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Abstract 

We present an approach for enabling in-home service robots 
to follow natural language commands from non-expert 
users, with a particular focus on spatial language 
understanding.  Specifically, we propose an extension to the 
semantic field model of spatial prepositions that enables the 
representation of dynamic spatial relations involving paths.  
The relevance of the proposed methodology to interactive 
robot learning is discussed, and the paper concludes with a 
description of how we plan to integrate and evaluate our 
proposed model with end-users. 

 Introduction   

In order for autonomous service robots to become 

ubiquitous in household environments, they will need to be 

capable of interacting with and learning from non-expert 

users in a manner that is both natural and practical for the 

users.  In particular, robots will need to be capable of 

understanding natural language instructions in order to 

learn new tasks and receive guidance and feedback on task 

execution from non-technical users.  This necessity is 

especially evident in assistive contexts, where robots are 

interacting with people with disabilities, age-related (e.g., 

reduced mobility, limited eyesight) or otherwise (e.g., 

individuals post-stroke), as the users may not be able to 

teach the robot new tasks and/or provide feedback by 

demonstration. 

 We present an approach for enabling in-home service 

robots to follow natural language commands from non-

expert users, with a particular focus on spatial language 

understanding.   
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Spatial Language in  

Human-Robot Communication 

Service robots designed to interact with non-expert users in 

household environments would benefit from being 

endowed with a certain set of primitive actions and/or 

tasks.  Furthermore, enabling these robots with a 

knowledge base of commonly used words that refer to the 

specific tasks or actions they can perform, would greatly 

facilitate spoken language communication and 

understanding with the user. For example, consider the 

following: 

 

(1) Go to the kitchen 

 

 If the user says (1), the robot should understand, in 

principle, what that means.  That is, it should understand 

which task among those within its task/action repertoire the 

user is referring to.  In this example, the robot may not 

know where the kitchen is located in the user's specific 

home environment, but it should be able to understand that 

(1) expresses a command to physically move to a desired 

goal location that fits the description of the noun phrase 

“the kitchen”. 

 Spatial language plays an important role in instruction-

based natural language communication. In (1), the spatial 

preposition “to” was used in the instruction of the task.  

The following sentence contrasts minimally in the 

preposition employed, using “away from” (compound 

preposition) instead of “to”: 

 

(2) Go away from the kitchen 



 Yet, the meaning of the command specified by (2), or 

rather the implied goal task/action sequence, is completely 

different from (1), even though the verb and place noun are 

the same. The same holds for the spatial prepositions 

“around”, “through”, “behind”, etc.  Spatial relations 

expressed by language are often expressed by prepositions 

(Landau and Jackendoff, 1993).  Therefore, the ability for 

in-home service robots to understand and differentiate 

between spatial prepositions in spoken language is crucial 

for the interaction to be successful.  

 Spatial language understanding is especially relevant for 

interactive robot task learning and task modification.  For 

example, the human might teach the robot the complex 

task “Clean up the room”, by using only natural language 

and specifying the subgoals of that task individually, each 

represented by its own spatial language instruction (e.g., 

“Put the clothes in the laundry basket”, “Stack the books 

on top of the desk in the right-hand corner”, “Put all toys 

underneath the bed”, etc.).  In addition, user modification 

of known robot tasks can also readily be accomplished 

with the use of spatial language.  For example, the user 

might modify the task defined by (1) (i.e., robot movement 

to “the kitchen”), by providing spatial constraints, or rules, 

for the robot to obey during task execution, such as “Don't 

go through the hallway,” or “Move along the wall.”  These 

user-defined constraints do not change the meaning of the 

underlying task, but rather allow the user to interactively 

modify the manner in which the robot executes the task for 

the specific instance.  Finally, spatial language can be used 

to provide teacher feedback during task execution, to 

further correct or guide robot behavior.  Within the context 

of the same example, as the robot is moving along the wall 

en route to the kitchen, the user may provide additional 

feedback by saying “Move a little further away from the 

wall,” or perhaps “Move forward close to the wall but stay 

on the center rug”.  These examples illustrate the 

importance of spatial language in the instruction and 

teaching of in-home service robots by non-expert users. 

Our methodology for spatial language understanding was 

developed to address these fundamental research issues. 

Related Work 

Previous work that has investigated the use of spatial 

prepositions, and spatial language in general, includes 

Skubic et al. (2004), who demonstrated a robot capable of 

understanding static spatial relations (e.g., “to the right”, 

“in front of”, etc.) in natural language instruction and 

producing such spatial language in information passing.  

