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Abstract

These notes are largely concerned with the strong and weak operator

topologies on spaces of bounded linear operators, especially on Hilbert

spaces, and related matters.
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Part I

Basic notions

1 Norms and seminorms

Let V be a vector space over the real numbers R or the complex numbers C.
A nonnegative real-valued function N on V is a seminorm if

N(t v) = |t|N(v)(1.1)

for every t ∈ R or C, as appropriate, and v ∈ V , and

N(v + w) ≤ N(v) +N(w)(1.2)

for every v, w ∈ V . Here |t| denotes the absolute value of t ∈ R or the modulus
of t ∈ C. If also N(v) > 0 when v 6= 0, then N is a norm on V .

If N is a norm on V , then

d(v, w) = N(v − w)(1.3)

is a metric on V . A collection N of seminorms on V will be called nice if for
every v ∈ V with v 6= 0 there is an N ∈ N such that N(v) > 0. In this case,
the topology on V associated to N is defined by saying that U ⊆ V is an open
set if for every u ∈ U there are finitely many seminorms N1, . . . , Nl ∈ N and
finitely many positive real numbers r1, . . . , rl such that

{v ∈ V : Nj(u− v) < rj for j = 1, . . . , l} ⊆ U.(1.4)

It is easy to see that V is Hausdorff with respect to this topology, and that the
vector space operations of addition and scalar multiplication are continuous.

2 ℓ
p spaces

Let p be a real number, p ≥ 1, and let ℓp be the space of sequences a = {aj}∞j=1

of real or complex numbers such that the infinite series

∞∑

j=1

|aj |p(2.1)
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converges. It is well known that this is a vector space with respect to termwise
addition and scalar multiplication, and that

‖a‖p =
( ∞∑

j=1

|aj |p
)1/p

(2.2)

defines a norm on this space. Similarly, the space ℓ∞ of bounded sequences of
real or complex numbers is a vector space, and

‖a‖∞ = sup{|aj | : j ≥ 1}(2.3)

is a norm on ℓ∞.
If aj = 0 for all but finitely many j, then a is contained in ℓp for each p.

Moreover, the space of these sequences is a dense linear subspace of ℓp when
p <∞. The closure of this space of sequences in ℓ∞ is the space c0 of sequences
that converge to 0.

These spaces may also be denoted ℓp(Z+), c0(Z+), where Z+ is the set of
positive integers. There are versions of these spaces for doubly-infinite sequences
a = {aj}∞j=−∞ as well, denoted ℓp(Z), c0(Z), where Z is the set of all integers.
More precisely, if p < ∞, then ℓp(Z) is the space of doubly-infinite sequences
such that

∞∑

j=−∞

|aj |p(2.4)

converges, which is the same as saying that

∞∑

j=1

|aj |p,
∞∑

j=0

|a−j |p(2.5)

both converge, equipped with the norm

‖a‖p =
( ∞∑

j=−∞

|aj |p
)1/p

.(2.6)

The space ℓ∞(Z) consists of bounded doubly-infinite sequences, with the norm

‖a‖∞ = sup{|aj| : j ∈ Z}.(2.7)

As before, the space of doubly-infinite sequences a such that aj → 0 as j → ±∞
defines a closed linear subspace c0(Z) of ℓ∞(Z).

3 Bounded linear mappings

Let V , W be vector spaces, both real or both complex, and equipped with norms
‖v‖V , ‖w‖W , respectively. A linear mapping T : V → W is said to be bounded

if there is an L ≥ 0 such that

‖T (v)‖W ≤ L ‖v‖V(3.1)
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for every v ∈ V . It is easy to see that bounded linear mappings are continuous
and even uniformly continuous with respect to the metrics on V , W associated
to their norms. Conversely, a linear mapping is bounded if it is continuous at
0. The operator norm of a bounded linear mapping T : V →W is defined by

‖T ‖op = sup{‖T (v)‖W : v ∈ V, ‖v‖V ≤ 1}.(3.2)

Equivalently, L = ‖T ‖op is the smallest nonnegative real number that satis-
fies the previous condition. The space BL(V,W ) of bounded linear mappings
from V into W is a vector space with respect to pointwise addition and scalar
multiplication, and it is easy to see that ‖T ‖op defines a norm on this space.

Suppose that V1, V2, V3 are vector spaces, all real or all complex, and
equipped with norms ‖ · ‖1, ‖ · ‖2, ‖ · ‖3. If T1 : V1 → V2 and T2 : V2 → V3 are
bounded linear mappings, then their composition T2 ◦ T1 : V1 → V3 is also a
bounded linear mapping, with

‖T2 ◦ T1‖op,13 ≤ ‖T1‖op,12 ‖T2‖op,23,(3.3)

where the subscripts indicate the spaces and norms involved. In particular,
the space BL(V ) = BL(V, V ) of bounded linear operators on a real or complex
vector space V with a norm ‖v‖V is an algebra with respect to composition. Of
course, the identity operator I on V has operator norm 1.

4 Dual spaces

Let V be a real or complex vector space, equipped with a norm ‖v‖V . A bounded

linear functional on V is a bounded linear mapping from V into R or C, using
the standard absolute value or modulus as the norm on the latter. The vector
space of bounded linear functionals on V is the same as BL(V,R) or BL(V,C),
and will be denoted V ′. The dual norm of λ ∈ V ′ is the same as its operator
norm as a bounded linear mapping from V into R or C, and may be denoted
‖λ‖V ′ .

Suppose that 1 ≤ p, q ≤ ∞ are conjugate exponents, in the sense that

1

p
+

1

q
= 1,(4.1)

where 1/∞ = 0. If a = {aj}∞j=1, b = {bj}∞j=1 are sequences of real or complex
numbers, then let ab the sequence {aj bj}∞j=1 of products of the terms of a, b.

Hölder’s inequality implies that ab ∈ ℓ1 when a ∈ ℓp, b ∈ ℓq, and that

‖ab‖1 ≤ ‖a‖p ‖b‖q.(4.2)

The analogous statements for doubly-infinite sequences also hold.
It follows that

λb(a) =

∞∑

j=1

aj bj(4.3)
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defines a bounded linear functional on ℓp for each b ∈ ℓq. Furthermore,

‖λb‖(ℓp)′ = ‖b‖q,(4.4)

because the dual norm of λb on ℓp is less than or equal to ‖b‖q by Hölder’s
inequality, while the opposite inequality can be derived from specific choices of
a ∈ ℓp for a given b. It is well known that every bounded linear functional on ℓp

is of this form when p < ∞. If b ∈ ℓ1, then the restriction of λb to c0 defines a
bounded linear functional on c0 with respect to the ℓ∞ norm, the dual norm of
this linear functional is also equal to ‖b‖1, and every bounded linear functional
on c0 is of this form. Again, there are analogous statements for doubly-infinite
sequences.

5 Shift operators

If a = {aj}∞j=−∞ is a doubly-infinite sequence of real or complex numbers, then
let b = T (a) be defined by

bj = aj−1.(5.1)

This is the (forward) shift operator on the vector space of all such sequences,
which is a one-to-one linear mapping of this vector space onto itself, whose
inverse is known as the backward shift operator. Observe that T sends ℓp(Z),
1 ≤ p ≤ ∞, and c0(Z) onto themselves, and satisfies

‖T (a)‖p = ‖a‖p(5.2)

for every a ∈ ℓp(Z). Thus T is a bounded linear operator on ℓp(Z) with operator
norm 1, and its inverse has the same property.

Now let a = {aj}∞j=1 be an ordinary sequence of real or complex numbers,
and let b = T (a) be defined by

bj = aj−1 when j ≥ 1, b1 = 0.(5.3)

This is the forward shift operator on the vector space of all such sequences, which
is a one-to-one linear mapping of this vector space into itself. Clearly T sends
ℓp(Z+), 1 ≤ p ≤ ∞, and c0(Z+) into themselves, and satisfies (5.2) for every
a ∈ ℓp(Z+), so that T is a bounded linear operator on ℓp(Z+) with operator
norm 1. If we identify ordinary sequences a = {aj}∞j=1 with doubly-infinite
sequences {aj}∞j=−∞ such that aj = 0 when j ≤ 0, then this shift operator is
the same as the previous one restricted to this linear subspace.

The backward shift operator R on the space of ordinary sequences a =
{aj}∞j=1 is defined by c = R(a), where

cj = aj+1.(5.4)

This is the same identifying a with a doubly-infinite sequence as in the previ-
ous paragraph, applying the earlier backward shift operator on doubly-infinite
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sequences, and projecting the result to an ordinary sequence by restricting the
indices to positive integers. In particular, R sends ℓp(Z+), 1 ≤ p ≤ ∞, and
c0(Z+) onto themselves, and satisfies

‖R(a)‖p ≤ ‖a‖p(5.5)

when a ∈ ℓp(Z+). This means that R has operator norm less than or equal to
1 on ℓp(Z+) for each p, and one can check that the operator norm is actually
equal to 1. Similarly, R has operator norm 1 on c0(Z).

6 Arbitrary sequences

Let V be the vector space of doubly-infinite sequences a = {aj}∞j=−∞ of real or
complex numbers, with respect to termwise addition and scalar multiplication.
For each j ∈ Z,

Nj(a) = |aj |(6.1)

defines a seminorm on V . The topology on V associated to this family of
seminorms is the same as the product topology, where V is identified with the
Cartesian product of infinitely many copies of R or C. The shift operator on
V described in the previous section is a homeomorphism with respect to this
topology. The vector space W of ordinary sequences a = {aj}∞j=1 of real or
complex numbers can be identified with the linear subspace of V consisting of
doubly-infinite sequences {aj}∞j=−∞ such that aj = 0 when j ≤ 0. On W , we
may as well consider only the seminorms Nj corresponding to j ∈ Z+. The
topology on W determined by these seminorms is the same as the topology
induced by the one on V . This is also the same as the product topology on W
as the Cartesian product of infinitely many copies of R or C. Note that the
linear subspace of V identified with W in this way is closed. The forward shift
operator is a linear homeomorphism of W onto a proper closed linear subspace,
while the backward shift operator determines a continuous linear mapping of
W onto itself.

7 Metrizability

Let V be a real or complex vector space, and let N be a nice collection of
seminorms on V . If N1, . . . , Nl are finitely many seminorms on V , then it is
easy to see that

N(v) = max(N1(v), . . . , Nl(v))(7.1)

is also a seminorm on V . If N has only finitely many elements, then it follows
that their maximum is a norm on V that determines the same topology. If N
is countably infinite, and N1, N2, . . . is an enumeration of its elements, then one
can check that

ρ(v, w) = max
j≥1

(
min(Nj(v − w), 1/j)

)
(7.2)
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is a metric on V that determines the same topology as N . Conversely, if N is
a nice collection of seminorms on V for which there is a countable local base
for the corresponding topology at 0, then the same topology is determined by
only finitely or countably many elements of N . It also happens sometimes that
a countable subcollection of N suffices to determine the same topology on some
interesting subsets of V . Hence the induced topology on these subsets can also
be described by a metric.

8 Completeness

Remember that a metric space M is said to be complete if every sequence of
elements of M converges to an element of M . For example, the real line and
the complex plane are complete with respect to their standard metrics. A real
or complex vector space V with a norm ‖v‖ is said to be a Banach space if
it is complete with respect to the metric associated to the norm. It is well
known that the ℓp spaces described in Section 2 are complete. A closed subset
Y of a complete metric space M is automatically complete, with respect to the
restriction of the metric to Y , and thus c0 is also a Banach space with respect
to the ℓ∞ norm.

Let V be a real or complex vector space equipped with a nice collection N
of finitely or countably many seminorms. As in the previous section, there is
a metric ρ(v, w) on V that determines the same topology on V as N and is
translation-invariant in the sense that

ρ(v + u,w + u) = ρ(v, w)(8.1)

for every u, v, w ∈ V . It is easy to check that any other translation-invariant
metric on V that determines the same topology also determines the same class
of Cauchy sequences, which can be characterized directly in terms of differences
of terms in the sequence and the topology of V at 0 as well. In this case, V is
said to be a Fréchet space if it is complete. Banach spaces are automatically
Fréchet spaces, and the spaces of arbitrary sequences of real or complex numbers
give examples of Frćhet spaces for which the topology is not determined by a
single norm.

9 Continuous extensions

Let M and N be metric spaces, and suppose that N is complete. If E is a dense
set in M and f : E → N is uniformly continuous, then it is well known that
there is a unique extension of f to a uniformly continuous mapping from M into
N . For if x is any element of M , then there is a sequence {xj}∞j=1 of elements
of E that converges to x. Thus {xj}∞j=1 is a Cauchy sequence as a sequence
of elements of E, and uniform continuity implies that {f(xj)}∞j=1 is a Cauchy
sequence in N that converges by completeness. If {yj}∞j=1 is another sequence
of elements of E that converges to x, then {f(yj)}∞j=1 converges to the same
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element of N as {f(xj)}∞j=1. The extension of f to M at x can be defined as
this limit, which does not depend on the choice of the sequence of elements of E
that converges to x. Uniform continuity of this extension is easily inherited from
uniform continuity of f . Uniqueness holds because two continuous functions on
M that agree on a dense set are the same.

Now let V , W be vector spaces, both real or both complex, and equipped
with norms ‖v‖V , ‖w‖W . If U is a dense linear subspace of V , T is a bounded
linear mapping from U into W , and W is complete, then there is a unique
extension of T to a bounded linear mapping from V into W . It follows from
the statement in the previous paragraph that T has a unique extension to a
uniformly continuous mapping from V into V , since bounded linear mappings
are automatically uniformly continuous. One can also check that the extension
is linear, because T is linear, and that the operator norm of the extension is the
same as the operator norm of T .

10 Uniform boundedness

Let V , W be vector spaces, both real or both complex, and equipped with norms
‖v‖V , ‖w‖W . Suppose that T is a collection of bounded linear mappings from
V into W which is uniformly bounded pointwise on V , in the sense that

‖T (v)‖W , T ∈ T ,(10.1)

are bounded for every v ∈ V . If V is complete, then the Banach–Steinhaus
theorem implies that T is uniformly bounded, in the sense that the elements of
T have uniformly bounded operator norm. To see this, consider

An = {v ∈ V : ‖T (v)‖W ≤ n for every T ∈ T }(10.2)

for each positive integer n. The hypothesis of pointwise boundedness implies
that

∞⋃

n=1

An = V.(10.3)

Each An is also a closed set in V , because every T ∈ T is bounded and hence
continuous. Since V is complete, the Baire category theorem implies that An

contains a nonempty open set for some n. Using linearity, one can show that
the elements of T are uniformly bounded on the unit ball in V , which means
exactly that they have uniformly bounded operator norms.

11 Bounded linear mappings, 2

Let V , W be vector spaces, both real or both complex, and equipped with
norms. If W is complete, then the space BL(V,W ) of bounded linear mappings
from V into W is also complete, with respect to the operator norm. For suppose
that {Tj}∞j=1 is a Cauchy sequence of bounded linear mappings from V into W
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in the operator norm. This implies that {Tj(v)}∞j=1 is a Cauchy sequence of
elements of W for each v ∈ V , which converges to an element T (v) of W by
completeness. Thus {Tj}∞j=1 converges pointwise on V to T : V → W , and it
is easy to see that T is linear, since Tj is linear for each j. Using the fact that
{Tj}∞j=1 is a Cauchy sequence in the operator norm, one can show that T is
bounded, and that {Tj}∞j=1 converges to T in the operator norm, as desired. In
particular, the dual space V ′ is complete, with respect to the dual norm.

12 Separability

Remember that a metric space is said to be separable if it contains a dense set
with only finitely or countably many elements. For example, the set of rational
numbers is a countable dense set in the real line, which is therefore separable.
The complex plane is separable as well, since the set of complex numbers with
rational real and imaginary parts is countable and dense. Let V be a real or
complex vector space equipped with a norm. In order for V to be separable
with respect to the metric associated to the norm, it suffices that there be a set
E ⊆ V with only finitely or countably many elements whose linear span spanE
is dense in V . By definition, spanE consists of all finite linear combinations
of elements of E, and is the smallest linear subspace of V that contains E. It
is easy to see that the set of finite linear combinations of elements of E with
rational coefficients is dense in spanE in the real case, and that the set of finite
linear combinations of elements of E whose coefficients have rational real and
imaginary parts is dense in spanE in the complex case. If E has only finitely
or countable many elements, then these subsets of spanE have only finitely or
countably many elements too, and are dense in V when spanE is dense in V .
It follows from this criterion that finite-dimensional spaces are automatically
separable. The ℓp spaces in Section 2 are separable when p < ∞, and c0 is
separable with respect to the ℓ∞ norm.

13 Inner product spaces

Let V be a real or complex vector space. An inner product on V is a function
〈v, w〉 defined for v, w ∈ V and with values in the real or complex numbers, as
appropriate, with the following three properties. First, 〈v, w〉 is linear in v for
each w ∈ V . Second,

〈w, v〉 = 〈v, w〉(13.1)

for every v, w ∈ V in the real case, and

〈w, v〉 = 〈v, w〉(13.2)

for every v, w ∈ V in the complex case. Here z denotes the complex conjugate
of a complex number z. Note that this symmetry condition implies that 〈v, w〉
is also linear in w in the real case, and is conjugate-linear in the complex case.
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This also implies that 〈v, v〉 is automatically a real number for every v ∈ V in
the complex case. The third condition asks that

〈v, v〉 > 0(13.3)

for every v ∈ V such that v 6= 0, in both the real and complex cases.
Put

‖v‖ = 〈v, v〉1/2.(13.4)

The Cauchy–Schwarz inequality

|〈v, w〉| ≤ ‖v‖ ‖w‖(13.5)

can be derived from the fact that

〈v + t w, v + t w〉 ≥ 0(13.6)

for every v, w ∈ V and t ∈ R or C, as appropriate. By expanding ‖v+w‖2 into
a sum of inner products and applying the Cauchy–Schwarz inequality, one can
show that ‖v‖ satisfies the triangle inequality, and hence defines a norm on V .
The parallelogram law states that

‖v + w‖2 + ‖v − w‖2 = 2 ‖v‖2 + 2 ‖w‖2(13.7)

for every v, w ∈ V , which follows easily by expanding the terms on the left side
into sums of inner products.

The standard inner products on Rn, Cn are given by

〈v, w〉 =

n∑

j=1

vj wj(13.8)

in the real case and

〈v, w〉 =

n∑

j=1

vj wj(13.9)

in the complex case, where v = (v1, . . . , vn), w = (w1, . . . , wn). The associated
norm

‖v‖ =
( n∑

j=1

|vj |2
)1/2

(13.10)

is the same as the standard Euclidean norm. It is well known that a finite-
dimensional inner product space V of dimension n is equivalent to Rn or Cn

with the standard inner product, using the Gram–Schmidt process to convert
an ordinary basis for V into an orthonormal basis.

Similarly, the standard inner products on the spaces of sequences of real or
complex numbers in ℓ2 are defined by

〈a, b〉 =

∞∑

j=1

aj bj(13.11)
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in the real case and

〈a, b〉 =
∞∑

j=1

aj bj(13.12)

in the complex case, where a = {aj}∞j=1, b = {bj}∞j=1. More precisely, the
absolute convergence of these series can be derived from the Cauchy–Schwarz
inequality for the standard inner products on Rn, Cn, or from the p = q = 2
case of Hölder’s inequality, which is basically the same. The associated norms
are equal to ‖a‖2 in Section 2. The standard inner products on the spaces
of doubly-infinite sequences of real or complex numbers in ℓ2(Z) are defined
analogously, and the associated norms are also equal to ‖a‖2 in Section 2.

14 Hilbert spaces

A real or complex inner product space (V, 〈v, w〉) is said to be a Hilbert space

if it is complete with respect to the associated norm ‖v‖. Finite-dimensional
inner product spaces are complete, as are the ℓ2 spaces in Section 2.

Suppose that V is a Hilbert space, and that v1, v2, . . . is an orthonormal
sequence of vectors in V . This means that

〈vj , vl〉 = 0(14.1)

when j 6= l, and ‖vj‖ = 1 for every j. If a = {aj}∞j=1 is a square-summable
sequence of real or complex numbers, as appropriate, then

∞∑

j=1

aj vj(14.2)

converges in V . To see this, it suffices to show that the corresponding sequence
of partial sums

∑n
j=1 aj vj is a Cauchy sequence, which then converges by com-

pleteness. Because of orthonormality,
∥∥∥∥

n∑

j=k

aj vj

∥∥∥∥
2

=

n∑

j=k

|aj |2(14.3)

when n ≥ k ≥ 1, and this tends to 0 as k → ∞ since a ∈ ℓ2, as desired.
Suppose now that V is infinite-dimensional and separable, so that there is a

sequence v1, v1, . . . of elements of V whose linear span is dense in V . Using the
Gram–Schmidt process, we may ask also that the vj ’s be orthonormal. In this
case,

a 7→
∞∑

j=1

aj vj(14.4)

defines a linear mapping from ℓ2 into V . It is not difficult to show that this
mapping is one-to-one, and that the standard inner product on ℓ2 corresponds
exactly to the given inner product on V under this mapping. One can also show
that this mapping sends ℓ2 onto V , because the linear span of the vj ’s is dense
in V .
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15 Orthogonal projections

Let (V, 〈v, w〉) be a real or complex Hilbert space, and let ‖v‖ be the associated
norm. Suppose that A is a nonempty closed convex set in V , and let v be any
element of V . If

r = inf{‖v − w‖ : w ∈ A},(15.1)

then there is a w ∈ A such that ‖v − w‖ = r. Of course, there is a sequence
{wj}∞j=1 of elements of A such that

lim
j→∞

‖v − wj‖ = r.(15.2)

It suffices to show that this sequence converges, because its limit would then have
the required properties. By completeness, it is enough to show that {wj}∞j=1 is
a Cauchy sequence. This can be done using the parallelogram law, and the fact
that

wj + wl

2
∈ A(15.3)

for each j, l ≥ 1, by convexity.
Suppose now that A is a closed linear subspace of V . If v, w are as in the

previous paragraph, and u ∈ A, then w − u ∈ A too, and hence

‖v − w‖2 = r2 ≤ ‖v − w + u‖2(15.4)

= ‖v − w‖2 + 〈v − w, u〉 + 〈u, v − w〉 + ‖u‖2.

This can be used to show that

〈v − w, u〉 = 0.(15.5)

Conversely, if v ∈ V , w ∈ A, and (15.5) holds for each u ∈ A, then

‖v − w + u‖2 = ‖v − w‖2 + ‖u‖2(15.6)

for every u ∈ A, which implies that

‖v − w‖ ≤ ‖v − w + u‖,(15.7)

and ‖v − w‖ = r. Applying (15.6) to u = w, we also get that

‖v‖2 = ‖v − w‖2 + ‖w‖2.(15.8)

Suppose that v ∈ V , w,w′ ∈ A, and w, w′ both satisfy (15.5) for each u ∈ A.
This implies that w − w′ ∈ A,

〈w − w′, w − w′〉 = 〈w − v, w − w′〉 + 〈v − w′, w − w′〉 = 0,(15.9)

and hence w = w′. Thus w ∈ A is uniquely determined by the condition that
(15.5) hold for every u ∈ A, and the orthogonal projection PA of V onto A is
defined by PA(v) = w. It is easy to see from this characterization that PA is a
linear mapping on V , and that

‖PA(v)‖ ≤ ‖v‖.(15.10)

Of course, PA(v) = v when v ∈ A, so that PA has operator norm equal to 1,
unless A = {0}, in which case PA = 0.
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16 Orthogonal complements

Let (V, 〈·, ·〉) be a real or complex Hilbert space, and let W be a linear subspace
of V . The orthogonal complement W⊥ of W is defined by

W⊥ = {v ∈ V : 〈v, w〉 = 0 for every w ∈W}.(16.1)

It is easy to see that this is a closed linear subspace of V , and that

W ∩W⊥ = {0}.(16.2)

If W is a closed linear subspace of V , then it follows from the previous section
that every element of V can be expressed in a unique way as a sum of elements of
W and W⊥, and that W⊥ is the same as the kernel of the orthogonal projection
of V onto W . Note that the orthogonal complement of W is equal to the
orthogonal complement of its closure in V , and so we may as well restrict our
attention to closed linear subspaces of V .

Clearly
W ⊆ (W⊥)⊥.(16.3)

If W is a closed linear subspace of V , then

W = (W⊥)⊥.(16.4)

For suppose that v ∈ (W⊥)⊥, and let us check that v ∈ W . As in the previous
section, there is a w ∈ W such that v − w ∈ W⊥. However, v − w ∈ (W⊥)⊥,
since v ∈ (W⊥)⊥ and w ∈ W ⊆ (W⊥)⊥, and hence v − w = 0, as desired.

17 Dual spaces, 2

Let (V, 〈·, ·〉) be a real or complex inner product space. For each w ∈ V ,

λw(v) = 〈v, w〉(17.1)

defines a linear functional on V . The Cauchy–Schwarz inequality implies that
λw is a bounded linear functional on V , with dual norm less than or equal to
the norm of w. The dual norm of λw is actually equal to the norm of w, because
λw(w) = ‖w‖2. Suppose now that λ is an arbitrary bounded linear functional on
V , and that V is a Hilbert space. The kernel Z of λ is a closed linear subspace
of V , since λ is continuous. Of course, Z = V if and only if λ = 0. Otherwise,
Z has codimension 1 in V , and one can check that λ = λw for some w ∈ Z⊥.

18 The Hahn–Banach theorem

Let V be a real or complex vector space equipped with a norm ‖ · ‖. The Hahn–

Banach theorem states that a bounded linear functional λ on a linear subspace
W of V can be extended to a bounded linear functional on V with the same
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norm. More precisely, the norm of λ on W is defined using the restriction of
the norm ‖ · ‖ to W . In the proof, one first extends λ to a linear functional
on a linear subspace of V spanned by W and a single vector, while keeping the
norm of the linear functional constant. If W has finite codimension in V , then
it suffices to do this finitely many times. If V is separable, then a sequence of
these extensions can be used to get an extension of λ to a dense linear subspace
of V , and then to V itself, as in Section 9. If V is a Hilbert space, then the
Hahn–Banach theorem can be derived from the characterization of bounded
linear functions in the previous section.

As a corollary, for each v ∈ V there is a bounded linear functional on V with
norm 1 such that

λ(v) = ‖v‖.(18.1)

Indeed, one can start by defining λ on the subspace W of V spanned by v, and
then use the Hahn-Banach theorem to extend λ to all of V . This corollary can
be verified directly for the ℓp spaces in Section 2, as well as any inner product
space.

Note that every v ∈ V determines a bounded linear functional Lv on the
dual space V ′ of bounded linear functionals on V , given by

Lv(λ) = λ(v)(18.2)

for each λ ∈ V ′. It is easy to see that the dual norm of Lv on V ′ is less than or
equal to the norm of v, just by the definition of the dual norm. The corollary
of the Hahn–Banach theorem mentioned in the previous paragraph implies that
the dual norm of Lv is equal to the norm of v. Thus v 7→ Lv is an isometric
linear embedding of V into the dual V ′′ of V ′.

A Banach space V is said to be reflexive if every bounded linear functional
on V ′ is of the form Lv for some v ∈ V . Hilbert spaces are reflexive, by the
characterization of their bounded linear functionals in the previous section. If
1 < p < ∞, then the ℓp spaces in Section 2 are reflexive, by the description of
their duals in Section 4.

19 The weak topology

Let V be a real or complex vector space equipped with a norm. For each
bounded linear functional λ on V ,

Nλ(v) = |λ(v)|(19.1)

defines a seminorm on V . The collection of all of these seminorms Nλ, λ ∈ V ′,
is a nice collection of seminorms on V in the sense of Section 1, because of the
Hahn–Banach theorem. The topology on V that they determine is known as the
weak topology. It is easy to see that every open set in V in the weak topology
is also an open set in the topology determined by the norm, since bounded
linear functionals are continuous. The converse holds only when V has finite
dimension. For example, an open ball in V cannot be an open set in the weak
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topology when V is infinite-dimensional, because it does not contain an affine
subspace of finite codimension.

Similarly, every closed set in V with respect to the weak topology is a closed
set in the topology determined by the norm. The Hahn–Banach theorem implies
that the converse holds for closed linear subspaces of V . For if W is a closed
linear subspace of V with respect to the norm and v ∈ V is not in W , then one
can show that there is a bounded linear functional λ on the linear span of W
and v such that λ(w) = 0 for every w ∈ W and λ(v) 6= 0. The Hahn–Banach
theorem implies that λ has an extension to a bounded linear functional on V ,
and this implies that there is a neighborhood of v in the weak topology on V
that is disjoint from W .

Suppose that Λ is a collection of bounded linear functionals on V whose
linear span is dense in V ′ with respect to the dual norm. In this case, Nλ,
λ ∈ Λ, is also a nice collection of seminorms on V . If E ⊆ V is bounded, which
means that E is contained in a ball with respect to the norm, then the topology
on E induced by the weak topology on V is the same as the topology induced
by the seminorms Nλ, λ ∈ Λ. If V ′ is separable with respect to the dual norm,
then it follows that the topology induced on bounded subsets of V by the weak
topology is metrizable, as in Section 7.

20 The weak∗ topology

Let V be a real or complex vector space equipped with a norm. For each v ∈ V ,

Nv(λ) = |λ(v)|(20.1)

defines a seminorm on the dual space V ′ of bounded linear functionals on V . The
collection of all of these seminorms is a nice collection of seminorms on V ′ in the
sense of Section 1, simply because a linear functional λ on V is equal to 0 when
λ(v) = 0 for every v ∈ V . The topology on V ′ determined by this collection of
seminorms is known as the weak∗ topology. Every open set in V ′ with respect to
the weak∗ topology is also an open set with respect to the topology determined
by the dual norm, because Lv(λ) = λ(v) is a bounded linear functional on V ′

for each v ∈ V .
Suppose that the linear span of A ⊆ V is dense in V . This implies that

Nv, v ∈ A, is also a nice collection of seminorms on V ′. If E ⊆ V ′ is bounded
with respect to the dual norm, then the topology on E induced by the weak∗

topology on V ′ is the same as the topology determined by the seminorms Nv,
v ∈ A. If V is separable, then it follows that the topology induced on bounded
subsets of V ′ with respect to the dual norm by the weak∗ topology is metrizable,
as in Section 7.

The Banach–Alaoglu theorem states that the closed unit ball B′ in V ′ with
respect to the dual norm is compact in the weak∗ topology. If V is separable,
then the topology induced on B′ by the weak∗ topology is metrizable, as in
the previous paragraph. It is well known that compactness is equivalent to
sequential compactness in this case.
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21 Convergence of sequences

Let V be a real or complex vector space equipped with a norm. A sequence of
elements {vj}∞j=1 of V converges to v ∈ V in the weak topology if and only if

lim
j→∞

λ(vj) = λ(v)(21.1)

for every λ ∈ V ′. Similarly, a sequence {λj}∞j=1 of bounded linear functionals
on V converges to λ ∈ V ′ in the weak∗ topology if

lim
j→∞

λj(v) = λ(v)(21.2)

for every v ∈ V . If {λj(v)}∞j=1 converges as a sequence of real or complex
numbers for every v ∈ V , then the limit automatically defines a linear functional
λ on V . If the dual norms of the λj ’s are uniformly bounded, then it is easy to
see that λ is also bounded.

If {λj}∞j=1 is a sequence of bounded linear functionals on V which converges
in the weak∗ topology, then {λj(v)}∞j=1 is a bounded sequence of real or complex
numbers for every v ∈ V . If V is complete, then it follows from the Banach–
Steinhaus theorem in Section 10 that the λj ’s have uniformly bounded dual
norms. If {vj}∞j=1 is a sequence of elements of V that converges in the weak
topology, then one can use the Banach–Steinhaus theorem to show that the vj ’s
have bounded norm in V . More precisely, this uses the completeness of V ′, as in
Section 11, instead of the completeness of V . This also uses the Hahn–Banach
theorem, to get uniform boundedness of the vj ’s from the uniform boundedness
of λ(vj) over λ ∈ V ′ with dual norm less than or equal to 1.

For any sequence {λj}∞j=1 of linear functionals on V , the set of v ∈ V such
that {λj(v)}∞j=1 converges in R of C is a linear subspace of V . If the λj ’s are
bounded linear functionals on V with uniformly bounded dual norms, then one
can show that this set is closed. It follows that a sequence {λj}∞j=1 of bounded
linear functionals on V with uniformly bounded dual norms converges in the
weak∗ topology when {λj(v)}∞j=1 converges in R or C for a set of v’s with dense
linear span in V .

Remember from Section 4 that ℓq can be identified with the dual of ℓp when
1 ≤ p <∞ and 1/p+ 1/q = 1, and that ℓ1 can be identified with the dual of c0
equipped with the ℓ∞ norm. Suppose that

a(1) = {al(1)}∞l=1, a(2) = {al(2)}∞l=1, . . .(21.3)

is a sequence of elements of ℓq with uniformly bounded ℓq norms such that
{al(j)}∞j=1 converges as a sequence of real or complex numbers for each l. If

lim
j→∞

al(j) = al(21.4)

and a = {al}∞l=1, then a ∈ ℓq and a(1), a(2), . . . converges to a in the weak∗

topology, as bounded linear functionals on ℓp or c0 when q = 1. The analogous
statement for ℓq(Z) holds as well.
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22 The strong operator topology

Let V , W be vector spaces, both real or both complex, and equipped with norms
‖v‖V , ‖w‖W , respectively. For each v ∈ V ,

Nv(T ) = ‖T (v)‖W(22.1)

defines a seminorm on the vector space BL(V,W ) of bounded linear mappings
from V into W . The collection of these seminorms is a nice collection of semi-
norms in the sense of Section 1, since T = 0 as a linear mapping exactly when
T (v) = 0 for every v ∈ V . The topology determined on BL(V,W ) by this
collection of seminorms is known as the strong operator topology.

If W = R or C, as appropriate, then BL(V,W ) is the same as the dual
V ′ of V , and the strong operator topology reduces to the weak∗ topology. If
instead V = R or C, then there is a natural identification between BL(V,W )
and W . In this case, the strong operator topology reduces to the topology on
W determined by the norm ‖w‖W .

Of course, open subsets of BL(V,W ) in the strong operator topology are
also open with respect to the topology determined by the operator norm. It is
easy to see that closed balls in BL(V,W ) with respect to the operator norm are
closed sets in the strong operator topology.

If the linear span of A ⊆ V is dense in V , then Nv(T ), v ∈ A, is also a
nice collection of seminorms on BL(V,W ), because T (v) = 0 for every v ∈ V
when T : V → W is a bounded linear transformation and T (v) = 0 for every
v ∈ A. If E ⊆ BL(V,W ) is bounded with respect to the operator norm, then
the topology induced on E by the strong operator topology is the same as
the topology determined by the seminorms Nv(T ), v ∈ A. Hence the topology
induced on E by the strong operator topology is metrizable when V is separable,
as in Section 7.

23 Convergence of sequences, 2

Let V , W be vector spaces, both real or both complex, and equipped with norms.
A sequence {Tj}∞j=1 of bounded linear mappings from V into W converges to
another bounded linear mapping T : V → W in the strong operator topology
when

lim
j→∞

Tj(v) = T (v)(23.1)

for every v ∈ V . If {Tj(v)}∞j=1 converges in W for every v ∈ V , then the limit
defines a linear mapping T : V → W . If the operator norms of the Tj’s are
uniformly bounded, then it is easy to see that T is bounded too.

If {Tj}∞j=1 is a sequence of bounded linear mappings from V into W such
that {Tj(v)}∞j=1 converges in W for every v ∈ V , then {Tj(v)}∞j=1 is bounded
in W for every v ∈ V . If V is complete, then the Banach–Steinhaus theorem in
Section 10 implies that the operator norms of the Tj ’s are uniformly bounded.
Hence the limit is bounded as well, as in the previous paragraph.

22



Suppose that {Tj}∞j=1 is a sequence of linear mappings from V into W , and
that T : V → W is another linear mapping. The set of v ∈ V such that
{Tj(v)}∞j=1 converges to T (v) in W is a linear subspace of V . If the Tj ’s and T
are bounded linear mappings, and if the Tj ’s have bounded operator norms, then
the set of v ∈ V such that {Tj(v)}∞j=1 converges to T (v) in W is closed. Under
these conditions, it follows that {Tj}∞j=1 converges to T in the strong operator
topology when {Tj(v)}∞j=1 converges to T (v) in W for a set of v’s whose linear
span is dense in V .

For any sequence {Tj}∞j=1 of linear mappings from V intoW , the set of v ∈ V
such that {Tj}∞j=1 converges in W is a linear subspace of V . Similarly, the set
of v ∈ V such that {Tj(v)}∞j=1 is a Cauchy sequence in W is a linear subspace
of V . If the Tj ’s are bounded linear mappings with uniformly bounded operator
norms, then the set of v ∈ V such that {Tj(v)}∞j=1 is a Cauchy sequence in W
is closed in V . If W is complete, then it follows that the set of v ∈ V such that
{Tj(v)}∞j=1 converges in W is closed in V when the Tj ’s are uniformly bounded.
Thus {Tj}∞j=1 converges in the strong operator topology when W is complete,
the Tj’s are uniformly bounded, and {Tj(v)}∞j=1 converges in W for a set of v’s
whose linear span is dense in V .

24 Shift operators, 2

Let R be the backward shift operator acting on sequences of real or complex
numbers, as in Section 5. Thus if a = {aj}∞j=1 is such a sequence, then R(a)
is the sequence {aj+1}∞j=1. If n is a positive integer and Rn is the composition
of n R’s, then Rn(a) is the sequence {aj+n}∞j=1. It is easy to see that Rn has
operator norm equal to 1 on ℓp for every n ≥ 1 and 1 ≤ p ≤ ∞, and also
on c0 equipped with the ℓ∞ norm. Moreover, {Rn}∞n=1 converges to 0 in the
strong operator topology as a sequence of bounded linear operators on ℓp when
1 ≤ p <∞, and on c0 with the ℓ∞ norm.

