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Abstract

Within ballroom dance music, tempo and rhythmic style are strongly
related. In this paper we explore this relationship, by using knowledge
of rhythmic style to improve tempo estimation in musical audio signals.
We demonstrate how the use of a simple 1-NN classification method, able
to determine rhythmic style with 75% accuracy, can lead to an 8% point
improvement over existing tempo estimation algorithms with further gains
possible through the use of more sophisticated classification techniques.

1 Introduction

The automatic extraction of tempo from musical audio forms a key component
in many aspects of rhythmic analysis and has received wide attention in the
music signal processing research community [1, 2]. Perhaps the most common
use for tempo is within the task of beat tracking where the aim is to replicate
human foot-tapping in time to music. For this task, the tempo indicates the
rate at which the beats occur. Therefore to maintain a consistent beat out-
put it is imperative to have an accurate method for finding and tracking the
tempo. While considerable progress has been made in this field (see [1, 2] for
an overview of existing techniques) an ongoing difficulty has been in identifying
the tempo in a manner consistent with a human listener. The highest perform-
ing tempo estimation algorithms are able to infer the tempo with 85% accuracy
provided the evaluation method used allows for the estimated tempo to be “cor-
rect” if it can be related by a factor of two to the annotated tempo [1]. This
double/half ambiguity is known as the tempo octave problem [3]. When these
related tempo octaves aren’t considered accurate, the overall performance of the
best performing algorithms drops by approximately 20% points [1].

For certain applications, e.g. beat-dependent audio effects [4], octave ambi-
guity may not be critical, but for others finding the annotated tempo becomes
far more important. One such example is the classification of ballroom dance
music. Most existing work on rhythmic style classification [5, 6, 7] has made
use of the same ballroom dance database. It contains 698 excerpts (each 30
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seconds in length) across 8 rhythmic styles: Jive, QuickStep, Tango, Waltz,
Viennese-Waltz, Samba, ChaCha and Rumba. Ballroom dances are typically
characterised by a repeating rhythmic pattern at a particular tempo [6]. The
restriction of ballroom dances to small ranges of tempi has meant that tempo
has been identified as an important discriminating feature for dance music clas-
sification; however tempo alone is not sufficient to provide a perfect classification
[8].

To avoid the issue of tempo octave ambiguity in automatic tempo estima-
tion, rhythmic style classification algorithms (e.g. [6, 7]) use annotated tempo
rather than automatically extracted values. The tempo is then combined with
multiple features extracted from rhythmic pattern representations and passed
to a classification algorithm to return a style label for a given input signal.
To characterise the rhythmic properties Dixon et al [6] use a predominant bar
length pattern, where as Peeters [7] uses autocorrelation functions and spectral
rhythmic patterns.

In a more recent study, Seyerlehner et al [9] explore the relationship between
tempo and rhythmic style from a different perspective. Again using the ballroom
data they use rhythmic pattern matching as means for identifying tempo. Given
a periodicity pattern for each musical excerpt and its ground truth tempo, they
find the tempo for an unknown excerpt by taking the average of the ground
truth tempi resulting from a k-NN classification (where k=5). They compare
two rhythmic features: an autocorrelation function signal similar to that used
in [7]; and a fluctuation pattern which has been used in previous work on music
similarity [10]. For which they find the fluctuation pattern to be more successful
feature.

We extend their approach by investigating a simple style-dependent method
for tempo estimation, where knowledge of musical style with a known nominal
tempo is used to guide the range of likely tempi within our existing tempo
extraction algorithm [11]. In contrast to the approach of Seyerlehner et al [9]
which requires that all 698 patterns from the ballroom set with associated tempo
annotations be stored, we simply store one pattern per musical style and use
a single nominal tempo value. For each unknown excerpt we then perform a
1-NN classification and pass the nominal tempo of the nearest neighbour to our
existing tempo estimation algorithm.

