
RICE UNIVERSITY

Client-Server Component Architecture for Scientific

Computing

by

Hala N. Dajani

A Thesis Submitted

in Partial Fulfillment of the

Requirements for the Degree

MASTER OF ARTS

Approved, Thesis Committee:

William Symes , Chair
Professor of Computational and Applied
Mathematics

Matthias Heinkenschloss
Associate Professor of Computational and
Applied Mathematics

Mark Embree
Assistant Professor of Computational and
Applied Mathematics

Houston, Texas

April, 2003

ABSTRACT

Client-Server Component Architecture for Scientific
Computing

by

Hala N. Dajani

In a Distributed Computing Environment software components dispersed on a

variety of computer platforms communicate transparently with each other to emulate

a single computer platform. One distributed component framework model consists

of two autonomous processes: the client and the server. The client-server model

implemented in an object-oriented language shields low level platform complexities

from the user and allows coupling of prefabricated components. These components

must have a means of interfacing with each other in a distributed environment. To

accommodate this need, while maintaining high performance, we propose a low level

socket communication core. We employ the proxy design pattern and introduce new

C++ classes to dynamically extend object behavior to a distributed environment.

These classes also serve as component interfaces. Here, we describe general guidelines

for partitioning objects into client and server components.

Acknowledgments

The past three years have been a time of both personal and intellectual growth. I

have the faculty, students, and staff of the Computational and Applied Mathematics

Department to thank. Everyone has contributed more than I can express. In particu-

lar, I thank Dr. William Symes for his unwavering belief in me, his inspiring creative

intellect, and his liberal disposition. I could not have asked for a better advisor.

Contents

Abstract ii

Acknowledgments iii

List of Figures vii

1 Introduction 1

2 Client Server Behaviors 6

2.1 Introduction . 6

2.2 Behaviors . 6

2.2.1 Server Behavior . 7

2.2.2 Client Behavior . 9

2.3 Partitioning Object-Oriented Software into Components 11

2.3.1 Basic Example . 14

2.3.2 Example: Partition of FDTD into Components 17

3 Low Level Socket Networking 19

3.1 Introduction . 19

3.2 The Socket Class . 20

3.3 Server Request Encoding . 23

3.4 Socket Error Handling Procedure . 23

v

4 Remote Class Hierarchy 25

4.1 Introduction . 25

4.2 The Remote Class Hierarchy . 25

4.3 Forging the Client Server Contract 27

4.3.1 Creation . 28

4.3.2 Deletion . 29

4.3.3 Function Object Evaluation 30

4.3.4 Output . 30

4.3.5 Get Result . 30

4.4 Client Side Communication Templates 30

4.5 Behind the Scenes: Remote Object Construction 32

5 Applications 34

5.1 Introduction . 34

5.2 General Description of Euler FDTD ODE Solver 34

5.3 General Description of the Acoustic FDTD PDE Solver 39

6 Closing Remarks 47

7 An Appendix 48

7.1 SVL Client-Server Files . 48

7.1.1 Communication Core . 48

vi

7.1.2 Client Specific Files . 49

7.1.3 Server Specific Files . 50

7.2 SVL Parallel Server Protocol . 51

7.2.1 Breakdown of Services . 51

7.2.2 Creation of Data Containers and Remote Objects 52

7.2.3 Evaluation of Function Objects 53

7.2.4 Get Result from (Reduction) Function Object 53

7.2.5 Delete an Object . 53

7.2.6 Example: Construction of Distributed Grid Object 53

References 56

List of Figures

2.1 Client Server Interaction . 6

2.2 Server Behavior . 8

2.3 Base Class Remote Design: The Remote and Proxy classes (left) make

use of double inheritance to extend the base classes (right). 11

2.4 Strategy Design Pattern . 12

2.5 Delegation in class Vector . 14

2.6 Space Strategy Design . 15

2.7 Strategy Design in FDTD . 18

4.1 Base Class Remote Implementation 26

4.2 Remote Specifications . 28

4.3 Distributed Object Construction . 32

5.1 Delegation in Euler FDTD . 35

5.2 Delegation in Acoustic FDTD . 40

Chapter 1

Introduction

In scientific computing, many large-scale problems require the use of high-performance

platforms such as parallel architectures. The use of object-orientated techniques en-

ables abstraction to express scientific concepts and to reuse code. Such endeavors

as the Toolkit for Advanced Optimization (TAO) succeed in developing scientific

programs that utilize object-oriented techniques to allow the reuse of optimization

software [3].

Although TAO brings sophisticated programing techniques to the development

of scientific applications, it still admits low level details to infiltrate abstract con-

cepts. TAO uses the Message Passing Interface (MPI) language embedded within the

Portable Extensible Toolkit for Scientific Computation (PETSc) language to accom-

modate distributed computing [3]. The abstract types in TAO such as those that

conceptualize mathematical vectors and matrices include environment details. For

example, the creation of a vector type in TAO requires an MPI environment variable

of the type MPI Comm [3]. This results in limits to vector type abstraction. In

addition, the PETSc environment must be available in order to codify and compile a

driver. This leads to codifying the same driver separately for sequential and parallel

platforms.

2

An algorithm that specifies mathematical operations is mostly independent of the

data structures and environment of computations. Therefore, to achieve the most

code reuse as possible, it is important to design software that keeps abstract concepts

as separate as possible from low level environment details. The distributed client-

server model allows this clean separation. It precludes computational details from

permeating all levels of abstraction; allowing more code reuse, maintainability, and

expansion.

In this thesis, I develop a process that extends object behavior to a distributed

client-server component environment that is simple to use, interoperable, and main-

tains high performance. This mechanism entails the use of the proxy and strategy

design patterns, the addition of new classes, and guidelines specifying the separation

of objects into appropriate client and server domains. We demonstrate this process

with the Standard Vector Library (SVL) software package.

Shannon Scott and William Symes propose the SVL software package as a re-

finement of the message forwarding (visitor) method Roscoe Bartlett initiates in A

Proposed Standard for User Defined Vector Reduction and Transformation Operators

[9, 1] . SVL, the next generation Hilbert Class Library (HCL), uses high levels of

abstraction to emulate Hilbert Space Calculus.

SVL is a numerical software package written completely in C++ that defines a

standard interface to vector objects. SVL defines two main class hierarchies; one for

3

the elements being operated on, denoted appropriately as DataContainers, and the

other for the visitor objects denoted as FunctionObjects [9]. True to form of visitor

objects, FunctionObjects are passed as argument parameters to DataContainer meth-

ods. As FunctionObjects can define both mathematical and computational operations,

SVL introduces a Space class that coupled with a Vector class models mathematical

concepts.

In his Master’s Thesis, Shannon Scott initiates the component client-server exten-

sion to SVL [8] . Each component is an autonomous process that has no persistent

state. There are many advantages to adapting object-oriented software to compo-

nents. Components allow further abstraction by encapsulating sets of objects. They

use dynamic binding, are interchangeable, and can have multiple interfaces.