Now let T be the forward shift operator acting on sequences of real or com-
plex numbers, so that the jth term of T (a) is equal to aj−1 when j ≥ 2 and to
0 when j = 1. Thus the jth term of T n(a) is equal to aj−n when j ≥ n+ 1 and
to 0 when 1 ≤ j ≤ n. In particular, T n(a) → 0 termwise as n → ∞ for every
sequence a of real or complex numbers. However, {T n}∞n=1 does not converge
to 0 in the strong operator topology as a sequence of bounded linear operators
on ℓp for any p, or on c0 equipped with the ℓ∞ norm. This is because

‖T n(a)‖p = ‖a‖p(24.1)

for every a ∈ ℓp, 1 ≤ p ≤ ∞, and n ≥ 1.
Similarly, forward and backward shift operators acting on doubly-infinite

sequences preserve ℓp norms for every p, and so their iterates do not converge
to 0 in the strong operator topology. If a ∈ c0(Z), then the iterates of the shift
operators applied to a do converge to 0 termwise. This also works for a ∈ ℓp(Z)
when 1 ≤ p <∞, since ℓp ⊆ c0 when p <∞.
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25 Multiplication operators

Let (X,µ) be a σ-finite measure space, and consider the corresponding Banach
spaces Lp(X), 1 ≤ p ≤ ∞. For each measurable function b on X , let Mb be the
corresponding multiplication operator defined by

Mb(f) = b f.(25.1)

It is well known that this determines a bounded linear operator on Lp(X) for
some p if and only if b is essentially bounded. If b is essentially bounded, then
Mb determines a bounded linear operator on Lp for each p, with operator norm
equal to the L∞ norm ‖b‖∞ of b.

Suppose that {bj}∞j=1 is a sequence of essentially bounded measurable func-
tions on X with uniformly bounded L∞ norms. If {bj}∞j=1 converges pointwise
almost everywhere to an essentially bounded measurable function b on X , then
the dominated convergence theorem implies that the corresponding multiplica-
tion operators Mbj

converge to Mb in the strong operator topology as bounded
linear operators on Lp(X) when 1 ≤ p < ∞. This also works when {bj}∞j=1

converges in measure to b on any measurable set in X with finite measure.
Conversely, if {Mbj

}∞j=1 converges to Mb in the strong operator topology as a
sequence of bounded linear operators on Lp(X) for some p < ∞, then {bj}∞j=1

converges to b in measure on every measurable set in X with finite measure.
For example, let X be the set Z+ of positive inetegers equipped with count-

ing measure. In this case, all subsets of X are measurable, as are all functions on
X , and only the empty set has measure 0. Also, Lp(X) reduces to ℓp, essentially
bounded functions are simply bounded in particular, and pointwise convergence
almost everywhere or convergence in measure on sets of finite measure are the
same as pointwise convergence on X . If {bj}∞j=1 is a uniformly bounded se-
quence of functions on Z+ that converges pointwise to a function b, then the
corresponding sequence of multiplication operators {Mbj

}∞j=1 converges to Mb

in the strong operator topology on c0 equipped with the ℓ∞ norm as well as on
ℓp, 1 ≤ p <∞.

26 The weak operator topology

Let V , W be vector spaces, both real or both complex, and equipped with
norms. For each v ∈ V and λ ∈W ′,

Nv,λ(T ) = |λ(T (v))|(26.1)

defines a seminorm on the vector space BL(V,W ) of bounded linear mappings
from V into W . The collection of all of these seminorms is a nice collection of
seminorms on BL(V,W ) in the sense of Section 1, because the Hahn–Banach
theorem implies that for each w ∈ W with w 6= 0 there is a λ ∈ W ′ such
that λ(w) 6= 0. The topology on BL(V,W ) determined by this collection of
seminorms is known as the weak operator topology.
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If V = R or C, as appropriate, then BL(V,W ) can be identified with W
as before, and the weak operator topology reduces to the weak topology on
W . If W = R or C, so that BL(V,W ) is the same as V ′, then the weak
operator topology reduces to the weak∗ topology. For any V , W , open subsets
of BL(V,W ) in the weak operator topology are also open sets in the strong
operator topology, and hence in the topology determined by the operator norm.
It is easy to see that closed balls in BL(V,W ) with respect to the operator norm
are closed sets in the weak operator topology.

If the linear span of A ⊆ V is dense in V , and the linear span of Λ ⊆ W ′

is dense in W ′ with respect to the associated dual norm, then Nv,λ(T ), v ∈ A,
λ ∈ Λ, is also a nice collection of seminorms on BL(V,W ). If E ⊆ BL(V,W )
is bounded with respect to the operator norm, then the topology induced on
E by the weak operator topology is the same as the topology determined by
the seminorms Nv,λ(T ), v ∈ A, λ ∈ Λ. Hence the topology induced on E by
the weak operator topology is metrizable when V and W ′ are separable, as in
Section 7.

27 Convergence of sequences, 3

Let V , W be vector spaces, both real or both complex, and equipped with norms.
A sequence {Tj}∞j=1 of bounded linear mappings from V into W converges to
another bounded linear mapping T : V → W in the weak operator topology
when

lim
j→∞

λ(Tj(v)) = λ(T (v))(27.1)

for every v ∈ V and λ ∈ W ′. If {Tj}∞j=1 is a uniformly bounded sequence of
bounded linear mappings from V into W that converges to a linear mapping
T : V →W in this way, then T is automatically bounded. This uses the Hahn–
Banach theorem to control the norms of elements of w in terms of bounded
linear functionals.

If {wj}∞j=1 is a sequence of elements of W such that {λ(wj)}∞j=1 is bounded
in R or C, as appropriate, for every λ ∈ W ′, then {wj}∞j=1 is bounded with
respect to the norm on W . This follows from the Banach–Steinhaus theorem
in Section 10 applied to the linear functionals λ 7→ λ(wj) on W ′, using the fact
that W ′ is automatically complete, as in Section 11. This also uses the Hahn–
Banach theorem to say that the norm of wj is equal to the norm of λ 7→ λ(wj)
as a linear functional on W ′, as in Section 18. Suppose now that {Tj}∞j=1 is a
sequence of bounded linear mappings from V into W such that {λ(Tj(v))}∞j=1 is
a bounded sequence of real or complex numbers for every v ∈ V and λ ∈W ′. In
particular, this happens when {Tj}∞j=1 converges in the weak operator topology.
As in the previous remarks, this implies that {Tj(v)}∞j=1 is a bounded sequence
in W for every v ∈ V . If V is complete, then the Banach–Steinhaus theorem
implies that the Tj ’s have uniformly bounded operator norm.

Let {Tj}∞j=1 be a sequence of linear mappings from V into W , and let T be
another linear mapping from V into W . For each λ ∈ W ′, the set A(λ) of v ∈ V
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such that {λ(Tj(v))}∞j=1 converges to λ(T (v)) is a linear subspace of V . If the
Tj’s are bounded linear mappings with uniformly bounded operator norms, and
if T is bounded, then A(λ) is also a closed set with respect to the norm on V .
Under these conditions, the set of λ ∈W ′ such that A(λ) = V is a closed linear
subspace of W ′ with respect to the dual norm too. Of course, {Tj}∞j=1 converges
to T in the weak operator topology when A(λ) = V for every λ ∈W ′.

If T is the forward shift operator acting on sequences of real or complex
numbers, then {T n}∞n=1 converges to 0 in the weak operator topology as a se-
quence of bounded linear operators on ℓp when 1 < p <∞, and on c0 equipped
with the ℓ∞ norm. The analogous statement also holds for forward and back-
ward shift operators acting on doubly-infinite sequences. If (X,µ) is a σ-finite
measure space and 1 ≤ p < ∞, then the topology on L∞(X) induced by the
weak operator topology on the corresponding space of multiplication operators
on Lp(X) is the same as the weak∗ topology on L∞(X) as the dual of L1(X).
This uses the well-known identification of the dual of Lp(X) with Lq(X) when
1 ≤ p <∞ and 1/p+ 1/q = 1.

28 The weak∗ operator topology

Let V , Z be vector spaces, both real or both complex, and equipped with norms,
and suppose that W is the dual of Z. For each v ∈ V and z ∈ Z,

Nv,z(T ) = |T (v)(z)|(28.1)

defines a seminorm on the vector space BL(V,W ) of bounded linear mappings
from V into W . More precisely, if T is a linear mapping from V into W , v ∈ V ,
and z ∈ Z, then T (v) is a bounded linear functional on Z, and T (v)(z) is the
value of this functional at z. As usual, this is a nice collection of seminorms in
the sense of Section 1, and the topology that they describe may be described as
the weak∗ operator topology.

For example, if V = R or C, as appropriate, so that BL(V,W ) can be iden-
tified with W , then the weak∗ operator topology reduces to the weak∗ topology
on W as the dual of Z. If T is the forward shift operator acting on the space ℓ∞

of bounded sequences of real or complex numbers, as in Section 5, then {T n}∞n=1

converges to 0 in the weak∗ operator topology, where the range is identified with
the dual of ℓ1. This uses the fact that T introduces a 0 in the first term of the
sequence, and the analogous statement does not work for the shift operators on
doubly-infinite sequences. Moreover, {T n}∞n=1 converges to 0 as a sequence of
operators on ℓ1 in the weak∗ operator topology, where the range is identified
with the dual of c0, and this works as well for shift operators on doubly-infinite
sequences. If (X,µ) is a σ-finite measure space, then the topology induced on
L∞(X) by the weak∗ operator topology on the corresponding multiplication op-
erators on L∞(X) is the same as the weak∗ topology on L∞(X), where L∞(X)
is identified with the dual of L1(X).

A sequence {Tj}∞j=1 of bounded linear operators from V into W converges
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to a bounded linear operator T : V →W in the weak∗ operator topology when

lim
j→∞

Tj(v)(z) = T (v)(z)(28.2)

for every v ∈ V and z ∈ Z. If {Tj(v)(z)}∞j=1 converges in R or C, as appropriate,
for every v ∈ V and z ∈ Z, then the limit automatically defines a linear mapping
T : V → W . If the Tj’s have uniformly bounded operator norms, then T is
bounded too. If V , Z are complete, then one can use the Banach–Steinhaus
theorem to show that a sequence {Tj}∞j=1 of bounded linear mappings from V
into W have uniformly bounded operator norms when {Tj(v)(z)}∞j=1 is bounded
in R or C for every v ∈ V and z ∈ Z. More precisely, one can apply the Banach–
Steinhaus theorem first to show that {Tj(v)}∞j=1 is bounded inW for each v ∈ V ,
and then again to get the uniform boundedness of the Tj ’s.

It is easy to see that closed balls in BL(V,W ) with respect to the operator
norm are closed sets in the weak∗ operator topology. If E ⊆ BL(V,W ) is
bounded with respect to the operator norm and V , Z are separable, then the
topology induced on E by the weak∗ operator topology is metrizable. A variant
of the Banach–Alaoglu theorem implies that the closed unit ball in BL(V,W )
with respect to the operator norm is compact in the weak∗ operator topology.
This is equivalent to sequential compactness when V , Z are separable, because
of metrizability. Of course, the weak∗ operator topology on BL(V,W ) is the
same as the weak operator topology when Z is reflexive.

29 Fourier series

Let T be the unit circle in the complex plane, which is to say the set of z ∈ C

such that |z| = 1. The standard integral inner product for complex-valued
functions on T is defined by

〈f, g〉 =
1

2π

∫

T

f(z) g(z) |dz|.(29.1)

The functions zj, j ∈ Z, on T are orthonormal with respect to this inner
product, because ∫

T

zj |dz| = 0(29.2)

when j 6= 0, and the integral is equal to 2π when j = 0 since zj reduces to 1. It
is well known that these functions form an orthonormal basis for L2(T).

This leads to a natural one-to-one mapping from doubly-infinite sequences
a = {aj}∞j=−∞ of complex numbers in ℓ2(Z) onto complex-valued functions in

L2(T), namely,

a 7→
∞∑

j=−∞

aj z
j .(29.3)

More precisely, this doubly-infinite series can be treated as a sum of two ordinary
infinite series, whose partial sums converge in the L2 norm, as in Section 14.
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Because of orthonormality, the standard inner product on ℓ2(Z) corresponds
exactly to the integral inner product on L2(T) under this mapping.

The (forward) shift operator that sends a ∈ ℓ2(Z) to {aj−1}∞j=1 corresponds

in this way to the multiplication operator on L2(T) associated to the function
z. We have also considered shift operators on ℓp and multiplication operators
on Lp, but they do not match up as well as when p = 2.

30 Adjoints

Let (V, 〈v, w〉) be a real or complex Hilbert space, and let T be a bounded linear
operator on V . For each w ∈ V ,

v 7→ 〈T (v), w〉(30.1)

is a bounded linear functional on V . Hence there is a unique element T ∗(w) of
V such that

〈T (v), w〉 = 〈v, T ∗(w)〉(30.2)

for every v ∈ V , as in Section 17. It is easy to see that T ∗(w) is linear in w,
because of uniqueness. Let us check that T ∗ is also bounded, and that

‖T ∗‖op = ‖T ‖op.(30.3)

Because of (30.2),
|〈v, T ∗(w)〉| ≤ ‖T ‖op ‖v‖ ‖w‖(30.4)

for every v, w ∈ V . This implies that T ∗ is bounded, with ‖T ∗‖op ≤ ‖T ‖op, and
an analogous argument shows that ‖T ‖op ≤ ‖T ∗‖op. This operator T ∗ is known
as the adjoint of T .

If T1, T2 are bounded linear operators on V , then

(T1 + T2)
∗ = T ∗

1 + T ∗
2(30.5)

and
(T1 ◦ T2)

∗ = T ∗
2 ◦ T ∗

1 .(30.6)

If V is a real Hilbert space, then

(a T )∗ = a T ∗(30.7)

for every a ∈ R and bounded linear operator T on V , while

(a T )∗ = a T ∗(30.8)

in the complex case. Thus T 7→ T ∗ is linear in the real case, and conjugate-linear
in the complex case. Of course, I∗ = I, where I denotes the identity operator
on V . For any bounded linear operator T on V ,

(T ∗)∗ = T.(30.9)
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Let (X,µ) be a measure space, and consider the Hilbert space L2(X) with
the inner product defined by integration, as usual. If b is a bounded measurable
function onX , then the operatorMb of multiplication by b is bounded on L2(X),
as in Section 25. It is easy to see that the adjoint of Mb is itself in the real case,
and is given by multiplication by b in the complex case.

Observe that T 7→ T ∗ is a homeomorphism from BL(V ) onto itself with
respect to the weak operator topology. However, this does not work for the
strong operator topology. For example, if R is the backward shift operator
on ℓ2 as in Section 5, then one can check that its adjoint is the forward shift
operator T . As in Section 24, {Rn}∞n=1 converges to 0 in the strong operator
topology, but {T n}∞n=1 does not. Note that {T n}∞n=1 does converge to 0 in the
weak operator topology, as in Section 27.

31 Unitary transformations

Let (V, 〈v, w〉) be a real or complex Hilbert space. A bounded linear mapping
T : V → V is invertible if it has a bounded inverse T−1 : V → V , which is to
say that T−1 is a bounded linear operator on V that satisfies

T ◦ T−1 = T−1 ◦ T = I,(31.1)

and which is unique when it exists. If T1, T2 are invertible bounded linear
operators on V , then T1 ◦ T2 is also invertible, and

(T1 ◦ T2)
−1 = T−1

2 ◦ T−1
1 .(31.2)

If T is an invertible bounded linear operator on V , then its adjoint T ∗ is also
invertible, and

(T ∗)−1 = (T−1)∗.(31.3)

A linear mapping T from V onto itself is said to be unitary if

〈T (v), T (w)〉 = 〈v, w〉(31.4)

for every v, w ∈ V , which implies that

‖T (v)‖ = ‖v‖(31.5)

for every v ∈ V . Thus unitary transformations are bounded in particular.
Conversely, one can show that (31.5) implies (31.4), using polarization identities.
Note that (31.5) implies that T has trivial kernel, and hence is one-to-one. It
follows that unitary transformations are invertible, since they are surjective
by definition. The inverse of a unitary transformation is clearly unitary as
well. Compositions of unitary transformations are unitary too. As another
characterization, a bounded linear mapping T : V → V is unitary if and only if
it is invertible and

T−1 = T ∗.(31.6)
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For example, forward and backward shift operators on ℓ2(Z) are unitary, and
in fact are inverses and adjoints of each other. Consider now the forward and
backward shift operators T , R on ℓ2(Z+), as in Section 5. Note that R = T ∗,
as in the previous section, and that

R ◦ T = I.(31.7)

Although T satisfies (31.4), it is not unitary, because it is not surjective, and
indeed

T ◦R 6= I.(31.8)

Similarly, R is not injective, but it is an isometry on the orthogonal complement
of its kernel.

32 Self-adjoint operators

Let (V, 〈v, w〉) be a real or complex Hilbert space. A bounded linear mapping
A : V → V is said to be self-adjoint if

A∗ = A,(32.1)

which is the same as
〈A(v), w〉 = 〈v,A(w)〉(32.2)

for every v, w ∈ V . In the complex case, this implies that

〈A(v), v〉 = 〈v,A(v)〉 = 〈A(v), v〉,(32.3)

so that 〈A(v), v〉 ∈ R for every v ∈ V when A is self-adjoint. For example,
if (X,µ) is a measure space, then multiplication operators on L2(X) are self-
adjoint in the real case, while multiplication operators associated to real-valued
functions are self-adjoint in the complex case.

If A, B are bounded self-adjoint linear operators on V , then it is easy to see
that A + B is also self-adjoint. Furthermore, r A is self-adjoint when A is self-
adjoint and r ∈ R. Hence the self-adjoint operators form a real-linear subspace
of BL(V ), and the restriction to real scalars is important in the complex case.
Note that this subspace is closed in the weak operator topology.

Let W be a closed linear subspace of V , and consider the orthogonal pro-
jection PW of V onto W , as in Section 15. Thus PW is characterized by the
conditions PW (v) ∈W and v−PW (v) ∈ W⊥ for every v ∈ V . This implies that

〈PW (v), w〉 = 〈PW (v), PW (w)〉 = 〈v, PW (w)〉(32.4)

for every v, w ∈W . In particular, PW is self-adjoint.
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33 Nonnegative self-adjoint operators

Let (V, 〈v, w〉) be a real or complex Hilbert space. A bounded self-adjoint linear
mapping A : V → V is said to be nonnegative if

〈A(v), v〉 ≥ 0(33.1)

for every v ∈ V , which may be expressed by A ≥ 0. If A, B are bounded
self-adjoint operators such that A−B ≥ 0, then we put A ≥ B.

If A, B are bounded nonnegative self-adjoint linear operators on V , then
A+B is nonnegative, and r A is nonnegative for every real number r ≥ 0. Thus
the bounded nonnegative self-adjoint linear operators on V form a real convex
cone in BL(V ). This cone is also a closed set in the weak operator topology.

For example, if (X,µ) is a measure space, then multiplication operators
associated to nonnegative real-valued functions are nonnegative on L2(X). It
follows easily from (32.4) that orthogonal projections are nonnegative as well.
If T is any bounded linear operator on V , then T ∗ ◦ T is self-adjoint, because

(T ∗ ◦ T )∗ = T ∗ ◦ (T ∗)∗ = T ∗ ◦ T.(33.2)

Moreover, T ∗ ◦ T ≥ 0, because

〈(T ∗ ◦ T )(v), v〉 = 〈T ∗(T (v)), v〉 = 〈T (v), T (v)〉 ≥ 0.(33.3)

34 Cauchy–Schwarz, revisited

Let (V, 〈v, w〉) be a real or complex Hilbert space, and let A be a bounded
nonnegative self-adjoint linear operator on V . Thus 〈A(v), w〉 is like an inner
product on V , except that 〈A(v), v〉 may be 0 even when v 6= 0. There is an
analogue of the Cauchy–Schwarz inequality in this context, which states that

|〈A(v), w〉| ≤ 〈A(v), v〉1/2 〈A(w), w〉1/2(34.1)

for every v, w ∈ V . This can be established in the same way as for ordinary
inner products.

As a consequence,

‖A‖op = sup{〈A(v), v〉 : v ∈ V, ‖v‖ ≤ 1}.(34.2)

More precisely, the right side is less than or equal to ‖A‖op by the ordinary
Cauchy–Schwarz inequality, while the other direction uses (34.1). Similarly,

‖A(v)‖ ≤ ‖A‖1/2
op 〈A(v), v〉1/2(34.3)

for every v ∈ V , as one can see by by taking the supremum over w ∈ V with
‖w‖ ≤ 1 in (34.1).

Suppose that A1, A2, . . . is a sequence of bounded nonnegative self-adjoint
linear operators on V that converges to 0 in the weak operator topology. The
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Banach–Steinhaus theorem implies that the operator norms of the Aj ’s are uni-
formly bounded, although one could just as well include this as an additional
hypothesis if V were not complete. Under these conditions, {Aj}∞j=1 also con-
verges to 0 in the strong operator topology, since ‖Aj(v)‖ can be estimated in
terms of 〈Aj(v), v〉, as in the previous paragraph.

Now suppose that B1, B2, . . . is a sequence of bounded self-adjoint linear
operators on V which is increasing in the sense that

B1 ≤ B2 ≤ · · · .(34.4)

If the operator norms of the Bj ’s are uniformly bounded, then there is a bounded
self-adjoint linear operator B on V such that Bj ≤ B for each j and {Bj}∞j=1

converges to B in the strong operator topology. Indeed, under these conditions
{〈Bj(v), v〉}∞j=1 is a bounded monotone increasing sequence of real numbers for
every v ∈ V , and therefore converges in R. One can use this and polarization
identities to show that {〈Bj(v), w〉}∞j=1 converges in R or C, as appropriate,
for every v, w ∈ V , and hence that {Bj}∞j=1 converges in the weak operator
topology. Convergence in the strong operator topology can be derived from this
as in the preceding paragraph.

35 Continuity of compositions

Let V , W , and Z be a vector spaces, all real or all complex, and equipped with
norms. If A is a bounded linear mapping from W into Z, then

T 7→ A ◦ T(35.1)

is a bounded linear mapping from BL(V,W ) into BL(V, Z) with respect to the
corresponding operator norms. It is also continuous with respect to the strong
and weak operator topologies. Similarly, if B is a bounded linear mapping from
V into W , then

T 7→ T ◦B(35.2)

is a bounded linear mapping from BL(W,Z) into BL(V, Z) with respect to the
corresponding operator norms, and is continuous with respect to the strong and
weak operator topologies.

Now let {Aj}∞j=1 be a sequence of bounded linear mappings from W into
Z with uniformly bounded operator norms, and let {Bj}∞j=1 be a sequence of
bounded linear mappings from V into W . If {Bj}∞j=1 converges to 0 in the
strong operator topology, then {Aj ◦ Bj}∞j=1 also converges to 0 in the strong
operator topology. If {Aj}∞j=1 converges in the strong operator topology to a
bounded linear mapping A : W → Z, and {Bj}∞j=1 converges in the strong
operator topology to a bounded linear mapping B : V →W , then {Aj ◦Bj}∞j=1

converges to A ◦B in the strong operator topology. This is because

Aj ◦Bj = Aj ◦ (Bj −B) +Aj ◦B,(35.3)
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where the first term on the right converges to 0 and the second term converges
to A ◦ B in the strong operator topology by the previous remarks. Similarly,
if {Aj}∞j=1 converges to a bounded linear mapping A in the weak operator
topology, and {Bj}∞j=1 converges to a bounded linear mapping B in the strong
operator topology, then {Aj ◦ Bj}∞j=1 converges to A ◦ B in the weak operator
topology.

However, if {Aj}∞j=1 converges to A in the strong operator topology, and
{Bj}∞j=1 converges to B in the weak operator topology, then it may not be that
{Aj ◦Bj}∞j=1 converges to A◦B in the weak operator topology. For instance, let
R, T be the backwards and forward shift operators acting on ℓp(Z+), 1 < p <∞,
or on c0(Z+). If Aj = Rj and Bj = T j, then {Aj}∞j=1 converges to 0 in the
strong operator topology, {Bj}∞j=1 converges to 0 in the weak operator topology,
the Aj ’s and Bj ’s have operator norm equal to 1, and Aj ◦Bj = I for each j.

There are analogous continuity statements for the weak∗ operator topology
instead of the weak operator topology, under suitable conditions. If W , Z are
dual spaces and one is interested in the continuity of T 7→ A ◦T with respect to
the weak∗ operator topologies on BL(V,W ) and BL(V, Z), then it is appropriate
to ask that A be the dual of a bounded linear operator from the predual of Z
into the predual of W . For the rest, it suffices that Z be a dual space, and the
necessary changes are straightforward.

36 Multiplication operators, 2

Let (X,µ) be a σ-finite measure space, and let us check that the collection of
multiplication operatorsMb associated to bounded measurable functions b on X
is closed in the weak operator topology on BL(Lp(X)) for each p, 1 ≤ p ≤ ∞. If
p = ∞, then we can use the weak∗ operator topology, where L∞(X) is identified
with the dual of L1(X). To see this, suppose that T is a bounded linear operator
on Lp(X) which is in the closure of the multiplication operators with respect to
the weak operator topology or weak∗ operator topology, as appropriate. Because
multiplication operators commute with each other, it follows from the continuity
of T 7→ A ◦ T and T 7→ T ◦B as in the previous section that

T ◦Mb = Mb ◦ T(36.1)

for every b ∈ L∞(X). If p = ∞, or 1 ≤ p < ∞ and µ(X) < ∞, then it follows
that T is the same as multiplication by T (1). Otherwise, suppose that E is a
measurable set inX such that 0 < µ(E) <∞, and let 1E(x) be the characteristic
function of E on X , equal to 1 when x ∈ E and to 0 when x ∈ X\E. In this
case, T is the same as multiplication by T (1E) when acting on functions f equal
to 0 on X\E, and T (1E) is equal to 0 on X\E. To deal with arbitrary functions
on X , one can apply this to a sequence of disjoint subsets of X whose union is
X .
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37 Complex Hilbert spaces

Let (V, 〈v, w〉) be a real or complex Hilbert space. A bounded linear operator
A on V is said to be anti-self-adjoint if

A∗ = −A.(37.1)

In the complex case, this happens exactly when A = i B, where B is a bounded
self-adjoint operator on V .

Suppose that T is any bounded linear operator on V . In both the real and
complex cases, we can express T as

T =
T + T ∗

2
+
T − T ∗

2
,(37.2)

where the first term on the right is self-adjoint, and the second term is anti-self-
adjoint. If V is complex, then this implies that

T = T1 + i T2,(37.3)

where T1 and T2 are both self-adjoint.
If V is a complex Hilbert space, and T is a bounded self-adjoint linear

operator T on V , then
〈T (v), v〉 ∈ R(37.4)

for every v ∈ V , as in Section 32. Conversely, suppose that T is a bounded
linear operator on V such that (37.4) holds for every v ∈ V , and let T1, T2

be bounded self-adjoint linear operators on V such that T = T1 + i T2, as in
the previous paragraph. Thus T1, T2 have the same property, which implies
that 〈T2(v), v〉 = 0 for every v ∈ V . Using polarization, one can show that
〈T2(v), w〉 = 0 for every v, w ∈ V , and hence that T2 = 0. The same conclusion
also follows from Section 34.

38 The C∗ identity

Let (V, 〈v, w〉) be a real or complex Hilbert space, and let T be a bounded linear
operator on V . The C∗ identity states that

‖T ∗ ◦ T ‖op = ‖T ‖2
op.(38.1)

To see this, observe first that

‖T ∗ ◦ T ‖op ≤ ‖T ∗‖op ‖T ‖op = ‖T ‖2
op,(38.2)

by basic properties of the operator norm. In the other direction,

‖T (v)‖2 = 〈T (v), T (v)〉 = 〈T ∗(T (v)), v〉 ≤ ‖T ∗ ◦ T ‖op ‖v‖2(38.3)

for every v ∈ V implies that ‖T ‖2
op ≤ ‖T ∗ ◦ T ‖op, as desired.
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Of course, the latter computation is basically the same as the proof that
T ∗ ◦ T ≥ 0, as in Section 33. Note that the Cauchy–Schwarz inequality (34.1)
follows easily from the usual version when A = T ∗ ◦ T , since

|〈(T ∗ ◦ T )(v), w〉| = |〈T (v), T (w)〉| ≤ ‖T (v)‖ ‖T (w)‖(38.4)

= 〈(T ∗ ◦ T )(v), v〉1/2 〈(T ∗ ◦ T )(w), w〉1/2

for every v, w ∈ V . Similarly, the fact that the operator norm of T ∗ ◦ T is the
same as the supremum of 〈(T ∗ ◦ T )(v), v〉 over v ∈ V with ‖v‖ ≤ 1 is implicit
in the computations in the previous paragraph.

39 Finite-dimensional spaces

Let V be a real or complex vector space, and let N be a seminorm on V . The
triangle inequality implies that

N(v) −N(w), N(w) −N(v) ≤ N(v − w)(39.1)

and hence
|N(v) −N(w)| ≤ N(v − w)(39.2)

for every v, w ∈ V . If V = Rn or Cn for some positive integer n, and ‖v‖
denotes the standard Euclidean norm, then there is a nonnegative real number
C such that

N(v) ≤ C ‖v‖(39.3)

for every v ∈ V . This can be shown by expressing v as a finite linear combination
of the standard basis vectors, and applying the triangle inequality. It follows
that N is continuous with respect to the standard topology defined by the
Euclidean norm. If N is a norm on Rn or Cn, then it follows that there is a
c > 0 such that

N(v) ≥ c ‖v‖(39.4)

for each v. Specifically, one can take c to be the minimum of N on the unit
sphere associated to the Euclidean norm, which is attained because the sphere
is compact.

If V is a finite-dimensional real or complex vector space of dimension n,
then V is isomorphic to Rn or Cn, as appropriate. The previous remarks show
that the topology on V determined by any norm is equivalent to the topology
induced by the standard topology on Rn or Cn by a linear isomorphism. It
also follows that V is complete with respect to any norm, since Rn and Cn are
complete with respect to the standard norms. If V is an infinite-dimensional
vector space equipped with a norm, then the same statements can be applied
to any finite-dimensional subspace W of V . In particular, W is automatically a
closed subspace of V , because it is complete.
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40 Continuous linear functionals

Let V be a real or complex vector space equipped with a nice collection of
seminorms N . Thus N determines a topology on V , and it makes sense to
talk about continuous linear functionals on V . One can check that a linear
functional λ on V is continuous if and only if there are finitely many seminorms
N1, . . . , Nl ∈ N and a C ≥ 0 such that

|λ(v)| ≤ C max(N1(v), . . . , Nl(v))(40.1)

for every v ∈ V . For if λ satisfies this condition, then it is easy to see that λ is
continuous. Conversely, if λ is continuous at 0, then there is a neighborhood U
of 0 in the topology on V determined by N such that

|λ(v)| < 1(40.2)

for every v ∈ U . This means that there are finitely many seminorms N1, . . . , Nl

in N and r1, . . . , rl > 0 such that

{v ∈ V : N1(v) < r1, . . . , Nl(v) < rl} ⊆ {v ∈ V : |λ(v)| < 1}.(40.3)

This implies the previous estimate, with C = (min(r1, . . . , rl))
−1.

As a special case, let Λ be a collection of linear functionals on V such that
for each v ∈ V with v 6= 0 there is a λ ∈ Λ such that λ(v) 6= 0. In this case,

Nλ(v) = |λ(v)|(40.4)

is a seminorm on V for each λ ∈ Λ, and these seminorms form a nice collection of
seminorms on V . By construction, each λ ∈ Λ is a continuous linear functional
on V with respect to the topology determined by this collection of seminorms,
as in any finite linear combination of the elements of Λ. Conversely, if µ is a
continuous linear functional on V with respect to this collection of seminorms,
then the characterization of continuity in the previous paragraph implies that
the kernel of µ contains the intersection of the kernels of finitely many elements
of Λ. This implies that µ is a linear combination of these elements of Λ.

Let N be any nice collection of seminorms on V again. Suppose that W is a
closed linear subspace of W in the topology determined by N , and that v ∈ V
is not an element of W . This implies that there are finitely many seminorms
N1, . . . , Nl ∈ N and r1, . . . , rl > 0 such that

{u ∈ V : N1(v − u) < r1, . . . Nl(v − u) < rl} ⊆ V \W.(40.5)

If c = min(r1, . . . , rl), then it follows that

max(N1(v − w), . . . , Nl(v − w)) ≥ c(40.6)

for every w ∈ W . Let λ be the linear functional on the linear span of W and v
defined by

λ(w + t v) = t(40.7)
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for w ∈W and t ∈ R or C, as appropriate. The previous estimate implies that

|λ(z)| ≤ c−1 max(N1(z), . . . , Nl(z))(40.8)

for every z in the span of W and v, so that λ is a continuous linear functional
on this subspace. The Hahn–Banach theorem works just as well for seminorms
as for norms, and thus there is an extension of λ to a linear functional on V
which satisfies the same condition, and hence is continuous.

41 Operator topologies, revisited

Let V , W be vector spaces, both real or both complex, and equipped with norms
‖v‖V , ‖w‖W . Suppose that φ is a continuous linear functional on BL(V,W ) with
respect to the strong operator topology. As in the previous section, there are
finitely many vectors v1, . . . , vl ∈ V and a C ≥ 0 such that

|φ(T )| ≤ C max(‖T (v1)‖W , . . . , ‖T (vl)‖W )(41.1)

for every bounded linear mapping T : V → W . We may as well ask that
v1, . . . , vl be linearly independent, since otherwise we can use fewer vectors and
still get an analogous estimate.

Let λ1, . . . , λl be a dual basis of linear functionals on the span of v1, . . . , vl,
so that

λj(vk) = 0 when j 6= k, and λj(vj) = 1.(41.2)

By the Hahn–Banach theorem, λ1, . . . , λl may be extended to bounded linear
functionals on V . If w1, . . . , wl are arbitrary elements of W , then

T (v) =

l∑

j=1

λj(v)wj(41.3)

is a bounded linear mapping from V into W such that

T (vj) = wj .(41.4)

Let W l be the vector space of l-tuples (w1, . . . , wl) of elements of W , with
the norm

‖(w1, . . . , wl)‖W l = max(‖w1‖W , . . . , ‖wl‖W ).(41.5)

Note that φ(T ) depends only on T (v1), . . . , T (vl), because φ(T ) = 0 when
T (v1) = · · · = T (vl) = 0, by (41.1). Every element of W l can be expressed
as (T (v1), . . . , T (vl)) for some bounded linear mapping T : V → W , as in the
previous paragraph. Hence there is a unique linear functional ψ on W l such
that

ψ(T (v1), . . . , T (vl)) = φ(T )(41.6)

for every bounded linear mapping T : V → W , and which satisfies

|ψ(w1, . . . , wl)| ≤ C ‖(w1, . . . , wl)‖W l(41.7)
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for every (w1, . . . , wl) ∈ W l, by (41.1). Thus ψ is a bounded linear functional
on W l, and it is easy to see that there are bounded linear functionals µ1, . . . , µl

on W such that
ψ(w1, . . . , wl) = µ1(w1) + · · · + µl(wl)(41.8)

for every (w1, . . . , wl) ∈W l.
Equivalently,

φ(T ) = µ1(T (v1)) + · · · + µl(T (vl))(41.9)

for every bounded linear mapping T : V → W . This shows that every continu-
ous linear functional on BL(V,W ) with respect to the strong operator topology
is also continuous with respect to the weak operator topology. The converse
is trivial, since the strong operator topology contains the weak operator topol-
ogy. As a consequence, any closed linear subspace of BL(V,W ) with respect to
the strong operator topology is also closed with respect to the weal operator
topology. This uses the Hahn–Banach theorem, as in the previous section.

42 Continuous functions

Let X be a compact Hausdorff topological space, and let C(X) be the vector
space of real or complex-valued continuous functions on X . If f is a continuous
function on X , then its supremum norm is defined as usual by

‖f‖sup = sup{|f(x)| : x ∈ X}.(42.1)

It is well known that C(X) is complete with respect to the supremum norm.
Let µ be a positive Borel measure on X such that µ(X) <∞ and µ(U) > 0

when U is a nonempty open set in X . In this case, the essential supremum or
L∞ norm of continuous function f on X with respect to µ is the same as the
supremum norm of f . Hence the operator norm of multiplication by a continuous
function b on Lp(X) is equal to the supremum norm of b. In particular, the
collection of multiplication operators associated to continuous functions on X
is closed in the space of bounded linear operators on Lp(X) with respect to
the operator norm. However, multiplication operators associated to bounded
Borel measurable functions on X are in the closure of the set of multiplication
operators associated to continuous functions in the strong operator topology
when 1 ≤ p <∞, at least under suitable regularity conditions on the measure.

43 von Neumann algebras

Let V be a complex Hilbert space, and let A be an algebra of bounded linear
operators on V . Thus A is a linear subspace of BL(V ), and A◦B ∈ A whenever
A,B ∈ A. We also ask that the identity operator I on V be contained in A. If
A∗ ∈ A whenever A ∈ A, then A is a ∗-algebra.

A von Neumann algebra of operators on V is a ∗-algebra A ⊆ BL(V ) which
is closed in the weak operator topology. The algebra BL(V ) of all bounded
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linear operators on V is automatically a von Neumann algebra. If (X,µ) is a
σ-finite measure space, then the algebra of multiplication operators on L2(X)
associated to bounded measurable functions is a von Neumann algebra.

Suppose that X is a compact Hausdorff space, and that µ is a positive finite
Borel measure on X such that µ(U) > 0 when U is a nonempty open set in
X , as in the previous section. The collection of multiplication operators on
L2(X) associated to continuous functions on X is a ∗-algebra that is closed in
the topology determined by the operator norm, but it is not closed in the strong
operator topology even when X = [0, 1] and µ is Lebesgue measure. A ∗-algebra
A ⊆ BL(V ) that is closed in the topology determined by the operator norm is
a C∗ algebra. More precisely, C∗ algebras can be defined abstractly, without
reference to bounded linear operators on a Hilbert space. In particular, C(X)
is already a C∗ algebra with respect to the supremum norm.