Our results indicate that using this simple classification we can achieve rhyth-
mic style classification of 75% which in turn improves the performance of our
tempo estimation algorithm from 71% to 79%. With the use of a more sophis-
ticated classification algorithm (the Adaboost classifier, as used for this task in
[6, 7] we can identify rhythmic style with 85% accuracy which leads to a tempo
accuracy of 86%.

The remainder of this paper is structured as follows. In section 2 we describe
our simplified method for rhythmic style classification. In section 3 we review
our existing tempo extraction algorithm and then illustrate the modifications
necessary to encode knowledge of rhythmic style. We evaluate our method for
rhythmic style classification and demonstrate its effect on the performance of our
tempo estimation algorithm in section 4. We present discussion and conclusions
in section 5.
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2 Rhythmic style classification

Our method for rhythmic style classification requires two components: (i) a
suitable feature derived from the musical audio which maximises intra-style
rhythmic similarity and minimises inter-style similarity; and (ii) a classification
method able to exploit the properties of the input feature. Our motivation
is towards a simple solution for each component - ideally one that can be in-
corporated into our tempo extraction algorithm will minimal extra processing.
To this end, we derive a feature for rhythmic style classification directly from
the input to our tempo extraction algorithm and embed the style classification
method into the tempo calculation.

2.1 Classification feature

The input to our tempo extraction algorithm is the complex spectral difference
onset detection function [12] – a mid-level representation of the input audio
signal which emphasises the locations of note onsets. Given an input signal s(n)
we calculate the mth sample of the onset detection function Γ(m) by measuring
the sum of the Euclidean distance between an observed short term spectral
frame Sk(m) and a predicted frame Ŝk(m) for each bin, k:

Γ(m) =

K
∑

k=1

|Sk(m) − Ŝk(m)| (1)

where each detection function (DF) sample has a temporal resolution tDF =11.6ms.
For a complete derivation see [12].

As the basis for rhythmic style classification, Dixon et al [6] extract a pre-
dominant bar length pattern derived from an onset detection function type
representation. While a suitable feature for describing the rhythmic properties
of the input signal, its extraction requires prior knowledge of the bar locations.
Due to limitations in the automatic detection of bar boundaries, Dixon et al [6]
extracted them in a semi-automatic manner. Since our interest is in performing
a fully automatic style classification, we cannot make use of such information.
As an alternative to a temporal rhythmic pattern, Peeters [7] and later Sey-
erlehner et al [9] adopted a periodicity pattern based on the autocorrelation
function (ACF) of an onset detection function type representation. Because our
tempo extraction method [11] extracts a salient periodicity from the autocorre-
lation function of the onset detection function we also follow this approach.

To emphasise the peaks in the onset detection function (prior to deriving
the autocorrelation function) we calculate an adaptive moving mean threshold:

Γ̄(m) = mean{Γ(q)} m − Q
2 ≤ q ≤ m + Q

2
(2)

where Q indicates the approximate width of a typical peak in Γ(m). In earlier
work we found Q=16 DF samples to be a suitable value. We then subtract the
adaptive threshold from Γ(m) to give a modified onset detection function:

Γ̃(m) = HWR(Γ(m) − Γ̄(m)) (3)

where HWR performs half-wave rectification such that HWR(x) = (x + |x|)/2.
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The autocorrelation function A(l) for lag l is calculated using

A(l) =

∑L
m=1 Γ̃(m)Γ̃(m − l)

|l − L|
l = 1, . . . , L (4)

where the denominator corrects for the bias which occurs as a function of lag.
The ACF used by Seyerlehner et al [9] includes lags up to 4 seconds. If the

tempo of each excerpt is not constant, then the peaks of the ACF at longer lags
will be smeared. To reduce this affect we use a smaller range of lags, by setting
L=144 DF samples in equation (4) as used by Dixon et al [6] as the duration of
their bar length feature.This corresponds to L.tDF =1.67 seconds.

In our approach the location of the peaks in A(l) are the important features
which we use to infer the style of the input. To emphasise the peaks of A(l) we
employ a second thresholding processing. We create a modified autocorrelation
function Ã(l) by substituting Γ(m) for A(l) and applying equations (2) and (3).
In comparison to Seyerlehner et al [9] our ACF feature covers a shorter range
of lags and has been subject to a peak-preserving adaptive threshold.