The complexity that arises form component based programming is the inclusion of

communication middleware to couple components. Yet, components offer simplicity

of use. A user need only familiarize herself with the component interface and not its

internal structure. A client-server model naturally uses component design as client

and server behaviors can be easily encapsulated within components.

According to Clemens Szyperski, there currently exist three major forces in the

component middleware software arena: Common Object Request Broker Architec-

ture (CORBA) based standard developed by Object Management Group (OMG)

configured with the enterprise perspective, COM-based standards posed by Microsoft

4

configured with the desktop perspective, and Java-based standards from Sun fash-

ioned with the internet perspective [10] . Of the three forces, CORBA and Java are

feasible for our component communication protocol.

CORBA defines an object-oriented Interface Definition Language (IDL) that offers

encapsulation, polymorphism, and inheritance; all the abstractions of object oriented

programming [5] . Such a highly evolved IDL requires some familiarity. IDL increases

the complexity of formulating and passing messages; and the overall complexity of

the entire application. Consequently, using CORBA only for message passing admits

its inherent complexity while not taking full benefit of its resources.

The Java approach is one level of abstraction above base socket communication.

It wraps communication protocol within objects and has a standard library already

available. Rather than introduce another programming language into our package,

we create our own objects by wrapping socket protocols as classes. Furthermore, by

overloading C++ string operators, our socket abstractions mimic the C++ iostream,

and as a result, require no extra familiarity with our socket library.

Chapter two describes the client-server component environment as well as the

process design. In order to maintain efficiency, we formulate our own socket commu-

nication backbone. In chapter three, we present this socket library and its general

use. Chapter four merges the design with the middleware library to produce a fea-

sible implementation in SVL, and chapter five presents some examples to numerical

5

applications.

Chapter 2

Client Server Behaviors

2.1 Introduction

In order to understand the process of extending single platform software to allow

distributed behavior, we need first to look at client and server roles. By defining the

component behaviors of client and server, we explain the general construction and use

of this component system. We describe the behaviors of the two processes and outline

the interaction between them. Then we go on to describe the process of splitting an

application into the client server roles.

2.2 Behaviors

The characterization of any client-server model is the request/response relationship

depicted in Figure 2.1 [2].

Client Server

response

request

Figure 2.1 Client Server Interaction

Although in the client-server model we define two types of interaction behaviors, a

component need not necessarily express only one behavior. For example, a component

can both request and fulfill services from one or more components. For each behavior,

7

we develop an interface that matches the counter behavior. These interfaces formulate

the contractual agreement between the two processes.

The client-server model demonstrates the tradeoff between type complexity and

environment complexity. The client domain has a larger object universe than the

server. The client, tending to instantiate abstract objects, relies more on model

conceptualization and less on data computation. Since the server does not interact

with the user, it does not need to create an abstract conceptual model. Rather, its

object universe consists of objects directly involved with computation. As a result,

the server has a smaller object universe than the client.

2.2.1 Server Behavior

Although both client and server processes may draw from the same pool of objects,

they typically instantiate a different set of objects. The server manages the distribu-

tion of and general handling of data in accordance with its specified environment. For

example, a server specialized for a parallel data decomposition environment partitions

the data and transports data blocks to various machines. A server process in this

context listens at a static port, lying dormant until a connection is initiated by the

client process. In this way, the server plays a more passive role in the client server

relationship, waiting for invocation from the client.

The server listens for a connection, accepts it, and forks a child process to handle

it, while the original process continues to listen for further client requests. The server

8

provides an environment for the client to upload information, to instantiate objects

on the server, and to execute object methods remotely. Figure 2.2 illustrates server

actions.

Listening Process Basic Request Broker

Instantiate
Objects

Evaluate Function
Object on Data

Container

Get Result Data from
Function Object with

Reduction Capabilities

Delete Object

Output Object
Information

Client

communication
with client

returns certificate of completion
along with client requested data

callback functions that facilitate
execution of appropriate class

method

Figure 2.2 Server Behavior

The server request broker depicted in the figure is a registry of available requests

that spawns events called “callbacks” that fulfill these requests. Each callback repre-

sents a functional unit, executing one service. The two base functional units create

and delete objects in the server domain. To accommodate the visitor design pattern,

9

we maintain a general functional unit for all evaluations of Function Objects upon

data wrapped by Data Containers. The other two functional units included here,

Output and Get Result, allow a complete set of output functions as specified by the

class’s Get Result and Output methods. In essence, these server functions convert the

object identifier sent by the client into the appropriate object and call the requested

method. In all cases a certificate of successful or unsuccessful completion is returned

to the client. More functionality can be added to the server, but these represent a

generic and minimal set [6] . In this project, we implement the server in an event

driven procedural fashion. Regardless of how the server is implemented, these actions

characterize the server.

2.2.2 Client Behavior

Although the server is specialized to a certain platform, the client process is not

limited by platform requirements. It is the process by which users interact with the

software package. As a result, the client instantiates objects that fit more naturally

to the mathematical formulation much like a scripting language such as MatLab.

This does not, however, preclude objects representing mathematical abstractions from

existing on the server.

In the client behavior, we predominantly use the proxy design pattern to build a

seamless distributed environment and the visitor design pattern to allow generic data

manipulation. These types of classes model stand-in objects that represent objects

10

created on the server [8, 4] . According to Design Patterns, “proxy objects are

applicable whenever there is a need for a more versatile or sophisticated reference to

an object than a simple pointer [4]. ” In some cases, we mimic the same interface

as the counterpart server object. In other cases, the object only plays the visitor role

and therefore does not require a user interface. In all cases, the role the object plays

within the client environment mimics the role of its counterpart object within the

server environment. Using this process, we can extend previously written applications

without altering the kernel.

The client side behavior is expressed at an implicit level where the user has no

interface with low level networking. Specific client side classes, through appropriate

method invocation, send requests and receive data from the server.

In SVL, these proxy design pattern classes come in two types, Remote and Proxy.

Yet, both provide a local existence to an object located in a different address space.

These instances of the (remote) proxy design pattern differ in the extent of access to

the object. The Proxy class allows more access to the object than the Remote class

and consequently extends the Remote class. The main characteristic of Proxy objects

in this package is that these objects provide the same interface as the objects they

represent. While, Remote objects only verify existence. That is, the only Remote

object interface we are concerned with on the client side is that of construction and

deletion. All objects that require Remote representation and are not specialized

11

as Proxy objects can employ the visitor design pattern. After construction of a

strictly Remote object, we pass the existence certificate as an argument to other class

methods. Any object in the server environment can have a Remote counterpart on

the client. Figure 2.3 depicts remote extension for SVL base classes.

Remote

RemoteFO
Scalar

RemoteFORedn
result
getResult

Scalar,ReT

Remote Extensions
U-Bi-Ter-Quater-naryFO
operator()

Scalar

U-Bi-Ter-Quater-naryFORedn
operator()

Scalar

LocalDC
Scalar

ProductDC
Scalar

DataContainer
eval ()

DataContainerProxy
Scalar

FunctionObject

Figure 2.3 Base Class Remote Design: The Remote and Proxy classes (left) make use
of double inheritance to extend the base classes (right).