44 Commutants

Let V be a real or complex vector space equipped with a norm, and let E be
a collection of bounded linear operators on V . The commutant C(E) is the set
of bounded linear operators T on V that commute with every element of E , so
that

T ◦A = A ◦ T(44.1)

for every A ∈ E . For example, if E consists of scalar multiples of the identity op-
erator I, then C(E) = BL(V ). Similarly, C(BL(V )) is the set of scalar multiples
of the identiy operator.

It is easy to check that C(E) is a subalgebra of BL(V ) that contains the iden-
tity and is closed in the weak operator topology. If A is the algebra generated
by E in BL(V ), then C(A) = C(E). Similarly, the commutant of the closure of
E in the weak operator topology is the same as C(E). If E1 ⊆ E2, then

C(E2) ⊆ C(E1).(44.2)

Suppose now that V is a complex Hilbert space. If E ⊆ BL(V ), then put

E∗ = {A∗ : A ∈ E}.(44.3)

It is easy to see that
C(E∗) = C(E)∗(44.4)

for any E ⊆ BL(V ), since (A◦B)∗ = B∗◦A∗ for every A,B ∈ BL(V ). If E∗ = E ,
then it follows that C(E) is a von Neumann algebra. In particular, C(A) is a
von Neumann algebra when A ⊆ BL(V ) is a ∗-algebra.

45 Second commutants

Let V be a vector space equipped with a norm. The second commutant C2(E)
of E ⊆ BL(V ) is the commutant C(C(E)) of the commutant C(E) of E . Thus

E ⊆ C2(E)(45.1)

39



automatically, and one can check that

C(C2(E)) = C(E).(45.2)

If V is a complex Hilbert space, then von Neumann’s double commutant

theorem states that
C2(A) = A(45.3)

when A ⊆ BL(V ) is a von Neumann algebra. If A is any ∗-algebra that contains
the identity, then the theorem states that every element of C2(A) is contained
in the closure of A with respect to the strong operator topology. Hence C2(A)
is the same as the closure of A in BL(V ) in the strong and weak operator
topologies in this case.

Here are some of the ingredients in the proof. If T is a bounded linear
operator on V and W is a closed linear subspace of V such that

T (W ) ⊆W,(45.4)

then
T ∗(W⊥) ⊆W⊥,(45.5)

where W⊥ is the orthogonal complement of W in V . If T ∗(W ) ⊆ W , then it
follows that T (W⊥) ⊆ W⊥. If PW is the orthogonal projection of V onto W ,
then

T ◦ PW = PW ◦ T(45.6)

if and only if T (W ) ⊆W and T (W⊥) ⊆W⊥.
Suppose that W is invariant under the ∗-algebra A ⊆ BL(V ), in the sense

that T (W ) ⊆ W for every T ∈ A. Because A is a ∗-algebra, T ∗(W ) ⊆ W for
every T ∈ A, and hence T (W⊥) ⊆ W⊥ for every T ∈ A. As in the previous
paragraph, this implies that every element of A commutes with PW , or

PW ∈ C(A).(45.7)

By definition of the second commutant, PW commutes with every element of
C2(A), which implies that W and W ∗ are also invariant under C2(A).

46 Invertibility

Let V be a real or complex vector space equipped with a norm ‖v‖, and T
be a bounded linear operator on V . By definition, T is invertible if there is a
bounded linear operator T−1 on V such that

T−1 ◦ T = T ◦ T−1 = I,(46.1)

where I is the identity operator on V . In particular, this implies that

‖v‖ = ‖T−1(T (v))‖ ≤ ‖T−1‖op ‖T (v)‖(46.2)
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for every v ∈ V .
Conversely, suppose that there is a δ > 0 such that

‖T (v)‖ ≥ δ ‖v‖ for every v ∈ V.(46.3)

In this case, the kernel of T is trivial, and so T is one-to-one. Moreover, T is
invertible as a bounded linear mapping from V onto T (V ), and the norm of the
inverse of T as a linear mapping from T (V ) onto V is less than or equal to 1/δ.
However, T may not be invertible as a linear operator on V , because T (V ) may
be a proper linear subspace of V . For example, if T is the forward shift operator
on V = ℓp(Z+) or c0(Z+), then T is an isometry of V onto T (V ) 6= V .

If V is complete and T satisfies (46.3), then T (V ) is a closed linear subspace
of V , basically because T (V ) is complete. For if {vj}∞j=1 is a sequence of vectors
in V such that {T (vj)}∞j=1 converges in V , then (46.3) implies that {vj}∞j=1 is a
Cauchy sequence in V , which converges to some v ∈ V by completeness. Thus
{T (vj)}∞j=1 converges to T (v), which is in T (V ), as desired. If V is complete,
T satisfies (46.3), and T (V ) is dense in V , then it follows that T (V ) = V , T is
invertible as a linear operator on V , and

‖T−1‖op ≤ 1

δ
.(46.4)

If V is a Hilbert space, then the orthogonal complement of T (V ) in V is
the same as the kernel of the adjoint T ∗ of T . Hence T (V ) is dense in V when
the kernel of T ∗ is trivial. If T is self-adjoint and satisfies (46.3), then T is
invertible, since the kernel of T ∗ = T is trivial. Note that T−1 is self-adjoint
when T is invertible and self-adjoint, because (T−1)∗ = (T ∗)−1 = T−1.

47 Positivity

Let (V, 〈v, w〉) be a real or complex Hilbert space, and let A be a bounded
nonnegative self-adjoint linear operator on V . Let us say that A is uniformly

strictly positive if there is a δ > 0 such that

〈A(v), v〉 ≥ δ ‖v‖2(47.1)

for every v ∈ V . Using the Cauchy–Schwarz inequality, this implies that

‖A(v)‖ ≥ δ ‖v‖(47.2)

for every v ∈ V , and it follows from the remarks in the previous section that A
is invertible. Conversely, if A is invertible, then A is uniformly strictly positive,
because of (34.3).

If A is invertible, then A−1 is also self-adjoint, as in the previous section.
Let us check that A−1 is nonnegative too, so that

〈A−1(w), w〉 ≥ 0(47.3)
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for every w ∈ V . Because A is invertible, it suffices to show that this holds
when w = A(v) for some v ∈ V . In this case,

〈A−1(w), w〉 = 〈A−1(A(v)), A(v)〉 = 〈v,A(v)〉 = 〈A(v), v〉 ≥ 0,(47.4)

as desired.
If T is any bounded linear operator on V , then T ∗ ◦ T is self-adjoint and

nonnegative, as in Section 33. If T is invertible, then T ∗ is invertible, and hence
T ∗ ◦ T is invertible. More precisely, T ∗ ◦ T is invertible when T satisfies (46.3),
because

〈(T ∗ ◦ T )(v), v〉 = 〈T (v), T (v)〉 = ‖T (v)‖2(47.5)

implies that T ∗ ◦T is uniformly strictly positive. For example, T ∗ ◦T = I when
T is the forward shift operator on ℓ2(Z+), even though T is not invertible on ℓ2.
In this example, T ∗ is the backward shift operator, and T ◦ T ∗ is nonnegative
and self-adjoint but not invertible.

Similarly, if A, T are bounded self-adjoint linear operators on V and A is
nonnegative, then T ∗ ◦A ◦ T is self-adjoint and nonnegative, because

(T ∗ ◦A ◦ T )∗ = T ∗ ◦A∗ ◦ (T ∗)∗ = T ∗ ◦A ◦ T(47.6)

and
〈(T ∗ ◦A ◦ T )(v), v〉 = 〈A(T (v)), T (v)〉(47.7)

for every v ∈ V . If A and T are also invertible, then T ∗◦A◦T is invertible too. If
A is invertible and T satisfies (46.3), then T ∗◦A◦T is uniformly strictly positive,
and hence invertible. If A is invertible and T = A−1, then T ∗ ◦ A ◦ T = A−1,
which gives another way to look at the positivity of A−1.

48 Invertibility, 2

Let (V, ‖v‖) be a real or complex Banach space, and suppose that T is a bounded
linear operator on V with ‖T ‖op < 1. For each v ∈ V ,

‖v‖ ≤ ‖v − T (v)‖ + ‖T (v)‖ ≤ ‖v − T (v)‖ + ‖T ‖op ‖v‖,(48.1)

which implies that

‖v‖ ≤ 1

1 − ‖T ‖op
‖v − T (v)‖.(48.2)

In particular, I − T is one-to-one on V , because it has trivial kernel. Let us
show that I − T maps V onto itself, and hence is invertible.

Consider the infinite series

∞∑

j=0

T j(v),(48.3)
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where T 0 is interpreted as the identity operator I on V . This series converges
absolutely, in the sense that

∑∞
j=0 ‖T j(v)‖ converges as an infinite series of

nonnegative real numbers, because

∞∑

j=0

‖T j(v)‖ ≤
∞∑

j=0

‖T ‖j
op ‖v‖ =

1

1 − ‖T ‖op
‖v‖.(48.4)

As in the context of series of real or complex numbers, one can use this to
show that the partial sums

∑n
j=0 T

j(v) form a Cauchy sequence in V , which
converges by completeness. This means that the infinite series converges in V ,
and it is easy to see that the sum satisfies

(I − T )
( ∞∑

j=0

T j(v)
)

=

∞∑

j=0

T j(v) −
∞∑

j=0

T j+1(v) = v.(48.5)

Thus I − T maps V onto V , so that I − T is invertible on V , with

‖(I − T )−1‖op ≤ 1

1 − ‖T ‖op
.(48.6)

Alternatively, one can consider

∞∑

j=0

T j(48.7)

as an infinite series in BL(V ), which converges absolutely because

∞∑

j=0

‖T j‖op ≤
∞∑

j=0

‖T ‖j
op =

1

1 − ‖T ‖j
op

.(48.8)

Again this implies that the partial sums
∑∞

j=0 T
j form a Cauchy sequence in

BL(V ) with respect to the operator norm, which converges by completeness.
As usual,

(I − T )
( n∑

j=0

T j
)

=
( n∑

j=0

T j
)

(I − T ) = I − T n+1(48.9)

for each nonnegative integer n, and

‖T n+1‖op ≤ ‖T ‖n+1
op → 0(48.10)

as n→ ∞, since ‖T ‖op < 1. This shows that

(I − T )−1 =

∞∑

j=0

T j.(48.11)

Suppose now that (V, 〈v, w〉) is a Hilbert space, and that A is a bounded
nonnegative self-adjoint linear operator on V which is also invertible. It will be
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convenient to make the normalization ‖A‖op = 1, which can always be arranged
by multiplying A by a positive real number. As in the previous section, A is
uniformly strictly positive, so that there is a δ > 0 such that

δ ‖v‖2 ≤ 〈A(v), v〉 ≤ ‖v‖2(48.12)

for every v ∈ V . If B = I −A, then B is a bounded self-adjoint linear operator
on V such that

0 ≤ 〈B(v), v〉 ≤ (1 − δ) ‖v‖2(48.13)

for every v ∈ V . Thus B is nonnegative and ‖B‖op ≤ 1− δ, by (34.2). Because
A = I−B, the invertibility of A can also be seen as an instance of the discussion
in the preceding paragraphs. In particular, A−1 =

∑∞
j=0 B

j .

49 Invertibility, 3

Let V be a real or complex vector space equipped with a norm, and let E be a
collection of bounded linear operators on V . If A ∈ E is invertible, then

A−1 ∈ C2(E).(49.1)

For if T ∈ C(E), then T commutes with A, and hence T commutes with A−1.
Suppose that A is an algebra of bounded linear operators on V that contains

the identity operator. If T is a bounded linear operator on V with ‖T ‖op < 1
and V is complete, then I − T is invertible on V , as in the previous section. If
T ∈ A and A is closed in the topology determined by the operator norm, then

(I − T )−1 ∈ A.(49.2)

This is because
∑n

j=0 T
j converges to (I−T )−1 in the operator norm as n→ ∞.

Suppose now that V is a Hilbert space, and that A is a ∗-algebra of bounded
linear operators on V that contains the identity operator and is closed with
respect to the operator norm. If A is a bounded nonnegative self-adjoint linear
operator on V which is invertible, and if A ∈ A, then A−1 ∈ A, by the remarks
at the end of the previous section. If T is any element of A, then T ∗ ∈ A, and
hence T ∗ ◦T ∈ A. If T is invertible, then T ∗ ◦T is invertible, and the preceding
observation implies that (T ∗ ◦ T )−1 ∈ A. Hence

T−1 = (T ∗ ◦ T )−1 ◦ T ∗ ∈ A.(49.3)

If U is a unitary transformation on V , then U−1 = U∗. Thus U−1 ∈ A
whenever A is a ∗-algebra that contains U . Also, U∗ ∈ C2(E) whenever U ∈
E ⊆ BL(V ), by (49.1).

50 The Hardy space

In this section, we are concerned with complex-valued functions on the unit
circle T, as in Section 29. The Hardy space H2 = H2(T) may be defined as the
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set of f ∈ L2(T) such that

∫

T

f(z) zj |dz| = 0(50.1)

for every positive integer j. Equivalently, f ∈ H2 when f ∈ L2 is orthogonal
to the functions z−j = zj , j ∈ Z+, with respect to the standard integral inner
product on T. Alternatively, H2 is the closure of the linear span of zj, j ≥ 0,
in L2.

Every f ∈ L2 corresponds to a Fourier series

∞∑

j=−∞

aj z
j,(50.2)

where {aj}∞j=−∞ ∈ ℓ2(Z). If f ∈ H2, then this reduces to

∞∑

j=0

aj z
j,(50.3)

which also defines a convergent power series for |z| < 1. Thus elements of H2

have natural extensions to holomorphic functions on the unit disk in C, and
this is another way to characterize the Hardy space.

Let H∞ = H∞(T) be the set of f ∈ L∞(T) that satisfy (50.1) for every
j ∈ Z+, which is the same as the intersection of L∞ with H2. This description
in terms of integrals shows that H∞ is a closed linear subspace of L∞ with
respect to the weak∗ topology, when L∞ is identified with the dual of L1. Let
us check that

b f ∈ H2(50.4)

whenever f ∈ H2 and b ∈ H∞. Of course, b f ∈ L2 when f ∈ L2 and b ∈ L∞,
and f 7→ b f is a bounded linear operator on L2. If b ∈ H∞ and f(z) = zl for
some l ≥ 0, then it is easy to see that b f ∈ H2. The same conclusion holds for
any f ∈ H2 by linearity and continuity, since H2 is the closed linear span of the
zl’s, l ≥ 0. It follows too that b f ∈ H∞ when b, f ∈ H∞.

Let A be the algebra of bounded linear operators on L2 corresponding to
multiplication by elements of H∞. This is a subalgebra of the algebra B of
bounded linear operators on L2 corresponding to multiplication by bounded
measurable functions. We have already see that B is a closed subalgebra of the
algebra of bounded linear operators on L2 with respect to the weak operator
topology, and it is easy to see that A is closed in the weak operator topology
as well. However, A is not a ∗-algebra, because H∞ is not invariant under
complex conjugation. For example, if b(z) = z, then b ∈ H∞ and 1/b(z) = z is
an element of L∞ but not H∞. Multiplication by b defines an element of A that
is also a unitary transformation on L2, but whose inverse is not in A. By the
remarks in the previous paragraph, A can also be described as the subalgebra
of B consisting of operators that map H2 into itself.
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51 Fourier series, 2

If f is an integrable complex-valued function on the unit circle T and j is an
integer, then the jth Fourier coefficient of f is defined by

f̂(j) =
1

2π

∫

T

f(w)w−j |dw|.(51.1)

One can also think of this as the inner product of f with wj , especially when
f ∈ L2. Note that

|f̂(j)| ≤ 1

2π

∫

T

|f(w)| |dw|(51.2)

for each j, so that the Fourier coefficients of an integrable function are bounded.
Formally, the corresponding Fourier series is given by

∞∑

j=−∞

f̂(j) zj.(51.3)

This is the same as
∞∑

j=0

f̂(j) zj +

∞∑

j=1

f̂(−j) zj(51.4)

on the unit circle. However, an advantage of (51.4) is that these series auto-
matically converge absolutely when |z| < 1, because of the boundedness of the
Fourier coefficients.

The first series in (51.4) defines a holomorphic function on the unit disk,
and the second series defines a conjugate-holomorphic function. In particular,
their sum is a harmonic function on the unit disk. The second series is equal to
0 for every z with |z| < 1 if and only if f̂(−j) = 0 for each j ≥ 1. Equivalently,

(51.4) is holomorphic on the unit disk if and only if f̂(−j) = 0 when j ≥ 1.
An advantage of (51.3) is that multiplication by z clearly corresponds to

shifting the Fourier coefficients. If f̂(−j) = 0 for j ≥ 1, then this extends to
|z| < 1, but this does not work using (51.4) for arbitrary functions when |z| < 1.

Similarly, if f̂1(−j) = f̂2(−j) = 0 for j ≥ 1, then the product of f1 and f2 on the
unit circle corresponds to the product of the corresponding power series on the
unit disk under suitable conditions. This is related to the fact that the product
of two holomorphic functions is holomorphic, while the product of harmonic
functions is not normally harmonic.

52 Multiplication on H2

If b is a bounded measurable function on the unit circle, then f 7→ b f defines a
bounded linear operator on L2(T), with operator norm equal to the L∞ norm
of b. If b ∈ H∞(T), then H2(T) is an invariant linear subspace of this operator,
as in Section 50. In this case, we can also think of f 7→ b f as a bounded
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linear operator on H2. Let us check that the operator norm of multiplication
by b ∈ H∞ is the same on H2 as on L2. Of course, the operator norm on H2 is
automatically less than or equal to the operator norm on L2.

By definition, the operator norm on H2 is the supremum of

( 1

2π

∫

T

|b(z)|2 |f(z)|2 |dz|
)1/2

(52.1)

over f ∈ H2 with ( 1

2π

∫

T

|f(z)|2 |dz|
)1/2

≤ 1.(52.2)

Similarly, the operator norm on L2 is equal to the supremum of (52.1) over
f ∈ L2 that satisfy (52.2). For the latter, we may as well restrict our attention
to functions f given by finite sums of the form

f(z) =

n∑

j=−n

aj z
j(52.3)

since these functions are dense in L2. If f is of this form, then

f1(z) = zn f(z) ∈ H2,(52.4)

and |f1(z)|2 = |f(z)|2. Hence (52.1) and (52.2) are the same for f1 as for f , and
it follows that the operator norms on L2 and H2 are the same.

Suppose that A is a bounded linear operator on H2 that commutes with
multiplication by b for every b ∈ H∞. Actually, it suffices to ask that A commute
with multiplication by z. If a = A(1), then a ∈ H2, and A(f) = a f whenever f
is a finite linear combination of the zj’s. Using the boundedness of A, one can
show that a ∈ H∞, and that A(f) = a f for every f ∈ H2.

In particular, this implies that the algebra A1 of operators on H2 defined
by multiplication by functions in H∞ is a closed subalgebra of the algebra
of bounded linear operators on H2 in the weak operator topology. This is a
bit different from the situation discussed in Section 50, where the multiplication
operators were considered as acting on L2 instead of H2. However, A1 is still not
a von Neumann algebra, because it is not a ∗-algebra. Note that multiplication
by a ∈ H∞ is invertible as an operator on H2 if and only if 1/a ∈ H∞, in
contrast with the situation in Section 50.

53 The Poisson kernel

For the sake of completeness, let us briefly review some aspects of the Poisson
kernel. This is defined for z, w ∈ C with |z| < 1 and |w| = 1 by

P (z, w) =
1

2π

( ∞∑

j=0

zj wj +
∞∑

j=1

zj wj
)
.(53.1)
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Thus ∫

T

P (z, w) f(w) |dw|(53.2)

is equal to (51.4) for every integrable function f on the unit circle. There is
no problem with interchanging the order of summation and integration here,
because the series in (53.1) converge uniformly in w for each z ∈ C with |z| < 1.
In particular, ∫

T

P (z, w) |dw| = 1(53.3)

for every z ∈ C with |z| < 1.
Observe that

∞∑

j=0

zj wj +

∞∑

j=1

zj wj = 2 Re

∞∑

j=0

zj wj − 1,(53.4)

where Re a is the real part of a complex number a. Of course,

∞∑

j=0

zj wj =
1

1 − z w
=

1 − z w

|1 − z w|2 ,(53.5)

and so

2

∞∑

j=0

zj wj − 1 =
2 − 2 z w − |1 − z w|2

|1 − z w|2(53.6)

=
1 − z w + z w − |z|2

|1 − z w|2 ,

using the fact that |w| = 1 in the last step. Hence

P (z, w) =
1

2 π

1 − |z|2
|1 − z w|2 ,(53.7)

because Re(z w − z w) = 0.
This formula implies that

P (z, w) ≥ 0(53.8)

for every z, w ∈ C with |z| < 1 and |w| = 1, and that

P (z, w) → 0(53.9)

as z tends to any point on the unit circle other than w, with uniform convergence
outside of any neighborhood of w. If f is a continuous function on the unit
circle, then one can use these properties of the Poisson kernel to show that
(53.2) converges to f(ζ) as z → ζ when |ζ| = 1. Thus the Poisson integral
(53.2) defines a continuous extension of f to the closed unit disk.

Let Pr(f)(ζ) be the Poisson integral (53.2) of f evaluated at z = r ζ, where
0 ≤ r < 1 and |ζ| = 1. If f is a continuous function on the unit circle, then
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Pr(f) converges to f uniformly as r → 1, because of uniform continuity. If
f ∈ Lp, 1 ≤ p ≤ ∞, then one can show that

‖Pr(f)‖p ≤ ‖f‖p(53.10)

for every r ∈ [0, 1). This is straightforward when p = 1 or ∞, and otherwise
can be seen as an integrated version of the triangle inequality. If p < ∞, then
continuous functions are dense in Lp, and one can show that Pr(f) converges
to f in the Lp norm as r → 1.

54 Fourier series, 3

The identification between the Poisson integral (53.2) and the series (51.4) when
|z| < 1 can be re-expressed as

Pr(f)(ζ) =

∞∑

j=−∞

r|j| f̂(j) ζj(54.1)

for |ζ| = 1 and 0 ≤ r < 1. Of course, the Fourier series associated to f is the
same as the right side of (54.1) with r = 1. If r < 1, then the right side of
(54.1) is known as the Abel sum of the Fourier series of f associated to r. The
convergence of Pr(f) to f as r → 1 can then be rephrased as the convergence
of the Abel sums of the Fourier series of f to f .

If f is continuous, then Pr(f) converges to f uniformly on the unit circle as
r → 1. For each r < 1, the partial sums of the series on the right side of (54.1)
converge uniformly on the unit circle, because of the boundedness of the Fourier
coefficients of f . In particular, finite linear combinations of the ζj ’s are dense in
C(T) with respect to the supremum norm. Similarly, finite linear combinations
of the ζj ’s are dense in Lp(T) when 1 ≤ p <∞. This can be used to show that
the ζj ’s form an orthonormal basis for L2(T), as in Section 29.

If f ∈ L2, then the orthonormality of the ζj ’s implies that

‖Pr(f)‖2 =
( ∞∑

j=−∞

r2|j| |f̂(j)|2
)1/2

.(54.2)

This is clearly less than or equal to

‖f‖2 =
( ∞∑

j=−∞

|f̂(j)|2
)1/2

(54.3)

for each r < 1. Thus (53.10) is an extension of this to any p.

55 Hardy spaces, continued

The Hardy space Hp = Hp(T) can be defined for 1 ≤ p ≤ ∞ as the closed
linear subspace of Lp(T) consisting of functions f such that

f̂(−j) = 0 for each j ∈ Z+.(55.1)
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In this case,

Pr(f)(ζ) =

∞∑

j=0

rj f̂(j) ζj .(55.2)

If p < ∞, then the convergence of Pr(f) to f as r → 1 in Lp and the uniform
convergence of the series on the right side of (55.2) imply that each f ∈ Hp can
be approximated in the Lp norm by finite linear combinations of the ζj ’s with
j ≥ 0. Of course, ζj ∈ Hp for each j ≥ 0, and it follows that Hp is the closed
linear span of the ζj ’s, j ≥ 0, in Lp when p <∞.

If f ∈ Lp and g ∈ Lq, then Hölder’s inequality implies that their product
f g is in Lr and

‖f g‖r ≤ ‖f‖p ‖g‖q,(55.3)

where
1

r
=

1

p
+

1

q
.(55.4)

If f ∈ Hp, 1 ≤ p ≤ ∞, then f(ζ) ζl ∈ Hp for each l ≥ 0. Hence f g ∈ Hr

when g ∈ Hq, 1 ≤ q < ∞, and r ≥ 1, where r is as in (55.4), as one can show
by approximating g by linear combinations of the ζl’s. This also works when
q = ∞ and p < ∞, by approximating f by linear combinations of the ζl’s. If
p = q = ∞, then the same argument implies that f g ∈ Hr for every r < ∞,
and it follows that f g ∈ H∞, since f g ∈ L∞.

Similarly, let A = A(T) be the set of continuous functions f on the unit
circle that satisfy (55.1). The uniform convergence of Pr(f) to f as r → 1 and
of the partial sums of the right side of (55.2) imply that each f ∈ A can be
approximated uniformly by finite linear combinations of the ζj ’s with j ≥ 0. As
before, ζj ∈ A for each j ≥ 0, and so A is the same as the closed linear span
of the ζj ’s, j ≥ 0, in C(T). If f, g ∈ A, then one can use these approximations
to show that f g ∈ A, as in the previous paragraph. In particular, A is a closed
subalgebra of C(T).

56 Multiplication, continued

The Fourier coefficients of a products of two functions f , g on the unit circle
are given formally by

f̂ g(n) =

∞∑

j=−∞

f̂(n− j) ĝ(j),(56.1)

as one can see by multiplying the corresponding Fourier series for f , g. It is easy
to verify this formula when one of f(z), g(z) is an integrable function on the unit
circle and the other is zl for some integer l, or a linear combination of finitely
many zl’s. One can also check that this formula holds when f, g ∈ L2(T). In
this case, f g ∈ L1(T), and the sum in (56.1) converges absolutely for each
n ∈ Z, because the Fourier coefficients of f , g are square-summable. Thus both
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sides of (56.1) make sense, and one can show that they are equal using the
convergence of Fourier series in L2.

Suppose that f , g are of analytic type, in the sense that

f̂(−j) = ĝ(−j) = 0(56.2)

for every positive integer j. Thus (56.1) reduces to

f̂ g(n) =

n∑

j=0

f̂(n− j) ĝ(j),(56.3)

and there is no problem about the convergence of the sum on the right. If
f ∈ Hp, g ∈ Hq, 1/r = 1/p+ 1/q, and r ≥ 1, then f g ∈ Hr, and one can get
(56.3) using approximation arguments.

Remember that the Cauchy product of a pair of infinite series
∑∞

j=0 aj ,∑∞
l=0 bl is the infinite series

∑∞
n=0 cn, where

cn =

n∑

j=0

an−j bj.(56.4)

Formally,
∞∑

n=0

cn =
( ∞∑

j=0

aj

) ( ∞∑

l=0

bl

)
,(56.5)

and more precisely

∞∑

n=0

cn z
n =

( ∞∑

j=0

aj z
j
)( ∞∑

l=0

bl z
l
)

(56.6)

as a product of formal power series. If
∑∞

j=0 aj ,
∑∞

l=0 bl converge absolutely,

then it is well known that
∑∞

n=0 cn also converges absolutely and satisfies (56.5).
In particular, if

∑∞
j=0 aj z

j and
∑∞

l=0 bl z
l converge absolutely when |z| < 1, then

(
∑∞

n=0 cn z
n also converges absolutely when |z| < 1 and satisfies (56.6).

If f , g are of analytic type, then we have the associated power series

∞∑

j=0

f̂(j) zj,

∞∑

l=0

ĝ(l) zl(56.7)

on the unit disk, and (56.3) says exactly that

∞∑

n=0

f̂ g(n) zn(56.8)

is their Cauchy product. If f ∈ Hp, g ∈ Hq, and 1/r = 1/p + 1/q ≤ 1, then
f g ∈ Hr, and these power series converge absolutely on the unit disk. The
product of the series in (56.7) is equal to the one in (56.8) when |z| < 1, as in
the previous paragraph. Note that Hp spaces can be defined directly in terms
of holomorphic functions on the unit disk for all p > 0, and have analogous
properties in terms of products.
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57 Convolution on Z

If a = {aj}∞j=−∞, b = {bj}∞j=−∞ are doubly-infinite sequences of complex num-
bers, then their convolution a∗b is the doubly-infinite sequence defined formally
by

(a ∗ b)n =

∞∑

j=−∞

an−j bj .(57.1)

Let us say that a has finite support if aj = 0 for all but finitely many j. If
at least one of a, b has finite support and the other is arbitrary, then a ∗ b is
defined. If both a and b have finite support, then a ∗ b has finite support too. If
a−j = b−j = 0 for each j ≥ 1, then (a ∗ b)n is the same as the Cauchy product
(56.4), and makes sense without additional restriction on a, b.

Suppose that a ∈ ℓp(Z) and b ∈ ℓq(Z), where 1 ≤ p, q ≤ ∞ and 1/p+1/q = 1.
By Hölder’s inequality, the series in the definition of (a∗b)n converges absolutely
for each n ∈ Z, and is uniformly bounded in n, with

‖a ∗ b‖∞ ≤ ‖a‖p ‖b‖q.(57.2)

If 1 < p, q <∞, then one can also check that

a ∗ b ∈ c0(Z).(57.3)

This works as well when one of a, b is in ℓ1(Z) and the other is in c0(Z).
It is easy to see that convolution of sequences is commutative, which is to

say that
a ∗ b = b ∗ a(57.4)

when the convolutions are defined. This especially clear when the convolution
is expressed by

(a ∗ b)n =
∑

j,l∈Z

j+l=n

aj bl.(57.5)

Of course, a ∗ b is also linear in a and b.
Similarly, convolution is associative, in the sense that

(a ∗ b) ∗ c = a ∗ (b ∗ c)(57.6)

under suitable conditions so that the convolutions are defined. More precisely,

((a ∗ b) ∗ c)n = (a ∗ (b ∗ c))n =
∑

j,k,l∈Z

j+k+l=n

aj bk cl.(57.7)

For instance, this certainly works when a, b, c have finite support, or at least
two of them have finite support. It also works when a−j = b−j = c−j = 0 for
each j ≥ 1.
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Suppose that a, b ∈ ℓ1(Z). Thus a, b are bounded, the series in the definition
of (a ∗ b)n converges absolutely for each n ∈ Z, and

|(a ∗ b)n| ≤
∞∑

j=−∞

|an−j | |bj |.(57.8)

This implies that

∞∑

n=−∞

|(a ∗ b)n| ≤
( ∞∑

j=−∞

|aj |
)( ∞∑

l=−∞

|bl|
)
,(57.9)

by interchanging the order of summation, so that a ∗ b ∈ ℓ1(Z) too, and

‖a ∗ b‖1 ≤ ‖a‖1 ‖b‖1.(57.10)

In particular, (a ∗ b) ∗ c and a ∗ (b ∗ c) are defined when a, b, c ∈ ℓ1(Z), and one
can show that they are the same, as in the previous paragraph. Hence ℓ1(Z) is
an associative algebra with respect to convolution.

Let δ(l) = {δj(l)}∞j=−∞ be defined for each l ∈ Z by

δj(l) = 1 when j = l(57.11)

= 0 when j 6= l.

If a is any doubly-infinite sequence of complex numbers, then

(a ∗ δ(l))n = (δ(l) ∗ a)n = an−l(57.12)

for each l, n ∈ Z. Thus a ∗ δ(l) is the same as a shifted l steps. In particular,

a ∗ δ(0) = δ(0) ∗ a = a.(57.13)

This shows that δ(0) is the multiplicative identity element in ℓ1(Z) as an algebra
with respect to convolution.

Suppose that a ∈ ℓp(Z), 1 ≤ p ≤ ∞, and b ∈ ℓ1(Z). Thus a is bounded, and
a ∗ b is well defined. It is not too difficult to show that a ∗ b ∈ ℓp(Z), with

‖a ∗ b‖p ≤ ‖a‖p ‖b‖1.(57.14)

This basically follows from the triangle inequality for the ℓp norm, since a ∗ δ(l)
is a shift of a for each l, and hence has the same ℓp norm as a.

58 Convolution on Z, 2

If a ∈ ℓ(Z), then the Fourier transform of a is the function on the unit circle
defined by

â(z) =

∞∑

j=−∞

aj z
j.(58.1)
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More precisely, this series converges uniformly to a continuous function on the
unit circle, and

sup
z∈T

|â(z)| ≤ ‖a‖1.(58.2)

Using the orthonormality of the zj’s with respect to the standard integral inner
product on the unit circle, one can check that the jth Fourier coefficient of â is
equal to aj for each j ∈ Z.

If f is a function on the unit circle whose Fourier coefficients f̂(j) happen to

be summable, then the Fourier transform of {f̂(j)}∞j=−∞ is given by the Fourier
series associated to f , and is the same as f . This follows from the convergence
of the Abel sums of the Fourier series of f to f , as in Section 54. More precisely,
the Abel sums converge to the ordinary sum when the series converges.

If a, b ∈ ℓ1(Z), then
̂(a ∗ b)(z) = â(z) b̂(z)(58.3)

for each z ∈ T. Indeed,

̂(a ∗ b)(z) =

∞∑

n=−∞

(a ∗ b)n z
n(58.4)

can be expanded into

∞∑

n=−∞

∞∑

j=−∞

an−j bj z
n =

∞∑

n=−∞

∞∑

j=−∞

(an−j z
n−j) (bj z

j).(58.5)

Because of absolute convergence, we can interchange the order of summation,
to get that this is equal to

∞∑

j=−∞

∞∑

n=−∞

(an−j z
n−j) (bj z

j) =

∞∑

j=−∞

â(z) bj z
j = â(z) b̂(z),(58.6)

as desired. Of course, this is basically the same as multiplying the series asso-
ciated to â, b̂ and collecting terms, as in Section 56.

If a ∈ ℓ2(Z), then the series in the definition of the Fourier transform of a
converges in L2(T), because of the orthonormality of the zj ’s. The latter also
implies that ( 1

2π

∫

T

|â(z)|2 |dz|
)1/2

= ‖a‖2.(58.7)

As before, the jth Fourier coefficient of â is equal to aj for each j ∈ Z.

59 Convolution on T

The convolution of two functions f , g on the unit circle is defined by

(f ∗ g)(z) =
1

2π

∫

T

f(z w−1) g(w) |dw|.(59.1)
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This actually makes sense as an integrable function on T when f , g are integrable
functions, because

∫

T

∫

T

|f(z w−1)| |g(w)| |dw| |dz| =

∫

T

∫

T

|f(z w−1)| |g(w)| |dz| |dw|(59.2)

by Fubini’s theorem, which reduces to

( ∫

T

|f(z)| |dz|
)( ∫

T

|g(w)| |dw|
)
,(59.3)

since Lebesgue measure on T is invariant under rotations. It is easy to see that
convolution is commutative, using the change of variables w 7→ z w−1 in the
integral defining (f ∗ g)(z). One can also check that convolution is associative,
directly from the definition.

Let us check that the Fourier coefficients of f ∗g are the same as the product
of the Fourier coefficients of f , g, which is to say that

̂(f ∗ g)(j) = f̂(j) ĝ(j)(59.4)

for each j ∈ Z. By definition,

̂(f ∗ g)(j) =
1

2π

∫

T

(f ∗ g)(z) z−j |dz|(59.5)

=
1

(2π)2

∫

T

∫

T

f(z w−1) g(w) z−j |dw| |dz|.

Using Fubini’s theorem again, this can be re-expressed as

1

(2π)2

∫

T

∫

T

f(z w−1) (z w−1)−j g(w)w−j |dz| |dw|,(59.6)

which reduces to
( 1

2π

∫

T

f(z) z−j |dz|
)( 1

2π

∫

T

g(w)w−j |dw|
)

= f̂(j) ĝ(j).(59.7)

It is convenient to take the Lp norm of a function f ∈ Lp(T), 1 ≤ p < ∞,
to be

‖f‖p =
( 1

2π

∫

T

|f(z)|p |dz|
)1/p

.(59.8)

The L∞ norm can be taken to be the same as usual. If f ∈ Lp, g ∈ Lq, and
1/p+ 1/q = 1, then the convolution f ∗ g is bounded, with

‖f ∗ g‖∞ ≤ ‖f‖p ‖g‖q,(59.9)

by Hölder’s inequality. One can also check that f ∗ g is a continuous function
on the unit circle in this case. If f ∈ Lp, 1 ≤ p ≤ ∞, and g ∈ L1, then one can
show that f ∗ g ∈ Lp, and that

‖f ∗ g‖p ≤ ‖f‖p ‖g‖1.(59.10)
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This follows from Fubini’s theorem as at the beginning of the section when
p = 1, and is straightforward when p = ∞. Otherwise, this is basically an
integrated version of the triangle inequality for the Lp norm, since f(z w−1) is
in Lp as a function of z and with the same norm as f for each w ∈ T.

Put

pr(z) =
1 − r2

|1 − r z|2(59.11)

for z ∈ T and 0 ≤ r < 1. If f is an integrable function on the unit circle, then

Pr(f) = pr ∗ f,(59.12)

where Pr(f) is the Poisson integral of f , as in Section 53.

Part II

Topological groups

60 Topological groups

A topological group is a group G equipped with a topology such that the group
operations are continuous. It is customary to ask that the set consisting of only
the identity element e be a closed set, which implies that all one-element sets
in the group are closed, by continuity of translations. One can use continuity of
the group operations to show that G is also Hausdorff, and even regular.

