timescale relativity,it proves quite promising for the future.2 Motivation and Related WorkThe main purpose of this section is to compare and contrast the approach taken by EELRU to otherreplacement policies. Management of memory hierarchies has been a topic of study for several decades.Because of the volume of work on the subject, we will limit our attention to some relevant references.The two principles behind EELRU|recency and timescale relativity|o�er distinct bene�ts forreplacement studies. For instance, a recency-based standpoint (see also [Spi76, FeLW78, WoFL83])2

ensures that looping patterns of several di�erent kinds are treated the same. Note that access patternsthat cause LRU to page excessively do not necessarily correspond to linear patterns in the memoryaddress space. For instance, a loop may be accessing records connected in a linked list or a binary tree.In this case, accesses are regular and repeated, but the addresses of pages touched may not follow a linearpattern. That is, interesting regularities do not necessarily appear in memory arrangements but in howrecently pages were touched in the past. The SEQ replacement algorithm [GlCa97] is one that basesits decisions on address information (detecting sequential address reference patterns). Consequently,it is lacking in generality (e.g., cannot detect loops over linked lists connecting interspersed pages).Section 4 compares EELRU and SEQ extensively.Timescale relativity helps EELRU detect (and adapt to) phase changes. In the past, several re-placement algorithms based on good ideas have yielded rather underwhelming results because theywere a�ected by events at the wrong timescale. For instance, EELRU uses reference recency informa-tion to predict future reference patterns. This is similar to the approach taken by Phalke [Pha95] withthe inter-reference gap (IRG) model. Phalke's approach attempts to predict how soon pages will bereferenced in the future by looking at the time between successive past references. A simpler versionof the same idea is the well-known Atlas loop detector [BFH68] that examines only the last succes-sive references. The loop detector fails because time is measured as the number of memory referencesperformed. A timescale relative treatment would (for instance) de�ne time in terms of the number ofpages touched that have not been touched recently. Note the importance of this di�erence: time-basedapproaches, like IRG and the loop detector, do not �lter out high-frequency information. If a looprepeats with signi�cant variation per iteration (loops may perform di�erent numbers of operations perstep during di�erent iterations|as is, for instance, the case with many nested loop patterns), the timebetween successive references will vary a lot. The Atlas loop detector would then fail to recognize theregularity. More complex (higher order) IRG models (such as those studied by Phalke) can detectsigni�cantly more regularities in the presence of variation. This complexity, however, makes themprohibitive for actual implementations. At the same time, the reference pattern in timescale relativeterms may be extremely regular.A view based on recency and timescale relativity can be applied to other work in the literature. Mostwork on replacement policies deals with speci�c formal models of program behavior. Indeed EELRUitself is inspired by the LRU stack model (LRUSM) [Spi76], as we will discuss in Section 3.2. LRUSM isan independent events model, where events are references to pages identi�ed by their recency (i.e., thenumber of other pages touched after the last touch to a page). An optimal replacement algorithm forLRUSM is that of Wood, Fernandez, and Lang [WoFL83]. Unfortunately, programs cannot be modeledaccurately as independent recency events. On the other hand, short program phases can be modeledvery closely using LRUSM. Hence, a good online recency algorithm needs to be adaptive (to detectphase changes). Timescale relativity (as in EELRU) is crucial for providing such adaptivity reliably.Other well-known models are those in the class of Markov models (e.g., [CoVa76, FrGu30]). Thestraightforward case of a 0-th order Markov model corresponds to the well known independent referencemodel (IRM) [ADU71]. An optimal replacement algorithm for Markov models can be found in [KPR92].We believe that replacement algorithms based on Markov models fail in practice because they try tosolve a far harder problem than that at hand. A replacement algorithm is a program using past datato answer a simple question: \which memory page will be �rst referenced furthest into the future?"Markov models express the probability of occurence for speci�c sequences of references. Most of thepages referenced by real programs, however, are re-referenced very soon and often. The number andorder of re-references is not relevant for replacement decisions. In other words, the model tries topredict program behavior at the wrong (much more detailed) timescale. This makes Markov model-based replacement too brittle for actual use|the model cannot o�er any accuracy at a large enoughtimescale (such as that of memory replacement decisions).3

