
A N D R E W R U E F
U N I V E R S I T Y O F M A R Y L A N D

C O M P U T E R S C I E N C E

Using LLVM For Program
Transformation

LLVM Overview

�  Research project at UIUC
�  Modular compiler tool chain
�  Integrated in many open source and commercial

projects
�  Licensed under an open-source license

Introduction

Components of LLVM

•  Mid-level compiler Intermediate
Representation (IR)

•  C/C++ compiler frontend (clang)
•  Target-specific (X86, ARM, etc) code

generators

•  Divide between ‘clang’ and ‘LLVM’
•  Clang is a C/C++ compiler with an

LLVM backend
•  LLVM is ‘everything else’

Todays Agenda

�  We’ll talk about existing LLVM tools
�  We’ll do a few demos using those tools
�  We’ll talk about how to build tools on top of LLVM
�  We’ll build two analysis tools
�  We’ll look at a program re-writing tool

Lab: Where we’re going

�  clang – C language frontend, translates C into
LLVM bitcode

�  opt – Analyze and transform LLVM bitcode
�  llc – Code generator for LLVM bitcode to native

code

Lab: Commands to run

$ clang –c –emit-llvm –o test.bc test.c!
$ opt –O1 –o test.bc test.bc!
$ llc –o test.s test.bc!
$ gcc –o test test.s!

Lab: What just happened?

�  Full translation of C program to executable program
�  At each stage we can look at what the compiler

infrastructure is doing
¡  C to un-optimized bitcode
¡  Optimized bitcode
¡  Machine code
¡  Executable

�  Very good blog post on the life of an LLVM
instruction
http://eli.thegreenplace.net/2012/11/24/life-of-an-
instruction-in-llvm/

LLVM Intermediate
Representation

Lab: Find Non-Constant Format String

�  Condition to check for:
¡  Any time the first parameter to printf, sprintf (others?) is non-

constant, alert for potential security badness
�  Can we statically detect this in LLVM IR?

Algorithm For Detection

�  Visit every call instruction in the program
�  Ask if that call instruction is a format-string

accepting routine
�  If it is, retrieve the first parameter
�  If the first parameter is not a constant global, raise

an alert

Structure of Provided Driver

�  Very basic driver that uses a PassManager
�  Reads in LLVM bitcode and runs the VarPrintf pass

on it
�  Produce bitcode file using clang –c –emit-llvm!
�  Using the driver might seem clunky, this is easier

than integrating with opt
�  The pass can later be integrated with opt

!

Building the drivers

$ cd tutorial!
$ mkdir build!
$ cd build!
$ cmake –DLLVM_ROOT=/usr/local ..!
$ make!

CMake

�  CMake is a “meta make”
¡  Why? Why not

�  CMake generates your build environment
¡  Makefiles
¡  XCode solution
¡  Visual Studio solution

�  CMake has its own build specification system for
describing building code
¡  It might be saner than what you are used to

�  LLVM can be built with cmake or automake/
autoconf

LLVM Intermediate Representation

�  Language allows for expression of computation
�  Instructions produce unique values
�  Collection of statements:

¡  %5 = add nsw i32 %3, %4!
÷ %N – a value!
÷ add – a binary instruction!
÷ nsw – no signed wrap!

�  The language is Static Single Assignment (SSA)
�  Values defined by statements are never re-defined

Hierarchy of the Language

•  A compilation unit is a Module, contains functions
•  A function is a Function, contains basic blocks
•  A basic block is a BasicBlock, contains instructions
•  An instruction is an Instruction
•  Instructions can contain operands, each is a Value
•  All of the above, except Module, is a Value

Types

�  No implicit casting in LLVM IR, all values must be
explicitly converted

�  All values have a static type
�  Integers are specified at arbitrary bitwidth

¡  i1, i2, i3, … , i32, … i398

�  Floating point types
�  Derived types specify arrays, vectors, functions

pointers, structures
¡  Structures have types like {i32, i32, i8}!
¡  Pointers have types like “pointer to i32”

Note on Integer Types

�  There are no signed or unsigned integers
�  LLVM views integers as bit vectors
�  Frontends destroyed signed/unsigned information

¡  Really, C programmers destroyed signed/unsigned
information…

�  Research prototypes exist that analyze integer
wrapping in LLVM IR (
http://code.google.com/p/wrapped-intervals/)

�  Operations are interpreted as signed or unsigned
based on instructions they are used in

Memory Model

�  LLVM has a low level view of memory
¡  Just a key -> value map
¡  Keys are pointer values
¡  Values stored in LLVM memory must be integers, floating

point, pointers, vectors, structures, or arrays
�  LLVM has a concept of creating function-local

memory via alloca

The Module

�  Highest level concept
�  Contains a set of global values

¡  Global variables
¡  Functions

The Function

�  Name
�  Argument list
�  Return type
�  Calling convention
�  Extends from GlobalValue, has properties of

linkage visibility

The BasicBlock

�  Contains a list of Instructions
�  All BasicBlocks must end in a TerminatorInst
�  BasicBlocks descend from values, and are used as

values in branching instructions

The Instruction

�  Terminator instructions
�  Binary instructions
�  Bitwise instructions
�  Aggregate instructions
�  Memory instructions
�  Type conversion instructions
�  Control and misc instructions

Language By Example

Produced with opt –dot-cfg –o fib.bc fib.bc and graphviz

Language By Example, Part 2

Static Single Assignment

�  LLVM contains a pass to promote variable-using
functions to value-using functions

�  Once transformed by this pass, an LLVM module is
in SSA form

�  Most LLVM analyses and transformations expect to
operate on an SSA IR

�  SSA allows for Def-Use and Use-Def chain analysis

Simple function

int foo(int a, int b) {!
 int i = a;!
 int j = b;!
!
 return i+j+1;!
}!

