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Abstract: This paper proposed an artificial neural network (ANN)-based approach to
mitigate harmonic overvoltages during transformer energization. Uncontrolled
energization of large power transformers may result in magnetizing inrush current of
high amplitude and switching overvoltages. The most effective method for the
limitation of the switching overvoltages is controlled switching since the magnitudes of
the produced transients are strongly dependent on the closing instants of the switch. We
introduce a harmonic index that it’s minimum value is corresponding to the best case
switching time. Also, in this paper three learning algorithms, delta-bar-delta (DBD),
extended delta-bar-delta (EDBD) and directed random search (DRS) were used to train
ANNSs to estimate the optimum switching instants for real time applications. ANNs
training is performed based on equivalent circuit parameters of the network. Thus,
trained ANN is applicable to every studied system. To verify the effectiveness of the
proposed index and accuracy of the ANN-based approach, two case studies are
presented and demonstrated.

Keywords: Artificial neural networks, delta-bar-delta, directed random search
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1. Introduction

A major process of power system restoration following a blackout would be energization of
primary restorative transmission lines in most countries [1-4]. The energizing process begins
by starting black-start generators such as hydro generators or gas turbines, and then charging
some pre-defined transmission lines to supply cranking power for large generation plants [5,6].
Then the energization of unloaded transformers would be followed by switching action, and
that is an inevitable process of bottom-up restoration strategy. During transformer energization,
unexpected over-voltage may happen due to nonlinear interaction between the unloaded
transformer and the transmission system [1,2]. When a lightly loaded transformer is energized,
the initial magnetizing current is generally much larger than the steady-state magnetizing
current and often much larger than the rated current of the transformer [7-8]. Controlled
switching has been recommended as a reliable method to reduce switching overvoltage during
energization of capacitor banks, transformers, and transmission lines [9]. This technique is the
most effective method for the limitation of the switching transients since the magnitudes of the
created transients are strongly dependent on the closing instants of the switch [10].

The fundamental requirement for all controlled switching applications is the precise
definition of the optimum switching instants [10]. This paper presents a novel method for
controlled energization of transformers in order to minimize temporary overvoltages. We
introduce a harmonic index to determine the best case switching time. Using numerical
algorithm we can find the time that the harmonic index is minimum, i.e., harmonic
overvoltages is minimum. Also, for real time applications, this paper presents an Artificial
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Neural Network (ANN)-based approach to estimate optimum switching angle during
transformer energization. Three learning algorithms, delta-bar-delta (DBD), extended delta-
bar-delta (EDBD) and directed random search (DRS) were used to train ANNs. The proposed
ANN is expected to learn many scenarios of operation to give the optimum switching angle in
a shortest computational time which is the requirement during online operation of power
systems. In the proposed ANN we have considered the most important aspects, which
influence the inrush currents such as voltage at transformer bus before switching, equivalent
resistance, equivalent inductance, equivalent capacitance, line length, line capacitance,
switching angle, and remanent flux. This information will help the operator to select the proper
best-case switching condition of transformer to be energized safely with transients appearing
safe within the limits.

2. Harmonic Overvoltages Study during Transformer Energization

One of the major concerns in power system restoration is the occurrence of overvoltages as
a result of switching procedures [2]. The major cause of harmonic resonance overvoltages
problems is the switching of lightly loaded transformers at the end of transmission lines. After
transformer energization, inrush currents with significant harmonic content up to frequencies
around ten times of system frequency are produced. The harmonic current components of the
same frequency as the system resonance frequencies are amplified in case of parallel
resonance, thereby creating higher voltages at the transformer terminals [11]. This leads to a
higher level of saturation resulting in higher harmonic components of the inrush current which
again results in increased voltages. They may lead to long lasting overvoltages resulting in
arrester failures and system faults and prolong system restoration [2]. This can happen
particularly in lightly damped systems, common at the beginning of a restoration procedure
when a path from a black-start source to a large power plant is being established and only a few
loads are restored yet [1,7,12].