2.3 Partitioning Object-Oriented Software into Components

This section describes the process by which we take SVL code, partition its class

structure into client and server components, and introduce a middle-ware communi-

cation component to create a two tiered client server component system. The key

12

point of component partitioning is to deduce the point of insertion of an object layer.

The introduction of a new layer corresponds to new object domains which will later

be refined and separated into components with differing address spaces. Our objec-

tive in specifying components is to find a balance between minimizing transportation

of information and maximizing the reach of user interfaces.

The SVL design admits some natural extensions to client and server partitions.

SVL’s use of the strategy design pattern enables us to specify simple and general

guidelines for splitting into client and server components. The strategy design pattern,

graphically represented in Figure 2.4, uses composition and delegation to dynamically

define the behavior of a class.

Composite Class executing
method by delegation

Abstract Class specifying
method interface

Child Class with
method

implementation 1

Child Class with
method

implementation 2

Child Class with
method

implementation n

Figure 2.4 Strategy Design Pattern

In general, a class that employs the strategy design pattern is an excellent candi-

date for the client domain, while the objects it is composed of are further evaluated

to ascertain their appropriate component domain. Remote instances of composite

13

objects relegated to the server must be created to introduce the new necessary object

layer.

Light-weight objects are objects that do not explicitly manipulate large amounts

of data, do not have resource constraints, and in some cases interact with the user

directly. That is, they do not require a specific computer platform. Light-weight

objects are developed to model concepts by way of object-oriented abstraction. All

strategy classes are classified as light-weight objects, but not all light-weight objects

are strategy. Heavy-weight objects, however, contain more resource constraints de-

pending on the type of data operations they execute. They model computations and

don’t employ abstraction techniques. We classify objects into light-weight and heavy-

weight groups based on common stratums of abstraction and subsequently, on their

environment demands.

We have now established two guidelines for determining component domains and

where to introduce the new object layer. The first guideline is to declare classes that

have a user interface to the client. The objects remaining are heavy-weight objects

and light-weight objects that do not express the highest level of abstraction. Our

second guideline is that heavy-weight objects are assigned to the server. As we strive

to minimize redundant communication, these objects are placed in the same domain

as the objects with which they communicate. We substitute these heavy-weight and

server-assigned light-weight objects with their remote counterparts on the client, com-

14

plete the component specification, and split. We demonstrate this process first on

high level SVL classes as this presents a general model of object interactions.

2.3.1 Basic Example

SVL has many layers of abstraction. At the highest level, we have the concrete class

Vector with no subclasses. This class is a strategy class that calls upon other strategy

classes. Figure 2.5 depicts the delegation chain in Vector. The Vector object only

associates with three other object types; Space, DataContainer, and FunctionObject.

It is composed of a DataContainer and a Space.

Vector

Space
DataContainer

DataContainerFactory
LinearAlgebraPackage

FunctionObjects

Delegation Level I

Delegation Level II

Delegation Level III

Figure 2.5 Delegation in class Vector

15

The DataContainer object encapsulates the data structure and in this manner is

classified as a heavy-weight object. Like Vector, Space is also a strategy class that in

turn is composed of light-weight objects (Figure 2.6).

Space

LinearAlgebraPackage DataContainerFactory

LinearCombinationObject

FunctionObject FunctionObjects

Client

Client Client

Client

Server Server

Figure 2.6 Space Strategy Design

Space’s responsibility in creating DataContainers entails some provision in the

class to distinguish between remote and local DataContainer creation. In order to

provide for this flexibility without altering the user interface, we make Space a strategy

class composed of a DataContainerFactory and LinearAlgebraPackage. According to

our first guideline, Space and Vector are definitive client side objects. According to

our second guideline, DataContainer is assigned to the server and we substitute a

remote object on the client. The remaining objects to consider are FunctionObjects,

16

DataContainerFactory, and LinearAlgebraPackage.

The next step is to analyze object relationship constraints. We seek to minimize

dependencies between components. Consequently, we must localize objects that ex-

hibit dependencies with each other. In our simple example, we have the following

object dependencies:

• Vector relies on Space for DataContainer construction, hard-wired operations,

and compatibility tests.

• Space in turn relies on DataContainerFactory for appropriate DataContainer

creation, and LinearAlgebraPackage for appropriate operations.

• DataContainerFactory only passes (easily transmitted) construction informa-

tion to a DataContainer constructor.

• LinearAlgebraPackage is another strategy class.

• DataContainer and FunctionObject work in unison to manipulate data.

• Vector and Space forward FunctionObjects as arguments to DataContainer

methods.

DataContainers and FunctionObjects must be localized to the same component. We

can also easily extend the message forwarding from Vector to DataContainers from

a single object domain to distributed object domains by embedding stand-in objects

17

and middle-ware communication calls within these actions. According to guideline

one, LinearAlgebraPackage is relegated to the client. Because DataContainerFactory

does not exhibit dependencies on any server side objects, we also assign it to the

client.

The beauty of this design is that the distinction between remote (proxy) and local

objects is not apparent to the front-end user level. We maintain this characteristic

for all objects that interact with the user directly. Notice, that it is the use of the

strategy design pattern, the process of composition, and subsequent delegation that

allows us to hide the added complexity of the component client-server framework

from the user. This allows the client component to plug into various servers without

any change in code. That is, the user can develop an algorithm, plug it into a serial

platform or a parallel platform without having to alter much of the code. This is the

wonderful versatility that the client-server component framework admits. With such

versatility, we can plug and play prefabricated scientific components.

2.3.2 Example: Partition of FDTD into Components

A more instructive example is the component partitioning of the Finite Difference

Time Domain (FDTD) set of objects. The FDTD class employs the strategy design

pattern as shown in Figure 2.7.

The FDTD object is a composite only of the FDTD associated function objects.

We do not see the same strategy nesting behavior as that in the Vector class. This

18

FDTD

FDTDApplyFO FDTDApplyDerFO FDTDApplyAdjFO

Client

Server Server Server

Figure 2.7 Strategy Design in FDTD

specifies a clean separation between client and server at the FDTD object level. That

is, the FDTD class is relegated to the client, while its associated function objects and

their dependencies are assigned to the server. We substitute remote instances of these

function objects on the client, creating a new communication layer and extending the

behavior of the FDTD object. Although, at lower levels, the FDTD algorithm is

rather complex, we do not encounter such complexities when partitioning the FDTD

class. The use of the strategy design pattern allows component partitioning at higher

levels of abstraction, circumventing the need to consider intricate object dependencies.

Chapter 3

Low Level Socket Networking

3.1 Introduction

The essense of distributed, networked computing is the communication protocol. The

convenience of high level middle-ware communication packages such as the Common

Object Request Broker Architecture (CORBA) induce a cost in the form of processing

overhead [5]. A well designed low level socket interface between remote components

can outperform one based on such higher level facilities. This is a daunting task

however, as socket programming is very primitive, and in some cases requires a well

defined separation between interface and implementation.