If a, b ∈ G and E ⊆ G, then we put

aE = {a x : x ∈ E}, E b = {x b : x ∈ E}.(60.1)

Similarly, if A,B ⊆ G, then we put

AB = {a b : a ∈ A, b ∈ B}.(60.2)

Thus
AB =

⋃

a∈A

aB =
⋃

b∈B

Ab,(60.3)

and it follows that AB is an open set whenever A or B is an open set.
Let U be an open set that contains e. For any set E, E U and U E are open

sets that contain E, and
E ⊆ E U, U E.(60.4)

Moreover, E is equal to the intersection of E U or U E over all neighborhoods
U of E.

Suppose that H is a subgroup of G that is also an open set. Hence the
cosets aH and H b of H are open sets too. By elementary group theory, the
complement of H is a union of cosets. It follows that H is automatically a closed
set as well.
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61 Locally compact groups

We shall be primarily concerned here with topological groups G that are locally
compact. Because of continuity of translations, local compactness is equivalent
to asking that there be an open set U such that e ∈ U and U is compact. We
may also ask that U be symmetric in the sense that x−1 ∈ U when x ∈ U , since
otherwise we can take the intersection of U with U−1 = {x−1 : x ∈ U}.

For each positive integer n, let Un be the set of products x1 · · ·xn of n
elements x1, . . . , xn of U . This is the same as the product U · · ·U of n U ’s, in
the notation of the previous section. Thus Un is an open set for each n. Also,

Un ⊆ Un+1(61.1)

for every n.
If A, B are compact sets, then AB is compact as well. This follows from

continuity of the group operation, and compactness of A × B in the product
topology. Hence the product Kn of n U ’s is compact for each n. Of course,
Un ⊆ Kn, and so

Un ⊆ Kn(61.2)

is compact too. Note that continuity of the group operation implies

Kn ⊆ Un.(61.3)

It is easy to see that

H =

∞⋃

n=1

Un.(61.4)

is a subgroup of G. This is also an open set in G, since U is open. Moreover,
H is σ-compact, meaning that it is the union of a sequence of compact sets, by
the remarks in the previous paragraph.

62 Uniform continuity

Let G be a topological group, let f be a continuous real or complex-valued
function on G, and let K be a compact set in G. Also let ǫ > 0 be given. For
each x ∈ K, there is an open set U(x) such that e ∈ U(x) and

|f(x) − f(y)| < ǫ

2
(62.1)

when y ∈ xU(x). By continuity of the group operation at e, there is another
open set U1(e) such that e ∈ U1(x) and

U1(x)U1(x) ⊆ U(x).(62.2)

Consider the covering of K consisting of the open sets xU1(x), x ∈ K. By
compactness, there are finitely many elements x1, . . . , xn of K such that

K ⊆
n⋃

j=1

xj U1(xj).(62.3)
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Put

U1 =
n⋂

j=1

U1(xj),(62.4)

which is also a neighborhood of e.
Let us check that

|f(x) − f(y)| < ǫ(62.5)

for every x ∈ K and y ∈ xU1. Let x ∈ K be given, and choose j ∈ {1, . . . , n}
such that x ∈ xj U1(xj). If y ∈ xU1, then

y ∈ xj U1(xj)U1 ⊆ xj U1(xj)U1(xj) ⊆ xj U(xj).(62.6)

This implies that

|f(x) − f(y)| ≤ |f(x) − f(xj)| + |f(xj) − f(y)| < ǫ

2
+
ǫ

2
= ǫ,(62.7)

as desired.
Similarly, there is a neighborhood V1 of e for which the same conclusion

holds when x ∈ K and y ∈ V1 x. This can also be derived from the previous
assertion, applied to f(x−1) and K−1. If f has compact support, then these
uniform continuity conditions hold on the whole group.

Note that G is locally compact as soon as there is a nonempty open set with
compact closure. In particular, G is locally compact when there is a continuous
function with compact support that is not identically zero.

63 Haar measure

If G is a locally compact topological group, then there are Haar measures HL,
HR on G that are invariant under translations on the left and right, respectively.
More precisely, HL and HR are Borel measures on G such that

HL(K), HR(K) <∞(63.1)

when K ⊆ G is compact and

HL(U), HR(U) > 0(63.2)

when U ⊆ G is nonempty and open. Translation-invariance means that

HL(aE) = HL(E), HR(E b) = HR(E)(63.3)

for every a, b ∈ G and Borel set E ⊆ G. These measures also enjoy some
standard regularity properties, which make them unique up to multiplication
by positive real constants.

If G is a Lie group, so that G is a smooth manifold and the group operations
are smooth mappings, then the Haar measures correspond to smooth left and
right-invariant volume forms, which are uniquely determined by their values at

58



the identity element. If G is equipped with the discrete topology, then one can
use counting measure for both the left and right Haar measures. Of course, left
and right invariance are the same for an abelian group. It is well known that
Haar measure on a compact group is also invariant under both left and right
translations, as we shall see in a moment.

Observe that HL(E−1) is invariant under translations of E on the right, and
HR(E−1) is invariant under translations on the left. Thus HL(E−1), HR(E−1)
are positive constant multiples of HR(E), HL(E), respectively. By multiplying
the Haar measures by suitable constants, if necessary, we may also ask that

HR(E) = HL(E−1).(63.4)

Observe also that HR(aE) is invariant under translations of E on the right
for each a ∈ G, and HL(E b) is invariant under translations of E on the left for
each b ∈ G. Hence there are positive real-valued functions φ, ψ on G such that

HR(aE) = φ(a)HR(E), HL(E b) = ψ(b)HL(E).(63.5)

If G is compact, then φ(a) = ψ(b) = 1, as one can see by taking E = G.
These relations imply that

∫

G

f(a−1 x) dHR(x) = φ(a)

∫

G

f(x) dHR(x)(63.6)

and ∫

G

f(x b−1) dHL(x) = ψ(b)

∫

G

f(x) dHL(x)(63.7)

for every continuous real-valued function f on G with compact support. By
applying these identities to a nonnegative function f that is positive somewhere,
and using uniform continuity as in the previous section, we get that φ, ψ are
continuous functions. It is easy to see from their definitions that φ, ψ are also
homomorphisms from G into the positive real numbers as a group with respect
to multiplication. Moreover, ψ = 1/φ, by (63.4). Note that φ and ψ do not
depend on the choice of Haar measure, which is to say that they are unaffected
by multiplication of Haar measure by a positive constant.

One can also check that

φ(x)−1 dHR(x), ψ(x)−1 dHL(x)(63.8)

determine left and right-invariant measures on G, respectively, and hence are
constant multiples of dHL(x), dHR(x). With the normalization (63.4), these
constants are equal to 1, because these measures are approximately the same
on sets E near e with positive finite measure and E−1 = E. This uses the fact
that φ, ψ are continuous and equal to 1 at the identity. In particular, HL, HR

are mutually absolutely continuous.
Suppose that α is an automorphism of G as a topological group, which is to

say a group automorphism that is also a homeomorphism. Thus

HR(α(E)), HL(α(E))(63.9)
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have the same properties as Haar measure, and are therefore constant multiples
of HR(E), HL(E). If G is compact, then these multiples are equal to 1, as one
can see by taking E = G. Similarly, if G is discrete, then these multiples are
equal to 1. If α is an inner automorphism, so that α(x) = a x a−1 for some
a ∈ G, then this reduces to the earlier discussion.

Note that

IR(f) =

∫

G

f(x) dHR(x), IL(f) =

∫

G

f(x) dHL(x)(63.10)

are positive linear functionals on the space of continuous real-valued functions
with compact support on G that are invariant under translations on the right
and left, respectively. Conversely, one can start with positive linear functionals
of this type, and use the Riesz representation theorem to get positive measures
from them. Thus the existence and uniqueness of Haar measure can also be
formulated in terms of these linear functionals, also known as Haar integrals.

64 Convolution, revisited

Let G be a locally compact topological group with left and right-invariant Haar
measures HL, HR satisfying (63.4), as in the previous section. Under suitable
integrability conditions, the left and right convolutions of functions f , g on G
are defined by

(f ∗L g)(x) =

∫

G

f(y−1 x) g(y) dHL(y)(64.1)

and

(f ∗R g)(x) =

∫

G

f(x z−1) g(z) dHR(z),(64.2)

respectively. Of course, these are the same when G is commutative. Using the
change of variables y 7→ y−1 and (63.4), we get that

(f ∗L g)(x) =

∫

G

f(y x) g(y−1) dHR(y),(64.3)

and hence, using the change of variables y 7→ y x−1,

(f ∗L g)(x) =

∫

G

f(y) g(x y−1) dHR(y) = (g ∗R f)(x).(64.4)

If G is commutative, then it follows that convolution is commutative.
Moreover,

(f ∗L g) ∗R h = (f ∗R h) ∗L g.(64.5)

This says that left and right convolution operators acting on f commute with
each other. To see this, one can simply express the convolutions as integrals
and apply Fubini’s theorem, because left and right translations on the group
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automatically commute with each other. This implies the usual associativity
conditions

(f ∗L g) ∗L h = f ∗L (g ∗L h)(64.6)

and
(f ∗R g) ∗R h = f ∗R (g ∗R h),(64.7)

using the commutativity conditions described in the previous paragraph.
As in the previous situations, convolutions with f are basically combinations

of translations of f . Because of possible noncommutativity, one has to be careful
to distinguish between translations on the left and on the right. However, left
and right translations have the nice feature of commuting with each other.

One can also simply look at linear transformations acting on functions on the
group that commute with left or right translations. This includes convolutions
with functions, measures, or other types of objects, as appropriate.

65 Convolution of measures

Let G be a locally compact topological group. Under suitable conditions, the
convolution µ ∗ ν of Borel measures µ, ν on G can be defined by

∫

G

φd(µ ∗ ν) =

∫

G

∫

G

φ(x y) dµ(x) dν(y),(65.1)

where x y uses the group operation on the right side. For example, if µ, ν are
real or complex measures with finite total mass, then this can be used to define
µ∗ν as a measure with finite total mass. If µ, ν have compact support, then µ∗ν
has compact support. If one of µ, ν has compact support and the other is locally
finite, then µ ∗ ν can be defined as a locally finite measure, by considering only
functions φ with compact support. Note that it is not necessary to distinguish
between left and right convolution in this definition, but convolution is not
commutative unless G is commutative. However, associativity follows easily
from the definition.

As a very basic example, consider the point mass δa at a, so that δa(E) = 1
when a ∈ E and δa(E) = 0 when a 6∈ E. It is easy to see that

δa ∗ δb = δa b(65.2)

for each a, b ∈ G. If e is the identity element of G, then

δe ∗ µ = µ ∗ δe = µ(65.3)

for every measure µ. Otherwise,

(µ ∗ δa)(E) = µ(E a−1), (δa ∗ ν)(E) = ν(a−1E).(65.4)

The convolution of a function and a measure can also be defined directly as
a function, by

(f ∗ ν)(x) =

∫

G

f(x y−1) dν(y)(65.5)

61



and

(µ ∗ f)(y) =

∫

G

f(x−1 y) dµ(x).(65.6)

Equivalently, if HR is a right-invariant Haar measure, then

(f ∗ ν) dHR = (f dHR) ∗ ν,(65.7)

because
∫

G

φ(x) (f ∗ ν)(x) dHR(x) =

∫

G

∫

G

φ(x) f(x y−1) dν(y) dHR(x)(65.8)

=

∫

G

∫

G

φ(x y) f(x) dHR(x) dν(y).

Similarly, if HL is a left-invariant Haar measure, then

(µ ∗ f) dHL = µ ∗ (f dHL),(65.9)

because
∫

G

φ(y) (µ ∗ f)(y) dHL(y) =

∫

G

∫

G

φ(y) f(x−1 y) dµ(x) dHL(y)(65.10)

=

∫

G

∫

G

φ(x y) f(y) dµ(x) dHL(y).

As usual,
(µ ∗ f) ∗ ν = µ ∗ (f ∗ ν),(65.11)

since left and right translations commute with each other. If δa is the point
mass at a, then

(δa ∗ f)(y) = f(a−1 y), (f ∗ δa)(x) = f(xa−1).(65.12)

If f , g are functions on G, then their right and left convolutions can be
described by

f ∗R g = f ∗ (g dHR), f ∗L g = (g dHL) ∗ f.(65.13)

Hence
(f ∗R g) dHR = (f dHR) ∗ (g dHR)(65.14)

and
(f ∗L g) dHL = (g dHL) ∗ (f dHL),(65.15)

as in the previous paragraph.
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66 Locally compact Hausdorff spaces

Let X be a locally compact Hausdorff topological space. A continuous real or
complex-valued function f on X vanishes at infinity if for every ǫ > 0 there is
a compact set K ⊆ X such that

|f(x)| < ǫ(66.1)

when x ∈ X\K. In particular, this implies that f is bounded on X .
As usual, the space C0(X) of continuous functions on X vanishing at infinity

is a vector space with respect to pointwise addition and scalar multiplication.
It is also a Banach space with respect to the supremum norm

‖f‖sup = sup{|f(x)| : x ∈ X}.(66.2)

Continuous functions on X with compact support are dense in C0(X).
It is well known that every bounded linear functional λ on C0(X) can be

represented in a unique way as

λ(f) =

∫

X

f dµ,(66.3)

where µ is a real or complex regular Borel measure on X , as appropriate. The
dual norm of λ is equal to

‖µ‖ = |µ|(X),(66.4)

where |µ| is the positive Borel measure associated to µ. This representation
permits λ(f) to be extended to integrable functions f on X with respect to
|µ| in the usual way. In particular, λ(f) is defined for bounded measurable
functions f on X .

Note that continuous functions vanishing at infinity on a locally compact
group satisfies the same uniform continuity conditions as mentioned earlier for
functions with compact support.

67 Simple estimates

If µ, ν are real or complex measures on a locally compact group G, then

‖µ ∗ ν‖ ≤ ‖µ‖ ‖ν‖.(67.1)

For that matter,
‖µ× ν‖ ≤ ‖µ‖ ‖ν‖,(67.2)

where µ× ν is the corresponding product measure on G×G. Similarly, if f is a
bounded measurable function on G, then µ ∗ f , f ∗ ν are bounded, and satisfy

sup
y∈G

|(µ ∗ f)(y)| ≤ ‖µ‖
(

sup
y∈G

|f(y)|
)

(67.3)
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and
sup
x∈G

|(f ∗ ν)(x)| ≤
(

sup
x∈G

|f(x)|
)
‖ν‖.(67.4)

Suppose now that 1 ≤ p <∞, and that HL, HR are left and right-invariant
Haar measures on G, respectively. If f ∈ Lp(HL), then µ ∗ f ∈ Lp(HL), and

‖µ ∗ f‖Lp(HL) ≤ ‖µ‖ ‖f‖Lp(HL).(67.5)

As usual, this is basically an integrated version of the triangle inequality. If
p = 1, then this can be derived from Fubini’s theorem, since

|(µ ∗ f)(y)| ≤
∫

G

|f(x−1 y)| d|µ|(x),(67.6)

or seen as a special case of the previous estimate for convolution of measures.
A nice way to deal with p > 1 is to use Jensen’s inequality when ‖µ‖ ≤ 1 to

get that

|(µ ∗ f)(y)|p ≤
∫

G

|f(x−1 y)|p d|µ|(x).(67.7)

Integrating with respect to HL and applying Fubini’s theorem, we get that

∫

G

|(µ ∗ f)(y)|p dHL(y) ≤
∫

G

∫

G

|f(x−1 y)|p d|µ|(x) dHL(y)(67.8)

≤
∫

G

∫

G

|f(x−1 y)|p dHL(y) d|µ|(x)

=

∫

G

∫

G

|f(y)|p dHL(y) d|µ|(x)

≤
∫

G

|f(y)|p dHL(y).

This also uses the left-invariance of HL and the hypothesis that ‖µ‖ ≤ 1 at the
end.

If, in addition, g ∈ L1(HL), then f ∗L g ∈ Lp(HL), and

‖f ∗L g‖Lp(HL) ≤ ‖f‖Lp(HL) ‖g‖L1(HL).(67.9)

This follows from the previous discussion applied to µ = g dHL. Similarly, if
f ∈ Lp(HR), then f ∗ ν ∈ Lp(HR), and

‖f ∗ ν‖Lp(HR) ≤ ‖f‖Lp(HR) ‖ν‖.(67.10)

If g ∈ L1(HR) as well, then f ∗R g ∈ Lp(HR), and

‖f ∗R g‖Lp(HR) ≤ ‖f‖Lp(HR) ‖g‖L1(HR),(67.11)

by the preceding estimate applied to ν = g dHR.
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68 Translation operators

Let G be a locally compact topological group. For each a ∈ G, the left and right
translation operators La, Ra acting on functions on G are defined by

La(f)(x) = f(a−1 x), Ra(f)(x) = f(xa).(68.1)

Equivalently,
La(f) = δa ∗ f, Ra(f) = f ∗ δa−1 .(68.2)

As usual, left and right translations commute with each other, so that

La ◦Rb = Rb ◦ La(68.3)

for every a, b ∈ G.
Note that

(La(Lb(f)))(x) = (Lb(f))(a−1 x) = f(b−1 a−1 x)(68.4)

= f((a b)−1 x) = La b(f)(x),

which implies that
La ◦ Lb = La b.(68.5)

Similarly,
Ra ◦Rb = Ra b,(68.6)

because

(Ra(Rb(f)))(x) = (Rb(f))(xa) = f(xa b) = Ra b(f)(x).(68.7)

This can also be seen in terms of convolution with δ measures.
Of course, these translation operators determine isometries of C0(G) onto

itself. Moreover,
a 7→ La, Ra(68.8)

are continuous mappings from G into the space of bounded linear operators
on C0(G) with the strong operator topology, because of the uniform continuity
properties of functions in C0(G). Similarly, La, Ra determine isometries of
Lp(HL), Lp(HR) onto themselves, respectively, that are continuous in a relative
to the strong operator topology on BL(Lp(HL)), BL(Lp(HR)) when p <∞. As
usual, the latter can be verified using the fact that continuous functions on G
with compact support are dense in Lp(HL), Lp(HR) when p <∞.

For each a ∈ G, La and Ra also determine bounded linear operators on
Lp(HR) and Lp(HL), respectively, that are isometries multiplied by positive
real numbers. This follows from the fact that translations on the left correspond
to multiplying HR by a positive real number, and similarly for translations on
the right and HL. As in the previous situation, La and Ra are continuous in a
relative to the strong operator topology on BL(Lp(HR)) and BL(Lp(HL)) when
p <∞.
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69 Uniform continuity, 2

Let G be a topological group, and let f be a real or complex-valued function on
G. Let us say that f is right-uniformly continuous on G if for every ǫ > 0 there
is a neighborhood U of the identity element e such that

|f(x) − f(y)| < ǫ(69.1)

for every x, y ∈ G with y ∈ xU . Similarly, f is left-uniformly continuous if for
every ǫ > 0 there is a neighborhood V of e such that this condition holds when
y ∈ V x. We have seen before that continuous functions with compact support
satisfy both of these conditions, as well as continuous functions that vanish at
infinity on a locally compact group.

Equivalently, f is right-uniformly continuous if for every ǫ > 0 there is a
neighborhood U of e such that

|f(x) − f(xu)| < ǫ(69.2)

for every x ∈ G and u ∈ U . Similarly, f is left-uniformly continuous if for every
ǫ > 0 there is a neighborhood V of e such that

|f(x) − f(v x)| < ǫ(69.3)

for every x ∈ G and v ∈ V .
If f is right-uniformly continuous on G, then every left translate La(f) is

right-uniformly continuous, using the same neighborhood U of e for a given ǫ as
for f . Every right translate Ra(f) is also right-uniformly continuous, because

|f(xa) − f(xw a)| < ǫ(69.4)

when w ∈ aU a−1 and f satisfies (69.2). Similarly, if f is left-uniformly con-
tinuous, then every right translate of f is left-uniformly continuous with the
same neighborhood V of e for a given ǫ as for f . A left translate La(f) of f is
left-uniformly continuous, with

|f(a−1 x) − f(a−1 z x)| < ǫ(69.5)

when z ∈ a V a−1 and f satisfies (69.3).
Let W be a neighborhood of e, and let K be a compact set in G. By the

continuity of the group operations, there are neighborhoods W1, W2 of e such
that

x y x−1 ∈W(69.6)

for every x ∈ W1 and y ∈ W2. The sets W1 z, z ∈ K, form an open covering of
K, and so there are finitely many elements z1, . . . , zn of K such that

K ⊆
n⋃

l=1

W1 zl.(69.7)
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If W3 =
⋂n

l=1 z
−1
l W2 zl, then W3 is a neighborhood of e, and

aw a−1 ∈ W(69.8)

for every a ∈ K and w ∈ W3. This implies a uniform version of right-uniform
continuity for the right translatesRa(f) of a right-uniformly continuous function
f when a ∈ K, and a uniform version of left-uniform continuity for the left
translates La(f) of a left-uniformly continuous function f when a ∈ K.

70 Continuity and convolution

Let G be a locally compact topological group, let f be a real or complex-valued
continuous function on G, and let µ be a Borel measure on G. We would like to
consider continuity properties of f ∗ µ and µ ∗ f , under appropriate conditions.
For instance, if f has compact support and µ is locally finite, then it is easy
to see that f ∗ µ and µ ∗ f are continuous, using uniform continuity of f . In
particular, f ∗L g and f ∗R g are continuous when f is a continuous function
with compact support and g is locally integrable.

Suppose now that µ is a finite measure with compact support, and that f is
an arbitrary continuous function on G. Again one can check that f ∗µ and µ∗f
are continuous, using uniform continuity of f on compact sets. If f is left or
right-uniformly continuous, then f ∗ µ and µ ∗ f have the same property. This
uses the uniform versions of uniform continuity of translates of f discussed in
the previous section. In some situations, one may only have uniform versions of
uniform continuity of translations of f over compact sets, and this is sufficient.

If µ is a finite regular measure with arbitrary support, then f ∗ µ and µ ∗ f
are defined for bounded continuous functions f . In this case, there are compact
sets whose complements have arbitrarily small |µ|-measure, and so µ can be
approximated in the measure norm by measures with compact support. This
permits one to get analogous continuity and uniform continuity conditions for
f ∗µ and µ∗f as when µ has compact support. More precisely, the boundedness
of f implies that this approximation of µ corresponds to uniform approximation
of the convolutions.

Of course, f ∗ µ and µ ∗ f have compact support when f and µ both have
compact support. If f has compact support and µ is a finite regular measure
with arbitrary support, then f∗µ and µ∗f vanish at infinity, because they can be
approximated uniformly by functions with compact support as in the previous
paragraph. If f vanishes at infinity and µ is a finite regular measure, then f ∗µ
and µ ∗ f vanish at infinity, as one can see by approximating f uniformly by
functions with compact support.

71 Convolution operators on C0

Let G be a locally compact topological group, and suppose that T is a bounded
linear operator from C0(G) into itself that commutes with left translations.
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More precisely, this means that

T ◦ La = La ◦ T(71.1)

for every a ∈ G. For example, if there is a real or complex regular Borel measure
ν on G such that

T (f) = f ∗ ν(71.2)

for every f ∈ C0(G), then T has this property. Conversely, let us check that
every such operator can be represented in this manner.

The main point is that
λ(f) = T (f)(e)(71.3)

defines a bounded linear functional on C0(G). Hence there is a regular real or
complex Borel measure µ on G, as appropriate, such that

λ(f) =

∫

G

f dµ(71.4)

for every f ∈ C0(G). This implies that (71.2) holds, with ν(E) = µ(E−1),
because T commutes with left translations.

Similarly, convolution with a finite regular measure on the left defines a
bounded linear operator on C0(G) that commutes with translations on the right.
Conversely, every bounded linear operator on C0(G) that commutes with right
translations can be represented in this way.

Note that the same argument would work for bounded linear mappings from
C0(G) into the space of bounded continuous functions on G, equipped with the
supremum norm. Also, the representation (71.2) is unique for regular Borel
measures ν, as in the case of bounded linear functionals on C0(G).

72 Compactness and σ-compactness

Let G be a locally compact topological group. If G is compact, then G has
finite left and right invariant Haar measure. Conversely, let us check that finite
Haar measure implies compactness. Let U be a neighborhood of e with compact
closure. If x1, . . . xn are elements of G such that the corresponding translates
x1 U, . . . , xn U are pairwise disjoint, then

HL

( n⋃

i=1

xi U
)

=

n∑

i=1

HL(xi U) = nHL(U).(72.1)

This leads to an upper bound on n, since U has positive measure. Suppose now
that n is as large as possible. This means that for each y ∈ G there is an i,
1 ≤ i ≤ n, such that

y U ∩ xi U 6= ∅,(72.2)

and hence
y ∈ xi U U

−1.(72.3)
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By hypothesis, U is compact, which implies that U
−1

and thus U U
−1

are
compact, because of the continuity of the group operations. It follows that G

is compact, since G is the union of the compact sets xi U U
−1

, 1 ≤ i ≤ n. Of
course, the same argument would work with right-invariant Haar measure and
right translations instead of left-invariant Haar measure and left translations.

As in Section 61, there is an open subgroup H of G which is σ-compact. If
H has only finitely or countably many cosets in G, then G is also σ-compact.
Conversely, if G is σ-compact, then H has only finitely or countably many cosets
in G. This is because every compact set in G is contained in the union of finitely
many cosets of H .

Suppose that E is a Borel set in G with finite left or right-invariant Haar
measure. For each ǫ > 0, there are only finitely many left or right cosets of H ,
as appropriate, whose intersection with E has Haar measure greater than ǫ. It
follows that there are only finitely or countably many left or right cosets of H ,
as appropriate, whose intersection with E has positive Haar measure.

If G is σ-compact, then the left and right-invariant Haar measures on G are
σ-finite. Conversely, if G has σ-finite Haar measure, then the remarks in the
previous paragraph imply that H has only finitely or countably many cosets,
and hence that G is σ-compact.

73 Equicontinuity

Let G be a topological group, and let E be a collection of real or complex-valued
functions on G. We say that E is equicontinuous at a point x if for every ǫ > 0
there is a neighborhood U of x such that

|f(x) − f(y)| < ǫ(73.1)

for every f ∈ E and y ∈ U . Let us say that E is right-uniformly equicontinuous

on a set E if for every ǫ > 0 there is a neighborhood U of e such that the
same condition holds for every f ∈ E , x ∈ E, and y ∈ xU . Similarly, E is
left-uniformly equicontinuous on E if for every ǫ > 0 there is a neighborhood V
of e such that this condition holds for every f ∈ E , x ∈ E, and y ∈ V x.

If E is compact and E is equicontinuous at every element of E, then one
can check that E is left and right-uniformly equicontinuous on E. This follows
from the same argument as for a single function, as in Section 62. Of course,
E is equicontinuous at every element of E when E is left or right-uniformly
equicontinuous on E.

A function f is right-uniformly continuous onG if and only if the collection of
left translates La(f), a ∈ G, is equicontinuous at e, in which case the collection
of left translates of f is right-uniformly equicontinuous on G. In particular,
the collection of left translates is equicontinuous at any element b of G, which
implies that the left translates of Rb(f) are equicontinuous at e, and that Rb(f)
is right-uniformly continuous, as in Section 69. Moreover, the left translates of
f are left-uniformly equicontinuous on every compact set, by the remarks in the
previous paragraph, which corresponds to another observation in Section 69.
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Similarly, f is left-uniformly continuous on G if and only if the collection of
right translates Ra(f), a ∈ G, is equicontinuous at e, in which case it is left-
uniformly equicontinuous on G. This implies that the right translates of f are
equicontinuous at every point, and right-uniformly equicontinuous on compact
sets.

74 Locally compact spaces, 2

Let X be a locally compact Hausdorff topological space, and let µ be a positive
Borel measure on X . A standard regularity condition asks that for each open
set U in X ,

µ(U) = sup{µ(K) : K ⊆ U is compact}.(74.1)

If µ is a real or complex Borel measure on X , then one would ask that the
associated positive measure |µ| have this property. This is one of the regularity
properties in the conclusion of the Riesz representation theorem for positive
linear functionals on the space of continuous functions with compact support
on X , as well as bounded linear functionals on C0(X).

If µ is a positive Borel measure on X with this property, and if {Uα}α∈A is
a family of open subsets of X such that µ(Uα) = 0 for each α ∈ A, then

µ
( ⋃

α∈A

Uα

)
= 0.(74.2)

To see this, it suffices to show that

µ(K) = 0(74.3)

for every compact set K ⊆ ⋃
α∈A Uα. By compactness, there are finitely many

indices α1, . . . , αn ∈ A such that K ⊆ ⋃n
j=1 Uαj

, and so

µ(K) ≤
n∑

j=1

µ(Uαj
) = 0,(74.4)

as desired. In particular, if W is the union of all of the open sets U ⊆ X such
that µ(U) = 0, then µ(W ) = 0.

The support suppµ of µ is defined to be the complement of the open set
W just mentioned. Thus suppµ is a closed set in X , µ(X\ suppµ) = 0, and
µ(V ) > 0 whenever V is an open set in X such that V ∩ suppµ 6= ∅. For
any positive Borel measure µ on X , one can say that µ has compact support
when there is a compact set in X whose complement has µ-measure 0. This is
equivalent to the compactness of suppµ when µ satisfies the regularity condition
under consideration.

Let G be a locally compact topological group, and let H be an open subgroup
of G. If µ is a positive Borel measure on G with compact support, then µ
is identically 0 on the complement of finitely many cosets of H . If µ is any
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positive finite measure on G, then there are only finitely many cosets of H with
µ-measure at least ǫ for any ǫ > 0. Hence there are only finitely or countably
many cosets of H with positive µ-measure. The same conclusion holds when µ
is σ-finite. If µ also satisfies the regularity condition described before, then the
support of µ is contained in the union of only finitely or countably many cosets
of H . In particular, this can be applied to a σ-compact open subgroup, as in
Section 61. It follows that the support of µ is σ-compact when µ is σ-finite and
satisfies this regularity property.

75 Convolution operators on L1

Let G be a locally compact topological group with right-invariant Haar measure
HR, and let T be a bounded linear operator on L1(HR) that commutes with
translations on the left, so that

T ◦ La = La ◦ T(75.1)

for every a ∈ G. As in Section 71,

T (f) = f ∗ ν(75.2)

has these properties when ν is a real or complex regular Borel measure on G.
We would like to show that every such operator can be represented in this way.
It is easy to see that ν has to be unique, by considering continuous functions f
with compact support.

For each neighborhood U of e in G, let φU be a nonnegative real-valued
continuous function on G with compact support contained in U and

∫

G

φU dHR = 1.(75.3)

It suffices to consider a local base for the topology of G at e, and thus sequences
of U ’s and φ’s when there is a countable local base. The boundedness of T on
L1(HR) implies that

‖T (φU )‖L1(HR) ≤ ‖T ‖op(75.4)

for each U , where ‖T ‖op is the operator norm of T on L1(HR). Equivalently,

λU (f) =

∫

G

f(x)T (φU )(x) dHR(x)(75.5)

is a bounded linear functional on C0(G), with dual norm bounded by ‖T ‖op.
Now we would like to use compactness of closed balls in the dual of C0(G)

with respect to the weak∗ topology. In nice situations, we could use sequential
compactness, and otherwise one can work with nets, for instance. The bottom
line is that there is a bounded linear functional λ on C0(G) with dual norm
less than or equal to the operator norm of T which can be approximated in
the weak∗ topology by λU ’s, where the U ’s can be taken to be arbitrarily small
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neighborhoods of e. More precisely, for each neighborhood V of e one can take
Λ(V ) to be the set of λU ’s with U ⊆ V , and Λ(V ) to be the closure of Λ(V )
in the weak∗ topology. If V1, . . . , Vn are finitely many neighborhoods of e, then
their intersection is too, and

Λ
( n⋂

j=1

Vj

)
=

n⋂

j=1

Λ(Vj),(75.6)

which implies that

Λ
( n⋂

j=1

Vj

)
⊆

n⋂

j=1

Λ(Vj).(75.7)

In particular, the intersection of finitely many Λ(V )’s is nonempty, and so the
intersection of all of the Λ(V )’s is nonempty, by compactness. The desired
bounded linear functional λ can be taken to be any element of this intersection.

As usual, λ can be represented by a unique regular Borel measure ν on G,
and we would like to show that T can be given by convolution on the right by
ν, using the hypothesis that T commutes with translations on the left. If f is a
continuous function with compact support on G, then the latter implies that

T (φU ∗L f) = T (φU ) ∗L f(75.8)

for each U , and hence

T (f ∗R φU ) = f ∗R T (φU ).(75.9)

For sufficiently small U , f ∗R φU is close to f in L1(HR), and so T (f ∗R φU ) is
close to T (f) in L1(HR). For some very small U , λU is close to λ in the weak∗

topology, which can be used to approximate f ∗ ν by f ∗R T (φU ) uniformly
on compact sets. Thus one can show that (75.2) holds when f is a continuous
function with compact support, and hence for all f ∈ L1(HR). Analogous
arguments can be applied to bounded linear operators on L1(HL) that commute
with translations on the right. This can also be reduced to the previous situation
using f(x) 7→ f(x−1).

76 Simple estimates, 2

Let G be a locally compact topological group, and let 1 < p, q <∞ be conjugate
exponents, so that 1/p + 1/q = 1. Using Hölder’s inequality, we can estimate
the convolution f ∗L g pointwise by

|(f ∗L g)(x)| ≤
( ∫

G

|f(y−1 x)|p dHL(y)
)1/p (∫

G

|g(y)|q dHL(y)
)1/q

.(76.1)

Because of (63.4), we can make the change of variables y 7→ y−1 to get that
∫

G

|f(y−1 x)|p dHL(y) =

∫

G

|f(y x)|p dHR(y) =

∫

G

|f(y)|p dHR(y),(76.2)
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where translation-invariance of Haar measure is applied in the second step. Thus
f ∗L g is bounded when f ∈ Lp(HR) and g ∈ Lq(HL), and

sup
x∈G

|(f ∗L g)(x)| ≤ ‖f‖Lp(HR) ‖g‖Lq(HL).(76.3)

Under these conditions, f ∗L g is a continuous function that vanishes at
infinity. The continuity of f ∗L g follows by approximating f in Lp(HR) by
continuous functions with compact support. To get that f ∗L g vanishes at
infinity, one can also approximate g in Lq(HL) by continuous functions with
compact support.

Similarly, f ∗R g is bounded when f ∈ Lp(HL) and g ∈ Lq(HR), and

sup
x∈G

|(f ∗R g)(x)| ≤ ‖f‖Lp(HL) ‖g‖Lq(HR).(76.4)

Moreover, f ∗R g is a continuous function that vanishes at infinity under these
conditions.

As in Section 64, f ∗L g = g ∗R f . It is easy to see that the preceding
statements are consistent with this fact.

77 Convolution operators into C0

Let G be a locally compact topological group, and let 1 < p, q <∞ be conjugate
exponents again. If g ∈ Lq(HL), then

T (f) = f ∗L g(77.1)

defines a bounded linear operator from Lp(HR) into C0(G) that commutes with
translations on the right. Conversely, let us show that any bounded linear
operator T from Lp(HR) into C0(G) that commutes with translations on the
right is of this form. Note that translations on the right preserve both the
Lp(HR) and supremum norms.

As in Section 71,
λ(f) = T (f)(e)(77.2)

is a bounded linear functional on Lp(HR) under these conditions. Hence there
is a g1 ∈ Lq(HR) such that

λ(f) =

∫

G

f(y) g1(y) dHR(y)(77.3)

for every f ∈ Lp(HR). Equivalently, g(y) = g1(y
−1) ∈ Lq(HL), and

λ(f) =

∫

G

f(y−1) g(y) dHL(y).(77.4)

This implies that (77.1) holds at e, and therefore at every point, because T
commutes with translations on the right. This argument works as well for
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bounded linear mappings from Lp(HR) into the space of bounded continuous
functions with the supremum norm.

Similarly, T (f) = f ∗R g defines a bounded linear operator from Lp(HL) into
C0(G) that commutes with translations on the left when g ∈ Lq(HR), as in the
previous section. Conversely, if T is a bounded linear operator from Lp(HL) into
C0(G) that commutes with translations on the left, then T can be represented
in this way for some g ∈ Lq(HR). The same statement holds for bounded linear
operators from Lq(HL) into the space of bounded continuous functions with the
supremum norm.

Note that the identification of the dual of Lp with Lq works for arbitrary
measures spaces when 1 < p < ∞, even if they may not be σ-finite. In the
present setting, it is somewhat easier to reduce to the σ-finite case, using a
σ-compact open subgroup H , as in Section 61. The left or right cosets of H
form a natural partition of the group into σ-finite pieces, and one can begin by
representing a bounded linear functional on Lp by an element of Lq on each of
the cosets. One can show that the restriction of the bounded linear functional on
Lp to functions supported on cosets of H is nonzero for only finitely or countably
many cosets of H , because the Lq norms of combinations of the representing
functions on the cosets is bounded by the dual norm of the linear functional. The
finitely or countably many nonzero representing functions on the corresponding
cosets may be combined into an element of Lq that represents the whole linear
functional on Lp, using the fact that elements of Lp are also combinations of
their restrictions to finitely or countably many cosets.

78 L1 and L∞

Let G be a locally compact topological group, and suppose for the moment that
G is σ-compact, so that Haar measure is σ-finite. If f ∈ L1(HR) and g ∈ L∞,
then f ∗L g is bounded, and

sup
x∈G

|(f ∗L g)(x)| ≤ ‖f‖L1(HR) ‖g‖∞.(78.1)

Similarly, if f ∈ L1(HL) and g ∈ L∞, then f ∗R g is bounded, and

sup
x∈G

|(f ∗R g)(x)| ≤ ‖f‖L1(HL) ‖g‖∞.(78.2)

In both cases, one can check that the convolution of f and g is continuous, by
approximating f in the L1 norm by continuous functions with compact support.
However, the convolution may not vanish at infinity.