Pre-SSA

define i32 @foo(i32 %a, i32 %b) nounwind uwtable ssp {!
entry:!
 %a.addr = alloca i32, align 4!
 %b.addr = alloca i32, align 4!
 %i = alloca i32, align 4!
 %j = alloca i32, align 4!
 store i32 %a, i32* %a.addr, align 4!
 store i32 %b, i32* %b.addr, align 4!
 %0 = load i32* %a.addr, align 4!
 store i32 %0, i32* %i, align 4!
 %1 = load i32* %b.addr, align 4!
 store i32 %1, i32* %j, align 4!
 %2 = load i32* %i, align 4!
 %3 = load i32* %j, align 4!
 %add = add nsw i32 %2, %3!
 %add1 = add nsw i32 %add, 1!
 ret i32 %add1!
}!

Post-SSA

define i32 @foo(i32 %a, i32 %b) nounwind
uwtable ssp {!
entry:!
 %add = add nsw i32 %a, %b!
 %add1 = add nsw i32 %add, 1!
 ret i32 %add1!
}!

The Phi-Node

�  To support conditional assignments, we introduce an
imaginary function

�  Phi defines a value and accepts a list of tuples as an
argument

�  Each tuple is a (BasicBlock * Value)
�  Interpret the phi node as defining a value

conditionally based on the previous basic block

Phi node example

int foo(int a, int b) {!
 int r;!
!
 if(a > b)!
 r = a;!
 else!
 r = b;!
!
 return r;!
}!

Phi node example, pre SSA

define i32 @foo(i32 %a, i32 %b) nounwind uwtable ssp {!
entry:!
 %a.addr = alloca i32, align 4!
 %b.addr = alloca i32, align 4!
 %r = alloca i32, align 4!
 store i32 %a, i32* %a.addr, align 4!
 store i32 %b, i32* %b.addr, align 4!
 %0 = load i32* %a.addr, align 4!
 %1 = load i32* %b.addr, align 4!
 %cmp = icmp sgt i32 %0, %1!
 br i1 %cmp, label %if.then, label %if.else!
!
if.then: !
 %2 = load i32* %a.addr, align 4!
 store i32 %2, i32* %r, align 4!
 br label %if.end!
!
if.else: !
 %3 = load i32* %b.addr, align 4!
 store i32 %3, i32* %r, align 4!
 br label %if.end!
!
if.end: !
 %4 = load i32* %r, align 4!
 ret i32 %4!
}!

Phi node example, post SSA

define i32 @foo(i32 %a, i32 %b) nounwind uwtable ssp
{!
entry:!
 %cmp = icmp sgt i32 %a, %b!
 br i1 %cmp, label %if.then, label %if.else!
!
if.then: br label %if.end!
!
if.else: br label %if.end!
!
if.end: %r.0 = phi i32 [%a, %if.then], [%b,
%if.else]!
 ret i32 %r.0!
}!

Phi node example 2

int aa(int a, int b) {!
 int i = 0;!
 int k = 0;!
 while(k < b) {!
 i += a;!
 }!
!
 return i;!
}!

LLVM CFG

The GetElementPtr instruction

�  An instruction so frequently misunderstood, it has
its own documentation page about how it is
misunderstood

�  Frequently abbreviated as GEP
�  GEP instructions compute offsets from pointer bases

¡  Similar to ‘lea’ instructions in X86 assembler

�  GEP instructions are type aware
¡  Asking for ‘the 5th field’ of a pointer to structure operand will

‘do the right thing’

Well-Formed LLVM

�  There are specific rules as to what constitutes “Well-
Formed” LLVM
¡  Phi-nodes dominate their uses
¡  Instruction arguments are defined before use
¡  All blocks end in a terminator
¡  All branch targets are defined values

�  There is an automatic verification pass that will alert
when IR is not well formed

C++ API

Value Hierarchy

�  Value has a very rich class hierarchy
�  LLVM API allows the manipulation of every Value
�  Any degree of transformation is possible

Value class hierarchy

Everything From Value

�  Every item contained in a Module inherits from
Value

�  This allows for some useful APIs
¡  Def-Use / Use-Def iteration
¡  Replace any Value with another Value
¡  Sub

�  Allows for classification
¡  Instructions can be UnaryInstructions or BinaryInstructions
¡  GlobalValues can be Functions or GlobalVariables

LLVM Context

�  Frequent argument to LLVM API functions
�  These can normally be retrieved from a Value via
getContext!
¡  There is also a getGlobalContext!