(early eviction point) (main memory size)
Me

eviction points)
(potential

1
(MRU page)

late regionearly region
region

LRU memory

Figure 1: General EELRU scheme: LRU axis and correspondence to memory locations.3 The EELRU Algorithm3.1 General IdeaThe structure of the early-eviction LRU (EELRU) algorithm is quite simple:1. Perform LRU replacement unless many pages fetched recently had just been evicted.2. If many pages fetched recently had just been evicted, apply a fallback algorithm: either evictthe least recently used page or evict the e-th most recently used page, where e is a pre-determinedrecency position.To turn this idea into a concrete algorithm, we need to de�ne the notions of \many", \recently", etc.,(highlighted above), as well as an exact fallback algorithm. By changing these aspects we obtain afamily of EELRU algorithms, each with di�erent characteristics. In this paper we will only discuss asingle fallback algorithm (one that is particularly simple and has a sound theoretical motivation). Thealgorithm is described in Section 3.2. We have, however, experimented with several (both deterministicand probabilistic) fallback algorithms. In this section we describe the main
avor of the EELRUapproach, which remains the same regardless of the actual fallback algorithm used.Figure 1 presents the main elements of EELRU schematically, by showing the reference recency axis(also called the LRU axis) and the potential eviction points. The reference recency axis is a discreteaxis where point i represents the i-th most recently accessed page (written r(i)). As can be seen inFigure 1, EELRU distinguishes three regions on the recency axis. The \LRU memory region" consistsof the �rst e blocks, which are always in main memory. (Note that the name may be slightly misleading:the \LRU region" holds the most recently used blocks. The name comes from the fact that this part ofthe bu�er is handled as a regular LRU queue.) Position e on the LRU axis is called the early evictionpoint. The region beginning after the early eviction point and until the memory size, M , is called the\early region". The \late region" begins after point M and its extent is determined by the fallbackalgorithm used (e.g., see Section 3.2).Recall that, at page fault time, EELRU will either evict the least recently used page or the pageat point e on the recency axis (i.e., the e-th most recently used page). The latter is called an earlyeviction and its purpose is to keep not-recently-touched pages in memory for a little longer, with thehope that they will soon be referenced again. The challenge is for EELRU to adapt to changes inprogram behavior and decide reliably which of the two approaches is best in every occasion.EELRU maintains a queue of recently touched pages (ordered by recency), in much the same wayas plain LRU. The only di�erence is that the EELRU queue also contains records for pages that arenot in main memory but were recently evicted. EELRU also keeps the total number of page referencesper recency region (i.e., two counters). That is, the algorithm counts the number of recent referencesin the \early" and \late" regions (see Figure 2a). This information enables a cost-bene�t analysis,based on the expected number of faults that a fallback algorithm would incur or avoid. That is, thealgorithm makes the assumption that the program recency behavior will remain the same for the near4

Me 1

(evictions from e)

Me 1

pages in memory pages in memory

(a) (b)