Conversely, if T is a bounded linear mapping from L1(HR) into the space of
bounded continuous functions on G with the supremum norm that commutes
with translations on the right, then there is a g ∈ L∞ such that T (f) = f ∗L g.
This follows from the same argument as in the previous section, since the dual
of L1 may be identified with L∞. Similarly, if T is a bounded linear mapping
from L1(HL) into the space of bounded continuous functions with the supremum
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norm that commutes with translations on the left, then there is a g ∈ L∞ such
that T (f) = f ∗R g.

Analogous arguments can be employed without σ-compactness, but one
should then be more careful about the dual of L1. As in the previous section,
one can use the cosets of an open σ-compact subgroup to localize to σ-finite
pieces in a convenient way. Alternatively, if λ is a bounded linear functional on
L1(HL), then f ∗L λ can be defined for f ∈ L1(HR) by

(f ∗L λ)(x) = λ(fx,L),(78.3)

where fx,L(y) = f(y−1 x) is an element of L1(HL) as a function of y. If λ is a
bounded linear functional on L1(HR), then f ∗Rλ can be defined for f ∈ L1(HL)
by

(f ∗R λ)(x) = λ(fx,R),(78.4)

where fx,R(z) = f(x z−1) is an element of L1(HR) as a function of z. It is
easy to see that these satisfy the same properties as before, and that bounded
linear mappings from L1(HR) or L1(HL) into the space of bounded continuous
mappings that commute with translations on the right or left, respectively, can
be represented in this way.

In the same way, f ∗L λ can be defined directly when λ is a bounded linear
functional on Lp(HL) and f ∈ Lp(HR), and f ∗R λ can be defined directly when
λ is a bounded linear functional on Lp(HR) and f ∈ Lp(HL). These expressions
reduce to f ∗L g, f ∗R g when λ is given by integration of a function times
g ∈ Lq(HL), Lq(HR) with respect to HL, HR, respetively.

79 Conjugation by multiplication

Let G be a locally compact topological group, let T be a linear mapping from
continuous functions with compact support on G to locally-integrable functions
onG, and let ρ be a continuous complex-valued function onG such that ρ(x) 6= 0
for each x ∈ G. Consider the linear mapping

Tρ(f) = ρ T (ρ−1 f)(79.1)

also from continuous functions with compact support on G to locally-integrable
functions on G.

Suppose that ρ is a homomorphism fromG into the group of nonzero complex
numbers with respect to multiplication, so that

ρ(x y) = ρ(x) ρ(y)(79.2)

for every x, y ∈ G. If T commutes with translations on the left or on the right,
then it is easy to see that Tρ has the same property.

Let φ, ψ be the continuous homomorphisms from G into the positive real
numbers described in Section 63, so that

dHL = φ−1 dHR, dHR = ψ−1 dHL.(79.3)
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If 1 ≤ p <∞, then
f 7→ φ−1/p f(79.4)

defines an isometric linear mapping from Lp(HL) onto Lp(HR). Similarly,

f 7→ ψ−1/p f(79.5)

is an isometric linear mapping from Lp(HR) onto Lp(HL).
If T is a bounded linear operator on Lp(HR), then

Tρ, ρ = φ1/p,(79.6)

is a bounded linear operator on Lp(HL), with the same operator norm. If instead
T is a bounded linear operator on Lp(HL), then

Tρ, ρ = ψ1/p,(79.7)

is a bounded linear operator on Lp(HR), with the same operator norm. If the
initial operator T commutes with translations on the left or on the right, then
the new operator Tρ has the same property, by the earlier remarks. Note that

ψ = 1/φ,(79.8)

which implies that the isometric linear mappings in the preceding paragraph
are inverses of each other, as are the transformations between bounded linear
operators on Lp(HL) and Lp(HR) given here.

80 L
1 into L

p

Let G be a locally compact topological group, and fix 1 ≤ p ≤ ∞. If f ∈ L1(HR)
and g ∈ Lp(HR), then f ∗L g ∈ Lp(HR), and

‖f ∗L g‖Lp(HR) ≤ ‖f‖L1(HR) ‖g‖Lp(HR).(80.1)

This is because f ∗L g = g∗R f , as in Section 64, and the latter can be estimated
as in Section 67. Thus

T (f) = f ∗L g(80.2)

defines a bounded linear operator from L1(HR) into Lp(HR) that commutes
with translations on the right. Note that translations on the right determine
isometries on L1(HR), Lp(HR).

Conversely, suppose that T is a bounded linear mapping from L1(HR) into
Lp(HR) that commutes with translations on the right, where 1 < p < ∞.
For each neighborhood U of e, let φU be a nonnegative real-valued continuous
function with compact support contained in U and

∫

G

φU dHR = 1,(80.3)
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as in Section 75. Thus
‖T (φU )‖Lp(HR) ≤ ‖T ‖op,(80.4)

where ‖T ‖op is the operator norm of T from L1(HR) into Lp(HR). If q is the
exponent conjugate to p, then

λU (f) =

∫

G

f(x)T (φU )(x) dHR(x)(80.5)

is a bounded linear functional on Lq(HR), with dual norm bounded by ‖T ‖op.
By compactness of closed balls in the dual of Lq(HR) with respect to the weak∗

topology, there is a bounded linear functional λ on Lq(HR) which can be approx-
imated in the weak∗ topology by λU ’s for some arbitrarily small neighborhoods
U of e, as in Section 75.

In the present situation, there is a g ∈ Lp(HR) such that

λ(f) =

∫

G

f(x) g(x) dHR(x)(80.6)

for every f ∈ Lq(HR). Because T commutes with translations on the right, one
can check that

T (φU ∗R f) = T (φU ) ∗R f(80.7)

for every continuous function f with compact support, and hence

T (f ∗L φU ) = f ∗L T (φU ).(80.8)

Observe that ∫

G

φU dHL(80.9)

is arbitrarily close to 1 for sufficiently small U , because HL and HR are ap-
proximately the same near e, as in Section 63. This implies that f ∗L φU is
close to f in L1(HR) when U is sufficiently small, and so T (f ∗L φU ) is close
to T (f) in Lp(HR). One can also approximate f ∗L g by f ∗L T (φU ) uniformly
on compact sets for some arbitrarily small U , since λ is approximated by λU

for some arbitrarily small U in the weak∗ topology. This uses the fact that
left and right-invariant Haar measures are mutually absolutely continuous, with
continuous densities. Thus (80.2) holds when f is a continuous function with
compact support, and hence for every f ∈ L1(HR).

The same arguments can be applied when p = ∞, at least if G is σ-compact.
Otherwise, one should be more careful about the duality between L1 and L∞.
One can also look at bounded linear operators from L1(HL) into Lp(HL) that
commute with translations on the left. As before, f 7→ f ∗R g satisfies these
properties when g ∈ Lp(HL), and one can go in the other direction when p > 1.
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81 Integral pairings

Let G be a locally compact topological group, and let 1 ≤ p, q ≤ ∞ be conjugate
exponents. If f ∈ Lp(HR) and g ∈ Lq(HL), then put

(f, g)L =

∫

G

f(y−1) g(y) dHL(y).(81.1)

This makes sense because of Hölder’s inequality and (63.4), and satisfies

|(f, g)L| ≤ ‖f‖Lp(HR) ‖g‖Lq(HL).(81.2)

Similarly, if f ∈ Lp(HL) and g ∈ Lq(HR), then we can put

(f, g)R =

∫

G

f(y−1) g(y) dHR(y),(81.3)

and this satisfies
|(f, g)R| ≤ ‖f‖Lp(HL) ‖g‖Lq(HR),(81.4)

by Hölder’s inequality. Using (63.4) and the change of variables y 7→ y−1, we
also get that

(f, g)R = (g, f)L.(81.5)

If 1 < p, q < ∞, then one can use (f, g)L to identify Lp(HR) with the dual
of Lq(HL). This is a bit more natural than the identification of Lp(HR) with
the dual of Lq(HR) in the argument in the preceding section, and there was an
analogous point in Section 77. One can also identify L∞(HR) with the dual
of L1(HL) when G is σ-compact. Otherwise, one can use the dual of L1(HL)
as a substitute for L∞(HR) as in Section 78, which is quite convenient for the
p = ∞ case of the argument in the previous section. Of course, one can also use
(f, g)R to identify Lp(HL) with the dual of Lq(HR) when 1 < p, q < ∞, and
when q = 1, p = ∞, and G is σ-compact.

Observe that
(Ra(f), g)L = (f, La−1(g))L(81.6)

and
(La(f), g)R = (f,Ra−1(g))R,(81.7)

where La, Ra are the operators corresponding to translations on the left and on
the right as in Section 68, respectively. There are analogous formulae in which
translations on the left and on the right are exchanged, with additional constant
factors. This uses the fact that translations on the left send HR to constant
multiples of itself, and translations on the right send HL to constant multiples
of itself, as in Section 63.
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82 Operators on L2

Let G be a locally compact topological group, and consider the algebra of
bounded linear operators on L2(HR) that commute with translations on the
right. It is easy to see that this is a von Neumann algebra. This uses the fact
that translations on the right determine unitary transformations on L2(HR)
to get that this algebra is self-adjoint. One can also check that the algebra of
bounded linear operators on L2(HR) that commute with translations on the left
is a von Neumann algebra, because translations on the left correspond to con-
stant multiples of unitary transformations on L2(HR). Similarly, the algebras
of bounded linear operators on L2(HL) that commute with translations on the
left or on the right are von Neumann algebras.

The algebras of bounded linear operators on L2(HR), L2(HL) that commute
with translations on the right are equivalent to each other in a simple way, as
in Section 79. The algebras of bounded linear operators on L2(HR), L2(HL)
that commute with translations on the left are equivalent in the same way. The
mapping x 7→ x−1 determines an isometry between L2(HR) and L2(HL), and
exchanges translations on the right and left. Thus these various algebras amount
to basically the same thing.

83 Dual operators

Let V , W be vector spaces, both real or both complex, and equipped with norms
‖ · ‖V , ‖ · ‖W . Let V ′, W ′ be their dual spaces of bounded linear functionals
with the dual norms ‖ · ‖V ′ , ‖ · ‖W ′ , as in Section 4. If T is a bounded linear
operator from V into W , then the dual operator T ′ : W ′ → V ′ sends a bounded
linear functional λ on W to the bounded linear functional T ′(λ) on V defined
by

T ′(λ)(v) = λ(T (v)).(83.1)

It is easy to see from the definitions that

‖T ′(λ)‖V ′ ≤ ‖T ‖op ‖λ‖W ′ ,(83.2)

so that T ′ is a bounded linear operator from W ′ to V ′ whose operator norm
is less than or equal to the operator norm ‖T ‖op of T as a bounded linear
operator from V into W . Using the Hahn–Banach theorem, one can check that
the operator norms of T and T ′ are the same.

Suppose that V1, V2, V3 are vector spaces, all real or all complex, and
equipped with norms. If T1 : V1 → V2 and T2 : V2 → V3 are bounded lin-
ear operators, then

(T2 ◦ T1)
′ = T ′

1 ◦ T ′
2(83.3)

as bounded linear operators from V ′
3 into V ′

1 . The dual of the identity operator
on a vector space V is equal to the identity operator on the dual space V ′. Of
course, the mapping that sends a bounded linear operator T : V → W to its
dual T ′ : W ′ → V ′ is linear as a mapping from BL(V,W ) into BL(W ′, V ′).
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If V is a real Hilbert space, then the dual space V ′ can be identified with
V using the inner product, and the dual T ′ of a bounded linear operator T on
V is the same as its adjoint T ∗, as in Section 30. In the complex case, the
dual operator may not be quite the same as the adjoint, because of complex
conjugation. Now let (X,µ) be a measure space, and let 1 < p, q < ∞ be
conjugate exponents, so that the dual of Lp(X) can be identified with Lq(X)
in the standard way. If T is a bounded linear operator on Lp(X), then the
corresponding dual operator T ′ on Lq(X) is characterized by

∫

X

T (f)(x) g(x) dµ(x) =

∫

X

f(x)T ′(g)(x) dµ(x)(83.4)

for every f ∈ Lp(X) and g ∈ Lq(X).
Let G be a locally compact topological group. The dual of a right-translation

operator Ra on Lp(HR) corresponds as in the previous paragraph to Ra−1 on
Lq(HR), and the dual of a left-translation operator La on Lp(HL) corresponds to
La−1 on Lq(HL). The dual of La as an operator on Lp(HR) is a constant multiple
of La−1 on Lq(HR), and the dual of Ra as an operator on Lp(HL) is a constant
multiple of Ra−1 on Lq(HL). Alternatively, the duals of Lp(HR), Lp(HL) can
be identified with Lq(HL), Lq(HR), respectively, as in Section 81. Using these
identifications, the duals of translation operators exchange translations on the
right with translations on the left, and vice-versa, again with additional constant
factors in some cases.

84 Operators on Lp

Let G be a locally compact topological group, and let 1 < p < ∞ be given.
The algebras of bounded linear operators on Lp(HR) or Lp(HL) that commute
with translations on the right or on the left are closed with respect to the
weak operator topology on BL(Lp(HR)) or BL(Lp(HL)), as appropriate. The
algebras of bounded linear operators on Lp(HR) or Lp(HL) that commute with
translations on the right are equivalent to each other through conjugation as
in Section 79, as are the algebras of bounded linear operators on Lp(HR) or
Lp(HL) that commute with translations on the left. The mapping x 7→ x−1

also determines an isometric equivalence between Lp(HR) and Lp(HL) that
exchanges translations on the right and on the left, as in Section 82.

Let 1 < q < ∞ be the exponent conjugate to p, so that 1/p + 1/q = 1. If
T is a bounded linear operator on Lp(HR), then there is a corresponding dual
bounded linear operator T ′ on Lq(HR), as in the previous section. Similarly, if
T is a bounded linear operator on Lp(HL), then there is a corresponding dual
bounded linear operator T ′ on Lq(HL). In either case, if T commutes with
translations on the left or on the right, then the dual operator T ′ has the same
property. This follows from (83.3) and the description of the duals of translation
operators mentioned in the previous section.

Alternatively, the duals of Lp(HR) and Lp(HL) may be identified with
Lq(HL) and Lq(HR), respectively, as in Section 81. Using these identifications,
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the dual of a bounded linear operator on Lp(HR) corresponds to a bounded lin-
ear operator on Lq(HL), and the dual of a bounded linear operator on Lp(HL)
corresponds to a bounded linear operator on Lq(HR). The dual of a bounded
linear operator that commutes with translations on the right then commutes
with translations on the left, and vice-versa. Of course, these identifications are
related to the previous ones through the mapping x 7→ x−1.

85 Group representations

A representation of a group G on a vector space V is a homomorphism from G
into the group of invertible linear mappings on V . If V is a real or complex vector
space equipped with a norm, then one may restrict one’s attention to bounded
linear mappings on V with bounded inverses. If G is a topological group, then it
is natural to ask that the representation satisfy additional continuity conditions.

The right and left translation operators described in Section 68 determine
representations of a group G on spaces of functions on G, known as regular

representations. If G is a topological group, then one may consider translation
operators acting on continuous functions, for instance. Bounded continuous
functions form a Banach space with respect to the supremum norm, on which
translation operators act isometrically. If G is locally compact, then one can
consider translation operators acting on continuous functions that vanish at
infinity, or on Lp spaces with respect to Haar measure.

Let V be a real or complex vector space with a norm, and let BL(V ) be
the space of bounded linear operators on V , as usual. A representation of a
topological group on V might be continuous with respect to the topology on
BL(V ) determined by the operator norm. This is a natural condition when V
is finite-dimensional, but otherwise it is often too restrictive. One can consider
the strong or weak operator topologies on BL(V ) instead, which are of course
the same as the topology associated to the operator norm when V is finite-
dimensional.

The right and left regular representations of a locally compact group on
the space of continuous functions that vanish at infinity equipped with the
supremum norm is continuous with respect to the strong operator topology,
because of the uniform continuity properties of these functions. Similarly, the
right and left regular representations of any topological group on the space
of right or left-uniformly continuous functions equipped with the supremum
norm, respectively, is continuous relative to the strong operator topology. The
regular representations of a locally compact group on Lp spaces associated to
Haar measure are also continuous relative to the strong operator topology when
1 ≤ p <∞. These statements do not work for the topologies determined by the
operator norm even for the compact abelian group T of complex numbers with
modulus 1 under multiplication.
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86 Local uniform boundedness

Let V , W be vector spaces, both real or both complex, and equipped with
norms. Also let X be a topological space, and

x 7→ Tx(86.1)

be a mapping from X into the space BL(V,W ) of bounded linear mappings
from V into W . If K ⊆ X is compact and (86.1) is continuous with respect to
the strong operator topology on BL(V,W ), then

Kv = {Tx(v) : x ∈ K}(86.2)

is a compact set in W for each v ∈ V . In particular, Kv is a bounded set in W ,
and it follows from the Banach–Steinhaus theorem in Section 10 that

{Tx : x ∈ K}(86.3)

is a bounded set in BL(V,W ) with respect to the operator norm when V is
complete. Similarly, if (86.1) is continuous with respect to the weak operator
topology, then

Kv,λ = {λ(Tx(v)) : x ∈ K}(86.4)

is a compact set of real or complex numbers, as appropriate, for each v ∈ V and
bounded linear functional λ on W . Using the Banach–Steinhaus and Hahn–
Banach theorems, one can then show that Kv is a bounded set in W for each
v ∈ V . If V is complete, then another application of the Banach–Steinhaus
theorem implies that (86.3) is a bounded set in BL(V,W ) with respect to the
operator norm.

Another way to look at the continuity of (86.1) is in terms of the continuity
of Tx(v) as a function of both x and v. The continuity of (86.1) as a mapping
from X into BL(V,W ) with the strong operator topology is the same as the
continuity of Tx(v) in x and v separately. The continuity of Tx(v) as a mapping
from X × V with the product topology into W is a stronger condition a priori.
This stronger condition implies that (86.1) is locally uniformly bounded, in the
sense that each element of X has a neighborhood on which Tx has uniformly
bounded operator norm. Conversely, if (86.1) is locally uniformly bounded
and continuous as a mapping from X into BL(V,W ) with the strong operator
topology, then it is easy to see that Tx(v) is continuous as a mapping from
X ×V into W . If X is locally compact, V is complete, and (86.1) is continuous
as a mapping from X into BL(V,W ) with the strong operator topology, then it
follows from the earlier observations that (86.1) is locally uniformly bounded.
Thus continuity of (86.1) as a mapping from X into BL(V,W ) with the strong
operator topology is equivalent to continuity of Tx(v) as a mapping from X×V
into W when X is locally compact and V is complete.

There is an analogous relationship between the continuity of (86.1) from X
into BL(V,W ) with the weak operator topology and the continuity of λ(Tx(v))
as a function of x ∈ X , v ∈ V , and λ ∈ W ′. The boundedness of Tx : V → W
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implies that λ(Tx(v)) is continuous as a function of (v, λ) ∈ V ×W ′ for each
x ∈ X , and continuity with respect to the weak operator topology means that
λ(Tx(v)) is continuous in x for each v ∈ V , λ ∈W ′. The continuity of λ(Tx(v))
as a function of (x, v, λ) ∈ X × V ×W ′ is a stronger condition a priori, which
implies that Tx is locally uniformly bounded in particular. Conversely, if (86.1)
is locally uniformly bounded and continuous in the weak operator topology, then
λ(Tx(v)) is continuous as a function of (x, v, λ). If X is locally compact, V is
complete, and (86.1) is continuous with respect to the weak operator topology,
then the earlier remarks imply that Tx is locally uniformly bounded, and hence
that λ(Tx(v)) is continuous as a function of (x, v, λ).

Suppose that there is a countable local base for the topology of X at a point
p ∈ X . If (86.1) is not uniformly bounded on a neighborhood of p, then there is
a sequence {pl}∞l=1 of elements of X that converges to p such that ‖Tpl

‖op → ∞
as l → ∞. However, the Banach–Steinhaus theorem implies that ‖Tpl

‖op is
uniformly bounded when V is complete, (86.1) is continuous with respect to the
strong or weak operator topology, and {pl}∞l=1 converges to p. It follows that
(86.1) is locally uniformly bounded when it is continuous with respect to the
strong or weak operator topology, V is complete, and X has a countable local
base for its topology at each point.

87 Uniform convexity

Let V be a real or complex vector space with a norm ‖v‖. We say that V is
locally uniformly convex at u ∈ V with ‖u‖ = 1 if for every ǫ > 0 there is a
δ > 0 such that

‖u− v‖ < ǫ(87.1)

for every v ∈ V that satisfies ‖v‖ = 1 and

∥∥∥u+ v

2

∥∥∥ > 1 − δ.(87.2)

Of course, ∥∥∥u+ v

2

∥∥∥ ≤ 1(87.3)

under these conditions by the triangle inequality. Similarly, v is locally uni-

formly convex if it is locally uniformly convex at every u ∈ V with ‖u‖ = 1,
and V is uniformly convex if for every ǫ > 0 there is a δ > 0 such that the
previous property holds uniformly in u. Inner product spaces are uniformly
convex because of the parallelogram law, and Lp spaces are uniformly convex
when 1 < p <∞ by Clarkson’s inequalities.

Suppose that V is locally uniformly convex at u ∈ V with ‖u‖ = 1. The
Hahn–Banach theorem implies that there is a bounded linear functional λ on V
with dual norm 1 such that

λ(u) = 1.(87.4)
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Let ǫ, δ be as in the previous paragraph, and suppose that v ∈ V , ‖v‖ = 1, and

|λ(v) − λ(u)| < 2δ.(87.5)

Thus ∣∣∣∣λ
(u+ v

2

)
− 1

∣∣∣∣ < δ,(87.6)

and so ∥∥∥u+ v

2

∥∥∥ ≥
∣∣∣∣λ

(u+ v

2

)∣∣∣∣ > 1 − δ.(87.7)

This shows that the topology on the unit sphere {v ∈ V : ‖v‖ = 1} induced
by the weak topology on V is the same as the topology induced by the norm
when V is locally uniformly convex. However, this does not mean that the unit
sphere is a closed set in the weak topology. Of course, the closed unit ball in V
is a closed set in the weak topology.

A linear mapping T of V onto itself is said to be an isometry if

‖T (v)‖ = ‖v‖(87.8)

for every v ∈ V . If V is locally uniformly convex, then it follows from the
remarks in the previous paragraph that the topology on the set of isometries on
V induced by the weak operator topology is the same as the topology induced
by the strong operator topology. The same argument works for the collection
of linear isometric embeddings of a vector space into a locally uniformly convex
space. As before, this does not mean that the isometries form a closed set in
the weak operator topology. The set of isometric linear embeddings is closed
in the strong operator topology, and the set of linear mappings with operator
norm less than or equal to 1 is closed in the weak operator topology.

Let X be a topological space, and let f be a function on X with values in
V . If f is continuous at a point p ∈ X with respect to the weak topology, ‖f‖ is
continuous at p, and V is locally uniformly convex at f(p), then one can show
that f is continuous at p with respect to the topology on V associated to the
norm. Instead of continuity of ‖f‖ at p, it suffices to ask that ‖f‖ be upper
semicontinuous at p, in the sense that for every η > 0 there is a neighborhood
U of p such that

‖f(x)‖ < ‖f(p)‖ + η(87.9)

for every x ∈ U . If Tx is a function onX with values in bounded linear mappings
on V such that Tp = I for some p ∈ X , Tx is continuous at p in the weak operator
topology, ‖Tx‖op is upper semicontinuous at p, and V is locally uniformly convex,
then Tx is continuous at p with respect to the strong operator topology. This
follows from the previous statement applied to f(x) = Tx(v) for each v ∈ V ,
and this also works when the Tx’s are bounded linear mappings into a locally
uniformly convex space such that Tp is an isometric linear embedding.
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88 Bounded representations

A representation ρ of a group G on a vector space V with a norm is said to be
bounded if there is a C ≥ 1 such that

‖ρg‖op ≤ C(88.1)

for each g ∈ G. This implies that

‖ρ−1
g ‖op ≤ C(88.2)

for each g ∈ G, since ρ−1
g = ρg−1 . If G is a compact topological group, V

is complete, and ρ is continuous with respect to the strong or weak operator
topology on BL(V ), then ρ is automatically bounded, as in Section 86. Note
that ρ is bounded with C = 1 if and only if ρg is an isometry on V for each
g ∈ G. In particular, a unitary representation is a representation that acts by
unitary transformations on a Hilbert space.

Suppose that ρ is a representation of a compact topological group G on a
Hilbert space (V, 〈v, w〉) which is continuous with respect to the strong operator
topology. Thus ρ is bounded, and we can put

〈v, w〉1 =

∫

G

〈ρg(v), ρg(w)〉 dH(g),(88.3)

where H is Haar measure. Continuity of ρ with respect to the strong operator
topology ensures that 〈ρg(v), ρg(w)〉 is continuous for every v, w ∈ V , so that
the integral makes sense. This defines an inner product on V that satisfies

〈ρx(v), ρx(w)〉1 = 〈v, w〉1(88.4)

for every x ∈ G and v, w ∈ V , because of translation-invariance. Hence ρ is
unitary with respect to 〈v, w〉1, which is the famous “unitary trick” of Weyl.
More precisely, if the operator norm of ρ is bounded by C with respect to
‖v‖ = 〈v, v〉1/2, then

C−1 ‖v‖ ≤ ‖v‖1 ≤ ‖v‖(88.5)

for every v ∈ V , where ‖v‖1 = 〈v, v〉1/2
1 . This implies that ‖ · ‖ and ‖ · ‖1 are

equivalent norms on V .
Suppose now that ρ is continuous with respect to the weak operator topology,

and that V is infinite-dimensional and separable. If e1, e2, . . . is an orthonormal
basis for V , then

〈ρg(v), ρg(w)〉 =

∞∑

l=1

〈ρg(v), el〉 〈el, ρg(w)〉.(88.6)

Continuity with respect to the weak operator topology implies that

〈ρg(v), el〉, 〈el, ρg(w)〉(88.7)
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are continuous for each l, and hence that 〈ρg(v), ρg(w)〉 is the pointwise limit of
a sequence of continuous functions which is therefore Borel measurable. Thus
we can still make sense of the integral, and the rest of the argument works as
before.

If A is a bounded linear operator on V , then

〈A(v), w〉(88.8)

is a bilinear form on V in the real case and Hermitian-bilinear in the complex
case, meaning that it is linear in v and either linear or conjugate-linear in w, as
appropriate. The boundedness of A implies that

|〈A(v), w〉| ≤ ‖A‖op ‖v‖ ‖w‖(88.9)

for every v, w ∈ V . Conversely, it is well known that every bounded bilinear
form on V corresponds to a bounded linear operator A on V in this way, as
a consequence of the bounded linear functionals on V in terms of the inner
product. Self-adjointness and positivity of A can also be described in terms of
the associated bilinear form. Applying this to the inner product 〈v, w〉1 defined
before, one can show that there is a bounded invertible linear mapping T on V
such that T ◦ ρg ◦ T−1 is unitary with respect to 〈v, w〉.

89 Dual representations

Let ρ be a representation of a group G on a real or complex vector space V with
a norm ‖ · ‖V , and let V ′ be the dual space of bounded linear functionals on V
with the dual norm ‖ · ‖V ′ . The corresponding dual representation ρ′ of G on
V ′ is defined by

ρ′g = (ρg−1)′.(89.1)

As in Section 83, T ′ : V ′ → V ′ denotes the dual of a bounded linear operator
T : V → V . This is applied to ρg−1 = (ρg)

−1 instead of ρg in the definition of
the dual representation because of (83.3). Note that (T−1)′ = (T ′)−1 when T
is invertible.

Remember that the operator norm of T ′ is equal to the operator norm of
T on V , because of the Hahn–Banach theorem. Hence the dual of a bounded
representation is also bounded. Similarly, the dual of a representation consisting
of isometries has the same property. If V is a real Hilbert space, then the dual of
V can be identified with V using the inner product, and the dual of a bounded
linear operator on V can be identified with its adjoint. This is a bit more
complicated in the complex case, because of complex conjugation.

Observe that T 7→ T ′ is a continuous linear mapping from BL(V ) with the
weak operator topology into BL(V ′) with the weak∗ operator topology. If ρ is
continuous with respect to the weak operator topology, then it follows that ρ′

is continuous with respect to the weak∗ operator topology. If ρ also consists
of isometries on V , so that ρ′ consists of isometries on V ′, and V ′ is locally
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uniformly convex, then one can argue as in Section 87 to get that ρ′ is continuous
with respect to the strong operator topology.

If V is a Hilbert space, then the adjoint of ρ can be defined directly by

ρ∗g = (ρg−1)∗.(89.2)

As before, this is applied to ρg−1 instead of ρg because of (30.6). Note that ρ
is a unitary representation if and only if ρ = ρ∗. The continuity properties of ρ
and ρ∗ are obviously the same in this case.

90 Invertibility, 4

Let V be a real or complex vector space with a norm ‖v‖, and let A be a bounded
linear operator on V with a bounded inverse. Thus

‖v‖ ≤ ‖A−1‖op ‖A(v)‖(90.1)

for every v ∈ V . If B is a bounded linear operator on V such that

‖A−1‖op ‖A−B‖op < 1,(90.2)

then

‖v‖ ≤ ‖A−1‖op ‖B(v)‖ + ‖A−1‖op ‖(A−B)(v)‖(90.3)

≤ ‖A−1‖op ‖B(v)‖ + ‖A−1‖op ‖A−B‖op ‖v‖

implies that

‖v‖ ≤ ‖A−1‖op

1 − ‖A−1‖op ‖A−B‖op
‖B(v)‖.(90.4)

If B is invertible, then it follows that

‖B−1‖op ≤ ‖A−1‖op

1 − ‖A−1‖op ‖A−B‖op
.(90.5)

Of course, (90.4) implies that B is one-to-one, so that B is invertible when
B(V ) = V . One can show that B maps V onto a dense linear subspace of V
under these conditions, which implies that B is invertible when V is complete.
One can also express B as

B = A (I −A−1 (A−B)),(90.6)

and use the fact that I −A−1 (A−B) is invertible since

‖A−1 (A−B)‖op ≤ ‖A−1‖op ‖A−B‖op < 1,(90.7)

as in Section 48.
If B is invertible, then

B−1 −A−1 = B−1AA−1 −B−1BA−1 = B−1 (A−B)A−1,(90.8)

87



and hence

‖B−1 −A−1‖op ≤ ‖A−1‖2
op

1 − ‖A−1‖op ‖A−B‖op
‖A−B‖op.(90.9)

This shows that A 7→ A−1 is a continuous mapping on the group of invertible
operators on V with respect to the topology associated to the operator norm,
so that this group is a topological group with respect to this topology. If V
is complete, then this group is an open subset of BL(V ), as in the previous
paragraph. If V is finite-dimensional, then this group is locally compact as well.

Using (90.8), one can also check that A 7→ A−1 is continuous with respect to
the strong operator topology on any set of invertible operators whose inverses
have uniformly bounded operator norms. Similarly, composition of operators is
continuous with respect to the strong operator topology on any set of bounded
linear operators with uniformly bounded operator norm. It follows that a group
of invertible operators with uniformly bounded operator norms is a topological
group with respect to the strong operator topology.

91 Uniform continuity, 3

Let G, H be topological groups, and let φ be a function on G with values in H .
We say that φ is right-uniformly continuous if for every neighborhood W of the
identity element in H there is an neighborhood U of the identity element in G
such that

φ(y) ∈ φ(x)W(91.1)

for every x, y ∈ G with y ∈ xU . Similarly, φ is left-uniformly continuous if for
every neighborhood W of the identity element in H there is a neighborhood U
of the identity element in G such that

φ(y) ∈ W φ(x)(91.2)

for every x, y ∈ G with y ∈ U x. If φ : G → H is a continuous homomorphism,
then φ is both right and left-uniformly continuous. If H = R or C as a group
with respect to addition and equipped with the standard topology, then this is
the same as uniform continuity as in Section 69.

Let ρ be a representation of a topological group G on a vector space V with
a norm ‖v‖. Thus ρ is a homomorphism from G into the group of invertible
operators on V . If ρ is continuous with respect to the operator norm on BL(V ),
then ρ is right and left-uniformly continuous in the multiplicative sense described
in the previous paragraph. If ρ is also bounded, then it follows that ρ is right
and left-uniformly continuous as a mapping from G into BL(V ) as a group with
respect to addition and with the topology determined by the operator norm.

Suppose now that ρ is a bounded representation which is continuous with
respect to the strong operator topology on BL(V ). Thus ρ takes values in a
bounded subgroup of the group of invertible operators on V , which is a topo-
logical group with respect to the strong operator topology, as in the previous
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section. Hence ρ is right and left-uniformly continuous in the multiplicative
sense described before, and we would like to see what this means in terms of
uniform continuity with respect to addition.

Let w ∈ V and ǫ > 0 be given, and consider

W = {T ∈ BL(V ) : ‖T (w) − w‖ < ǫ}.(91.3)

The continuity of ρ with respect to the strong operator topology implies that
there is a neighborhood U of the identity in G such that

ρg ∈W(91.4)

when g ∈ U , or equivalently

‖ρg(w) − w‖ < ǫ(91.5)

for every g ∈ U . Because ρ is bounded, there is a C ≥ 1 such that

‖ρx‖op ≤ C(91.6)

for every x ∈ G. It follows that

‖ρx g(w) − ρx(w)‖ < C ǫ(91.7)

for every x ∈ G and g ∈ U , so that ρx(w) is right-uniformly continuous on G
for each w ∈ V with respect to addition on V .

92 Invariant subspaces

Let ρ be a representation of a group G on a vector space V . A linear subspace
W of V is said to be invariant under ρ if

ρg(W ) ⊆W(92.1)

for every g ∈ G. This is equivalent to saying that

ρg(W ) = W(92.2)

for every g ∈ G, since (92.1) applied to g−1 implies that ρ−1
g (W ) ⊆ W . If

V is equipped with a norm and the representation consists of bounded linear
operators on V , then it is customary to restrict one’s attention to invariant
subspaces that are closed. Note that the closure of an invariant subspace is
also invariant under these conditions. A closed subspace of a complete space
is complete as well. At any rate, the restriction of ρg to an invariant linear
subspace W of V defines a representation of G on W .

If ρ is a unitary representation on a Hilbert space V , and W is a closed linear
subspace of V which is invariant under ρ, then the orthogonal complement W⊥

of W in V is invariant under ρ too. However, even on a finite-dimensional
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vector space V , one can have an invertible linear transformation T and a linear
subspace W ⊆ V such that T (W ) = W and there is no linear subspace of
V which is complementary to W and invariant under T . This corresponds to
invertible matrices with nontrivial Jordan canonical form. Moreover,

n 7→ T n(92.3)

then defines a representation of the additive group Z of integers on V under
which W is invariant, and for which there is no invariant complement to W .

Let V be a real or complex vector space with a norm, and let W be a closed
linear subspace of V . If W̃ is the set of bounded linear functionals λ on V
such that λ(w) = 0 for every w ∈ W , then it is easy to see that W̃ is a closed
linear subspace of the dual V ′ of V . For each bounded linear mapping T on V
such that T (W ) ⊆ W , one can check that the dual mapping T ′ on V ′ satisfies

T ′(W̃ ) ⊆ W̃ . If W is invariant under a representation ρ on V , then it follows

that W̃ is invariant under the dual representation ρ′ on V ′.
One can also look at the quotient V/W of V modulo W , equipped with

the usual quotient norm. If T is a bounded linear mapping on V such that
T (W ) ⊆W , then T determines a bounded linear mapping on V/W in a natural
way. If T is invertible and T (W ) = W , then the induced mapping on V/W is
invertible as well. If ρ is a representation of a group G on V and W is invariant
under ρ, then ρ determines a representation of G on V/W too. Note that the

dual of V/W can be identified with the linear subspace W̃ of the dual V ′ of V
described in the previous paragraph, since a bounded linear functional on V/W
is basically the same as a bounded linear functional on V that vanishes on W .
If T is a bounded linear mapping on V such that T (W ) ⊆ W , then the dual
of the associated mapping on V/W can be identified with the restriction of the

dual T ′ of T to W̃ . If ρ is a representation of a group G on V for which W is
an invariant subspace, then the dual of the associated representation on V/W

corresponds to the restriction of the dual ρ′ of ρ to W̃ .

93 Dual subspaces

Let V be a real or complex vector space with a norm, and let V ′ be the dual
space of bounded linear functionals on V with the dual norm. If W is a linear
subspace of V , then put

W̃ = {λ ∈ V ′ : λ(w) = 0 for every w ∈W},(93.1)

as in the previous section. This is a linear subspace of V ′ which is closed
with respect to the weak∗ topology. If V is reflexive, then the weak and weak∗

topologies on V ′ are the same, and a closed linear subspace of V ′ with respect to
the dual norm would also be closed in the weak∗ topology. The latter statement
uses the fact that norm-closed linear subspaces are closed in the weak topology,
by the Hahn–Banach theorem.
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If L is a linear subspace of V ′, then put

L̂ = {v ∈ V : λ(v) = 0 for every λ ∈ L}.(93.2)

This is a closed linear subspace of V , and

L ⊆ (̃L̂)(93.3)

automatically. If L1 is the weak∗ closure of L in V ′, then it is easy to see that

L̂1 = L̂. One can check that (̃L̂) is equal to the weak∗ closure of L, so that

L = (̃L̂)(93.4)

if and only if L is closed in the weak∗ topology. Equivalently, if λ ∈ V ′ is not
an element of the weak∗ closure of L, then there is a v ∈ V such that v ∈ L̂ and
λ(v) 6= 0.

Let T be a bounded linear mapping on V , and let T ′ be the corresponding
dual mapping on V ′. If T ′(L) ⊆ L for some linear subspace L of V ′, then

T (L̂) ⊆ L̂.(93.5)

Note that T ′ is continuous with respect to the weak∗ topology on V ′, and hence
T ′ maps the weak∗ closure of L into itself when T ′(L) ⊆ L. Thus one might as
well ask that L be closed in the weak∗ topology on V ′. If ρ is a representation
of a group G on V and L ⊆ V ′ is invariant under the dual representation ρ′,
then it follows that L̂ is invariant under ρ.