Sandamirskaya et al. (2010) investigated the use of 

Dynamic Neural Fields theory in a static spatial language 

architecture for use in human-robot cooperation in object 

manipulation tasks on a tabletop workspace.  Both of these 

works implemented pre-defined notions of spatial 

relations, however researchers have also investigated 

learning these types of static spatial relations automatically 

from training data (e.g., Roy, 2002; Chao, Cakmak, and 

Thomaz, 2011).  Our work aims to extend upon this related 

work by encoding not only static spatial relations in robot 

language understanding, but also dynamic spatial relations 

involving paths, discussed in more detail in the next 

section. 

 In the context natural language robot instruction, 

however, the use of dynamic spatial relations has in fact 

been explored by recent work. Tellex et al. (2011) 

developed a probabilistic graphical model to infer 

task/actions for execution by a forklift robot from natural 

language commands.  Kollar et al. (2010) developed a 

Bayesian framework for interpreting route directions on a 

mobile robot, using learned models of dynamic spatial 

relations such as “past” and “through” from schematic 

training data.  In both of these works there was no explicit 

definition of the spatial relations used, static or otherwise, 

and instead they were learned from labeled training data.  

However, these approaches typically require the 

programmer to provide an extensive training data set of 

natural language input for each new application context, 

without taking advantage of the domain-independent 

nature of spatial prepositions.  Our proposed approach 

aims to develop novel, pre-defined templates for spatial 

relations, static and dynamic, that facilitate use and 

understanding across domains, and whose computational 

representations enable guided robot execution planning, 

discussed further in the next section.  

Approach and Methodology 

We propose a methodology for human-robot dialogue and 

natural language instruction understanding for household 

service robots. Specifically, we aim to extend the semantic 

field model of spatial prepositions, proposed by O’Keefe 

(2003), to include dynamic spatial relations and to develop 

a computational framework for human-robot interaction 

which integrates the proposed model.  The semantic field 

of a spatial preposition is analogous to a probability 

density function (pdf), parameterized by schematic figure 

and ground objects, that assigns weight values to points in 

the environment depending on how accurately they capture 

the meaning of the preposition (e.g., points closer to an 

object have higher weight for the preposition ‘near’).  

While appropriate for static relations, this method is not 

sufficient for dynamic spatial relations that involve paths.  

Paths are comprised of a set of points connected by 

direction vectors that define sequence ordering.  To 

account for paths in the spatial representation of 

prepositions, we propose to add a weighted vector field to 



each point in the traditional semantic field model. As an 

example, the preposition “along” denotes not only 

proximity, but also a path parallel to the border of a ground 

object.  Thus, in the proposed model, the semantic field for 

“along” would contain not only weights for each point in 

the environment to encapsulate proximity, but also 

weighted direction vectors at each point (the more parallel 

to the ground object the higher the weight).  The advantage 

of modeling spatial relations as pdfs, as opposed to using 

classification-based methods (e.g., Kollar et al. 2010), is 

that generating robot action plans for instruction following 

is as simple as sampling the pdf; there is no need to search 

the action space randomly for appropriate solutions, which 

may be prohibitive in time-complexity.  Furthermore, user 

teaching, feedback, and refinement of the robot task 

execution plan can easily be incorporated as an alteration 

of the pdf.  For example, the feedback statement “Move 

closer to the wall” could alter the pdf by attributing higher 

weight to points closer to the wall from the robot’s current 

location.  

 We plan to validate our methodology with a study with 

non-expert users engaging with the PR2 mobile robot 

platform (shown in Figure 1, above) in a lab-simulated 

household environment.  Participants will instruct the robot 

to perform a variety of tasks from the robot task repertoire 

involving spatial relations (e.g., robot movement, object 

placement tasks, object search, etc.).  The problem 

formulation is as follows: the robot must infer the most 

likely task type/command given the natural language input.  

Our subsequent work will focus on human teaching of new 

robot tasks using spatial language instructions and 

modification of known tasks through dialogue.  

Performance of the system will be evaluated according to 

both subjective (post-session surveys) and objective 

evaluation measures (quantifiable goal achieving metrics). 

Summary 

We have described the need for enabling in-home service 

robots with spatial language understanding to facilitate 

natural communication with non-expert users for 

interactive task teaching, task modification, and user 

feedback on robot task execution, and have presented a 

general approach we are developing toward addressing this 

research challenge.   
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Figure 1. The PR2 mobile robot platform 

 