2.2 Classification methods

The ballroom dance database used in this work is comprised of 8 rhythmic styles:
Jive (J), QuickStep (Q),Tango (T), Waltz (W), Viennese-Waltz (V), Samba (S),
ChaCha (C) and Rumba (R). We use parameter X to refer to a generic rhythmic
style and give the following arbitrary ordering X = {J,Q,T,W,V,S,C,R}. For
the zth excerpt of each rhythmic style X we calculate an ACF pattern ÃX,z(l)
as described above.

The basis for our simple approach to style classification is to define one
ACF pattern, PX(l) per style. We follow the clustering approach of Dixon et
al [6], who derive a predominant rhythmic pattern by clustering the bar length
patterns (using k-means) for a given each excerpt and returning the tempo-
ral average of the largest cluster. Our ACF feature Ã(l) already summarises
each excerpt in one signal, therefore to summarise a rhythmic style, we cluster
ÃX,z(l) for all z using k-means (with k=2), and find the predominant pattern
for each style PX(l) as the temporal average of the largest cluster. The predom-
inant patterns for each style are shown along with the nominal tempo for each
rhythmic style in figure 1.

Given an incoming ACF pattern feature we employ a 1-NN (nearest neigh-
bour) classifier by measuring the Euclidean distance D(X) between Ã(l) and
each PX(l) where each signal has been normalised to sum to unity

D(X) =

L
∑

l=1

∣

∣

∣
|PX(l)|2 − |Ã(l)|2

∣

∣

∣

(1/2)

(5)

where the classified style X̂ is found as

X̂ = arg min
X

(D(X)). (6)

While this 1-NN approach is simple both conceptually and in terms of im-
plementation, in order to gauge how accurate it is as a classifier we also explore
the use of a more sophisticated classification algorithm. For this purpose, we
select the Adaboost classifier as used by Dixon et al [6] and Peeters [7] from the
open source data mining software WEKA [13].
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Figure 1: Predominant periodicity patterns PX(l) with ground-truth nominal tempi:
Jive, QuickStep, Tango, Waltz, Viennese-Waltz, Samba, ChaCha, Rumba. Each pat-
tern has been normalised to sum to unity.

3 Tempo estimation with rhythmic style

In section 2.1 we introduced the onset detection function and the subsequent
calculation of the autocorrelation function feature A(l). In our existing tempo
extraction algorithm [11, 2] we identify a salient periodicity (the beat period) by
passing the autocorrelation function through a shift-invariant comb filterbank
which is scaled by a perceptually motivated weighting over possible beat periods.
The weighting function W (l) is derived from the Rayleigh distribution function
which strongly attenuates very short lags while decays more gently for longer
lags

W (l) =
l

β2
exp

(

−l2

2β2

)

l = 1, . . . , L (7)

where the constant β is set to 43 DF samples, which is equivalent to 120 beats
per minute (bpm) using the following relationship for converting ACF lag into
tempo

tempo =
60

l × tDF
. (8)

The beat period is then extracted as the index of the maximum value of the
output of the comb filterbank, which can be converted to tempo using equation
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(8). For a complete description of our tempo estimation algorithm see [11, 2].
While the Rayleigh weighting W (l) is suitable when the rhythmic style is

unknown, once we know the style W (l) becomes too broad and can leave the
tempo estimation susceptible to octave errors. We therefore restrict the likely
range of observable periodicities, through the use of a style-dependent weighting,
WX̂(l) which we define in terms of a Gaussian centred on the nominal periodicity

τX̂ for the classified style X̂ with standard deviation set at τX̂/2

WX̂(l) = exp

(

−
(

l − τX̂

)2

2(τX̂/2)2

)

l = 1, . . . , L (9)

where τX can take values {29, 25, 40, 59, 29, 52, 40, 50} DF samples by applying
equation (8) to the nominal tempi from figure 1 given the arbitrary ordering
X = {J,Q,T,W,V,S,C,R}. We can then identify the beat period (and therefore
the tempo) by finding the index of the maximum value of output of the style-
dependent weighted comb filterbank.