The design of such a socket interface in SVL, is in a state of constant evolution.

Proxy and Remote objects subsisting on the client delegate function calls to corre-

spondent objects relegated to the server, and are exclusively responsible for inciting

communication between client and server. It is the means and the structure of send-

ing minimal amounts of data across the network that encapsulate the difficulty of

designing a socket communication protocol.

In Ideas in Proxy Design for a Client Server Architecture, Tony Padula presents

a coding scheme for communicating instructions and object types from the client to

the server [6]. He packs this information as well as other object specific primitive

data items into a character buffer and sends it across the network. If the instruction

20

to the server refers to the creation of an object, the slightly unpacked buffer is sent

to a specified skeleton. The skeleton’s purpose is to unpack the buffer and instantiate

the appropriate object. After delving into his design, we see no alternative at this

time to such a coding scheme. The server socket interface can be simplified via the

annihilation of the skeleton concept. With the implementation of a Socket class, we

can transport user-defined objects such as a Grid over the network bypassing packing

and unpacking a buffer.

3.2 The Socket Class

The Socket class provides a relatively simple procedure for applications to commu-

nicate with one another by wrapping function calls to the low level socket library.

Wrapping these functions can miminize the impact of socket programming errors in

code, and ensure that such socket calls are used properly. Furthermore, the internals

of socket programming are hidden from developers who are not interested in commu-

nication protocol.

In his article Guideline for Wrapping Sockets in Classes, James Pee presents a

suitable interface that follows the C++ iostream method of reading and writing [7].

That is, he reduces the socket reading and writing calls to operator << and oper-

ator >>.

More importantly, we can extend the interfaces to work with user-defined classes.

To send an object across the network, the object’s class is required to be derived from

21

class Streamable. Streamable only defines two pure virtual functions, Marshall and

UnMarshall. Marshall prepares an object for transport across the socket stream,

while UnMarshall reassembles the object after transport. Implementing Marshall

and UnMarshall is a rather straighforward procedure as the Socket class defines

member functions to transport primitive data types.

For example, I derive class Grid from class Streamable and implement these two

methods. Notice, we must serialize containers such as the std::vector object before

transport. All objects that are referred to by pointers, must undergo some process of

serialization.

template<class Scalar>

class Grid : public Streamable {

private:

int naxes;

vector<int> n;

vector<Scalar> d;

vector<Scalar> o;

int dim;

Scalar vol;

Scalar tol;

string fname;

public:

void Marshall (Socket & s) const {

vector<int>::const_iterator p1;

typename vector<Scalar>::const_iterator p2;

s << naxes;

for (p1 = n.begin(); p1 != n.end(); p1++)

22

s << (*p1);

for (p2 = d.begin(); p2 != d.end(); p2++)

s << (*p2);

for (p2 = o.begin(); p2 != o.end(); p2++)

s << (*p2);

s << dim;

s << vol;

s << tol;

}

void UnMarshall (Socket & s) {

//same order as Marshall

vector<int>::iterator p1;

typename vector<Scalar>::iterator p2;

s >> naxes;

if (n.size() != naxes) { //allocate space

n.resize(naxes,1);

d.resize(naxes,1.0);

o.resize(naxes,0.0);

}

for (p1 = n.begin(); p1 != n.end(); p1++)

s >> (*p1);

for (p2 = d.begin(); p2 != d.end(); p2++)

s >> (*p2);

for (p2 = o.begin(); p2 != o.end(); p2++)

s >> (*p2);

s >> dim;

s >> vol;

s >> tol;

}

Member functions Marshall and UnMarshall suit the same purpose as packing

elements into a buffer, sending the buffer, receiving the buffer and unpacking the

buffer. With these two method calls, we can encapsulate the process of breaking

down, sending, receiving, and assembling an object’s data members as a behavior of

23

the object. That is, the object is now streamable. The major difference between this

communication protocol and the one that uses a buffer, is that here we are constantly

sending and receiving. A socket connection is opened and information bypasses the

process of being packed or unpacked, it is only sent and received. The advantage here

is that this procedure is more efficient as we still only open one socket and so incur

the same latency period.

3.3 Server Request Encoding

We now have a means of transporting streamable user-defined objects. The server,

however, still requires some mechanism for deducing what the client requests and

what information pertinent to the request the client is transporting. Tony Padula

presents a clean-cut, organized encoding/decoding procedure [6]. Basically all calls

to Buffer.pack and Buffer.unpack have been replaced with Socket << and Socket

>>, respectively. The server executable consists of various switch statements thereby

decoding the clients requests by way of enumerated typing.

3.4 Socket Error Handling Procedure

There are basically two categories of error handling that must be accounted for. The

first deals exclusively with socket issues and communication errors. Reading and

writing to a socket is not guaranteed. A call to recv/send (read/write) might return

prior to reading or writing the requested number of bytes. Within the Socket method

24

calls, we check the return codes for errors. This is another advantage of using a socket

class.

The second category of error handling deals with verifying that the server is con-

structing objects and evaluating such objects appropriately. The error handling pro-

cedure Tony Padula utilizes is adopted here [6]. After a number of transactions

between client and server, the server sends a bool status flag. If status is false, then

the client expects to receive a string from the server describing the error in more

detail. Another approach to this type of error handling is to make error objects

streamable. The latter approach has not been implemented at this time.

Chapter 4

Remote Class Hierarchy

4.1 Introduction

In this chapter, we discuss the classes; Handle, Remote, DataContainerProxy, and

RemoteFunctionObject generated to extend the behavior of the Standard Vector Li-

brary (SVL) to a distributed domain. We describe the process of codifying Remote

and DataContainerProxy objects, enumerating the steps involved in expanding single

domain classes to include distributed behavior. Finally, we look behind the scenes at

Remote object instantiation.

4.2 The Remote Class Hierarchy

The Handle class suites two purposes. It wraps a unique identifier of an object, and

allows object sharing between the client and server processes. We follow Shannon

Scott’s simple yet suitable identifier mechanism; the object’s pointer variable in the

server address space casted to an unsigned integer [8]. This Handle class encap-

sulates the unsigned integer identifier on the client, streams the object between the

distributed processes, and provides convenience methods to convert the identifier from

its client representation to its server representation and vice versa.

The Remote class extends distributive behavior to objects that function in a single

computing domain. That is, it extends the interface of an object to allow message

26

passing between client and server components through inheritance. The Remote class

endows its subclass with a Handle data member and methods that send and receive

this data given an open socket connection, thereby averting direct user access to the

Handle data member.

Remote
Handle cousin
char DomainName[80]
void sendCousin

void receiveCousin

RemoteFO
rocode clan
nargs args
sendClan

Scalar

FunctionObject

RemoteFORedn
Scalar,ReT

DataContainerProxy
dccode clan
sendClan

Scalar
DataContainer

Remote Extensions
U-Bi-Ter-Quater-naryFO Scalar

U-Bi-Ter-Quater-naryFORedn Scalar

LocalDC
Scalar ProductDC

Scalar

Figure 4.1 Base Class Remote Implementation

All objects that are to maintain dual residency, i.e. a concurrent existence on

both client and server processes, are required to have counterpart objects that are

subclasses of class Remote. In some situations this introduces the only multiple in-

heritance in the SVL design. Fortunately, the Remote class serves the unique purpose

27

of streaming the object identifier between processes and does not conflict with other

inherited behaviors.