The root cause of this phenomenon is the unfavorable combination of the source
impedance, the shunt capacitance of the energized circuits, the non-linear magnetizing
characteristics of the energized transformer, inadequate damping of the system and the source
voltage phase angle at the moment the transformer is energized. Key factors for the harmonic
overvoltages analysis can be listed as follows:

The resonance frequency of the network;

The system damping including the network losses, and the load connected to the network;
The voltage level at the end of the EHV lines;

The saturation characteristic of the transformers;

The remanent fluxes in the core of the transformer;

The closing time of the circuit breaker pole;

3. Study System Modeling

Simulations presented in this paper are performed using the PSB [13]. This program has
been compared with other popular simulation packages (EMTP and Pspice) in [14]. In [15]
generators have been modeled by generalized Park’s model that both electrical and mechanical
part are thoroughly modeled, but it has been shown that a simple static generator model
containing an ideal voltage source behind the sub-transient inductance in series with the
armature winding resistance can be as accurate as the Park model. Thus in this work,
generators are represented by the static generator model. Phases of voltage sources are
determined by the load flow results. Transmission lines are described by the distributed line
model. This model is accurate enough for frequency dependent parameters, because the
positive sequence resistance and inductance are fairly constant up to approximately 1 KHz [16]
which cover the frequency range of harmonic overvoltages phenomena. The transformer model
takes into account the winding resistances (R;, R;), the leakage inductances (L;, L,) as well as
the magnetizing characteristics of the core, which is modeled by a resistance, R, simulating
the core active losses and a saturable inductance, L,,. The saturation characteristic is specified
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as a piece-wise linear characteristic [7]. For the target transformer, hysteresis is added, in order
to take into account the remanent fluxes in the iron core. The remanent fluxes in the
transformer core can be obtained via the integration of the voltages measured on the
transformer windings during its disconnection. The correct estimation of the residual flux is
extremely important for the success of the controlled switching strategy. All of the loads and
shunt devices, such as capacitors and reactors, are modeled as constant impedances.

4. Evaluation of Optimum Switching Condition

The main part of a controlled switching arrangement is a controller, which is the “brain” of
the system. It receives the signals from the measuring devices, determines the appropriate
reference phase angles and sends the switching commands to each pole of the switching device
so that closing operation occurs at the optimum instant.
Normally for harmonic overvoltages analysis, the best case of the switching condition must be
considered which it is a function of switching time, transformer characteristics and its initial
flux condition, and impedance characteristics of the switching bus. Using the best switching
condition, the harmonic overvoltages peak and duration can be reduced significantly.
In order to determine best-case switching time, the following index is defined as

10
W= 3 Z-Lihigd) L (1)

This index can be a definition for the best-case switching condition. Using a numerical
algorithm, one can find the switching time for which # is minimal (i.e., harmonic overvoltages
is minimal).

The sample system considered for explanation of the proposed methodology is a 400 kV
EHV network shown in Figure 1. The normal peak value of any phase voltage is 400N2/3 kV
and this value is taken as base for voltage p.u. Also, 100 MVA is considered as a base power.
In this paper equivalent circuit parameters are used as ANN inputs together other parameters to
achieve good generalization capability for trained ANN. In fact, in this approach ANN is
trained just once for sample system of Figure 1. Since ANN training is based on equivalent
circuit parameters, developed ANN is applicable to every studied system. This issue is better
understood in section 6 that trained ANN is tested for a 39-bus New England test system.

Figure 2 shows the result of the frequency analysis at bus 2. The magnitude of the Thevenin
impedance, seen from bus 2, Zy,,» shows a parallel resonance peak at 230 Hz. Figure 3 shows
changes of harmonic currents and W index with respect to the switching angle, where & is
harmonic number. Figure 4 shows the harmonic overvoltages after the transformer energization
for the best-case condition (i.e., 56°). Table 1 summarizes the results of overvoltages
simulation for five different switching conditions that verify the effectiveness of W index.