4 Results

We evaluate the performance of our style classification method and subsequent
tempo estimation on the 698 excerpt ballroom dance database which has been
used for both these tasks in previous work [6, 9] and is publicly available1.

4.1 Style Classification

We calculate the accuracy of the simple 1-NN classifier and the Adaboost clas-
sifier as the ratio of the number of correct classifications to the total number of
excerpts to classify. To maintain consistency with the methods of Dixon et al [6]
and Peeters [7] we undertake a 10-fold cross validation, where there is 90%/10%
split between training and testing data, where each excerpt can only be in the
testing group once. For our 1-NN classifier we therefore generated a new set
of predominant patterns PX(l) for each fold of the validation rather than use
a single global pattern for each style. The raw decisions of each classification
algorithm are shown figure 2. The overall performance of our two classifiers
in comparison with existing algorithms on the same dataset are summarised in
Table 1.

Of the fully automatic style classification methods the 1-NN classifier is the
weakest at 75% but is still comparable to the other classifiers. It is important
to note that our 1-NN approach makes use of a just single pattern PX(l) per
cross-validation fold, where as each of the other classifiers has access to all of
the training examples. The 86% accuracy of our Adaboost classifier (which is
able to draw on all the training examples) actually exceeds the performance of
all existing fully automatic algorithms on this dataset (e.g. 81% accuracy of
Peeters [7]). This suggests that the extra processing applied to our ACF feature
in section 2.1 had a positive effect on the outcome. The Adaboost classifier
is still less accurate than the best performing semi-automatic approaches [6, 7]
but each of these has access to ground truth tempo annotations; data which our
classifiers cannot be permitted to use.

1http://mtg.upf.edu/ismir2004/contest/tempoContest/node5.html
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Figure 2: Raw decisions by rhythmic style classifiers. Top: Euclidean distance clas-
sifier. Bottom: Adaboost Classifier.

4.2 Tempo Estimation

We now explore the effect of style classification on tempo estimation. The perfor-
mance of our tempo estimation algorithm is measured for four cases: (i) tempo
estimation with no access to style information (our baseline system) [11, 2];
(ii) tempo estimation given the output of the Euclidean distance classifier; (iii)
tempo estimation given the output of the Adaboost classifier; and (iv) tempo
estimation given hypothetical perfect style classification. Tempo accuracy is
calculated according to the two methods in [1]: T1 where the a given tempo
is accurate if it within is ±4% of the ground truth value and T2 which allows
for the tempo to be within ±4% of double or half the annotated tempo. The
results are summarised according to rhythmic style in Table 2.

By inspection of the “Overall T1” row of Table 2 we can see that knowledge
of musical style can lead to an improvement in tempo accuracy, even when the
style classifier used is only 75% accurate itself. It is interesting to note that while
the knowledge of rhythmic style leads to a drastic improvement for some styles
(e.g. Jive, QuickStep) the tempo accuracy for the Rumba is reduced by almost
50% when using the output of the Euclidean distance based classifier. Referring
back to figure 2, we can see that many of the Rumba examples were mis-classified
as QuickStep. This is not an unexpected result given the predominant patterns
in figure 1. The tempo of the QuickStep is approximately twice that of the
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Classification Accuracy

Feature(s) (%)

Dixon et al [6]: Pattern Only 50.1*

Automatic Features (62) 82.2

Auto+Semi-auto Features(79) 96.0*

Gouyon et al [5]: MFCC Features 79.6

Peeters [7]: Pattern Only 80.8

Pattern + Tempo 90.4*

DP Pattern Only (Euclidean) 75.3

Pattern Only (Adaboost) 85.0

Table 1: Accuracy of Rhythmic Style Classification. Accuracy values marked with *
were calculated with access to ground truth annotated data.