In SVL, we define three specifications of surrogate objects (Figure 4.2). All such

objects inherit from the Remote class and are endowed with a streamable identifier.

RemoteFunctionObjects are Remote objects that are understood to be FunctionOb-

jects on the server domain. Although on the server domain, FunctionObjects are sub-

classed according to the number of arguments for evaluation: unary, binary, ternary,

or quaternary; their remote counterparts are not. Rather each RemoteFunctionOb-

ject owns an enumerated type data member indicating the number of arguments the

corresponding server side object requires for evaluation in the operator () method.

Proxy objects allow complete control of the remote object on the server from the

client process. In addition to the streamable functionality endowed by the Remote

superclass, Proxy objects include the same interface as the objects they represent.

The SVL design only necessitates that DataContainer objects have Proxy counter-

parts on the client domain. These specifications also allow the client to maintain

the same relationship between RemoteFunctionObjects and DataContainerProxies as

that between FunctionObjects and DataContainers.

4.3 Forging the Client Server Contract

The client server contract specifies protocols for each unit of service; object creation,

object deletion, function object evaluation, output, and get result. These protocols

28

Remote Objects

RemoteFunctionObjects

DataContainerProxy

Figure 4.2 Remote Specifications

in turn depend on the type of object on which we execute the appropriate method.

All remote objects have an enumerated type data member, known as clan, that is

used for object registration on the server.

4.3.1 Creation

Depending on the remote object specification, creation of a Remote or Proxy object

entails the following steps:

• Subclass of Remote

– Object Registration: addition of object code name to rocode enumerated

data type located in file rocodes.H

– Constructor: socket stream fabrication and block of communication code

that matches server construction block in file createro.H.

• Subclass of RemoteFunctionObject

29

– Object Registration: addition of object code name to rocode enumerated

data type located in file rocodes.H

– Constructor: socket stream fabrication and block of communication code

that matches server construction block in file createro.H. This step is

required if the type of RemoteFunctionObject object requires data param-

eters to be shipped to server for counterpart object construction.

• Subclass of class DataContainerProxy

– Object Registration: addition of object code name to dccode enumerated

data type located in file dccodes.H

– Constructor : socket stream fabrication and block of communication code

that matches server construction block in file createdc.H. This step is re-

quired if the type of DataContainerProxy object requires data parameters

to be shipped to server for counterpart object construction.

4.3.2 Deletion

All Remote objects follow the same protocol for deletion. After socket stream in-

stantiation, we require communication codes that match the server deletion block in

the case/switch statement in file deleteRO.H. The default case applies to generic

deletion of RemoteFunctionObjects.

30

4.3.3 Function Object Evaluation

This service applies only to a DataContainerProxy calling one of its eval methods

with a RemoteFunctionObject passed as an argument. Communication is completely

the responsibility of the DataContainerProxy, which sends the appropriate handles to

the server request broker. The server expects to receive the handles, converts them to

generic DataContainers and FunctionObjects, and employs the visitor design pattern.

4.3.4 Output

The output function expects to receive a Handle from the client side object. It

converts this handle to a generic object and executes its write method. This assumes,

of course, that all objects in SVL have a write method.

4.3.5 Get Result

This service can only be initiated from a RemoteFunctionObjectRedn. This client side

object streams its Handle and receives appropriate result information from the server.

4.4 Client Side Communication Templates

In the following, “s” is a Socket object, “clan” refers to type of Remote, “cousin”

is a Handle object, and “status” is a Bool type. Note the Destuctor template and

the getResult template are the same for all objects and reduction function objects,

respectively.

Default Contructor:

31

s << CreateROCode (CreateDCCode);

s << clan;

s >> status;

receiveCousin(s);

Destructor:

s << DeleteObjectCode;

sendCousin(s);

s << CreateROCode; or s << CreateDCCode;

s >> status;

getResult:

s << GetResultCode;

sendCousin(s);

s >> status;

s >> result;

Output:

s << OutputCode;

sendCousin(s);

s >> status;

32

4.5 Behind the Scenes: Remote Object Construction

The intricacies of Remote object creation are completely hidden from the user. This

process includes communication and execution of a server function. Figure 4.3, traces

the procedure for Remote object construction.

Handle
unsigned int p
getp()

Streamable

Remote
Handle & cousin
sendCousin

receiveCousin

Client Server

Generic Object
Attributes
Operations

1. Construction of Remote Object

createro functionServer Message
Switch Control

2. Communication with server
daemon process

3. Server calls
appropriate function

4. Construction of Object
5. Object pointer

casted to unsigned int

6. Handle object streamed
to Remote object

Figure 4.3 Distributed Object Construction

We see the following six steps:

• 1. Instantiation of Remote object on the client.

• 2. Within the object constructor, we open a connection between client and

server, and stream the appropriate instruction command. In this case, we re-

33

quest object creation from the server object request broker.

• 3. The server request broker in turn invokes the appropriate callback function,

passing the socket stream to this function.

• 4. The callback function receives the enumerated registry variable specifying

what type of object to create. Using switch control, it calls the appropriate

object constructor.

• 5. The callback function converts the object pointer to a Handle object.

• 6. The server request broker streams the Handle object back to the Remote

object that initiated this procedure.

Chapter 5

Applications

5.1 Introduction

This chapter illustrates two examples of our client-server implementation: the Euler

ODE Solver and the Acoustic PDE Solver. These examples are instances of the Fi-

nite Difference Time Domain (FDTD) set of objects in the Standard Vector Library

(SVL). We outlined the client and server component partitions of FDTD in chap-

ter two. Since FDTD function object construction requires the prequisite creation

of objects, we encapsulate precursor object creation within one object, the Environ-

ment. Consequently, we require only one communication call for FDTD function

object creation. In this way, we minimize communication between client and server

components.

5.2 General Description of Euler FDTD ODE Solver

We consider the initial value problem:

u
′(t) = c. ∗ u(t)

u(t0) = u0

The Euler method for numerically approximating the solution to this O.D.E. is en-

capsulated by the right hand side class, testrhs::operator () method.

u(ti+1) = u(ti) + c. ∗ u(ti)dt

35

This example demonstrates the general construction of an FDTD object. Upon each

call to the FDTDApplyFO object, one of the objects that FDTD is composed of, we

see the following system of delegation (Figure 5.1).