We also have that

W ⊆ (̂W̃ )(93.6)

for every linear subspace W of V . Of course, W̃ = W̃ , where W is the closure of
W in V with respect to the norm. If v ∈ V \W , then the Hahn–Banach theorem

implies that there is a λ ∈ W̃ such that λ(v) 6= 0. This means that v is not an

element of (̂W̃ ), and it follows that (̂W̃ ) = W . In particular,

W = (̂W̃ )(93.7)

when W is a closed linear subspace of V .

94 Irreducibility

A representation ρ of a group G on a vector space V is said to be irreducible if
there are no nontrivial invariant subspaces. Here we suppose that V is equipped
with a norm and the representation consists of bounded linear operators on V ,
and we are concerned only with closed invariant subspaces of V . Equivalently,
ρ is irreducible if for every v ∈ V with v 6= 0,

span{ρg(v) : g ∈ G}(94.1)

91



is dense in V . If V has dimension equal to 1, then any representation on V is
automatically irreducible.

Let λ be a bounded linear functional on V , and consider the linear mapping
Tλ from V into functions on G defined by

Tλ(v)(g) = λ(ρg(v)).(94.2)

Observe that

Tλ(v)(g h) = λ(ρg h(v)) = λ(ρg(ρh(v)) = Tλ(ρh(v))(g)(94.3)

for every g, h ∈ G and v ∈ V . Thus

Rh(Tλ(v)) = Tλ(ρh(v))(94.4)

for every h ∈ G and v ∈ V , which can be expressed as well by

Rh ◦ Tλ = Tλ ◦ ρh(94.5)

for every h ∈ G. This may be described by saying that Tλ intertwines ρ and
the right regular representation of G.

Consider the kernel of Tλ,

{v ∈ V : Tλ(v)(g) = 0 for every g ∈ G}.(94.6)

This is a closed linear subspace of V contained in the kernel of λ,

{v ∈ V : λ(v) = 0},(94.7)

because Tλ(v)(e) = λ(v). Hence the kernel of Tλ is a proper subspace of V when
λ 6= 0. If ρ is irreducible, then it follows that the kernel of Tλ is trivial. The
intertwining property in the previous paragraph implies that Tλ(V ) is invariant
under translations on the right on G.

Note that Tλ(v) is a continuous function on G for each v ∈ V when G
is a topological group and ρ is continuous with respect to the weak operator
topology. If ρ is also a bounded representation, then Tλ is a bounded linear
mapping from V into the space of bounded continuous functions on G with the
supremum norm. If ρ is bounded and continuous with respect to the strong
operator topology, then Tλ(v) is right-uniformly continuous on G for every v
in V , as in Section 91. Similarly, if ρ is bounded and the dual representation
ρ′ is continuous with respect to the strong operator topology, then Tλ(v) is
left-uniformly continuous on G for every v ∈ V . Of course, these continuity
conditions on ρ are the same when V is finite-dimensional.

95 Vector-valued integration

Let V be a real or complex vector space with a norm ‖v‖V , and let µ be a real
or complex measure on a measurable space X , according to whether V is real or
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complex. If A is a measurable subset of X , then the corresponding characteristic
function 1A(x) on X is equal to 1 when x ∈ A and to 0 when x ∈ X\A. Let

s(x) =

n∑

j=1

vj 1Aj
(95.1)

be a measurable V -valued simple function on X , so that A1, . . . , An ⊆ X are
measurable, and v1, . . . , vn ∈ V . The integral of s(x) with respect to µ is given
by ∫

X

s(x) dµ(x) =

n∑

j=1

vj µ(Aj).(95.2)

It is easy to check that this does not depend on the particular representation
(95.1) of s. If λ is a bounded linear functional on V , then

λ
( ∫

X

s(x) dµ(x)
)

=

∫

X

λ(s(x)) dµ(x).(95.3)

Similarly, ∥∥∥
∫

X

s(x) dµ(x)
∥∥∥

V
≤

∫

X

‖s(x)‖V d|µ|(x),(95.4)

as one can see by reducing to the case where A1, . . . , An are pairwise disjoint.
Suppose now that X is a locally compact Hausdorff topological space, and

that µ is a regular Borel measure onX . Let f be a continuous V -valued function
on X , which implies that ‖f(x)‖V is a continuous real-valued function on X .
Hence the integrability condition

∫

X

‖f(x)‖V d|µ|(x) <∞(95.5)

makes sense, and is satisfied when f is bounded or µ has compact support. If
V is complete, then we would like to show that the integral of f with respect
to µ can be defined in such a way that

λ
(∫

X

f(x) dµ(x)
)

=

∫

X

λ(f(x)) dµ(x)(95.6)

for every bounded linear functional λ on V , and

∥∥∥
∫

X

f(x) dµ(x)
∥∥∥

V
≤

∫

X

‖f(x)‖V d|µ|(x).(95.7)

Let ǫ > 0 be given, and let K be a compact set in X such that
∫

X\K

‖f(x)‖V d|µ|(x) <
ǫ

2
.(95.8)

For each x ∈ K, there is an open set U(x) in X such that x ∈ U(x) and

‖f(x) − f(y)‖V <
ǫ

2(1 + |µ|(K))
(95.9)
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for every y ∈ U(x). By compactness, there are finitely many elements x1, . . . , xn

of K for which

K ⊆
n⋃

j=1

U(xn).(95.10)

Using this, it is easy to get a Borel measurable V -valued simple function s on
X that satisfies

‖f(x) − s(x)‖V <
ǫ

2(1 + |µ|(K))
(95.11)

for every x ∈ K and s(x) = 0 when x ∈ X\K, and hence
∫

X

‖f(x) − s(x)‖V d|µ|(x) < ǫ.(95.12)

Applying this to ǫ = 1/l, l ∈ Z+, we get a sequence of Borel measurable
V -valued simple functions s1, s2, . . . on X such that

lim
l→∞

∫

X

‖f(x) − sl(x)‖V d|µ|(x) = 0.(95.13)

In particular, {sl}∞l=1 is a Cauchy sequence with respect to the L1 norm for
V -valued functions on X , in the sense that

lim
k,l→∞

∫

X

‖sk(x) − sl(x)‖V d|µ|(x) = 0.(95.14)

Because of (95.4), this implies in turn that

lim
k,l→∞

∥∥∥
∫

x

sk(x) dµ(x) −
∫

X

sl(x) dµ(x)
∥∥∥

V
= 0,(95.15)

so that the integrals of the sl’s form a Cauchy sequence in V . If V is complete,
then this sequence converges, and we put

∫

X

f(x) dµ(x) = lim
l→∞

∫

X

sl(x) dµ(x).(95.16)

It is easy to see that this limit does not depend on the sequence of simple
functions approximating f . More precisely, suppose that {s′l}∞l=1 is another
sequence of Borel measurable V -valued simple functions such that

lim
l→∞

∫

X

‖f(x) − s′l(x)‖V d|µ|(x) = 0.(95.17)

This implies that

lim
l→∞

∫

X

‖sl(x) − s′l(x)‖V d|µ|(x) = 0,(95.18)

and hence that

lim
l→∞

∥∥∥
∫

X

sl(x) dµ(x) −
∫

X

s′l(x) dµ(x)
∥∥∥

V
= 0,(95.19)
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which ensures that

lim
l→∞

∫

X

sl(x) dµ(x) = lim
l→∞

∫

X

s′l(x) dµ(x),(95.20)

as desired. This definition of the integral of f also satisfies (95.6) and (95.7),
because of the corresponding properties of simple functions. Note that the
integral of f is uniquely determined by (95.6), by the Hahn–Banach theorem.

96 Strongly continuous representations

Let (V, ‖v‖V ) be a real or complex Banach space, and let ρ be a representation of
a locally compact topological group G by bounded linear operators on V which
is continuous with respect to the strong operator topology on BL(V ). Thus ρ is
uniformly bounded on compact subsets of G by the Banach–Steinhaus theorem,
as in Section 86. Let µ be a finite regular Borel measure on G which is real or
complex according to whether V is real or complex, as in the previous section.
We would like to define the convolution of µ with v ∈ V with respect to ρ by

µ ∗ρ v =

∫

G

ρg(v) dµ(g),(96.1)

under suitable integrability conditions.
More precisely, we can do this when

∫

G

‖ρg(v)‖V d|µ|(g) <∞.(96.2)

This condition holds in particular when µ has compact support, and when ρ is
bounded. It is also implied by

∫

G

‖ρg‖op d|µ|(g) <∞.(96.3)

Note that the operator norm of ρ is lower semicontinuous, in the sense that
‖ρg‖op > t determines an open set in G for every t ∈ R. This follows from
continuity of ρ even with respect to the weak operator topology, and it implies
that ‖ρg‖op is Borel measurable.

In addition,

‖µ ∗ρ v‖V ≤
∫

G

‖ρg(v)‖V d|µ|(g)(96.4)

when (96.2) holds, by (95.7). Hence µ ∗ρ v defines a bounded linear operator on
V when (96.3) holds, with operator norm bounded by the integral in (96.3).

If ρ is the left regular representation on an appropriate space of functions,
then µ∗ρv corresponds to convolution with µ on the left, as discussed previously.
If ρ is the right regular representation, then µ ∗ρ v corresponds to convolution
with µ̃(E) = µ(E−1) on the right.
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97 Dual representations, 2

Let ρ be a representation of a locally compact group G by bounded linear
operators on a real or complex vector space V with a norm ‖v‖V , and let ρ′ be
the corresponding dual representation on the dual space V ′ of bounded linear
functionals on V , as in Section 89. Thus ρ′ is continuous with respect to the
weak∗ operator topology when ρ is continuous with respect to the weak operator
topology. Also let µ be a finite regular Borel measure on G which is real or
complex, according to whether V is real or complex. We can try to define the
convolution µ ∗ρ′ λ of µ with λ ∈ V ′ with respect to ρ′ by

(µ ∗ρ′ λ)(v) =

∫

G

ρ′g(λ)(v) dµ(g) =

∫

G

λ(ρg−1 (v)) dµ(g).(97.1)

More precisely, we want to define µ ∗ρ′ λ as a bounded linear functional on V ,
and (97.1) is supposed to be the value of this linear functional at v ∈ V .

The integrand ρ′g(λ)(v) = λ(ρg−1 (v)) is continuous by hypothesis, but we
should still be careful about its integrability with respect to |µ|. This certainly
holds when ∫

G

‖ρ′g‖op d|µ|(g) =

∫

G

‖ρg−1‖op d|µ|(g) <∞.(97.2)

Here ‖ρ′g‖op is the operator norm of ρ′g on V ′, which is equal to the operator
norm ‖ρg−1‖op of ρg−1 on V . As in the previous section, this condition holds
when µ has compact support, and when ρ is bounded. This condition implies
that

|(µ ∗ρ′ λ)(v)| ≤
( ∫

G

‖ρg−1‖op d|µ|(g)
)
‖λ‖V ′ ‖v‖V ,(97.3)

so that µ ∗ρ′ λ is a bounded linear functional on V .
If ρ is continuous with respect to the strong operator topology on V , then

(µ ∗ρ′ λ)(v) = λ(µ̃ ∗ρ v),(97.4)

where µ̃(E) = µ(E−1) and µ̃ ∗ρ v is as in the previous section. This assumes
the integrability of ‖ρg−1‖op with respect to |µ| as in the preceding paragraph,
which is the same as the integrability of ‖ρg‖op with respect to |µ̃|. Thus µ̃∗ρv is
defined, and λ(µ̃ ∗ρ v) can be evaluated as in (95.6). Equivalently, the operator
µ ∗ρ′ λ on V ′ is the dual of the operator µ̃ ∗ρ v on V under these conditions.

For example, this applies to regular representations on L∞ as the dual of L1,
or to finite regular Borel measures as the dual of C0(G). These representations
are not continuous with respect to the strong operator topology even on the
unit circle. If V is reflexive, so that V can be identified with the dual of its own
dual space V ′, then this can also be a nice way to deal with convolutions on V .

98 Compositions

Let ρ be a representation of a locally compact topological group G by bounded
linear operators on a real or complex Banach space V . Also let µ, ν be finite

96



regular Borel measures on G that are real or complex, according to whether V
is real or complex. We would like to show that

µ ∗ρ (ν ∗ρ v) = (µ ∗ ν) ∗ρ v(98.1)

for each v ∈ V , under suitable conditions. Let us begin with the case where ρ is
continuous in the strong operator topology as in Section 96, and then consider
the analogous statement for dual representations as in Section 97.

If µ and ν have compact support, then their convolution µ ∗ ν does too, and
additional condition is required. Similarly, if ρ is bounded, then no additional
conditions on µ, ν are necessary. Otherwise, suppose that

∫

G

‖ρg‖op d|µ|(g),
∫

G

‖ρg‖op d|ν|(g) <∞.(98.2)

This implies that
∫

G

∫

G

‖ρgh‖op d|µ|(g) d|ν|(h)(98.3)

≤
∫

G

∫

G

‖ρg‖op ‖ρh‖op d|µ|(g) d|ν|(h)

=
(∫

G

‖ρg‖op d|µ|(g)
) (∫

G

‖ρh‖op d|ν|(h)
)
<∞,

and hence µ∗ν has the same property. Thus ν∗ρv, µ∗ρ(ν∗ρv), and (µ∗ν)∗ρv are
defined under these integrability conditions when ρ is continuous in the strong
operator topology.

It suffices to show that

λ(µ ∗ρ (ν ∗ρ v)) = λ((µ ∗ ν) ∗ρ v)(98.4)

for every bounded linear functional λ on V and v ∈ V . Using (95.6), we get
that

λ(µ ∗ρ (ν ∗ρ v)) =

∫

G

λ(ρg(ν ∗ρ v)) dµ(g)(98.5)

=

∫

G

∫

G

λ(ρg(ρh(v))) dµ(g) dν(h)

=

∫

G

∫

G

λ(ρgh(v)) dµ(g) dν(h).

Similarly,

λ((µ ∗ ν) ∗ρ v) =

∫

G

λ(ρg(v)) d(µ ∗ ν)(g)(98.6)

=

∫

G

∫

G

λ(ρgh(v)) dµ(g) dν(h),

as desired.
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Suppose now that ρ is continuous with respect to the weak operator topology
on V , and let us show that

µ ∗ρ′ (ν ∗ρ′ λ) = (µ ∗ ν) ∗ρ′ λ(98.7)

for every λ ∈ V ′ under suitable conditions. As before, it suffices to ask that
‖ρg−1‖op be integrable with respect to |µ|, |ν|, and hence |µ ∗ ν|. Of course,
(98.7) is the same as

(µ ∗ρ′ (ν ∗ρ′ λ))(v) = ((µ ∗ ν) ∗ρ′ λ)(v)(98.8)

for every λ ∈ V ′ and v ∈ V . This follows from (97.1) in practically the same
way as in the previous situation.

99 Unbounded continuous functions

Let Y be a locally compact Hausdorff topological space, and let C(Y ) be the
space of real or complex-valued continuous functions on Y . If K is a nonempty
compact subset of Y , then

NK(f) = sup{|f(x)| : x ∈ K}(99.1)

defines a seminorm on C(Y ), the supremum seminorm associated to K. As in
Section 1, the collection of these seminorms determines a topology on C(Y ).
If Y is compact, then the seminorm associated to K = Y is the same as the
supremum norm, and C(Y ) is a Banach space.

In this section, we would like to focus on the case where Y is not compact.
Thus continuous functions on Y need not be bounded, and the topology on Y
is not determined by a single norm. If Y is σ-compact, so that Y is the union
of a sequence of compact sets, then the topology on Y may be described by a
sequence of seminorms. More precisely, one can use σ-compactness and local
compactness to show that there is a sequence of compact subsets K1,K2, . . . of
Y such that Y =

⋃∞
l=1Kl and Kl is contained in the interior of Kl+1 for each

l. Hence each compact set K ⊆ Y is contained in the interior of Kl for some
l, because K is contained in the union of the interiors of finitely many Kl’s by
compactness.

Suppose that λ is a continuous linear functional on C(Y ) with respect to
the topology determined by the supremum seminorms on compact sets. As in
Section 40, there are finitely many compact sets K1, . . . ,Kn ⊆ Y and a C ≥ 0
such that

|λ(f)| ≤ C max(NK1
(f), . . . , NKn

(f))(99.2)

for every f ∈ C(Y ). Equivalently,

|λ(f)| ≤ C NK(f),(99.3)

where K = K1 ∪ · · · ∪Kn. In particular,

λ(f) = 0(99.4)
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when f = 0 on K. As usual, λ can be represented by a real or complex regular
Borel measure on Y with support contained in K, as appropriate.

Now let X be another topological space, and suppose that Φ is a continuous
mapping fromX into C(Y ). Let φ(x, y) be the function onX×Y whose value at
(x, y) is the same as the value of Φ(x) ∈ C(Y ) at y. Thus φ(x, y) is continuous in
y for each x ∈ X , because Φ(x) ∈ C(Y ). The continuity of Φ as a mapping from
X into C(Y ) means that for each compact set K ⊆ Y , the family of functions
on X of the form φ(x, y) with y ∈ K is equicontinuous at each point in X . It
is easy to see that φ(x, y) is a continuous function on X × Y with respect to
the product topology under these conditions, and conversely that a continuous
function φ(x, y) on X × Y determines a continuous mapping Φ : X → C(Y ) in
this way.

Suppose that X is locally compact and that µ is a real or complex regular
Borel measure with compact support on X , as appropriate. Of course, one could
just as well take X to be the support of µ, so that X is compact. In this case,
the integral of a continuous mapping Φ : X → C(Y ) with respect to µ can be
defined directly by

( ∫

X

Φ dµ
)
(y) =

∫

X

φ(x, y) dµ(x).(99.5)

It is easy to see that this is a continuous function of y when φ(x, y) is a continuous
function on X × Y and µ has compact support, because the family of functions
on Y of the form φ(x, y) with x in a compact subset of X is equicontinuous at
each point in Y .

If λ is a continuous linear functional on C(Y ), then

λ
( ∫

X

Φ dµ
)

=

∫

X

λ(Φ) dµ.(99.6)

Note that λ(Φ) is a continuous real or complex-valued function on X when
Φ : X → C(Y ) is continuous, so that the right side of the equation is well-
defined. If λ is represented by a regular Borel measure ν with compact support
on Y , then (99.6) reduces to

∫

X

∫

Y

φ(x, y) dµ(x) dν(y) =

∫

Y

∫

X

φ(x, y) dν(y) dµ(x).(99.7)

One can also check that

NK

(∫

X

Φ dµ
)
≤

∫

X

NK(Φ) d|µ|(99.8)

for each compact set K ⊆ Y .
If Y is compact, then C(Y ) is a Banach space, and this discussion of the

integral of a continuous function with values in C(Y ) is consistent with the
one in Section 95. Otherwise, the restriction of continuous functions on Y to
a nonempty compact set K ⊆ Y defines a continuous linear mapping from
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C(Y ) into C(K), where C(K) is equipped with the supremum norm. Thus
continuous mappings into C(Y ) lead to continuous mappings into C(K) by
composition. This is a convenient way to compare functions with values in
C(Y ) with functions with values in a Banach space, as in Section 95.

Let G be a locally compact topological group. It is easy to see that the usual
right and left translation operators on C(G) are continuous with respect to the
topology determined by the supremum seminorms on compact sets. The right
and left regular representations of G on C(G) are also continuous with respect
to the analogue of the strong operator topology on C(G) in this context, in
the sense that a 7→ La(f), Ra(f) are continuous mappings from G into C(G) for
each continuous function f on G, as in Section 62. Convolutions of regular Borel
measures with compact support on G and continuous functions on G may be
considered as convolutions associated to the regular representations on C(G),
as in the previous sections.

100 Bounded continuous functions

Let Y be a locally compact Hausdorff topological space, and let Cb(Y ) be the
space of bounded continuous real or complex-valued functions on Y . Of course,
this is the same as the space C(Y ) of all continuous functions on Y when Y is
compact. It is well known that Cb(Y ) is a Banach space with respect to the
supremum norm

‖f‖sup = sup{|f(y)| : y ∈ Y }.(100.1)

The space C0(Y ) of continuous functions on Y that vanish at infinity is a closed
linear subspace of Cb(Y ).

Suppose that µ is a positive Borel measure on Y such that µ(K) <∞ when
K ⊆ Y is compact and µ(U) > 0 when U ⊆ Y is nonempty and open. This
implies that the essential supremum norm of a bounded continuous function b
on Y with respect to µ is the same as the supremum norm. This is also the same
as the operator norm of the multiplication operator associated to b on Lp(Y ),
1 ≤ p ≤ ∞. In particular, the multiplication operators on Lp(Y ) associated to
bounded continuous functions form a closed linear subspace of the space of all
bounded linear operators on Lp(Y ) with respect to the operator norm.

One can also consider multiplication by b ∈ Cb(Y ) as a bounded linear
operator on C0(Y ) or Cb(Y ), whose operator norm is again equal to ‖b‖sup. If
T is a bounded linear operator on Cb(Y ) that commutes with multiplication
operators, then

T (f) = T (1) f(100.2)

for every f ∈ Cb(Y ), so that T is a multiplication operator too. Similarly,
one can show that a bounded linear operator T on C0(Y ) that commutes with
multiplication operators is a multiplication operator as well.

If {bj}∞j=1 is a uniformly bounded sequence of continuous functions on Y
that converges uniformly on compact subsets of Y to a function b, then b is also
a bounded continuous function on Y . It is easy to check that the corresponding
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sequence of multiplication operators on C0(Y ) converges to the multiplication
operator associated to b in the strong operator topology. More precisely, the
topology on a bounded set E ⊆ Cb(Y ) with respect to the supremum norm
induced by the strong operator topology on the corresponding multiplication
operators on C0(Y ) is the same as the topology induced on E by the topology on
C(Y ) described in the previous section. However, the strong operator topology
on multiplication operators on Cb(Y ) is the same as the topology determined
by the operator norm, because of the way that a multiplication operator T on
Cb(Y ) is determined by T (1).

Let X be another topological space, and let φ(x, y) be a continuous real or
complex-valued function on X × Y with respect to the product topology. Thus
φ(x, y) determines a continuous mapping Φ : X → C(Y ) as in the previous
section, where the value of Φ(x) at y ∈ Y is φ(x, y). Suppose that φ(x, y)
is uniformly bounded in y for each x ∈ X , which is the same as saying that
Φ(x) ∈ Cb(Y ). This does not necessarily mean that Φ is a continuous mapping
from X into Cb(Y ) with respect to the supremum norm, unless Y is compact.

Observe that
‖Φ(x)‖sup = sup{|φ(x, y)| : y ∈ Y }(100.3)

is lower semicontinuous as a function of x under these conditions. This is because

‖Φ(x)‖sup > t(100.4)

if and only if |φ(x, y)| > t for some y ∈ Y , in which case |φ(w, y)| > t for w in a
neighborhood of x. Thus (100.4) implies that ‖Φ(w)‖sup > t on a neighborhood
of x, as desired.

Suppose that X is a locally compact Hausdorff space, and that µ is a real or
complex regular Borel measure on X , as appropriate. The lower semicontinuity
of ‖Φ(x)‖sup implies that it is Borel measurable, and we would like to ask now
that it also be integrable with respect to |µ|. If φ(x, y) is uniformly bounded in
x and y, then this follows from the finiteness of |µ|(X). Under this integrability
condition, we can define the integral of Φ with respect to µ pointwise on Y , as
in (99.5). The resulting function on Y is uniformly bounded, with supremum
norm less than or equal to the integral of ‖Φ(x)‖sup with respect to |µ|, as usual.

If Φ : X → Cb(Y ) is continuous with respect to the supremum norm, then
the integral of Φ can be defined as in Section 95, and it is easy to see that this is
consistent with the pointwise definition. Otherwise, one can restrict functions on
Y to a compact set K ⊆ Y , to get a continuous mapping from X into C(K), to
which the discussion in Section 95 can be applied. Alternatively, if the support
of µ is compact, then the remarks in the previous section are applicable. The
integral of Φ overX can be approximated by integrals of Φ over compact subsets
of X under the integrability condition in the preceding paragraph, where the
remainder has small supremum norm on Y . In particular, the integral of Φ with
respect to µ determines a continuous function on Y under these conditions.

Let G be a locally compact topological group. The right and left regular
representations of G on Cb(G) are uniformly bounded, and they are continuous
with respect to the strong operator topology associated to the topology on C(G)
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described in the previous section. Continuity in the strong operator topology
associated to the supremum norm on Cb(G) requires uniform continuity of the
functions on which the regular representations act. Convolution of a finite
regular Borel measure on G with a bounded continuous function can be seen as
an integral of translates of the function in the sense of the preceding paragraphs.

101 Discrete sets and groups

Let X be a discrete set, which is to say a set with the discrete topology. In
practice, one might be especially interested in the case where X has only finitely
or countably many elements. We also take X to be equipped with counting
measure, so that integrals on X are reduced to sums. This can be handled
directly, as follows.

If f(x) is a nonnegative real-valued function on X , then

∑

x∈X

f(x)(101.1)

can be defined as the supremum of the subsums

∑

x∈E

f(x)(101.2)

over all finite subsets E of X . This is interpreted as being +∞ when the finite
sums are unbounded. We say that f is summable on X when the subsums
(101.2) are bounded, so that (101.1) is finite. If f , g are nonnegative real-
valued summable functions on X and a, b are nonnegative real numbers, then
it is easy to see that a f + b g is summable too, and that

∑

x∈X

(
a f(x) + b g(x)

)
= a

∑

x∈X

f(x) + b
∑

x∈X

g(x).(101.3)

If f is a real or complex-valued function on X , then f is said to be summable
on X when |f | is summable on X . The sum (101.1) of a summable real or
complex-valued function f on X can be defined by first expressing f as a linear
combination of nonnegative real-valued summable functions and then applying
the previous definition to those functions. Note that linear combinations of
summable real or complex-valued functions on X are summable, and that the
sum (101.1) is linear in f over the real or complex numbers.

Because X is discrete, the support of a function f on X is simply the set of
x ∈ X such that f(x) 6= 0. If f has finite support, then f is obviously summable,
and (101.1) reduces to a finite sum. The support of any summable function on
X has only finitely or countably many elements, and the sum (101.1) can be
identified with an infinite series when f has infinite support. Summability of
the function corresponds to absolute convergence of the series, which implies
that the sum is invariant under rearrangements.

102



Suppose now that (V, ‖v‖V ) is a real or complex Banach space, and that f is
a V -valued function on X . Under these conditions, we say that f is summable
on X if ‖f(x)‖V is summable as a nonnegative real-valued function on X . Let
ℓ1(X,V ) be the space of V -valued summable functions on X . It is easy to see
that this is a vector space over the real or complex numbers, as appropriate,
and that

‖f‖1 = ‖f‖ℓ1(X,V ) =
∑

x∈X

‖f(x)‖V(101.4)

defines a norm on ℓ1(X,V ). One can also use completeness of V to show that
ℓ1(X,V ) is a Banach space with respect to this norm.

If f is a summable V -valued function on X , then one would like to define
the sum (101.1) as an element of V , and with the property that

∥∥∥
∑

x∈X

f(x)
∥∥∥

V
≤

∑

x∈X

‖f(x)‖V .(101.5)

If f has finite support, then (101.1) reduces to a finite sum, and (101.5) follows
from the triangle inequality. The collection of V -valued functions with finite
support on X is a dense linear subspace of ℓ1(X,V ), and this version of the sum
determines a bounded linear mapping from this dense linear subspace into V .
As in Section 9, the completeness of V implies that there is a unique extension
of this mapping to a bounded linear mapping from ℓ1(X,V ) into V with norm 1,
which can be used as the definition of (101.1) for any f ∈ ℓ1(X,V ). In particular,
this approach to the sum can also be used when V = R or C. Alternatively,
the sum can be treated in terms of infinite series, as in the previous paragraph.

If λ is a bounded linear functional on V and f is a V -valued summable
function on X , then λ ◦ f is a summable real or complex-valued function on X ,
as appropriate, because

∑

x∈X

|λ(f(x))| ≤
∑

x∈X

‖λ‖V ′ ‖f(x)‖V ≤ ‖λ‖V ′ ‖f‖ℓ1(X,V ),(101.6)

where ‖λ‖V ′ denotes the dual norm of λ. Moreover,

λ
( ∑

x∈X

f(x)
)

=
∑

x∈X

λ(f(x)).(101.7)

This is clear when f has finite support, and otherwise one can approximate f
in ℓ1(X,V ) by functions with finite support. Note that this discussion of the
sum of a summable V -valued function on X may be considered as a special
case of the integrals in Section 95, since discrete spaces are locally compact and
arbitrary functions on them are continuous.

Now let Γ be a discrete group, which is to say a group equipped with the
discrete topology. In practice, one may be especially interested in groups with
only finitely or countably many elements, including finitely-generated groups.
As in Section 63, counting measure on Γ is obviously invariant under translations
on the right and on the left, and may be used as Haar measure.
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Let (V, ‖v‖V ) be a real or complex Banach space, and suppose that ρ is a
representation of Γ by bounded linear operators on V . Because Γ is discrete, one
need not be concerned with continuity properties of ρ. Also let f be a summable
real or complex-valued function on Γ, as appropriate. The restriction of f to
any set E ⊆ Γ is summable as well, and so we get a measure µf on Γ defined by

µf (E) =
∑

x∈E

f(x).(101.8)

As in Section 96, we can define the convolution of µf with v ∈ V with respect
to ρ by

µf ∗ρ v =
∑

x∈Γ

f(x) ρx(v)(101.9)

under the summability condition

∑

x∈Γ

|f(x)| ‖ρx(v)‖V <∞.(101.10)

This summability condition holds for every v ∈ V when

∑

x∈Γ

|f(x)| ‖ρx‖op <∞,(101.11)

where ‖ρx‖op is the operator norm of ρx on V , as usual. In particular, this
condition is satisfied when ρ is bounded. More precisely, (101.10) says exactly
that f(x) ρx(v) is a summable V -valued function on Γ, and so its sum can be
defined as before. Similarly, (101.11) says that f(x) ρx is a summable BL(V )-
valued function on Γ, which implies that its sum can be defined as an element
of BL(V ) as before.

102 Group algebras

Let G be a group. The corresponding group algebra over the real or complex
numbers consists of formal sums

l∑

j=1

rj gj ,(102.1)

where g1, . . . , gl ∈ G and r1, . . . , rl ∈ R or C, as appropriate. Addition and
scalar multiplication are defined termwise, so that elements of the group form
a basis of the group algebra as a vector space. Multiplication is defined as a
bilinear extension of group multiplication, which can be given explicitly by the
equation

( l∑

j=1

rj gj

)( n∑

k=1

tk hk

)
=

l∑

j=1

n∑

k=1

rj tk gj hk.(102.2)
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It follows from associativity of the group operation that multiplication in the
group algebra is associative too. If the group is commutative, then the group
algebra is commutative as well. The identity element of the group is also the
multiplicative identity element of the group algebra.

Suppose that ρ is a representation of G on a real or complex vector space V .
If V is equipped with a norm, then we may ask that ρ act by bounded linear
operators on V . If

∑l
j=1 rj gj is an element of the corresponding real or complex

group algebra, as appropriate, then we get a linear operator on V defined by

v 7→
l∑

j=1

rj ρgj
(v).(102.3)

Equivalently, this determines a mapping

l∑

j=1

rj gj 7→
l∑

j=1

rj ρgj
(102.4)

from the group algebra into the space of linear operators on V . It is easy to see
that this mapping is a homomorphism from the group algebra into the algebra
of linear mappings on V with respect to composition.

Real or complex regular Borel measures on a locally compact group also form
an associative algebra with respect to convolution. Elements of the group may
be identified with Dirac measures on the group, so that linear combinations of
elements of the group are identified with linear combinations of Dirac measures.
With respect to this identification, convolution of these measures is the same
as the previous definition of multiplication. The convolution of a measure with
a representation of the group is also compatible with the mapping described in
the preceding paragraph.

Alternatively, one can consider convolution algebras of integrable functions
with respect to right or left-invariant Haar measure on a locally compact group.
This is basically the same a looking at measures on the group that are absolutely
continuous with respect to right or left-invariant Haar measure. On discrete
groups, this reduces to convolution algebras of summable functions. Summable
functions include functions with finite support as a dense linear subspace, which
can be identified with linear combinations of group elements as before.

Part III

Self-adjoint linear operators

103 Self-adjoint operators, 2

Let (V, 〈v, w〉) be a real or complex Hilbert space, and let A be a bounded
self-adjoint linear operator on V . Put

α(A) = inf{〈A(v), v〉 : v ∈ V, ‖v‖ = 1}.(103.1)
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Thus A − α(A) I is a nonnegative self-adjoint operator which is not uniformly
strictly positive in the sense of Section 47. Conversely, one can check that α(A) is
uniquely determined by these two conditions. Equivalently, A−λ I is uniformly
strictly positive when λ ∈ R satisfies λ < α(A), while A−λ I is not nonnegative
when λ > α(A). As in Section 47, a bounded nonnegative self-adjoint linear
operator on V is invertible if and only if it is uniformly strictly positive. Hence
A− α(A) I is not invertible, and A− λ I is invertible when λ < α(A). If

σ(A) = {λ ∈ R : A− λ I is not invertible},(103.2)

then it follows that
α(A) = minσ(A).(103.3)

In particular, A ≥ 0 if and only if A+ t I is invertible for every t > 0, which is
the same as saying that minσ(A) ≥ 0.

Similarly, put

β(A) = sup{〈A(v), v〉 : v ∈ V, ‖v‖ = 1}.(103.4)

Note that
α(A) ≤ β(A)(103.5)

and
−β(A) = α(−A).(103.6)

Also,
α(r A) = r α(A), β(r A) = r β(A)(103.7)

for each nonnegative real number r, and

α(A+ t I) = α(A) + t, β(A+ t I) = β(A) + t(103.8)

for every t ∈ R. Of course,

α(I) = β(I) = 1,(103.9)

and if B is another bounded self-adjoint linear operator on V , then

α(A) + α(B) ≤ α(A+B), β(A +B) ≤ β(A) + β(B).(103.10)

If α(A) = β(A), then one can check that

A = α(A) I = β(A) I,(103.11)

by reducing to the case where α(A) = β(A) = 0 and applying the Cauchy–
Schwarz inequality as in Section 34.

Observe that
σ(−A) = −σ(A) = {−λ : λ ∈ σ(A)}.(103.12)

More precisely, this is the same as saying that

(−A) − (−λ) I = −(A− λ I)(103.13)
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is invertible if and only if A− λ I is invertible. Using (103.6), we get that

β(A) = maxσ(A).(103.14)

It is easy to see that σ(r I) = {r} for each r ∈ R. Conversely, if σ(A) = {r} for
some r ∈ R, then α(A) = β(A) = r, and A = r I.

If V is a complex Hilbert space, A is a bounded self-adjoint linear operator
on V , and λ is a complex number with nonzero imaginary part, then A− λ I is
automatically invertible on V . To see this, remember that

〈A(v), v〉 ∈ R(103.15)

for every v ∈ V . This implies that

Im〈(A− λ I)(v), v〉 = (Imλ) ‖v‖2,(103.16)

and therefore
‖(A− λ I)(v)‖ ≥ | Imλ| ‖v‖,(103.17)

for every v ∈ V . Of course, A − λ I has the same property, which shows that
the kernel of (A − λ I)∗ = A − λ I is trivial. The invertibility of A − λ I when
Imλ 6= 0 now follows as in Section 46.

104 Invertibility and compositions

Let V be a real or complex vector space, and let A, B be linear transformations
on V . If A, B are invertible, then so is their composition A ◦B, and

(A ◦B)−1 = B−1 ◦A−1.(104.1)

Conversely, if A ◦ B is invertible, then A is invertible on the right and B is
invertible on the left, because

A ◦ (B ◦ (A ◦B)−1) = (A ◦B) ◦ (A ◦B)−1 = I(104.2)

and similarly

((A ◦B)−1 ◦A) ◦B = (A ◦B)−1 ◦ (A ◦B) = I.(104.3)

This is sufficient to imply the invertibility of A, B when V has finite dimension,
but not when V is infinite-dimensional, as one can see from examples of shift
operators on spaces of sequences of real or complex numbers.

However, if A and B commute, then the invertibility of A◦B does imply the
invertibility of A, B. In this case, A and B commute with A◦B, and hence with
(A ◦ B)−1. This implies that the one-sided inverses in the previous paragraph
are actually two-sided inverses.

If V is equipped with a norm, then we may be especially interested in
bounded linear operators on V , and operators with bounded inverses. If A, B
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are commuting bounded linear operators on V such that A ◦ B has a bounded
inverse, then the same argument shows that A and B have bounded inverses.

Suppose now that V is a complex Hilbert space, and that A is a bounded
self-adjoint linear operator on V . Thus

(A− λ I) ◦ (A− λ I) = (A− (Reλ) I)2 + (Im λ)2 I(104.4)

for each complex number λ. Observe that A − (Re λ) I is self-adjoint, which
implies that (A − (Reλ) I)2 is self-adjoint and nonnegative. Hence (104.4) is
uniformly strictly positive when Imλ 6= 0, and is therefore invertible. Because
A − λ I and A − λ I commute, it follows that they are also invertible when
Imλ 6= 0, as in the previous section.

105 A few simple applications

Let (V, 〈v, w〉) be a real or complex Hilbert space, and let A be a bounded
self-adjoint linear operator on V . Note that A2 is self-adjoint and nonnegative,
which implies that

σ(A2) ⊆ [0,∞).(105.1)

We would like to check that

σ(A2) = {λ2 : λ ∈ σ(A)}.(105.2)

The main point is that

A2 − λ2 I = (A+ λ I) ◦ (A− λ I)(105.3)

for every real number λ. This implies that A2 − λ2 I is invertible if and only if
A + λ I and A − λ I are invertible, by the remarks in the previous section. Of
course, A+λ I and A− λ I obviously commute with each other. It follows that
A2 − λ2 I is not invertible if and only if at least one of A + λ I and A − λ I is
not invertible. This is exactly the same as (105.2), as desired.