Figure 2: Example recency distribution: evicting early yields bene�ts.future and compares the page faults that it would incur if it performed LRU replacement with thosethat it would incur if it evicted pages early.Section 3.2 demonstrates in detail how this analysis is performed, but we will sketch the generalidea here by means of an example. Consider Figure 2a: this shows the recency distribution for a phaseof program behavior. That is, it shows for each position on the recency axis how many hits to pages onthe position have occured lately. The distribution changes in time, but remains fairly constant duringseparate phases of program behavior. The EELRU adaptivity mechanism is meant to detect exactlythese phase changes.If the distribution is monotonically decreasing, LRU is the best choice for replacement. Nevertheless,large loops could cause a distribution like that in Figure 2a, with many more hits in the late regionthan in the early region. This encourages EELRU to sacri�ce some pages in order to allow others tostay in memory longer. Thus, EELRU starts evicting pages early so that eventually more hits in thelate region will be on pages that have stayed in memory (Figure 2b).EELRU is not the �rst algorithm to attempt to exploit such recency information for evictiondecisions (e.g., see [FeLW78]). Its key point, however, is that it does so adaptively and succeeds indetecting changes in program phase behavior. In the description of the general idea behind EELRU weused the word \recently". The implication is that the cost-bene�t analysis performed by EELRU assignsmore weight to \recent" faulting information (the weight decreases gradually for older statistics). Thecrucial element is the timescale of relevant memory references. The EELRU notion of \recent" refersneither to real time nor to virtual time (memory references performed). Instead, time in EELRU isde�ned as the number of relevant events for the given memory size. The events considered relevantcan only be the ones a�ecting the page faulting behavior of an application (i.e., around size M).These events are the page references (both hits and misses) in either the early or the late region.High-frequency events (hits to the e most recently referenced pages) are totally ignored in the EELRUanalysis. The reason is that allowing high-frequency references to a�ect our notion of time dilutes ourinformation to the extent that no reliable analysis can be performed. The same number of memoryreferences may contain very di�erent numbers of relevant events during di�erent phases of programexecution.The basic EELRU idea can be straightforwardly generalized by allowing more than one instance ofthe scheme of Figure 1 in the same replacement policy. This can be viewed as having several EELRUeviction policies online and choosing the best for each phase of program behavior. For instance, multipleearly eviction points may exist and only the events relevant to a point would a�ect its cost-bene�tanalysis. The point that yields the highest expected bene�t will determine the page to be replaced.Section 3.2 discusses this in more detail.Finally, we should point out that the simplicity of the general EELRU scheme allows for quitee�cient implementations. Even though we have not provided an in-kernel version of EELRU, we5

e M

(potential eviction point)

1

(potential eviction point)

(early eviction point) (main memory size)

LRU memory
region

l (late eviction point)(MRU page)Figure 3: EELRU with WFL fallback: LRU axis and correspondence to memory locations.speculate that it is quite feasible. In particular, EELRU can be approximated using techniques identicalto standard in-kernel LRU approximations (e.g., segmented FIFO [TuLe81, BaFe83]). References tothe most recently used pages do not matter for EELRU statistics and incur no overhead. Comparedto LRU, the only extra requirement of EELRU is maintaining recency information even for pages thathave been evicted. Since this information only changes at page fault time, the cost of updating it isnegligible.3.2 A Concrete AlgorithmThe �rst step in producing a concrete instance of EELRU is choosing a reasonable fallback algorithm.This will in turn guide our cost-bene�t analysis, as well as the exact distribution information thatneeds to be maintained. An obvious candidate algorithm would be one that always evicts the e-th mostrecently used page. This is equivalent to applying Most Recently Used (MRU) replacement to the earlyregion and clearly captures the intention of maintaining less recent pages in memory. Nevertheless realprograms exhibit strong phase behavior (e.g., see the �ndings of [Den80]) which causes MRU to becomeunstable (pages which may never be touched again will be kept inde�nitely).The algorithm of Wood, Fernandez, and Lang [FeLW78, WoFL83] (henceforth called WFL 1) is asimple modi�cation of MRU that eliminates this problem. The WFL replacement algorithm speci�estwo parameters representing an early and a late eviction point on the LRU axis. Evictions are performedfrom the early point, unless doing so means that a page beyond the late eviction point will be in memory.Thus the algorithm can be written simply as:if r(l) is in memoryand the fault is on a less recently accessed pagethen evict page r(l)else evict page r(e)(where e is the early and l the late eviction point). Figure 3 shows some elements of the WFL algorithmschematically.It has been shown (see [WoFL83]) that there exist values for e and l such that the WFL algorithmis optimal for the LRU stack model of program behavior [Spi76] (that is, an independent-events modelwhere the events are references to positions on the LRU axis). Again, however, program phase behavior(even for well-de�ned, long lasting phases) can cause the algorithm to underperform. This is notsurprising: WFL is not an adaptive algorithm. Instead it presumes that the optimal early and latepoints are chosen based on a known-in-advance recency distribution. Thus, the adaptivity providedby EELRU is crucial: it is a way to turn WFL into a good online replacement algorithm. This isparticularly true when multiple pairs of early and late eviction points exist and EELRU chooses theone yielding the most bene�t (see subsequent discussion).1The WFL algorithm is called GLRU (for \generalized LRU") in [FeLW78]. To avoid confusion, we will not use thisacronym, since it has been subsequently overloaded (e.g., to mean \global" LRU).6

e

(M-e)/(l-e)

e+1

LRU memory
region

(MRU page)
1

0

1

P(n)