FDTD::getFwdFO ()

FDTDApplyFO::operator
(LDC & x)

Stencil::initialize Stencil::fwdSample Stencil::takeFwdStep

TimeStepper::initialize

TimeStepperClock::initialize
StencilData::initialize

SamplerFactory::setTime

FwdSample::setTime

TimeStepper::advance TimeStepper::fwdStep

TimeStepperClock::advance

RHS::operator ()

1st Level Delegation

2nd Level Delegation

3rd Level Delegation

FwdTimeStepperFO::operator()
TimeStepperClock::fwdStep()

4th Level Delegation

Figure 5.1 Delegation in Euler FDTD

We trace delegation starting at the FDTD function object. This is the only object

in this scope to which the user has access. Subsequently, the remaining objects listed

in the delegation system are server side only. Each object that uses delegation contains

the object to which it delegates as a data member. In this fashion, all objects that

delegate are structurally composites of other objects. With respect to construction

of an FDTD object in the client-server domain, we must build these objects on the

36

server in the opposite order of delegation.

The Figure shows four groups of objects based on the level of delegation. From

bottom up, we have the following group members.

• I.

– RHS (testrhs)

• II.

– FwdSample

– TimeStepperClock (ConstTimeStepperClock)

– StencilData (ODEStencilData)

– FwdTimeStepperFO (EulerFwd)

• III.

– TimeStepper (TimeStepper)

– SamplerFactory (FVSamplerFactory)

– SamplingData (TrivialSamplingData)

• IV.

– Stencil (Stencil)

37

On the server, the construction order of an FDTDApplyFO must follow the group

order above, with all group I. objects created prior to group II., etc. This

construction order is encapsulated in the appropriate Environment object.

The client side RemoteEnvironment transmits the user supplied data

parameters to the server side Environment for server side object construction, and

creates client side FDTD object for user perusal.

template <class Scalar>

class EulerEnvironment {

private:

Scalar tbeg, tend, dt;

int n, itmax;

testrhs<Scalar> f;

EulerFwd<Scalar> fwd;

ODEStencilData<Scalar> sd;

ConstTimeStepperClock<Scalar> clk;

TimeStepper<Scalar> ts;

FVSamplerFactory<Scalar> samfac;

TrivialSamplingData<Scalar> samdat;

StencilRn<Scalar> sten;

FDTDApplyFO<Scalar> fwdFO;

FDTDApplyDerFO<Scalar> derFO;

FDTDApplyAdjFO<Scalar> adjFO;

EulerEnvironment();

public:

EulerEnvironment(testrhs<Scalar> & _f, Scalar _tbeg,

Scalar _tend, Scalar _dt,

int _n, RnArray<Scalar> & u0,

int _itmax = 1000)

38

: tbeg(_tbeg), tend(_tend), dt(_dt), n(_n),

f(_f), fwd(f,tbeg,dt), sd(n,n,u0), itmax(_itmax),

clk(tbeg,tend,dt), ts(fwd,sd,clk),

samfac(n,tbeg,tend),

samdat(),

sten(ts,samfac,samdat),

fwdFO(sten,itmax),

derFO(sten,itmax),

adjFO(sten,itmax) {}

FunctionObject *getFwd() {return &fwdFO;}

FunctionObject *getDer() {return &derFO;}

FunctionObject *getAdj() {return &adjFO;}

virtual ~EulerEnvironment () {}

};

template <class Scalar>

class RemoteEulerEnvironment : public Remote {

private:

RemoteEulerEnvironment();

FDTDProxy<Scalar> meth;

RnDataContainerProxyFactory<Scalar> dcfac;

CSSpace<Scalar> sp;

FDTDOp<Scalar> *fdtdop;

RemoteFunctionObject<Scalar> rhs;

public:

RemoteEulerEnvironment(RemoteFunctionObject<Scalar> & _rhs,

Scalar tbeg, Scalar tend,

Scalar dt, int n, int itmax = 1000)

: rhs(_rhs), dcfac(n), sp(dcfac)

{

Socket s;

39

s.Connect();

bool status;

s << CreateROCode;

s << EulerEnvironmentCode;

rhs.sendCousin(s);

s << tbeg;

s << tend;

s << dt;

s << n;

s << itmax;

meth.fwd.receiveCousin(s);

meth.der.receiveCousin(s);

meth.adj.receiveCousin(s);

s >> status;

receiveCousin(s);

s.Close();

fdtdop = new FDTDOp<Scalar> (sp, sp, meth);

}

s

FDTD & getFDTD() {return meth;}

FDTDOp<Scalar> & getOp() { return *fdtdop;}

virtual ~RemoteEulerEnvironment(){

Socket s;

s.Connect();

bool status;

s << DeleteObjectCode;

s << CreateROCode;

sendCousin(s);

s << EulerEnvironmentCode;

s >> status;

s.Close();

}

};

40

5.3 General Description of the Acoustic FDTD PDE Solver

The Acoustic FDTD Solver has one level of delegation more than the Euler FDTD

Solver. We create an Environment object in the same way.

FDTD::getFwdFO ()

FDTDApplyFO::operator
(LDC & x)

Stencil::initialize Stencil::fwdSample Stencil::takeFwdStep

TimeStepperwithBwdStep:
:initialize

TimeStepperClock::initialize
ERAcousticStencilData::initialize

SeismicSamplerFactory::set
Time

FwdSample::setTime

TimeStepperwithBwdStep:
:advance

TimeStepperwithBwdStep:
:fwdStep

TimeStepperClock::advance

SourceSamplerFactory::
getSeismic..

1st Level Delegation

2nd Level Delegation

3rd Level Delegation

ERA2C24FwdTimeStepperFO::
operator()

TimeStepperClock::fwdStep()

4th Level Delegation

SeismicSrcSampler::operator()
5th Level Delegation

Figure 5.2 Delegation in Acoustic FDTD

• I.

– SeismicSrcSampler

– Set of Fortran routines encapsulating the numerical algorithms

• II.

– SourceSamplerFactory

41

• III.

– FwdSample

– ConstTimeStepperClock

– ERAcousticStencilData)

– ERA2CC24FwdTimeStepperFO

• IV.

– FwdTimeStepperWithBwdStep

– SeismicSamplerFactory

– AcousticSamplingData)

• V.

– Stencil (Stencil)

class A2C24Environment {

private:

A2C24ParamHolder names;

SeismicDataBase src_db;

Grid<float> ctrlgrid;

AcousticGridPar2D simpar;

SeismicDataBase seisdb;

float tinit;

float tfinal;

int nts;

42

SeismicSrcSampler srcsam;

/* srcfac, clock, stendat do not require

any additional object creations for construction */

SourceSamplerFactory srcfac;

ConstTimeStepperClock<float> clock;

AcousticStencilData stendat;

A2C24FwdTimeStepperFO tsfo;

A2C24BwdTimeStepperFO btsfo;

A2C24DerTimeStepperFO dtsfo;

A2C24AdjTimeStepperFO atsfo;

TimeStepperWithBwdStep<float> ts;

SeismicSamplerFactory samfac;

AcousticSamplingData samdat;

StencilRn<float> sten;

FDTDApplyFO<float> fwdFO;

FDTDApplyDerFO<float> derFO;

FDTDApplyAdjFO<float> adjFO;

A2C24Environment();

A2C24Environment(const A2C24Environment & v);

public:

A2C24Environment(string parfile)