Let us now use this to show that

‖A‖op = max{|λ| : λ ∈ σ(A)}.(105.4)

Observe that
max{|λ| : λ ∈ σ(A)} = max(−α(A), β(A)),(105.5)

since α(A) = minσ(A) and β(A) = maxσ(A), as in Section 103. The Cauchy–
Schwarz inequality and the definition of the operator norm imply that

|α(A)|, |β(A)| ≤ ‖A‖op.(105.6)

If A is nonnegative, then β(A) = ‖A‖op, as in Section 34. It is easy to see that

β(A2) = ‖A‖2
op,(105.7)

108



because
〈A2(v), v〉 = 〈A(v), A(v)〉 = ‖A(v)‖2(105.8)

for each v ∈ V . Hence
maxσ(A2) = ‖A‖2

op,(105.9)

because maxσ(A2) = β(A2). Thus (105.2) implies that

‖A‖2
op = max{λ2 : λ ∈ σ(A)},(105.10)

which is the same as (105.4).
Suppose now that A is invertible, and let us determine σ(A−1). In this case,

0 6∈ σ(A), σ(A−1), and we would like to show that

σ(A−1) = {λ−1 : λ ∈ σ(A)}.(105.11)

This time, we use the identity

A−1 − λ−1 = −(λA)−1(A− λ I)(105.12)

for each real number λ 6= 0. Because (λA)−1 is invertible and commutes with
A− λ I, it follows from the remarks in the previous section that A−1 − λ−1 I is
invertible if and only if A − λ I is invertible. Equivalently, A−1 − λ−1 I is not
invertible if and only if A− λ I is not invertible, which is what we wanted.

In particular, this applies to the situation where A is uniformly strictly
positive. This is the same as saying that α(A) > 0, and we also have that
A−1 ≥ 0, as in Section 47. It is easy to see that

‖A−1‖op ≤ α(A)−1,(105.13)

as in Sections 46 and 47. Using the identification of σ(A−1) in the preceding
paragraph, we get that

‖A−1‖op = α(A)−1.(105.14)

More precisely, ‖A−1‖op = β(A−1) = maxσ(A−1) is equal to the reciprocal of
minσ(A) = α(A).

106 Polynomials

Let
p(z) = an z

n + an−1 z
n−1 + · · · + a1 z + a0(106.1)

be a polynomial of degree n with complex coefficients, which is to say that
a0, . . . , an ∈ C and an 6= 0. The fundamental theorem of algebra implies that
there are complex numbers a, z1, . . . , zn such that a 6= 0 and

p(z) = a

n∏

j=1

(z − zj).(106.2)
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More precisely, z1, . . . , zn are exactly the zeros of p(z) as a function on the
complex plane, with their appropriate multiplicities, and a is the same as the
leading coefficient an of p(z).

Now let V be a complex vector space, and let T be a linear transformation
on V . We can define p(T ) as a linear transformation on V by

p(T ) = an T
n + an−1 T

n−1 + · · · + a1 T + a0 I,(106.3)

where T j is the composition of j T ’s, which is interpreted as being the identity
operator I when j = 0. Using (106.2), this is the same as

p(T ) = a
n∏

j=1

(T − zj I),(106.4)

where the product represents the composition of the factors T − zj I. The order
of the factors in the product does not matter, because they commute with each
other. As in Section 104, p(T ) is invertible if and only if T − zj I is invertible
for j = 1, . . . , n.

Suppose now that p is a real polynomial, in the sense that the coefficients
a0, . . . , an are real numbers. This is equivalent to the conditions that

p(z) = p(z)(106.5)

for each z ∈ C, or that
p(x) ∈ R(106.6)

for every x ∈ R. In this case, the zeros of p(z) as a function on C consist of
the real zeros x1, . . . , xl, the complex zeros ζ1, . . . , ζr in the upper half plane
Im ζ > 0, and the complex conjugates of the latter ζ1, . . . , ζr, so that n = l+2 r.
This leads to the expression

p(x) = a

l∏

j=1

(x− xj)

r∏

k=1

((x− Re ζk)2 + (Im ζk)2)(106.7)

for x ∈ R.
If V is a real vector space, T is a linear transformation on V , and p is a

real polynomial, then we can define p(T ) as a linear transformation on V in the
same way as before. We can also use (106.7) to express p(T ) as a product of
commuting factors,

p(T ) = a

l∏

j=1

(T − xj I)

r∏

k=1

((T − Re ζk I)
2 + (Im ζk)2 I).(106.8)

If V is a real or complex Hilbert space, T is a bounded linear operator on V ,
and p is a real polynomial, then

p(T ∗) = p(T )∗.(106.9)

In particular, p(T ) is self-adjoint when T is self-adjoint and p is real.
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107 Nonnegative real polynomials

Let p be a polynomial with real coefficients such that

p(x) ≥ 0(107.1)

for each x ∈ R. In this case, the real roots of p have even multiplicity, and the
fundamental theorem of algebra implies that

p(x) = a

l∏

j=1

((x − xj)
2 + y2

j )(107.2)

for some real numbers a, x1, y1, . . . , xl, yl, with a ≥ 0. By expanding the product
of sums into a sum of products, we can express p as

p(x) =
r∑

k=1

qk(x)2,(107.3)

where q1, . . . , qk are also polynomials with real coefficients. If p(x) > 0 for
every x ∈ R, then y1, . . . , yl 6= 0, and we can take one of the qk’s to be a
nonzero constant. Conversely, a polynomial of the form (107.3) is automatically
nonnegative, and strictly positive when one of the qk’s is a nonzero constant.

Here is a more elementary derivation of (107.3), using induction. The base
case concerns constant polynomials, and is clear. If p is a nonnegative real
polynomial of positive degree, then p(x) → ∞ as |x| → ∞, and the minimum
of p on R is attained at some x0 ∈ R. This implies that

p(x) = (x− x0)
2 p1(x) + p(x0)(107.4)

for some nonnegative real polynomial p1(x). More precisely, this uses the fact
that p(x)− p(x0) is a nonnegative real polynomial, so that its root x0 has even
multiplicity. If the multiplicity is larger than 2, or if p(x) − p(x0) has other
roots, then additional factors can be extracted from p(x)− p(x0), but the main
point is that the degree of p1 is strictly less than the degree of p. Hence p1 is a
sum of squares by induction, and it follows that p is a sum of squares too. If p
is strictly positive, then p(x0) > 0, and one of the terms can be taken to be the
square of a nonzero constant.

Let V be a real or complex Hilbert space, and let A be a bounded self-adjoint
linear operator on V . If p is a nonnegative real polynomial, then it follows from
(107.3) that p(A) is a sum of squares of self-adjoint operators on V , and hence

p(A) ≥ 0.(107.5)

If p is strictly positive, then
p(A) ≥ δ I(107.6)

for some δ > 0, and p(A) is invertible.
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Suppose now that p is a real polynomial which is not identically zero, and
let x1, . . . , xl be the real roots of p, with their appropriate multiplicity. Thus

p(x) = ±p+(x)

l∏

j=1

(x− xj),(107.7)

where p+ is a real polynomial with no real roots, and the sign can be chosen
so that p+ is positive. This uses the fact that a continuous non-vanishing real-
valued function on the real line has constant sign, by the intermediate value
theorem. If A is a bounded self-adjoint linear operator on a real or complex
Hilbert space V , then p+(A) is invertible on V , as in the previous paragraph.
It follows from the remarks in Section 104 that p(A) is invertible if and only if
A− xj I is invertible for j = 1, . . . , l.

108 Polynomials and operators

Let V be a real or complex Hilbert space, and let A be a bounded self-adjoint
linear operator on V . Also let p be a polynomial with real coefficients, so that
p(A) is self-adjoint on V as well. We would like to check that

σ(p(A)) = {p(λ) : λ ∈ σ(A)}.(108.1)

As in the previous section, p(A) is invertible if and only if A− λ I is invertible
for each λ ∈ R such that p(λ) = 0. Thus p(A) is not invertible if and only
if A − λ I is not invertible for some λ ∈ R such that p(λ) = 0. Equivalently,
0 ∈ σ(p(A)) if and only if p(λ) = 0 for some λ ∈ σ(A). If µ ∈ R, then we can
apply the preceding statement to p̃(x) = p(x)−µ to get that µ ∈ σ(p(A)) if and
only if p(λ) = µ for some λ ∈ σ(A), which is the same as (108.1).

Note that σ(A) is automatically a closed set in the real line, because the set
of λ ∈ R such that A− λ I is invertible is an open set, as in Section 90. Since
α(p(A)) = minσ(p(A)), as in Section 103, we get that

α(p(A)) = min{p(λ) : λ ∈ σ(A)}.(108.2)

In particular, p(A) ≥ 0 if and only if p(λ) ≥ 0 for every λ ∈ σ(A). Similarly,

‖p(A)‖op = max{|p(λ)| : λ ∈ σ(A)}(108.3)

by (105.4) applied to p(A).
We can extend these results to real rational functions without poles in σ(A),

as follows. Let q be a real polynomial such that q(λ) 6= 0 for every λ ∈ σ(A).
Thus q(A) is an invertible self-adjoint linear operator on V , which implies that
q(A)−1 is self-adjoint as well. If p is any real polynomial, then p(A) and
q(A) commute, and so p(A) commutes with q(A)−1 too. This implies that
p(A) q(A)−1 is self-adjoint, because the composition of commuting self-adjoint
operators is also self-adjoint.
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Observe that p(A) q(A)−1 is invertible if and only if p(A) is invertible, since
q(A)−1 is invertible. Similarly, for each µ ∈ R,

p(A) q(A)−1 − µ I = (p(A) − µ q(A)) q(A)−1(108.4)

is invertible if and only if p(A) − µ q(A) is invertible. Equivalently, (108.4)
is not invertible exactly when p(A) − µ q(A) is not invertible. As before, this
happens if and only if p(λ)−µ q(λ) = 0 for some λ ∈ σ(A), which is the same as
µ = p(λ)/q(λ). Hence σ(p(A) q(A)−1) consists of the real numbers of the form
p(λ)/q(λ) with λ ∈ σ(A), which can be used to analyze the operator norm and
nonnegativity of p(A) q(A)−1 as in the previous situation.

109 Functional calculus

Let V be a real or complex Hilbert space, and let A be a bounded self-adjoint
linear operator on V . Thus σ(A) is a nonempty compact set in the real line,
and we let C(σ(A)) be the space of continuous real-valued functions on σ(A).
Also let P(σ(A)) be the linear subspace of C(σ(A)) consisting of the restrictions
of real polynomials to σ(A). The Lebesgue–Stone–Weierstrass theorem implies
that P(σ(A)) is dense in C(σ(A)) with respect to the supremum norm. Note
that the restriction of a real polynomial p(x) to σ(A) uniquely determines p(x)
when σ(A) has infinitely many elements. Even if σ(A) has only finitely many
elements, p(A) is uniquely determined by the restriction of p to σ(A). This is
because p(A) = 0 when p(λ) = 0 for every λ ∈ σ(A), by (108.3).

It follows that
f 7→ f(A)(109.1)

defines a linear mapping from P(σ(A)) into the vector space of bounded self-
adjoint linear operators on V . Moreover, (109.1) is an isometry with respect to
the supremum norm on P(σ(A)) and the operator norm on BL(V ), because of
(108.3). This implies that (109.1) has a unique extension to an isometric linear
embedding of C(σ(A)) with the supremum norm into the space of bounded
self-adjoint linear operators on V with the operator norm, as in Section 9. If
f1, f2 ∈ C(σ(A)), then one can check that this embedding sends their product
to the composition of the corresponding operators f1(A), f2(A) on V , or

(f1 f2)(A) = f1(A) f2(A),(109.2)

because of the analogous statement for polynomials. In particular, if f(x) =
p(x)/q(x), where p, q are real polynomials and q(λ) 6= 0 for each λ ∈ σ(A), then
f(A) = p(A) q(A)−1.

If f is a continuous real-valued function on σ(A) such that f(λ) 6= 0 for each
λ ∈ σ(A), then 1/f is also a continuous function on σ(A). It follows that f(A)
is invertible on V , with f(A)−1 = (1/f)(A). Conversely, if f(A) is invertible as
a linear operator on V , then f(λ) 6= 0 for every λ ∈ σ(A). For if f(λ0) = 0 for
some λ0 ∈ σ(A), then f can be approximated uniformly on σ(A) by polynomials
p such that p(λ0) = 0. As before, p(A) is not invertible when p has this property.
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However, if f(A) is invertible, then any bounded linear operator on V which is
sufficiently close to f(A) in the operator norm is invertible, as in Section 90.
This is a contradiction, since the operator norm of f(A) − p(A) is equal to the
supremum norm of f − p on σ(A).

This implies that

σ(f(A)) = {f(λ) : λ ∈ σ(A)}(109.3)

for every f ∈ C(σ(A)). More precisely, 0 ∈ σ(f(A)) if and only if f(λ) = 0
for some λ ∈ σ(A), by the remarks in the preceding paragraph. Similarly,
µ ∈ σ(f(A)) if and only if µ = f(λ) for some λ ∈ σ(A), by the previous

argument applied to f̃(x) = f(x) − µ. As a consequence, note that

α(f(A)) = min{f(λ) : λ ∈ σ(A)},(109.4)

since α(f(A)) = minσ(f(A)), as in Section 103. In particular, f(A) ≥ 0 if and
only if f(λ) ≥ 0 for each λ ∈ σ(A).

110 Step functions

For each positive integer j, let fj be the continuous piecewise-linear function on
the real line defined by

fj(x) = 0 when x ≤ −2−j,(110.1)

= 1 + 2j x when − 2−j ≤ x ≤ 0

= 1 when x ≥ 0.

Thus
0 ≤ fj+1(x) ≤ fj(x) ≤ 1(110.2)

for every x ∈ R and j ≥ 1, and {fj}∞j=1 converges pointwise on R to the step
function f defined by

f(x) = 0 when x < 0(110.3)

= 1 when x ≥ 0.

Moreover,
fj+1(x) ≤ fj(x)

2 ≤ fj(x),(110.4)

because
(1 + 2j x)2 = 1 + 2j+1 x+ 22j x2 ≥ 1 + 2j+1 x(110.5)

for each x and j.
Let V be a real or complex Hilbert space, and let A be a bounded self-adjoint

linear operator on V . If fj(A) is the self-adjoint operator on V associated to fj

as in the previous section, then

0 ≤ fj+1(A) ≤ fj(A) ≤ I(110.6)
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for each j ≥ 1, because of (110.2). As in Section 34, {fj(A)}∞j=1 converges in
the strong operator topology to a bounded self-adjoint linear operator P on V
that satisfies

0 ≤ P ≤ I.(110.7)

Basically, this is a way to define f(A), even though f is not continuous on R

and hence perhaps not on σ(A).
Similarly, (110.4) implies that

fj+1(A) ≤ fj(A)2 ≤ fj(A),(110.8)

which is the same as

〈fj+1(A)(v), v〉 ≤ 〈fj(A)(v), fj(A)(v)〉 ≤ 〈fj(A)(v), v〉(110.9)

for each v ∈ V and j ≥ 1, because fj(A) is self-adjoint. Hence

〈P (v), v〉 = 〈P (v), P (v)〉,(110.10)

by the strong convergence of {fj(A)}∞j=1 to P . Using the self-adjointness of P
and polarization, we get that

〈P (v), w〉 = 〈P (v), P (w)〉 = 〈P 2(v), w〉(110.11)

for each v, w ∈ V , which is to say that P 2 = P . This corresponds to the fact
that f2 = f on R.

Thus P is a bounded self-adjoint projection operator on V , which means
that P is the orthogonal projection of V onto W = P (V ). More precisely, W
can also be characterized as the kernel of I − P , which makes it clear that W
is closed. Because P is self-adjoint, it is easy to see that the kernel of P is
the same as the orthogonal complement of W . For each v ∈ V , P (v) ∈ W ,
and v − P (v) is in the kernel of P . This shows that P (v) is the same as the
orthogonal projection of v onto W .

111 Composition of functions

Let A be a bounded self-adjoint linear operator on a real or complex Hilbert
space V , let ψ be a continuous real-valued function on σ(A), and let φ be a
continuous real-valued function on

σ(ψ(A)) = ψ(σ(A)).(111.1)

Thus the composition
(φ ◦ ψ)(x) = φ(ψ(x))(111.2)

of φ and ψ is a continuous real-valued function on σ(A). Let us check that

(φ ◦ ψ)(A) = φ(ψ(A)),(111.3)
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where ψ(A) and (φ ◦ ψ)(A) are defined using the functional calculus applied to
A, and φ(ψ(A)) is defined using the functional calculus applied to ψ(A). If φ is
a polynomial, then this follows from the fact that the functional calculus is an
algebra homomorphism from continuous functions on σ(A) into bounded linear
operators on V . If φ is an arbitrary continuous function on ψ(σ(A)), then φ
can be approximated by polynomials uniformly on ψ(σ(A)), and one can use
the isometric property of the functional calculus with respect to the supremum
norm to pass to the limit.

As another way to look at this,

φ 7→ φ ◦ ψ(111.4)

defines an algebra homomorphism from C(ψ(σ(A))) into C(σ(A)), which is
also an isometry with respect to the supremum norm. The functional calculus
determines algebra homomorphisms from C(ψ(σ(A))) and C(σ(A)) into BL(V ).
The statement in the previous paragraph is equivalent to the identification of
the homomorphism from C(ψ(σ(A))) into BL(V ) with the composition of the
homomorphisms from C(ψ(σ(A))) into C(σ(A)) and from C(σ(A)) into BL(V ).

For example, let t be a real number, and consider

ψ(x) = x− t.(111.5)

Thus ψ(A) = A− t I, and

σ(A− t I) = {λ− t : λ ∈ σ(A)}.(111.6)

If φ(x) is a continuous real-valued function on σ(A− t I), then

φt(x) = φ(x − t)(111.7)

is a continuous real-valued function on σ(A), and

φt(A) = φ(A − t I).(111.8)

In particular, we can apply this to the continuous piecewise-linear functions
fj(x) on R described in the previous section. If fj,t(x) = fj(x− t), then we get
that fj,t(A) = fj(A− t I). As in Section 110, {fj(A− t I)}∞j=1 converges in the
strong operator topology to an orthogonal projection Pt on V . This is the same
as saying that {fj,t(A)}∞j=1 converges strongly to Pt.

112 Step functions, continued

Let a, b be real numbers with a < b, and let n be a positive integer. Put

tk = a+
k

n
(b − a)(112.1)

for k = 0, 1, . . . , n, so that

a = t0 < t1 < · · · < tn = b(112.2)
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and tk − tk−1 = (b− a)/n when k ≥ 1. Consider

φj(x) = a+
b− a

n

n∑

k=1

fj(x− tk),(112.3)

where fj(x) is as in Section 110.
Let us restrict our attention to sufficiently large j, in the sense that

2−j ≤ b− a

n
.(112.4)

If k ≥ 1, then

fj(x− tk) = 0 when x ≤ tk−1(112.5)

= 1 when x ≥ tk.

Thus

φj(x) = a when x ≤ a,(112.6)

= b when x ≥ b,

= tk when x = tk,

and
tk−1 ≤ φj(x) ≤ tk(112.7)

when tk−1 ≤ x ≤ tk, k ≥ 1. More precisely,

φj(x) ≤ x(112.8)

when a ≤ x ≤ b. Hence

0 ≤ x− φj(x) ≤
b− a

n
(112.9)

on [a, b], and

max
a≤x≤b

|φj(x) − x| ≤ b− a

n
.(112.10)

Let A be a bounded self-adjoint linear operator on a real or complex Hilbert
space V with σ(A) ⊆ [a, b]. Since φj(x) is a continuous real-valued function on
the real line, we get a bounded self-adjoint linear operator φj(A) on V as in
Section 109. The estimates in the previous paragraph imply that

φj(A) ≤ A(112.11)

and

‖φj(A) −A‖op ≤ b− a

n
.(112.12)

If fj,k(x) = fj(x − tk), then fj,k(A)}∞j=1 converges in the strong operator
topology to an orthogonal projection Pk on V , as in the preceding section.
Hence {φj(A)}∞j=1 converges strongly to

An = a I +
b− a

n

n∑

k=1

Pk.(112.13)
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Of course, tk and φj depend on n as well, but we have suppresed this from the
notation for simplicity. Using (112.12), we also get that

‖An −A‖op ≤ b− a

n
.(112.14)

113 Algebras of operators

Let V be a real or complex vector space, and let A be an algebra of linear
operators on V that includes the identity operator I. If A ∈ A and p is a
polynomial with real or complex coefficients, as appropriate, then p(A) ∈ A.

Suppose that V is a real or complex Hilbert space, and that A is an algebra
of bounded linear operators on V that contains I and is closed with respect to
the operator norm. If A ∈ A is self-adjoint and f is a continuous real-valued
function on σ(A), then f(A) ∈ A. This is because f(A) can be approximated
in the operator norm by polynomials of A, as in Section 109.

If A is closed with respect to the strong operator topology, then A also
contains the orthogonal projections associated to a self-adjoint operator A ∈ A
as in Sections 110 and 111. By construction, these projections were obtained as
strong limits of sequences of continuous functions of A, which are contained in
A as in the preceding paragraph.

If V is complex and A is a ∗-algebra, then every T ∈ A can be expressed
as A + i B, where A,B ∈ A are self-adjoint, as in Section 37. The discussion
in Section 112 implies that A, B can be approximated in the operator norm by
linear combinations of orthogonal projections that are also elements of A. It
follows that every element of A can be approximated in this way.

114 Irreducibility, 2

Let V be a real or complex vector space, and let E be a collection of linear
transformations on V . A linear subspace W of V is said to be invariant under
E if

T (W ) ⊆W(114.1)

for every T ∈ E . Thus V , {0} are automatically invariant under E , and E is
said to be irreducible if these are the only invariant subspaces. Note that this
includes the case of group representations discussed in Section 94, by taking E
to be the collection of operators in the representation. As before, we normally
suppose here that V is equipped with a norm, and that E consists of bounded
linear operators on V , and we are only concerned with closed linear subspaces
of V .

If A is the algebra of operators on V generated by E , then A and E have
the same invariant subspaces. In particular, A is irreducible if and only if E is
irreducible. If V is a Hilbert space, E consists of bounded linear operators on
V , and E∗ = E , then A∗ = A, which is to say that A is a ∗-algebra. Observe
that E∗ = E when E consists of the operators in a unitary group representation.
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Suppose that V is equipped with a norm, and that E consists of bounded
linear transformations on V . It is easy to see that the closure of E with respect
to the operator norm has the same closed invariant subspaces as E . This also
works for the closure of E with respect to the strong operator topology. Using
the Hahn–Banach theorem, one can check that this holds for the weak operator
topology too. Of course, one might as well take E to be a linear subspace of
BL(V ), for which the closure in the strong and weak operator topologies is the
same, as in Section 41.

Suppose now that V is a Hilbert space, E consists of bounded linear operators
on V , and E∗ = E . If W is a closed linear subspace of V which is invariant under
E , then the orthogonal complement W⊥ of W is also invariant under E , as in
Section 45. This implies that the orthogonal projection PW of V onto W is
in the commutant C(E) of E . Conversely, if PW ∈ C(E), then W and W⊥ are
invariant under E . It follows that E is irreducible if and only if C(E) does not
contain any orthogonal projections other than the trivial ones corresponding to
W = V, {0}.

As in Section 44, C(E) is a ∗-subalgebra of BL(V ) when E ⊆ BL(V ) satisfies
E∗ = E . Moreover, C(E) is closed with respect to the weak operator topology.
If E is irreducible, then it follows from the discussion in the previous section
that every self-adjoint operator A ∈ C(E) can be expressed as A = r I for some
r ∈ R. Otherwise, there would be nontrivial orthogonal projections in C(E), and
hence nontrivial invariant subspaces of E . Conversely, if the only self-adjoint
operators in C(E) are multiples of the identity operator, then the only orthogonal
projections in C(E) are I, 0, and E is irreducible.

If V is complex, then every element of C(E) is a linear combination of self-
adjoint operators in C(E). Under these conditions, E is irreducible if and only
if C(E) consists of only complex multiples of the identity operator.

The analogous argument does not work in the real case. There are even
counterexamples, as in the next sections.

115 Restriction of scalars

Let V be a complex vector space. We can also consider V to be a real vector
space, by restricting scalar multiplication to real numbers. Let this real version
of V be denoted Vr .

Let A be an algebra of linear transformations on V that contains the identity
operator I. More precisely, A is supposed to be an algebra over the complex
numbers, and so A contains i I too. Complex-linear mappings on V can also be
considered as real-linear mappings on Vr , so that A can be seen as an algebra of
linear transformations on Vr as well. If W is a real-linear subspace of V which
is invariant under A, then W is invariant under i I in particular, and hence is a
complex-linear subspace of V . If A is irreducible as an algebra of complex-linear
transformations on V , then it follows that A is also irreducible as an algebra of
real-linear transformations on Vr.

If ‖v‖ is a norm on V with respect to the complex numbers, then ‖v‖ is also
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a norm on Vr with respect to the real numbers. The corresponding metric

d(v, w) = ‖v − w‖(115.1)

is the same in either case, and determines the same topology on V . A bounded
complex-linear transformation on V is also a bounded real-linear transformation
on Vr with respect to this norm, and the remarks in the previous paragraph can
be applied to algebras of bounded linear mappings and closed linear subspaces.
In particular, the algebra BL(V ) of bounded complex-linear mappings on V
may be considered as a subalgebra of the algebra BL(Vr) of bounded real-linear
mappings on Vr. Of course, BL(V ) is irreducible as an algebra of operators on
V , and it follows that BL(V ) is also irreducible as an algebra of operators on
Vr.

If 〈v, w〉 is an inner product on V , then it is easy to see that

〈v, w〉r = Re〈v, w〉(115.2)

is an inner product on Vr that determines the same norm

‖v‖ = 〈v, v〉1/2 = 〈v, v〉1/2
r .(115.3)

If T is a bounded complex-linear mapping on V , then the adjoint T ∗ of T with
respect to 〈v, w〉 is the same as the adjoint of T as a bounded real-linear mapping
on Vr with respect to 〈v, w〉r . Hence the algebra BL(V ) of bounded complex-
linear operators on V is also a ∗-algebra as an algebra of bounded real-linear
operators on Vr. Note that complex-linear mappings on V are characterized
among real-linear mappings by the property of commuting with i I, so that the
commutant of BL(V ) consists of complex multiples of the identity operator,
even as a subalgebra of BL(Vr). By contrast, the commutant of BL(Vr) consists
of real multiples of the identity.

116 Quaternions

A quaternion x may be expressed as

x = x1 + x2 i+ x3 j + x4 k,(116.1)

where x1, x2, x3, x4 are real numbers,

i2 = j2 = k2 = −1,(116.2)

and
i j = −j i = k,(116.3)

which implies that

i k = −k i = −j, j k = −k j = i.(116.4)
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More precisely, the quaternions H form an associative algebra over the real
numbers which contains the real numbers as a subalgebra. The real number
1 is also the multiplicative identity element for H, and real numbers commute
with arbitrary quaternions. As a vector space over the real numbers, H has
dimension 4, and 1, i, j, k is a basis for H.

The norm of a quaternion (116.1) is defined as usual by

|x| = (x2
1 + x2

2 + x2
3 + x2

4)
1/2.(116.5)

If x∗ = x1 − x2 i− x3 j − x4 k, then it is easy to see that

xx∗ = x∗ x = |x|2.(116.6)

Moreover,
(x y)∗ = y∗ x∗(116.7)

for every x, y ∈ H. Therefore

|x y|2 = x y (x y)∗ = x y y∗ x∗ = xx∗ |y|2 = |x|2 |y|2,(116.8)

and hence |x y| = |x| |y|.
The standard inner product on H as a real vector space is defined by

〈x, y〉 = x1 y1 + x2 y2 + x3 y3 + x4 y4.(116.9)

This is the same as the real parts of x∗ y, x y∗, y x∗, and y∗ x. For each w ∈ H,

Tw(x) = wx(116.10)

is a linear transformation on H as a real vector space whose adjoint with respect
to the standard inner product is equal to Tw∗ . We also have that

Tv(Tw(x)) = v Tw(x) = v w x = Tv w,(116.11)

for every v, w, x ∈ H.
Thus the collection of linear transformations Tw, w ∈ H, is a ∗-algebra of

operators on H, since Tv + Tw = Tv+w. Note that each nonzero quaternion x
is invertible in H, with x−1 = x∗/|x|2. This implies that the algebra of Tw’s is
irreducible on H. The commutant of this algebra consists of the linear operators
of the form x 7→ x z, z ∈ H.

117 Real ∗-algebras

Let V be a real Hilbert space, and let B be a ∗-algebra of bounded linear
operators on V that contains the identity I. Suppose that every self-adjoint
operator in B is of the form r I for some r ∈ R. In particular, this happens
when B is the commutant of an irreducible ∗-algebra of bounded linear operators
on V . Every bounded linear operator T on V can be expressed as T1+T2, where
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T1 = (T+T ∗)/2 is self-adjoint and T2 = (T−T ∗)/2 is anti-self-adjoint. If T ∈ B,
then T ∗ ∈ B, and so T1, T2 ∈ B too. By hypothesis, T1 = r I for some r ∈ R,
and we would like to know more about T2. If A is any bounded anti-self-adjoint
linear operator on V , then A2 is self-adjoint, and moreover A2 ≤ 0, because

〈A2(v), v〉 = −〈A(v), A(v)〉 = −‖A(v)‖2 ≤ 0(117.1)

for every v ∈ V . If A ∈ B, then A2 ∈ B, and it follows that A2 = c I for some
c ∈ R with c ≤ 0. Note that A2 = 0 implies that A = 0, by the previous
computation. Thus c < 0 when A 6= 0.

If R, T are bounded linear operators on V , then RT ∗ +T R∗ is self-adjoint,
and is therefore a multiple of the identity when R, T ∈ B. Let (R, T ) be the
real number defined by

(R, T ) I =
RT ∗ + T R∗

2
(117.2)

when R, T ∈ B. One can check that this is an inner product on B, for which
the anti-self-adjoint elements of B are orthogonal to I, and (I, I) = 1. More
precisely, (T, T ) ≥ 0 because T T ∗, T ∗ T ≥ 0 as self-adjoint linear operators, and
(T, T ) = 0 implies that T T ∗ = T ∗ T = 0, which implies that T = 0.

If A, B are anti-self-adjoint elements of B, then (A,B) = 0 if and only if

AB = −BA.(117.3)

This implies that C = AB ∈ B is anti-self-adjoint as well, and that

AC = −C A, B C = −C B.(117.4)

Thus (A,C) = (B,C) = 0. Also, C2 = −A2B2, so that C 6= 0 when A,B 6= 0.
If T ∈ B is anti-self-adjoint and orthogonal to A and B, then

AT = −T A and B T = −T B,(117.5)

which implies that
C T = T C.(117.6)

If T is also orthogonal to C, then

C T = −T C,(117.7)

and hence
C T = 0.(117.8)

If C 6= 0, then C2 is a nonzero multiple of the identity, so that C is invertible,
and

T = 0.(117.9)

Of course, it may be that every element of B is a multiple of the identity. If
the linear subspace of B consisting of anti-self-adjoint operators has dimension 1,
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then B is isomorphic to the complex numbers as an algebra over R. Otherwise,
suppose that B contains two linearly independent anti-self-adjoint operators A,
B. Without loss of generality, we may suppose that (A,B) = 0. As in the
previous paragraph, C = AB ∈ B is nonzero, anti-self-adjoint, and orthogonal
to A and B. Moreover, every anti-self-adjoint element of B orthogonal to A, B,
and C is equal to 0. Thus the anti-self-adjoint elements of B are spanned by
A, B, and C, which means that B is spanned by A, B, C, and I. One can also
normalize A, B so that A2 = B2 = −I, which implies that C2 = −I. It follows
that B is isomorphic to the quaternions as an algebra over R in this case.

118 Another approach

Let V be a real or complex Hilbert space, and let A be a bounded self-adjoint
linear operator on V . If σ(A) contains only one element, then α(A) = β(A),
and A is a multiple of the identity operator on V . Otherwise, σ(A) has at least
two elements, and there are continuous real-valued functions f1, f2 that are not
identically 0 on σ(A) and satisfy

f1(λ) f2(λ) = 0(118.1)

for every λ ∈ σ(A). This implies that f1(A), f2(A) 6= 0 and

f1(A) f2(A) = 0,(118.2)

so that the kernel of f1(A) is a nontrivial proper closed linear subspace of V .
Suppose that T is a bounded linear operator on V that commutes with A.

Thus T commutes with p(A) for any polynomial p with real coefficients. If f is
a continuous real-valued function on σ(A), then T commutes with f(A) as well,
since f(A) can be approximated by polynomials of A in the operator norm. In
particular, T commutes with f1(A), which implies that the kernel of f1(A) is
invariant under T . If E is a collection of bounded linear operators on V and
A ∈ C(E), then it follows that the kernel of f1(A) is invariant under E .

If E is an irreducible collection of bounded linear operators on V and A is a
bounded self-adjoint linear operator on V in the commutant of E , then we may
conclude that A = r I for some r ∈ R, as before. Of course, this is especially
interesting when E∗ = E , so that C(E) is a ∗-algebra, and hence contains the
self-adjoint parts of its elements.

If V has finite dimension, and A is a self-adjoint linear transformation on
V , then A is diagonalizable. If A is not a multiple of the identity, then the
kernel of A − λ I is a proper nontrivial linear subspace of V for some λ ∈ R.
This does not necessarily work in infinite dimensions, since there are self-adjoint
multiplication operators A such that the kernel of A− λ I is always trivial.

119 Finite dimensions

Let V be a vector space over the real or complex numbers, let T be a linear
transformation on V , and let W be the kernel of T . If R is another linear
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transformation on V that commutes with T , then it is easy to check that

R(W ) ⊆W.(119.1)

Similarly, if Z = T (V ), then R(Z) ⊆ Z. If V is equipped with a norm and T is
a bounded linear transformation on V , then W is automatically a closed linear
subspace of V , but T (V ) may not be. In this case, it is better to take Z to be
the closure of T (V ), and we still have R(Z) ⊆ Z when R ∈ BL(V ) commutes
with T .

If E is a collection of linear transformations on V , and T ∈ C(E), then W
and Z are invariant under E . If E is irreducible, then it follows that W = V or
W = {0} and Z = V or {0}. More precisely, W = {0} if and only if Z = {0},
and so either W = Z = {0} or W = Z = V . If V has finite dimension, then
we can simply say that T = 0 or T is invertible on V . Otherwise, irreducibility
is normally defined in terms of closed linear subspaces of V , and we get that
T = 0 or T is one-to-one and T (V ) is dense in V .

Suppose that V is a finite-dimensional complex vector space, and let T be a
linear mapping on V . It is well known that there is a λ0 ∈ C such that T −λ0 I
has a nontrivial kernel, because the determinant of T − λ I is a polynomial in
λ and thus has a root. If E is an irreducible collection of linear transformations
on V and T ∈ C(E), then T − λ I ∈ C(E) for each λ ∈ C, and hence T = λ0 I.

Now suppose that V is a finite-dimensional real vector space. If E is an
irreducible collection of linear transformations on V , then every nonzero element
of C(E) is invertible as a linear mapping on V . It is easy to check that the
inverse of an invertible element of C(E) is also an element of C(E). Of course,
the dimension of C(E) as a real vector space is less than or equal to the dimension
of the algebra of all linear transformations on V , which is equal to the square
of the dimension of V . Thus C(E) is a finite-dimensional division algebra over
the real numbers, and is therefore isomorphic as an abstract algebra over R to
the real numbers, the complex numbers, or the quaternions, by a well-known
theorem in algebra.

120 Multiplication operators, 3

Let (X,µ) be a σ-finite measure space, and let b be a bounded measurable
function on X . As in Section 25, the corresponding multiplication operator Mb

is bounded on Lp(X) for 1 ≤ p ≤ ∞, with operator norm equal to the L∞ norm
of b. Let us restrict our attention to the case where p = 2 and b is real-valued,
so that Mb is a self-adjoint operator on a Hilbert space.

It is easy to see that α(Mb), β(Mb) are the essential infimum and supremum
of b on X . Equivalently,

α(Mb) ≤ b(x) ≤ β(Mb)(120.1)

for almost every x ∈ X , and α(Mb) is the largest real number for which the first
condition holds, and β(Mb) is the smallest real number for which the second
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condition holds. In particular,

max(−α(Mb), β(Mb)) = ‖b‖∞,(120.2)

and Mb ≥ 0 as a self-adjoint operator if and only if b(x) ≥ 0 for almost every
x ∈ X . If there is a δ > 0 such that

|b(x)| ≥ δ(120.3)

for almost every x ∈ X , then 1/b also determines and L∞ function on X , and
the corresponding multiplication operator is the inverse of Mb. Conversely, if
Mb has a bounded inverse, then one can check that b satisfies this property for
some δ > 0. Similarly, Mb − λ I = Mb−λ has a bounded inverse for some λ ∈ R

if and only if there is a δ > 0 such that

|b(x) − λ| ≥ δ(120.4)

for almost every x ∈ X . Thus σ(Mb) consists of the λ ∈ R for which there is
no such δ > 0, also known as the essential range of b.