M
(early eviction (main memory size)

l
(late eviction
 point) point)

0

Figure 4: Probability of being in memory for a page with a given recency.Even though entire programs cannot be modeled accurately using the LRU stack model, shorterphases of program behavior can be very closely approximated. Under the assumptions of the model,the WFL algorithm has the additional advantage of simplifying the cost-bene�t analysis signi�cantly.One of the properties of WFL is that when the algorithm reaches a steady state, the probability P (n)that the n-th most recently accessed page (i.e., page r(n)) is in memory is:P (n) = 8><>: 1 if n � e(M � e)=(l � e) if e < n <= l0 otherwiseThe probability distribution is shown in Figure 4. Now the cost-bene�t analysis for EELRU with WFLfallback is greatly simpli�ed: we can estimate the number of faults that WFL would incur (at steadystate) and compare that number to LRU. We will call total the number of recent hits on pages betweene and l (in reference recency order). Similarly, we will call early the number of recent hits on pagesbetween e and M . The eviction algorithm then becomes:if total �(M � e)=(l � e) � earlyor (r(l) is in memoryand the fault is on a less recently accessed page)then evict the least recently accessed pageelse evict page r(e)We can now consider the obvious generalization of the algorithm where several instances of WFL,each with di�erent values of e and l, are active in parallel. By ei, li, totali, and earlyi we will denotethe e, l, total and early values for the i-th instance of the algorithm. Then, the instance of WFL thatwill actually decide what page is to be evicted is the one that maximizes the expected bene�t valuetotali � (M � e)=(l � e)� earlyi. If all such values are negative, plain LRU eviction is performed. Notethat in the case of multiple early and late eviction points, EELRU adaptivity performs a dual role.On one hand, it produces online estimates of the values of e and l for which the algorithm performsoptimally (also, plain LRU is no more than another case for these values). On the other hand, theadaptivity allows detecting phase transitions and changing the values accordingly.In the case of multiple early and late eviction points, one more modi�cation to the basic WFLalgorithm makes sense. Since not all late eviction points are equal, it is possible that when the i-thinstance of WFL is called to evict a page, there is a page r(n) in memory, with n > li. In that case, thealgorithm should �rst evict all such pages (to guarantee that, in its steady state, all pages less recentlyreferenced than li will not be in memory). Note that this modi�cation of the basic WFL algorithm does7