: names(parfile),

src_db((char*)(names.getSourceHeaders().c_str()),

names.getAllKeys()),

ctrlgrid((char*)(names.getVelocityGrid().c_str())),

simpar(names.getCmin(),

names.getCmax(),

names.getFmax(),

ctrlgrid.get_o(0),

ctrlgrid.get_o(0) +

(ctrlgrid.get_n(0) - 1)*

ctrlgrid.get_d(0),

ctrlgrid.get_o(1),

(ctrlgrid.get_n(1) - 1)*

43

ctrlgrid.get_d(1),

names.getCFL(),

names.getGridPointsPerWaveLength()),

seisdb((char*)(names.getSeismicHeaders().c_str()),

names.getAllKeys(),

names.getBinKey(),

names.getNumberOfBins(),

names.getFirstBinLocation(),

names.getBinStep(),

names.getBinStepTol()),

tinit((float) min(src_db.getTimeOfFirstSample(),

seisdb.getTimeOfFirstSample())),

tfinal((seisdb.getNumberOfTimeSamples()-1)*

seisdb.getTimeStep()+

seisdb.getTimeOfFirstSample()),

nts(1+int((tfinal-tinit)*simpar.get_dtrecip()+0.01)),

srcsam(names.getSourceKeys(),

src_db,

nts,

simpar.get_dt(),

tinit,

simpar.getGrid(),

names.getSourceBin()),

srcfac(names.getSourceKeys(),

seisdb,

srcsam),

clock(tinit,

tfinal,

simpar.get_dt()),

stendat(simpar,

names.getGridZeroLevel()),

tsfo(simpar,

srcfac,

samdat),

btsfo(tsfo),

dtsfo(simpar,

srcfac,

samdat),

atsfo(simpar),

ts(tsfo,

btsfo,

dtsfo,

44

atsfo,

stendat,

clock),

samfac(names.getReceiverKeys(),

nts,

simpar.get_dt(),

tinit,

simpar.getGrid(),

seisdb),

samdat(simpar),

sten(ts,samfac,samdat),

fwdFO(sten,1000),

derFO(sten,1000),

adjFO(sten,1000) {

try {

cerr<<"initialize internal source data in src sampler"<<endl;

// set up source

SeismicDataContainer srcdc(src_db);

SeismicOpenFile of(names.getSource());

srcdc.eval(of);

AdjSamplerLoader<float> sld(srcsam);

srcdc.eval(sld);

}

catch (SVLException & e) {

e<<"\ncalled from A2C24Environment constructor\n";

throw e;

}

}

~A2C24Environment() {}

FunctionObject *getFwd() {return &fwdFO;}

FunctionObject *getDer() {return &derFO;}

FunctionObject *getAdj() {return &adjFO;}

Grid<float> *getGrid() {return &ctrlgrid;}

SeismicDataBase *getSeisdb() {return &seisdb;}

45

virtual void write(SVLException & e)

{

e<<"A2C24Environment Object\n";

e<<"Parameters:\n";

names.write(e);

}

virtual ostream & write(ostream & e)

{

e<<"A2C24Environment Object\n";

e<<"Parameters:\n";

return e;

}

};

class RemoteA2C24Environment : public Remote {

private:

RemoteA2C24Environment();

FDTDProxy<float> meth;

Handle grid, seisdb;

DataContainerFactory *gridfac, *seisfac;

CSSpace<float> *ctrlsp, *datasp;

FDTDOp<float> * fdtdop;

public:

RemoteA2C24Environment(string parfile)

{

StreamString file(parfile);

Socket s;

s.Connect();

bool status;

s << CreateROCode;

s << A2C24EnvironmentCode;

s << file;

meth.fwd.receiveCousin(s);

meth.der.receiveCousin(s);

meth.adj.receiveCousin(s);

s >> grid;

46

s >> seisdb;

s >> status;

receiveCousin(s);

s.Close();

gridfac = new GridDataContainerProxyFactory<float> (grid);

seisfac = new SeismicDataContainerProxyFactory (seisdb);

ctrlsp = new CSSpace<float> (*gridfac);

datasp = new CSSpace<float> (*seisfac);

fdtdop = new FDTDOp<float> (*ctrlsp, *datasp, meth);

}

virtual ~RemoteA2C24Environment(){

if (gridfac) delete gridfac;

if (seisfac) delete seisfac;

if (ctrlsp) delete ctrlsp;

if (datasp) delete datasp;

if (fdtdop) delete fdtdop;

Socket s;

s.Connect();

bool status;

s << DeleteObjectCode;

s << CreateROCode;

sendCousin(s);

s << A2C24EnvironmentCode;

s >> status;

s.Close();

}

FDTD & getFDTD() { return meth; }

FDTDOp<float> & getOp() { return *fdtdop;}

};

Chapter 6

Closing Remarks

By using the process described here, we can extend previously written object-oriented

software to a distributed client-server component architecture without altering the

kernel. This mechanism entails the use of the proxy, visitor, and strategy design pat-

terns. The client-server model defines complete separation between user interface and

computational implementation. The separation of objects into predefined client and

server roles allows platform complexities to exclusively remain with the server. In

this way, low level details do not propagate to the abstract user level on the client.

We achieve simplicity from the high level of abstraction in the SVL software design

embedded within the component process. The client-server component framework

serves as an environment for coupling prefabricated components. By developing a

very simple communication backbone, we suffer very little loss in efficiency due to

message passing between components. In essence, client and server represent a trade-

off between type complexity and environment complexity. The client expresses the

former, and the server expresses the latter. The use of the strategy design pattern

allows component partitioning at higher levels of abstraction.

Chapter 7

An Appendix

7.1 SVL Client-Server Files

7.1.1 Communication Core

• socket.H: Defines class Socket which wraps all socket calls, and overloads iostream

operators to allow for less strenuous socket programming.

• streamable.H: Defines class Streamable which supplies an interface for other

classes to be ”streamable” across the socket network.

• socketstring.H: Defines class StreamString which makes a string streamable.

• remote.H: These classes comprise the core mechanism for extending SVL ker-

nel classes to the client-server environment. They specify the interfaces for

remote objects. Classes defined here include Remote, RemoteFunctionObject,

RemoteFunctionObjectRedn, and DataContainerProxy.

• handle.H: Defines ”streamable” class Handle which wraps server side object

identifiers (casted pointers on server side address space).

• rocodes.H: Enumerated list of all objects other than DataContainers that are

to have remote representation.

• dccodes.H: Enumerated list DataContainers objects that are to have remote

49

representation.

• messages.H: Enumerated list of server services. Should never need to be ex-

panded or modified.

• codes.H: Inclusion of all enumerated list files above.

7.1.2 Client Specific Files

• spaceproxy.H: Definition of class SpaceProxy which takes a DataContainerProx-

yFactory as a constructor argument. This class’s SVLLinearAlgebraPackage

data member is hard-wired for modular space proxy construction.

• rnproxy.H: Defines the remote counterpart class RnDataContainerProxy to class

RnDataContainer.