Suppose that X is a locally compact Hausdorff topological space, and that µ
is a positive Borel measure on X such that µ(K) <∞ when K ⊆ X is compact
and µ(U) > 0 when U ⊆ X is open and nonempty. If b is a bounded continuous
function on X , then the L∞ norm of b is equal to the supremum norm of b, and
α(Mb), β(Mb) are equal to the infimum and supremum of b on X . The essential
range of b reduces to the closure of the set b(X) of values of b in R in this case.
If X is compact, then the maximum and minimum of b are attained on X , and
Mb is invertible when b(x) 6= 0 for every x ∈ X . Hence Mb − λ I = Mb−λ is not
invertible exactly when b(x) = λ for some x ∈ X , so that σ(Mb) = b(X).

If f is a polynomial with real coefficients, then

f(Mb) = Mf(b).(120.5)

This also works for continuous real-valued functions f on the essential range of
b, by suitable approximation arguments. It is easy to check directly that

‖f ◦ b‖∞ = max{|f(λ)| : λ ∈ σ(Mb)}(120.6)

and
σ(f(Mb)) = f(σ(Mb)).(120.7)

If b is a bounded continuous function on a locally compact Hausdorff space X ,
as in the preceding paragraph, then f(b) is also a bounded continuous function
on X .

121 Measures

Let A be a bounded self-adjoint linear operator on a real or complex Hilbert
space (V, 〈v, w〉). If f is a continuous real-valued function on σ(A) and v ∈ V ,
then we put

Lv(f) = 〈f(A)(v), v〉.(121.1)
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Thus Lv is a linear functional on C(σ(A)), and

|Lv(f)| ≤ ‖f(A)‖op ‖v‖2 = max{|f(λ)| : λ ∈ σ(A)} ‖v‖2.(121.2)

If f ≥ 0 on σ(A), then f(A) ≥ 0, and hence

Lv(f) ≥ 0.(121.3)

The Riesz representation theorem implies that there is a unique positive
Borel measure µv on σ(A) such that

Lv(f) =

∫

σ(A)

f(λ) dµv(λ)(121.4)

for every f ∈ C(σ(A)). Remember that f(A) = I when f ≡ 1, and so

µv(σ(A)) = Lv(1) = ‖v‖2.(121.5)

In particular, the dual norm of Lv as a bounded linear functional on C(σ(A))
with respect to the supremum norm is equal to ‖v‖2. If f ∈ C(σ(A)), then
f2 ≥ 0, and in fact

Lv(f
2) = 〈f(A)(v), f(A)(v)〉 = ‖f(A)(v)‖2,(121.6)

because f(A) is self-adjoint. Equivalently,

‖f1(A)(v) − f2(A)(v)‖2 =

∫

σ(A)

(f1(λ) − f2(λ))
2 dµv(λ)(121.7)

for every f1, f2 ∈ C(σ(A)).
Suppose that µ is a positive finite Borel measure with compact support on

the real line, and consider the Hilbert space L2(µ), with the standard inner
product defined by integration. By hypothesis, b(x) = x is bounded on the
support of µ, and so the corresponding multiplication operator Mb is bounded
on L2(µ). This operator is also self-adjoint, since b is real-valued, with σ(Mb)
equal to the support of µ. If f is a continuous real-valued function on the
support of µ, then f(Mb) reduces to multiplication by f(b(x)) = f(x), as in the
previous section. In this case, dµv = |v|2 dµ for each v ∈ L2(µ).

If b is a bounded measurable real-valued function on a σ-finite measure
space (X,µ), then the situation is a bit more complicated. The main point
is to transform integrals on X to integrals on the essential range of b. Each
continuous real-valued function f on the essential range of b leads to a bounded
measurable function f(b(x)) on X . If v ∈ L2(X), then |v|2 dµ is a finite measure
on X , and f(b(x)) is integrable with respect to this measure. This integral can
also be expressed as the integral of f times a positive Borel measure on the
essential range of b, and this measure is the same as µv.
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122 Measures, 2

Let A be a bounded self-adjoint linear operator on a real or complex Hilbert
space (V, 〈v, w〉) again, as in the previous section. If f is a continuous real-valued
function on σ(A) and v, w ∈ V , then we put

Lv,w(f) = 〈f(A)(v), w〉.(122.1)

Thus Lv,w is a real-linear mapping from C(σ(A)) into R or C, depending on
whether V is a real or complex Hilbert space, and

|Lv,w(f)| ≤ ‖f(A)‖op ‖v‖ ‖w‖ = max{|f(λ)| : λ ∈ σ(A)} ‖v‖ ‖w‖.(122.2)

The Riesz representation theorem implies that there is a unique real or complex
Borel measure µv,w on σ(A), as appropriate, such that

Lv,w(f) =

∫

σ(A)

f(λ) dµv,w(λ)(122.3)

for every f ∈ C(σ(A)). Clearly Lv,v = Lv, and so µv,v = µv. Using polarization
identities, Lv,w can be expressed as a linear combination of Lz’s for suitable
z ∈ V . Similarly, µv,w can be expressed as a linear combination of µz’s.

123 Complex-valued functions

Let (V, 〈v, w〉) be a complex Hilbert space, and let A be a bounded self-adjoint
linear operator on V . If f is a continuous complex-valued function on σ(A),
then f can be expressed as f = f1 + i f2, where f1, f2 are continuous real-
valued functions on σ(A). In this case, we can define f(A) by

f(A) = f1(A) + i f2(A).(123.1)

This is a bounded linear operator on V , whose adjoint is given by

f(A)∗ = f1(A) − i f2(A) = f(A).(123.2)

Thus
f(A)∗ f(A) = f1(A)2 + f2(A)2 = |f |2(A).(123.3)

Because |f |2 is a continuous real-valued function on σ(A), we have that

‖|f |2(A)‖op = max{|f(λ)|2 : λ ∈ σ(A)}.(123.4)

This implies that

‖f(A)‖op = max{|f(λ)| : λ ∈ σ(A)},(123.5)

since ‖f(A)‖2
op = ‖f(A)∗ f(A)‖op, by the C∗ identity. As in the previous section,

Lv,w(f) = 〈f(A)(v), w〉 defines a linear functional on the space of continuous
complex-valued functions on σ(A), and satisfies

|Lv,w(f)| ≤ max{|f(λ)| : λ ∈ σ(A)} ‖v‖ ‖w‖.(123.6)
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Similarly,

‖f(A)(v)‖2 = 〈f(A)(v), f(A)(v)〉 = 〈f(A)∗(f(A)(v)), v〉(123.7)

= Lv(|f |2) =

∫

σ(A)

|f(λ)|2 dµv(λ),

as in Section 121.

124 Pointwise convergence

Let A be a bounded self-adjoint linear operator on a real or complex Hilbert
space (V, 〈v, w〉), and suppose that {fj}∞j=1 is a uniformly bounded sequence
of continuous real-valued functions on σ(A) that converges pointwise to a real-
valued function f on σ(A). Thus f is bounded and Borel measurable, and the
dominated convergence theorem implies that

lim
j→∞

〈fj(A)(v), w〉 =

∫

σ(A)

f(λ) dµv,w(λ)(124.1)

for every v, w ∈ V . Hence {fj(A)}∞j=1 converges in the weak operator topology
to a bounded self-adjoint linear operator on V that might be denoted f(A).
Equivalently, f(A) may be defined by

〈f(A)(v), w〉 =

∫

σ(A)

f(λ) dµv,w .(124.2)

Using (121.7), one can show that {fj(A)}∞j=1 converges to f(A) in the strong
operator topology. More precisely, the dominated convergence theorem implies
that

lim
j→∞

∫

σ(A)

(fj(λ) − f(λ))2 dµv(λ) = 0(124.3)

for each v ∈ V . Hence

‖fj(A)(v) − fk(A)(v)‖2 =

∫

σ(A)

(fj(λ) − fk(λ))2 dµv(λ) → 0(124.4)

as j, k → ∞, so that {fj(A)(v)}∞j=1 is a Cauchy sequence in V which therefore
converges. Of course, the limit is the same as the weak limit f(A)(v).

125 Borel functions

Let A be a bounded self-adjoint linear operator on a real or complex Hilbert
space (V, 〈v, w〉), and let f be a bounded real-valued Borel measurable function
on σ(A). There is a unique bounded self-adjoint linear operator f(A) on V such
that

〈f(A)(v), w〉 =

∫

σ(A)

f(λ) dµv,w(λ)(125.1)
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for every v, w ∈ V . Observe that Lv,w is linear in v and either linear or
conjugate-linear in w, depending on whether V is real or complex. Hence µv,w

is also linear in v and linear or conjugate-linear in w, as appropriate. Similarly,
µw,v is equal to µv,w in the real case and to µv,w in the complex case, by the
corresponding properties of Lv,w. Moreover,

∣∣∣∣
∫

σ(A)

f(λ) dµv,w(λ)

∣∣∣∣ ≤ sup{|f(λ)| : λ ∈ σ(A)} ‖v‖ ‖w‖(125.2)

for every v, w ∈ V , so that

‖f(A)‖op ≤ sup{|f(λ)| : λ ∈ σ(A)}.(125.3)

If f(λ) ≥ 0 for every λ ∈ σ(A), then f(A) ≥ 0.

126 Approximations

Let A be a bounded self-adjoint linear operator on a real or complex Hilbert
space (V, 〈v, w〉), and let f be a bounded real-valued Borel measurable function
on σ(A). Also let v1, w1, . . . , vn, wn ∈ V be given, so that

µ =

n∑

l=1

|µvl,wl
|(126.1)

is a positive Borel measure on σ(A). For each ǫ > 0, there is a continuous
real-valued function g on σ(A) such that

µ({λ ∈ σ(A) : f(λ) 6= g(λ)}) < ǫ(126.2)

and
max{|g(λ)| : λ ∈ σ(A)} ≤ sup{|f(λ)| : λ ∈ σ(A)}.(126.3)

This is a well known theorem in measure theory, which implies that

n∑

l=1

∣∣∣∣
∫

σ(A)

f(λ) dµvl,wl
(λ) −

∫

σ(A)

g(λ) dµvl,wl
(λ)

∣∣∣∣(126.4)

≤
n∑

l=1

∫

σ(A)

|f(λ) − g(λ)| d|µvl,wl
|(λ)

≤ 2ǫ sup{|f(λ)| : λ ∈ σ(A)}.

In particular, f(A) can be approximated by continuous functions of A in the
weak operator topology, since

n∑

l=1

|〈f(A)(vl), wl〉 − 〈g(A)(vl), wl〉| ≤ 2ǫ sup{|f(λ)| : λ ∈ σ(A)}.(126.5)
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This can also be used to estimate L2 norms of f − g. More precisely,

n∑

l=1

∫

σ(A)

(f(λ) − g(λ))2 d|µvl,wl
|(λ) ≤ 4ǫ sup{|f(λ)|2 : λ ∈ σ(A)}.(126.6)

This is especially helpful when vl = wl, in which case µvl,wl
= µvl

is already
positive.

As an application of this, let us check that
∣∣∣∣
∫

σ(A)

f(λ) dµv,w(λ)

∣∣∣∣ ≤
( ∫

σ(A)

f(λ)2 dµv

)1/2

‖w‖(126.7)

for every v, w ∈ V . If g is a continuous real-valued function on σ(A), then
∣∣∣∣
∫

σ(A)

g(λ) dµv,w(λ)

∣∣∣∣ = |〈g(A)(v), w〉| ≤ ‖g(A)(v)‖ ‖w‖(126.8)

=
( ∫

σ(A)

g(λ)2 dµv

)1/2

‖w‖.

To get (126.7) from this, one can approximate f by continuous functions g as
before, with n = 2, v1 = w1 = v2 = v, and w2 = w. Hence

|〈f(A)(v), w〉| ≤
(∫

σ(A)

f(λ)2 dµv

)1/2

‖w‖,(126.9)

and therefore

‖f(A)(v)‖ ≤
( ∫

σ(A)

f(λ)2 dµv

)1/2

.(126.10)

Let us apply this to f − g, where g ∈ C(σ(A)) approximates f as before,
with vl = wl for l = 1, . . . , n. Using (126.6), we get that

n∑

l=1

‖f(A)(vl) − g(A)(vl)‖2 ≤
n∑

l=1

∫

σ(A)

(f(λ) − g(λ))2 dµvl
(λ)(126.11)

≤ 4ǫ sup{|f(λ)|2 : λ ∈ σ(A)}.

This shows that f(A) can be approximated in the strong operator topology by
continuous functions of A. Using this approximation with n = 1 and v1 = v, we
get that

‖f(A)(v)‖ =
( ∫

σ(A)

f(λ)2 dµv(λ)
)1/2

(126.12)

for each v ∈ V , by reducing to the case of continuous functions, for which the
identity was already established. Similarly, if f1 and f2 are bounded real-valued
Borel measurable functions on σ(A), then one can check that

(f1 f2)(A) = f1(A) f2(A),(126.13)

by reducing to the case of continuous functions.
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127 Densities

Let (V, 〈v, w〉) be a real or complex Hilbert space, and let A be a bounded self-
adjoint linear operator on V . Also let f be a continuous real or complex-valued
function on σ(A), depending on whether V is real or complex. Thus

|〈f(A)(v), w〉| ≤ ‖f(A)(v)‖ ‖w‖,(127.1)

by the Cauchy–Schwarz inequality, and so

|Lv,w(f)| ≤
(∫

σ(A)

|f(λ)|2 dµv

)1/2

‖w‖.(127.2)

It follows that Lv,w determines a bounded linear functional on L2(µv). The
Riesz representation theorem implies that there is a unique hw ∈ L2(µv) such
that

Lv,w(f) =

∫

σ(A)

f(λ)hw(λ) dµv(λ)(127.3)

in the real case, and

Lv,w(f) =

∫

σ(A)

f(λ)hw(λ) dµv(λ)(127.4)

in the complex case. Hence dµv,w = hw dµv in the real case, and dµv,w = hw dµv

in the complex case. Of course, hw also depends on v, even if that has been
suppressed from the notation.

128 Eigenvalues

Let V be a real or complex vector space, and let A be a linear transformation
on V . A real or complex number λ, as appropriate, is an eigenvalue of A if
there is a v ∈ V such that v 6= 0 and

A(v) = λ v,(128.1)

in which case v is an eigenvector of A. Thus λ is an eigenvalue of A if and only
if A− λ I has nontrivial kernel. In particular, A − λ I is not invertible when λ
is an eigenvalue of A, and the converse holds when V has finite dimension. If
v ∈ V is an eigenvector of A with eigenvalue λ and p is a polynomial with real
or complex coefficients, as appropriate, then

p(A)(v) = p(λ) v,(128.2)

so that v is an eigenvector of p(A) with eigenvalue p(λ).
Suppose now that V is a Hilbert space, and that A is a bounded self-adjoint

linear operator on V . Suppose also that λ is an eigenvalue of A, and that v ∈ V
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is an eigenvector of A associated to λ. Note that λ ∈ R even when V is complex,
because

λ 〈v, v〉 = 〈A(v), v〉 = 〈v,A(v)〉 = λ 〈v, v〉(128.3)

implies that λ = λ when v 6= 0. Of course, λ ∈ σ(A), since A − λ I is not
invertible, as in the previous paragraph.

Let f be a continuous real-valued function on σ(A). It is easy to see that

f(A)(v) = f(λ) v,(128.4)

by approximating f by polynomials and applying the earlier statement in that
case. Hence v is an eigenvector of f(A) with eigenvalue f(λ). In particular,
f(λ) ∈ σ(f(A)), as in Section 109.

It follows that
Lv(f) = f(λ) ‖v‖2,(128.5)

which means that µv = ‖v‖2 δλ, where δλ is the Dirac measure at λ. Similarly,

Lv,w(f) = f(λ) 〈v, w〉(128.6)

for each w ∈ V , and so µv,w = 〈v, w〉 δλ. If f is a bounded Borel measurable
function on σ(A), then we get that

〈f(A)(v), w〉 =

∫

σ(A)

f dµv,w = f(λ) 〈v, w〉(128.7)

for every w ∈ V . Thus (128.4) holds in this case as well.

129 Another limit

Let (V, 〈v, w〉) be a real or complex Hilbert space, and let A be a bounded
self-adjoint linear operator on V . Suppose that

0 ≤ A ≤ I,(129.1)

which implies that ‖A‖op ≤ 1, as in Section 34. Of course, An is also a bounded
self-adjoint linear operator on V for each positive integer n, with

‖An‖op ≤ ‖A‖n
op ≤ 1.(129.2)

If ‖A‖op < 1, then {An}∞n=1 converges to 0 in the operator norm.
Let us check that

0 ≤ An+1 ≤ An ≤ I(129.3)

for each n. If n = 2k is an even integer, then An ≥ 0, because

〈A2k(v), v〉 = 〈Ak(v), Ak(v)〉 = ‖Ak(v)‖2 ≥ 0.(129.4)

If n = 2l + 1 is odd, then

〈A2l+1(v), v〉 = 〈A(Al(v)), Al(v)〉 ≥ 0,(129.5)
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because A ≥ 0. Moreover,

〈A2l+1(v), v〉 = 〈Al+1(v), Al(v)〉 ≤ ‖Al+1(v)‖ ‖Al(v)‖,(129.6)

by the Cauchy–Schwarz inequality, and so

〈A2l+1(v), v〉 ≤ ‖A‖op ‖Al(v)‖2 ≤ ‖Al(v)‖2 = 〈A2l(v), v〉,(129.7)

which shows that A2l+1 ≤ A2 l. Similarly,

〈A2l+2(v), v〉 = ‖A(Al(v))‖2 ≤ ‖A‖op 〈A(Al(v)), Al(v)〉,(129.8)

as in Section 34, and thus

〈A2l+2(v), v〉 ≤ 〈Al+1(v), Al(v)〉 = 〈A2l+1(v), v〉,(129.9)

which is the same as A2l+2 ≤ A2l+1. This shows that An+1 ≤ An for each n, and
An ≤ I because ‖An‖op ≤ 1. Alternatively, (129.1) implies that σ(A) ⊆ [0, 1],
and these properties of An can be obtained from the fact that

0 ≤ λn+1 ≤ λn ≤ 1(129.10)

when 0 ≤ λ ≤ 1.
As in Section 34, it follows that {An}∞n=1 converges in the strong operator

topology to a bounded self-adjoint linear operator P on V such that

0 ≤ P ≤ I.(129.11)

We also have that
P 2 = P,(129.12)

because {A2n}∞n=1 is a subsequence of {An}∞n=1 and hence converges in the
strong operator topology to the same limit. Thus P is the orthogonal projection
of V onto a closed linear subspace W . Similarly, {An+1}∞n=1 converges to P in
the strong operator topology, and so

AP = P.(129.13)

This implies that W is contained in the kernel of A−I. If v ∈ V is an eigenvector
of A with eigenvalue 1, then

An(v) = v(129.14)

for each n, and hence
P (v) = v.(129.15)

This shows that W is equal to the kernel of A− I.
Note that fn(λ) = λn converges pointwise on [0, 1] to the function defined

by f(λ) = 0 when 0 ≤ λ < 1 and f(1) = 1. As in Section 124, the dominated
convergence theorem implies that {An}∞n=1 converges in the strong operator
topology to f(A), where the latter is the same as in Section 125. Thus f(A) = P .
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130 Kernels and projections

Let (V, 〈v, w〉) be a real or complex Hilbert space, and let A be a ∗-algebra of
bounded linear operators on V that contains the identity operator I. If T ∈ A,
then T ∗ ∈ A, and hence T ∗ T ∈ A. The kernel of T is obviously contained in
the kernel of T ∗ T , and in fact the two are the same, because

〈(T ∗ T )(v), v〉 = 〈T (v), T (v)〉 = ‖T (v)‖2.(130.1)

Suppose also that ‖T ‖op ≤ 1, which can always be arranged by multiplying T
by a positive real number, without affecting the kernel of T .

Consider A = I − T ∗ T ∈ A. This is a bounded self-adjoint linear operator
on V which satisfies 0 ≤ A ≤ I. As in the previous section, {An}∞n=1 converges
in the strong operator topology to the orthogonal projection P of V onto the
kernel of A− I, which is the same as the kernel of T . If A is closed with respect
to the strong operator topology, then P ∈ A.

Similarly, if T1, . . . , Tn ∈ A, then the intersection of their kernels is the same
as the kernel of T ∗

1 T1 + · · ·+T ∗
n Tn. If P is the orthogonal projection of V onto

the intersection of the kernels of T1, . . . , Tn and A is closed with respect to the
strong operator topology, then P ∈ A. Conversely, if P ∈ A is a projection,
then P (V ) is equal to the kernel of I − P ∈ A.

Let T be any element of A, and let W be the closure of T (V ) in V . This is
a closed linear subspace of V , whose orthogonal complement is the same as the
kernel of T ∗. If Q is the orthogonal projection of V onto W⊥ and A is closed
with respect to the strong operator topology, then Q ∈ A. In this case, I −Q
is the orthogonal projection of V onto W , and I −Q ∈ A.

131 Projections and subspaces

Let (V, 〈v, w〉) be a real or complex Hilbert space, and let P be an orthogonal
projection on V . Thus

〈P (v), v〉 = 〈P (v), P (v)〉 = ‖P (v)‖2(131.1)

for each v ∈ V . If Q is another orthogonal projection on V , then it follows that
P ≤ Q as self-adjoint linear operators on V if and only if

‖P (v)‖ ≤ ‖Q(v)‖(131.2)

for every v ∈ V .
Now let W , Z be closed linear subspaces of V , and let PW , PZ be the

orthogonal projections of V onto W , Z, respectively. If W ⊆ Z, then it is easy
to see that PW ≤ PZ as self-adjoint linear operators on V . More precisely, if
Y = W⊥ ∩ Z, and PY is the orthogonal projection of V onto Y , then

PW + PY = PZ .(131.3)
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In particular,
‖PZ − PW ‖op = ‖PY ‖op(131.4)

is either 0 or 1. As another approach, one can check that PW = PW PZ when
W ⊆ Z, because Z⊥ ⊆W⊥, and hence

‖PW (v)‖ = ‖PW (PZ(v))‖ ≤ ‖PZ(v)‖(131.5)

for each v ∈ V .
Conversely, if PW ≤ PZ , then W ⊆ Z. To see this, it suffices to check

that Z⊥ ⊆ W⊥. Of course, W⊥, Z⊥ are the kernels of PW , PZ , respectively.
As before, the hypothesis that PW ≤ PZ implies that ‖PW (v)‖ ≤ ‖PZ(v)‖ for
each v ∈ V , and hence the kernel of PZ is contained in the kernel of PW , as
desired. Alternatively, if w ∈ W , then PW (w) = w, and so ‖PW (w)‖ = ‖w‖.
This implies that ‖PZ(w)‖ = ‖w‖, since ‖PW (w)‖ ≤ ‖PZ(w)‖ by hypothesis
and ‖PZ(w)‖ ≤ ‖w‖ for every w ∈ V . Hence w ∈ Z, because ‖PZ(w)‖ < ‖w‖
otherwise.

Suppose that W ⊆ Z, and

〈PW (v), v〉 = 〈PZ(v), v〉(131.6)

for some v ∈ V , which is the same as

‖PW (v)‖ = ‖PZ(v)‖.(131.7)

If Y = Z ∩W⊥, as before, then PW (v) and PY (v) are orthogonal to each other,
and hence

‖PZ(v)‖2 = ‖PW (v)‖2 + ‖PY (v)‖2.(131.8)

It follows that PY (v) = 0, and so PW (v) = PZ(v).

132 Sequences of subspaces

Let (V, 〈v, w〉) be a real or complex Hilbert space, and let W1,W2,W3, . . . be a
sequence of closed linear subspaces of V such that

Wj ⊆Wj+1(132.1)

for each j. Thus
⋃∞

j=1Wj is a linear subspace of V , and

W =

∞⋃

j=1

Wj ,(132.2)

is a closed linear subspace of V . Also let Pj be the orthogonal projection of
V onto Wj , and let P be the orthogonal projection of V onto W . As in the
previous section,

Pj ≤ Pj+1 ≤ P(132.3)
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for each j.
Let us check that

lim
j→∞

Pj(v) = P (v)(132.4)

for each v ∈ V , so that {Pj}∞j=1 converges to P in the strong operator topology.
If v ∈ Wl for some l, then Pj(v) = P (v) = v when j ≥ l. This implies
that (132.4) holds for every v ∈ ⋃∞

l=1Wl, and hence for every v ∈ W , since
the Pj ’s have uniformly bounded operator norm. Similarly, if v ∈ W⊥, then
Pj(v) = P (v) = 0 for each j. Thus (132.4) holds for every v ∈ V , because of
linearity.

Suppose now that Y1, Y2, . . . is a sequence of closed linear subspaces of V
such that

Yj+1 ⊆ Yj(132.5)

for each j, and consider

Y =

∞⋂

j=1

Yj .(132.6)

If Qj, Q are the orthogonal projections of V onto Yj , Y , respectively, then

Q ≤ Qj+1 ≤ Qj(132.7)

for each j. Again we have that {Qj}∞j=1 converges to Q in the strong operator

topology. This can be derived from the previous case applied to Wj = Y ⊥
j , so

that W = Y ⊥, Pj = I −Qj, and P = I −Q. Alternatively, one can argue as in
Section 34 that {Qj}∞j=1 converges in the strong operator topology to a bounded

self-adjoint linear operator R on V . Because Q2
j = Qj for each j, R2 = R, and

so R is the orthogonal projection of V onto a closed linear subspace Z of V . We
also have that

Q ≤ R ≤ Qj(132.8)

for each j, by (132.7), which implies that Y ⊆ Z ⊆ Yj for each j, as in the
previous section. Hence Z ⊆ ⋂∞

j=1 Yj = Y , and therefore Y = Z, as desired.
By contrast, if {Pj}∞j=1 converges to P in the operator norm, then Pj = P

for all but finitely many j, because ‖Pj − P‖op = 0 or 1 for each j, as in the
previous section. Similarly, if {Qj}∞j=1 converges to Q in the operator norm,
then Qj = Q for all but finitely many j. Of course, it is important that these
are monotone sequences of projections for this argument.

133 Families of subspaces

Let (V, 〈v, w〉) be a real or complex Hilbert space, and let PW be the orthogonal
projection of V onto a closed linear subspace W of V , as usual. Suppose that E
is a nonempty collection of closed linear subspaces of V with the property that
if W1, . . . ,Wn are finitely many elements of E , then there is a W ∈ E such that

n⋃

l=1

Wl ⊆W.(133.1)
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For instance, it may simply be that the closure of the linear span of W1, . . . ,Wn

is an element of E . This condition implies that
⋃

W∈E W is a linear subspace of
V , whose closure will be denoted by Z.

Let us check that PZ can be approximated in the strong operator topology
by PW , W ∈ E . Thus if v1, . . . , vn are finitely many elements of V , then we
would like to show that there is a W ∈ E such that PZ(vl) is approximated
by PW (vl), 1 ≤ l ≤ n. We may as well suppose that vl ∈ Z for each l, since
PW (v) = PZ(v) = 0 for every W ∈ E when v ∈ Z⊥. Hence PZ(vl) = vl for each
l, and we would like to choose W ∈ E such that vl is approximated by PW (vl)
for each l. Equivalently, we would like to choose W ∈ E such that each vl is
approximated by an element of W . This is easy to do, by the definition of Z,
and the hypothesis on E .

Suppose now that E1 is a nonempty collection of closed linear subspaces of
V such that if Y1, . . . , Yn are finitely many elements of E1, then

n⋂

l=1

Yl ∈ E1.(133.2)

It would also be sufficient to ask that
⋂n

l=1 Yl contain a subspace of V that is
an element of E1. If

X =
⋂

Y ∈E1

Y,(133.3)

then PX can be approximated in the strong operator topology by PY , Y ∈ E1.
This follows from the previous case applied to E = {Y ⊥ : Y ∈ E1}, because
PY ⊥ = I − PY for each closed linear subspace Y of V .

Let A be a ∗-algebra of bounded linear operators on V that includes the
identity operator, and let E1 be a nonempty collection of kernels of elements of
A. As in Section 130, the intersection of the kernels of finitely many elements
of A is also the kernel of an element of A. Thus we may as well ask that
the intersection of finitely many elements of E1 also be an element of E1. If A
is closed with respect to the strong operator topology, then PY ∈ A for each
Y ∈ E1, as in Section 130 again. It follows from the remarks in the previous
paragraph that the orthogonal projection of V onto the intersection (133.3) is
also contained in A under these conditions.

134 The positive square root

Let (V, 〈v, w〉) be a real or complex Hilbert space, and let A be a bounded
nonnegative self-adjoint linear operator on V . Thus σ(A) ⊆ [0,∞), and

f(x) =
√
x(134.1)

is a continuous real-valued function on σ(A). If B = f(A) is as in Section 109,
then B is a bounded nonnegative self-adjoint linear operator on V , and

B2 = A.(134.2)
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Let us check that B is uniquely determined by these properties.
Suppose that C is a bounded linear operator on V that commutes with A,

so that
AC = C A.(134.3)

It is easy to see that C also commutes with B,

BC = C B,(134.4)

since B can be approximated by polynomials of A. In particular, C commutes
with A when C2 = A, and hence with B too.

Suppose now that C is nonnegative, self-adjoint, and satisfies C2 = A. For
each v ∈ V ,

〈A(v), v〉 = 〈B2(v), v〉 = 〈B(v), B(v)〉 = ‖B(v)‖2,(134.5)

and similarly
〈A(v), v〉 = ‖C(v)‖2.(134.6)

Hence A(v) = 0 implies that B(v) = C(v) = 0. Conversely, A(v) = 0 when
B(v) = 0 or C(v) = 0, because A = B2 = C2.

This shows that A, B, and C have the same kernel, which will be denoted
W . Observe that

A(W⊥), B(W⊥), C(W⊥) ⊆W⊥,(134.7)

by self-adjointness. If v ∈ W⊥ and v 6= 0, then

A(v), B(v), C(v) 6= 0,(134.8)

since v 6∈ W . Because of positivity,

〈B(v), v〉, 〈C(v), v〉 > 0,(134.9)

as in Section 34, and hence

〈B(v), v〉 + 〈C(v), v〉 > 0.(134.10)

It follows that B(v) +C(v) 6= 0, which means that the kernel of B +C is equal
to W as well.

Using the fact that B and C commute, we get that

(B + C)(B − C) = B2 − C2 = 0.(134.11)

This implies that B−C = 0 on W⊥ and hence on V , because B−C maps W⊥

into itself and B + C is injective on W⊥, as in the previous paragraph. Thus
B = C, as desired.

As an application, suppose that A1 and A2 are bounded self-adjoint linear
operators on V that commute with each other. Thus their product A1A2 is also
self-adjoint. If A1 ≥ 0, then there is a a bounded nonnegative self-adjoint linear
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operator B1 on V such that B2
1 = A1, as before. Moreover, B1 commutes with

A2, and so

〈(A1A2)(v), v〉 = 〈(B1A2 B1)(v), v〉 = 〈A2(B1(v)), B1(v)〉(134.12)

for every v ∈ V . If A2 ≥ 0, then it follows that A1A2 ≥ 0, so that the
product of commuting bounded nonnegative self-adjoint linear operators is also
nonnegative.

Alternatively, if A2 ≥ 0, then there is a bounded nonnegative self-adjoint
linear operator B2 on V such that B2

2 = A2. Because B1 commutes with A2,
B1 commutes with B2 too. Hence B1B2 is self-adjoint and (B1B2)

2 = A1A2,
which implies that A1A2 ≥ 0.

135 Positive self-adjoint part

Let (V, 〈v, w〉) be a real or complex Hilbert space, and let T be a bounded linear
operator on V . As in Section 37, T can be expressed as A+B, where

A =
T + T ∗

2
(135.1)

is self-adjoint, and

B =
T − T ∗

2
(135.2)

is anti-self-adjoint. In the complex case, B = i C, where C is self-adjoint. It
follows that

〈T (v), v〉 = 〈A(v), v〉(135.3)

for every v ∈ V in the real case, and

Re〈T (v), v〉 = 〈A(v), v〉(135.4)

in the complex case. If A is uniformly strictly positive, as in Section 47, then
there is a δ > 0 such that

δ ‖v‖2 ≤ |〈T (v), v〉| ≤ ‖T (v)‖ ‖v‖,(135.5)

and hence ‖T (v)‖ ≥ δ ‖v‖ for every v ∈ V . Of course, T ∗ = A−B has the same
property, which implies that the kernel of T ∗ is trivial, and that T (V ) is dense
in V . Thus T is invertible on V , as in Section 46.

Suppose that T commutes with T ∗, which may be described by saying that
T is normal, at least in the complex case. Using

‖T (v)‖2 = 〈T (v), T (v)〉 = 〈(T ∗ T )(v), v〉(135.6)

and
‖T ∗(v)‖2 = 〈(T T ∗)(v), v〉,(135.7)
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we get that
‖T (v)‖ = ‖T ∗(v)‖(135.8)

for every v ∈ V . Conversely, (135.8) implies that

〈(T ∗ T )(v), v〉 = 〈(T T ∗)(v), v〉(135.9)

for every v ∈ V , and hence that T ∗ T = T T ∗, by polarization. Note that T ∗ T ,
T T ∗ are self-adjoint.

Equivalently, T commutes with T ∗ when A, B commute. This implies that

T ∗ T = (A−B)(A +B) = A2 −B2,(135.10)

and therefore

‖T (v)‖2 = 〈(A2 −B2)(v), v〉(135.11)

= 〈A(v), A(v)〉 + 〈B(v), B(v)〉
= ‖A(v)‖2 + ‖B(v)‖2,

since B is anti-self-adjoint. If A or B is invertible, then

‖T (v)‖ ≥ ‖T1(v)‖ ≥ δ ‖v‖(135.12)

for some δ > 0 and each v ∈ V , and T ∗ satisfies the same condition by (135.8).
It follows that T is invertible, as in Section 46.

By contrast, if T does not commute with T ∗, then T may not be invertible
even though A and B are invertible. There are counterexamples already for
V = R2 or C2 with the standard inner product. One can take A to correspond
to a 2×2 matrix

(
a1

0
0
a2

)
with a1, a2 ∈ R and a1, a2 6= 0, and B to correspond to

a matrix
(

0
−b

b
0

)
with b ∈ R and b 6= 0. Thus T corresponds to

(
a1

−b
b
a2

)
, whose

determinant is equal to
a1 a2 + b2.(135.13)

This is automatically positive when a1, a2 have the same sign, but may vanish
when a1, a2 have opposite sign.

136 Polar decompositions

Let (V, 〈v, w〉) be a real or complex Hilbert space, and let T be a bounded
linear operator on V . Thus A = T ∗ T is self-adjoint and nonnegative, and has
a nonnegative self-adjoint square root B. Observe that

‖B(v)‖2 = 〈B(v), B(v)〉 = 〈B2(v), v〉 = 〈(T ∗ T )(v), v〉,(136.1)

and so
‖B(v)‖ = ‖T (v)‖(136.2)

for each v ∈ V . In particular, the kernels of B and T are the same.
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It follows that
R(B(v)) = T (v)(136.3)

is a well-defined linear mapping from B(V ) into V , and satisfies

‖R(w)‖ = ‖w‖(136.4)

for each w ∈ B(V ). As in Section 9, R has a unique extension to an isometric
linear mapping of the closure of B(V ) into V . Put R(w) = 0 when w ∈ B(V )⊥,
so that R is a bounded linear operator on V . Note that B(V )⊥ is equal to the
kernel of B, since B is self-adjoint, which is the same as the kernel of T , as in
the previous paragraph. Hence (136.3) holds for every v ∈ V .

If t > 0, then At = T ∗ T + t I is self-adjoint, nonnegative, and invertible,
and its nonnegative self-adjoint square root Bt is invertible as well. Consider

Rt = T B−1
t .(136.5)

Observe that
R∗

t Rt = B−1
t T ∗ T B−1

t = T ∗ T A−1
t ,(136.6)

because Bt and hence B−1
t commutes with T ∗ T . Thus

I −R∗
t Rt = t A−1

t ≥ 0,(136.7)

which implies that R∗
t Rt ≤ I, and therefore ‖Rt‖op ≤ 1.

Let us check that Rt converges to R as t→ 0 in the strong operator topology,
which is to say that

lim
t→0

Rt(w) = R(w)(136.8)

for every w ∈ V . If w is in the kernel of T , then w is in the kernel of T ∗ T
too, At(w) = t w, and Bt(w) = t1/2 w, as in Section 128. This implies that
B−1

t (w) = t−1/2 w, and hence Rt(w) = 0, while R(w) = 0, because the kernel
of T is the same as B(V )⊥. Thus (136.8) holds trivially when w ∈ B(V )⊥, and
it remains to verify (136.8) when w ∈ B(V ).

Because ‖Rt‖op ≤ 1 for each t, it suffices to show that (136.8) holds when
w ∈ B(V ). If w = B(v) for some v ∈ V , then (136.8) reduces to

lim
t→0

Rt(B(v)) = R(B(v)) = T (v),(136.9)

or equivalently
lim
t→0

T (B−1
t (B(v)) − v) = 0.(136.10)

This is the same as
lim
t→0

B(B−1
t (B(v)) − v) = 0,(136.11)

because of (136.2).
Of course, B commutes with B−1

t , since they are both functions of T ∗ T ,
and so

BB−1
t B = B−1

t B2 = B−1
t T ∗ T(136.12)

= B−1
t (T ∗ T + t I) − t B−1

t = Bt − t B−1
t .
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It is easy to see that Bt → B as t→ 0 in the operator norm, by properties of the
functional calculus. The C∗ identity implies that ‖B−1

t ‖2
op = ‖B−2

t ‖op, which is

the same as ‖A−1
t ‖op, and hence less than or equal to t−1 by the definition of

At. Thus ‖B−1
t ‖op ≤ t−1/2, which implies that t ‖B−1

t ‖op → 0 as t → 0, and
(136.9) follows.

More precisely, this argument also shows that RtB → RB = T as t → 0
in the operator norm. If T is invertible, then A = T ∗ T is invertible, B = A1/2

is invertible, and R = T B−1. In this case, one can show that B−1
t → B−1

t as
t → 0 in the operator norm, using basic properties of the functional calculus
again. This implies that Rt → R as t→ 0 in the operator norm as well.
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