not a�ect its steady state behavior (and, consequently, its proof of optimality for the LRU stack model,as presented in [WoFL83]). Taking the change into account, our �nal eviction algorithm becomes:let bene�t be the maximum of the valuestotal i � (M � ei)=(li � ei)� early iand j be the index for which this value occursif bene�t � 0or a page r(n), n > lj is in memoryor (r(lj) is in memoryand the fault is on a less recently accessed page)then evict the least recently accessed pageelse evict page r(ej)This form of EELRU is the one used in all experiments described in this paper.4 Experimental Assessment4.1 Settings and MethodologyTo assess the performance of EELRU, we used fourteen program traces, covering a wide range ofmemory access characteristics. Eight of the traces are of memory-intensive applications and were usedin the recent experiments by Glass and Cao [GlCa97]. Another six traces were collected individuallyfrom programs that do not exhibit large memory reference patterns.The eight traces from [GlCa97] are only half of the traces used in that study. The rest of the exper-iments could not be reproduced because the reduced trace format used by Glass and Cao sometimesomitted information that was necessary for accurate EELRU simulation. To see why this happens,consider the behavior of EELRU: at any given point, early evictions can be performed, making thealgorithm replace the page at point e on the LRU axis. Thus, the trace should have enough informationto determine the e-th most recently accessed page. This is equivalent to saying that the trace shouldbe su�ciently accurate for an LRU simulation with a memory of size e. The reduced traces of Glassand Cao have limitations on the memory sizes for which LRU simulation can be performed. Thus, theminimum simulatable memory size for EELRU (which is larger than the minimum simulatable size forLRU) may be too large for meaningful experiments. For instance, consider an EELRU simulation forwhich the \earliest" early eviction point is such that the early region is 60% of the memory (that is,40% of the memory is managed using strict LRU). Then the minimum memory for which EELRU canbe simulated will be 2.5 times the size of the minimum simulatable LRU memory. For some traces, thisdi�erence makes the minimum simulatable memory size for EELRU fall outside the memory rangestested in [GlCa97]. For example, the \gcc" trace was in a form that allowed accurate LRU simulationsonly for memories larger than 475 pages (see [GlCa97]). Using the above early eviction assumptions,the minimum EELRU simulatable memory size would be 1188 pages, well outside the memory rangefor this experiment (the trace causes no faults for memories above 900 pages).To reproduce as many experiments as possible, we picked early eviction points such that at least40% of the memory was managed using strict LRU. This makes our simulations quite conservative: itmeans that EELRU cannot perform very early non-LRU evictions. As mentioned earlier, simulationsfor eight of the traces are meaningful for this choice of points 2 (i.e., the simulated memory rangesoverlap signi�cantly with those of the experiments of Glass and Cao). The table of Figure 5 containsinformation on these traces. It us worth noting that the above set of traces contains representatives2Two more traces from [GlCa97], \es" and \fgm", satisfy the restrictions outlined above but were not made availableto us. 8

Program Description Min. simulatableLRU memory(4KB pages)applu Solve 5 coupled 608parabolic/elliptic PDEsgnuplot Postscript graph 388generationijpeg Image conversion 278into JPEG formatm88ksim Microprocessor 491cycle-level simulatormurphi Protocol veri�er 533perl Interpreted scripting 2409languagetrygtsl Tridiagonal matrix 611calculationwave5 Plasma simulation 913Figure 5: Information on traces used in [GlCa97]from all three program categories identi�ed by Glass and Cao. These are programs with no clearpatterns (murphi, m88ksim), programs with small-scale patterns (perl), and programs with large-scalereference patterns (the rest of them). An extra six traces were used to supply more data points. Theseare traces of executions that do not consume much memory. Hence, all their memory patterns are,at best, small-scale. The applications traced are espresso (a circuit simulator), gcc (a C compiler),ghostscript (a PostScript engine), grobner (a formula-rewrite program), lindsay (a communicationssimulator for a hypercube computer), and p2c (a Pascal to C translator).All of the simulations were performed using twelve combinations (pairs) of early and late evictionpoints. Three early points were used, at 20%, 40%, and 60% of the memory size (that is, the earlyregion was at most 60% of the memory, with the other 40% handled by pure LRU). The late points werechosen so that the probability P (n) for e < n <= l took the values 2=3, 1=2, 1=3, and 1=4. One moreparameter a�ects simulation results signi�cantly. Recall that replacement decisions should be guidedby recent program reference behavior. To achieve this, distribution values need to be \decayed". Thedecay is performed in a memory-scale relative way: the values for all our statistics are multiplied bya weight factor progressively so that the M -th most recent reference (M being the memory size) hasone third of the weight of the most recent one.4.2 Locality AnalysisTo show the memory reference characteristics of our traces, we plotted recency-reference graphs. Suchgraphs are scatter plots that map each page reference to the page position on the recency axis. High-frequency references (i.e., references to pages recently touched) are ignored, thus resulting in graphs thatmaintain the right amount of information at the most relevant timescale for a clear picture of programlocality. For instance, consider the recency-reference graph for the wave5 trace, plotted below. Thegraph is produced by ignoring references to the 1000 most recently accessed pages. If such referenceswere taken into account, the patterns shown in the graph could have been \squeezed" to just a smallpart of the resulting plot: interesting program behavior in terms of locality is usually very unevenly9