• gridproxy.H: Defines the remote counterpart class GridDataContainerProxy to

class GridDataContainer

• seismicproxy.H Defines the remote counterpart class SeismicDataContainer-

Proxy to class SeismicDataContainer.

• remotefunctions.H: Defines remote counterparts to all function objects defined

in file functions.H.

• remoteEuler.H: Defines classes EulerEnivronment and RemoteEulerEnviron-

ment for a client server based FDTD Euler ODE solver.

50

• remoteAcoustic.H: Defines classes A2C24Environment and RemoteA2C24Environment

for a client server based acoustic PDE solver.

• remoteExt Acoustic.H: Same as above except we are using the external A2C24

acoustic application.

7.1.3 Server Specific Files

• server.C: Server executable that spawns client requests to either function cre-

atero, createdc, or deleteRO.

• exceptServ: Defines an exception class specific to socket calls and server re-

quests.

• createro.H: Defines the function textitcreatero which includes a switch state-

ment based on enumerated list defined in rocodes.H to construct appropriate

kernel object.

• createdc.H: Defines the function textitcreatedc which includes a switch state-

ment based on enumerated list defined in dccodes.H to construct appropriate

kernel object.

• deleteRO.H: Defines the function deleteRO for appropriate kernel object dele-

tion.

51

7.2 SVL Parallel Server Protocol

This comprises a general walk-through of the command sequences and logical threads

of the parallel server. One of the guiding design principles of the parallel server is

that we maintain all parallel specific, MPI, commands exclusively within the server

component. In this manner, MPI calls are not pervasive in any of the client data

container and function objects. The instruction switch control paths mimic that of

the serial server.

The parallel server is a master/slave design embedded within one SPMD (single

program, multiple processes) program with provisions to provide an independent

master thread. This is by no means the final design. It is merely the first prototype

and uses simplified logical calls. Later we will expand functionality with the addition

of more classes and/or functions.

7.2.1 Breakdown of Services

In all parallel server function calls, the master server node packs creation and instan-

tiation information into a character buffer, and then broadcasts this MPI PACKED

buffer to the remaining slave nodes. When creating an object, the master node gath-

ers (MPI Gather) the unsigned long casted pointers from the drone processes into

an unsigned long integer array. The client receives from the master node a handle

to this array. When evaluating a function object, getting the result from a function

object, or deleting an object, the master node scatters (MPI Scatter) these casted

52

pointers to the appropriate processes. We are able to exploit the ordering proper-

ties of the MPI Gather and MPI Scatter routines, which makes for less complicated

coding. Listed in Instruction Order:

1. Creation of Data Container Object

2. Creation of Function Object

3. Evaluation of Function Object

4. Get Result from Reduction Function Object

5. Deletion of Object

7.2.2 Creation of Data Containers and Remote Objects

We assume that parallelization is achieved by distribution of data across the pro-

cessors. Auxilary parallel server functions: masterdc.H, slavedc.H, masterfo.H, and

slavedo.H are employed for appropriate master/slave responsibilities of creation of

objects. All function objects that the client requests for creation are basically serial.

We create these identical function objects on all processes. The only “parallel” spe-

cific function object creation provision entails assignment of the “res” variable for all

reduction function objects. Only the master node keeps an updated residual value,

while the slave nodes maintain this value at zero. Parallel functions do exist, but the

53

client has no knowledge of them. These truly parallel functions, such as the one to

be discussed later in Part II of this report, are only employed by the server.

7.2.3 Evaluation of Function Objects

As described above, this procedure entails the scattering of objects’ addresses to the

appropriate processes and having each process serially evaluate the function objects.

7.2.4 Get Result from (Reduction) Function Object

The master node calls an MPI Reduce function and sends the result to the client.

7.2.5 Delete an Object

Much like the evaluation protocol, this procedure involves scattering of the objects’

addresses, and forwarding deletion request to all other drone nodes.

7.2.6 Example: Construction of Distributed Grid Object

We assume that the Grid object construction parameters file and binary Grid data

file are located on the master server node only.

1. Client

(a) Creates Grid Data Container Proxy using file name constructor. This

instantiates socket request to master.

2. Master

54

(a) Accepts socket connection and receives instruction information from Client,

which is to create a Grid Data Container.

(b) Receives construction information. In this instance, this is the file name

that exists on master hard disk.

(c) Creates global Grid object from given file name.

(d) Loads data from binary file by instantiating a Grid Data object and eval-

uating a Grid Load function upon it.

(e) Extraction of global Grid parameters from global Grid object.

(f) Packs instruction information and global Grid construction parameters

into character buffer using MPI Pack

(g) Broadcasts this character buffer to drones.

(h) Creates SVLScatter function object. This is the first and so far only MPI

function created. it is a Unary Function Object that scatters an RnArray

to data container objects on the server. This function can be utilized

by any data container. Upon construction, however, it requires the full

array to be scattered. With our current assumption that all data to be

distributed is relegated to the master server, this function is extremely

straight forward.

(i) Conversion of global Grid parameters to local Grid parameters. For the

55

moment this is hard coded, later we should invoke a function that allows

partitioning diversity.

(j) Creation of Grid Data Container by passing local Grid object to construc-

tor.

(k) Grid Data Container evaluates SVLScatter function for data distribution.

(l) Handle returned to main parallel server program.

(m) Gathers all Handles from drones.

3. SLAVES

(a) Receives buffer broadcasted from master.

(b) Unpacks buffer and extracts global Grid parameters.

(c) Creates SVLScatter function, only supplying local dimension.

(d) Conversts global Grid parameters to appropriate local Grid parameters.

(e) Constructs local Grid object.

(f) Constructs Grid Data Container from local Grid object.

(g) Evaluates SVLScatter function on Grid Data Container.

(h) Returns Handle to main parallel server program.

56

References

1. R. Bartlett. RTOp: A Proposed Specification for User Defined Vector Reduction

and Transformation Operators. 2001.

2. B. Beej. Beej’s Guide to Network Programming.

www.ecst.csuchico.edu/ beej/guide/net/.

3. S. et all Benson. TAO Users Manual. Technical Report ANL/MCS-TM-242-

Revision 1.5, Argonne National Laboratory, Argonne, Illinois 60439, January

2003.

4. Eric Gamma et all. Design Patterns: Elements of Reusable Object-Oriented

Software. Addison-Wesley, New York, 1995.

5. Object Management Group. Documents and Technology. www.omg.org.

6. A. Padula. Ideas in Proxy Design for a Client-Server Architecture. May 2002.

7. J. Pee. Guidelines for Wrapping Sockets in Classes. C/C++ Users Journal,

November 2001.

8. S. D. Scott. Software Components for Simulation and Optimization. Mas-

ter’s thesis, Rice University, Houston, TX 77006, 2001. Also available at Rice

University, Department of Computational and Applied Mathematics.

57

9. S.D. Scott and W.W. Symes. Design of Vector Classes: A Counterproposal to

Roscoe Bartlett’s Proposed Standard. TRIP Annual Report, 2000.

10. C. Szyperski. Component Software: Beyond Object-Oriented Programming.

Addison-Wesley, New York, 1999.