�  The same LLVMContext should always be used
across code that interacts with the same Values
¡  LLVM objects are created in a specific context and are unique

by pointer values
¡  For example, type objects can be pointer-compared for

equality between types of different instructions

Run Time Type Information

�  An evil C++ concept
�  If you have a function that accepts a parameter of an

abstract class and it could be one of any specific
implementations, how to choose?

�  “Normal” C++ methods
¡  dynamic_cast<T> and friends

�  Compiler stores information about object types off to
the side so that it can be used at run-time

LLVM and Run Time Type Information

�  The LLVM codebase implements its own RTTI for
LLVM objects
¡  When writing passes, you use LLVM specific helpers
¡  isa<T> - True or false if pointer/reference is of type T!
¡  cast<T> - “Checked cast”, asserts on failure if not type T!
¡  dyn_cast<T> - unchecked cast, null if not type T

�  The project advises you not to use big chains of these
to approximate ‘match’ from ML

�  Instead they give you a Visitor pattern (yay)
�  You might find these insufficient (or distasteful)

Common Patterns

�  “Iterate over BasicBlock in a Function”
¡  Use begin(), end() iterators of Function

�  “Iterate over Instructions in a Function”
¡  Use inst_iterator

�  “Iterate over Def-Use chains”
¡  Use use_begin, use_end!

InstVisitor

�  Pattern to avoid giant blocks of !
!if(T *n = dyn_cast<T>(foo))!

�  Inherit from InstVisitor class and define a visitTInst
method

�  Could work for your purposes
�  Could confuse control flow even more

Including LLVM In Your Project

�  llvm-config – executable that will provide useful
info about the installed LLVM

�  Provide paths to headers, library files, etc
�  If LLVM is built with Cmake, it will add a

FindLLVM.cmake to your /usr/share
�  Compiling your code with –fno-rtti will probably be

required
�  If you compiled LLVM yourself, you can pass

LLVM_REQUIRES_RTTI to cmake
�  Needed if combining boost and llvm

Passes and transformations

Passes

�  In the previous lab, we wrote a
pass

�  Compiling is the act of passing
over and analyzing/transforming
IR

�  Most things that happen in LLVM
happen in the context of a pass

�  Passes can have complicated
actions

Pass Dependencies

�  Passes can depend on the output of other passes
¡  Analysis passes for alias analysis

�  Passes note their dependencies on other passes
¡  By overriding the getAnalysisUsage method

�  PassManager figures out the dependency graph
¡  It also attempts to optimize the traversal of the graph

�  Each Pass returns a bool, PassManager runs until
everyone stops

Pass Manager

�  PassManager performs dependency maintenance
¡  Note that PassManager invocations could be multi-threaded!
¡  Importance of multiple LLVMContexts

�  PassManager also performs optimizations of pass
ordering

�  PassManager defines different kinds of Passes that
can be run

�  ModulePass – Run on entire module
�  FunctionPass – Run on individual functions
�  BasicBlockpass – Run on individual basic blocks

Pass Rules

�  Non-analysis passes should not ‘remember’ any
information about a function or basic block

�  Analysis passes should remember some information
¡  Otherwise why run them

�  Transformation passes should be idempotent

Lab: Escape Analysis

�  If a variable is allocated on the local stack, a pointer
to that variable should not outlive the stack

�  This could happen if a pointer to a local is returned
or assigned to a global

�  clang currently includes a check for this, but the
check is kind of busted

Algorithm For Escape Analysis

�  Populate a set of values that escape the function via
return or store

�  Traverse the set checking for alloca-ed values in
the Values descending from the escapes

Structure of Provided Driver

�  Driver is laid out similarly to before
�  Collection of tests are included

Projects built on LLVM

�  Google AddressSanitizer/ThreadSanitizer
¡  http://code.google.com/p/address-sanitizer/

�  Utah Integer Overflow Checker
¡  http://embed.cs.utah.edu/ioc/

�  Emscripten, LLVM to Javascript
¡  https://github.com/kripken/emscripten/wiki

�  Dagger, decompilation from x86 to LLVM
¡  http://llvm.org/devmtg/2013-04/bougacha-slides.pdf

Important LLVM subprojects

�  poolalloc – field-sensitive, context-sensitive alias
analysis

�  lldb – llvm debugger
�  klee – symbolic execution for LLVM

�  FreeBSD compiles with clang, soon will switch to

building exclusively with clang

Conclusion

�  LLVM enables powerful transformations
�  Includes an “industry grade” C/C++ frontend

¡  clang is default compiler on OSX, supported by Apple
¡  Can compile much of Linux userspace

�  Well defined Intermediate Language
�  Modular and pluggable framework for analysis and

transformation

Project Documentation

�  Good documentation online
¡  http://www.llvm.org/docs

�  Documentation covers many aspects of the LLVM
project
¡  Programmers manual details finer points of the C++ API
¡  Language reference is ultimate source for language details and

semantics

�  Relatively responsive IRC channel on OFTC
�  Active and responsive mailing list