No Euc. Ada. Perfect

Style Style Style Style

Rhythmic Style (%) (%) (%) (%)

Jive: 176 bpm 35.0 97.4 96.7 98.3

QuickStep: 204 bpm 13.4 83.2 76.8 95.1

Tango: 130 bpm 95.3 93.4 93.0 95.4

Waltz: 87 bpm 55.5 65.6 79.1 85.5

Viennese-W: 177 bpm 72.3 86.9 80.0 100.0

Samba: 100 bpm 93.0 85.6 89.5 93.0

ChaCha: 128 bpm 98.2 91.5 97.3 97.3

Rumba: 104 bpm 85.7 44.1 75.5 88.8

Overall T1 70.9 79.4 85.8 93.6

Overall T2 93.3 94.0 94.4 94.6

Table 2: Effect of style classification on tempo accuracy. Performance is divided
between each rhythmic style under conditions of increasing style classification per-
formance. Euc. refers to 1-NN classifier by Euclidean distance. Ada. refers to the
Adaboost classifier.
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Figure 3: Effect of rhythmic style on tempo classification. Dotted lines indicate ±4%
tolerance window for accurate tempo estimation allowing for tapping at the notated
tempo, double and half. (a) Tempo estimates without style information; (b) Tempo
estimates with Euclidean style classification; (c) Tempo estimates with Adaboost style
classification; (d) Tempo estimates given perfect style classification.

Rumba, therefore the peaks of PR are in very similar locations to those in PQ,
this leaves the Euclidean distance measure unable to rigorously distinguish the
two.

Comparing the “Overall T1” row to the “Overall T2” row we can observe
a steady convergence of T1 towards T2 as increasingly accurate knowledge of
rhythmic style is included. This can be confirmed visually by inspection of the
scatter plots of ground truth tempo against estimated tempo in figure 3. Looking
in particular at figure 3(d) we can see that, given perfect style information,
very few of the estimated values are related to the ground truth by a factor of
two. Also, the vast majority of accurate tempi (along the main diagonal) are
contained within the ±4% allowance window, suggesting it is an appropriate
size for measuring tempo estimation.

4.3 Style vs. Tempo Relationship

Let us now examine the relationship in greater detail. We know the tempo
accuracy given the output of the Euclidean distance based classifier (79%) and
the tempo accuracy given perfect style information (94%). We now examine
the tempo accuracy when style classification accuracy is controlled. We exercise
control by forcing a correct classification (i.e. by setting the Euclidean distance
to be zero for the known style) for each excerpt with probability p. By allowing
p to increase from 0 (where the Euclidean based style classification accuracy
is 75%) and 1 (where it is 100%) we can observe how improvements in the
classifier would affect tempo accuracy. The relationship between probability of
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forced classification and the resulting tempo accuracy is shown as the dashed
line in figure 4.

To discover whether the mis-classifications for the Euclidean classifier help
or hinder the style-dependent tempo estimation, we repeat the controlled ex-
periment but replace the Euclidean distances with white noise. In this scenario
when p=0, the style classification will be totally random and when p=1 we will
have perfect style classification. This is shown as the solid line in figure 4.

Inspection of figure 4 reveals a number of interesting properties. First, given
a completely random style classification, we can still achieve a tempo accuracy of
57%. While less accurate than our baseline tempo estimation algorithm (71%)
this is comparable with the “KEA” (63%) the best performing system on this
dataset from [1]. The tempo accuracy which uses the ACF pattern based Eu-
clidean distance classification is more accurate than both systems presented by
Seyerlehner et al [9] which are marked “S1” and “S2” and correspond to the ac-
curacy using fluctuation patterns and ACF patterns respectively. By comparing
the tempo accuracy of S2 (74%) with that resulting from our Adaboost classifier
(86%) we can see that our ACF based feature offers better discrimination than
that of Seyerlehner et al [9].

The interpretation of the plots of forced classification probability with tempo
accuracy using random data (the solid line) and using Euclidean distance from
ACF patterns (the dashed line) is less intuitive. The dependent variable is the
probability of forced correct classification not the style classification accuracy
directly. The ACF pattern plot covers the range of style classification from 75%
to 100% where as the random classification plot covers approximately 12.5%
(the baseline rate for 8-way classification) to 100%. Incrementing p by 0.01
for the ACF patterns leads to an increase in style classification of 0.01(100% −
75%) = 0.25%; but for the random classification the increase is 0.01(100% −
12.5%) = 0.875%. Using this relationship we can find the equivalent point
on the solid line to the starting point of the ACF plot; this occurs when p =
(75% − 12.5%)/0.875 = 0.715. For this value of p, the corresponding tempo
accuracy is approximately 84%, and is higher than the 79% from the ACF
pattern classification. Examined in this way, all points on the ACF plot are
lower than the equivalent points on the random classification plot.

In the context of our style-dependent tempo estimation, this demonstrates
that the mis-classifications for the Euclidean classifier are more harmful for
tempo accuracy than mis-classifying the rhythmic style in a random fashion. We
have already observed this limitation of our classifier where many Rumba ex-
cerpts were classified QuickStep (see figure 2). This particular mis-classification
will almost guarantee an incorrect tempo assignment (or octave error), as the
(true) periodicity for a Rumba, which should be close to the nominal value τR,
will be outside of the range of WQ(l) from equation (9). We discover that small
Euclidean distances in our classifier do not necessarily correspond to small dif-
ferences in tempo; they can be the result of octave related tempi. The more
sophisticated Adaboost classifier however is not so susceptible to this problem.

5 Discussion and Conclusions

Through the results presented we have shown that improvements in tempo es-
timation for ballroom dance music can be made through a fully automatic clas-
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Figure 4: The effect of rhythmic style classification on tempo estimation accu-
racy. The solid line represents the relationship between style and tempo using
random features. The dashed line shows the relationship given our ACF pattern
features. DP+Style (Ada.) show the tempo accuracy resulting from the Ad-
aboost classifier. The horizontal dotted lines sown the performance of existing
systems: KEA [1], S1 and S2 are the fluctuation pattern approach and ACF
pattern approach respectively from [9] and DP – No Style is our baseline tempo
estimation algorithm.

sification of rhythmic style. Within the evaluation our main focus has been
on the Euclidean distance based classifier rather than the Adaboost classifier
despite this being the more successful for this task. We justify this emphasis
in the wider context of style-dependent rhythmic analysis. While it is reason-
able to perform a cross fold validation in terms of a proof of concept, given a
larger real-world collection (perhaps in the order of 10,000 tracks) we would not
want to undertake the computational burden of a large scale classification of
this nature. We consider being able to summarise particular rhythmic styles by
a single ACF pattern with only a small reduction in overall tempo accuracy to
be an important result.

It is important to note that this ballroom dataset has certain properties
which allow this summarisation to be particularly successful, for example the
disjoint distribution of tempi between styles and the constraint of approximately
constant tempo for each excerpt. Nevertheless we believe there is scope to
extend this approach to a wider variety of signals. The properties of the ballroom
dataset allowed us to present this task as one of using style to inform tempo,
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but in fact we are performing a tempo classification – where the spacing of the
peaks of the ACF feature implicitly encode the tempo. Therefore on a wider
range of data, where the styles cannot be grouped by tempo (e.g. Jazz or Rock
songs cover a wide range of tempi), we would use a several periodicity patterns
to cover a small tempo range. In this scenario the style label itself would not be
important, rather getting a match to a periodicity pattern close to the correct
tempo would be sufficient to improve tempo accuracy. We plan to explore this
one aspect of our future work.

Looking beyond tempo extraction we intend to investigate style-dependent
rhythmic analysis in a wider context. Collins [14] raises the issue that universal
solutions to rhythmic analysis problems do not exist, and that next-generation
systems should make greater use of style-specific information. Within our cur-
rent approach, there is scope to use style related information to aid in the
extraction of time-signature (given that the two Waltzes are in 3/4 time, but
the remaining styles are in 4/4 time), bar boundaries by using temporal bar pat-
terns (e.g. from Dixon et al [6]) and given both of these pieces of information,
recovering style dependent beat locations.
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