Busl Bus2

T

R,

I ey

Linel_2

G ch\

Load2

Figure 1. Sample system for transformer energization study. G: generator, R.q,: equivalent
resistance, Leq,: equivalent inductance, and C.qy: equivalent capacitance.
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Figure 2. Impedance at bus 2.
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Figure 3. Changes of harmonic currents and # index with respect to the switching angle.
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Figure 4. Voltage at bus 2 after switching of transformer for best switching condition.
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Table 1. Effect of Switching Angle on the Minimum of Overvoltages and Duration

of Vi > 1.3 pu

Switching Angle [deg.]

Vpeak [p°u']

Duration of (Ve > 1.3 p.u.) [s]

56
45
33
70
10

1.1857
1.5104
1.6527
1.3892
1.5861

0
0.3752
0.4253
0.1442
0.3248

5. The Artificial Neural Network

Te The basic structure of the Artificial Neural Network (ANN) is shown in Figure 5. The

ANN consists of three layers namely, the inputs layer, the hidden layer, and the output layer.

Training a network consists of adjusting weights of the network using a different learning
algorithm [17-20]. In this work, ANNs are trained with the two supervised and one
reinforcement learning algorithms. In this paper, the delta-bar-delta (DBD), the extended delta-
bar-delta (EDBD) and the directed random search (DRS) were used to train the ANN [21]. To
improve the performance of ANNSs, tangent hyperbolic activation function was used. A

learning algorithm gives the change Aw;(k) in the weight of a connection between neurons i
and j. Error is calculated by the difference of PSB output and ANN output:

- |ANN- PSB]|

Error(% x100

In the next section, these learning algorithms have been explained briefly.

Input parameters

Input
Layer
Figure 5. The structure of artificial neural network.

A. Delta-bar-delta (DBD) algorithm

The DBD algorithm is a heuristic approach to improve the convergence speed of the

Hidden
Layer

weights in ANNs [22]. The weights are updated by

wik +1) = wk) + (k)5 (k)
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where a(k) is the learning coefficient and assigned to each connection, J(k) is the gradient
component of the weight change. o(k) is employed to implement the heuristic for
incrementing and decrementing the learning coefficients for each connection. The weighted
average & (k) is formed as

5 (k)= (1-0)5(k) +05(k 1) )

where 6 is the convex weighting factor. The learning coefficient change is given as

K S(k=1)5(k)>0
Aa(k)={-pa(k) &(k-1)5(k)<0 5)
0 otherwise

where x is the constant learning coefficient increment factor, and ¢ is the constant learning
coefficient decrement factor.

B. Extended delta-bar-delta (EDBD) algorithm
The EDBD algorithm is an extension of the DBD and based on decreasing the training time
for ANNSs [23]. In this algorithm, the changes in weights are calculated from:

Aw(k +1) = a(k)S (k) + u(k)Aw(k) (6)
and the weights are then found as
wik +1) = wk) + Aw(k) (7

In Eq. (6), a(k) and u(k) are the learning and momentum coefficients, respectively. The
learning coefficient change is given as

Kg exp(—ya‘g(k)‘ it S(k-1)5(k)>0
Aa(k) = |- pga(k) if S(k-1)5(k)<0 (8)
0 otherwise

where x,, is the constant learning coefficient scale factor, exp is the exponential function, @,
is the constant learning coefficient decrement factor, and y, is the constant learning
coefficient exponential factor. The momentum coefficient change is also written as

Ky exp(—y #‘5(/«)‘ it S(k-1)Sk)>0

Au(k) = |~ oy (k) it S(k-1)5(k) <0 ©)
0 otherwise

where x, is the constant momentum coefficient scale factor, ¢, is the constant momentum

coefficient decrement factor, and y, is the constant momentum coefficient exponential factor.
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In order to take a step further to prevent wild jumps and oscillations in the weight space,
ceilings are placed on the individual connection learning and momentum coefficients [23].

C. Directed random search (DRS)

The directed random search is a reinforcement learning approach and used to calculate the
weights of ANNs. This algorithm also tries to minimize the overall error [24]. Random steps
are taken in the weights and a directed component is added to the random step to enable an
impetus to pursue previously search directions. The DRS is based on four procedures as
random step, reversal step, directed procedure and self-tuning variance. In the random step, a
random value is added to each weight of network and the error is then evaluated for all training
sets as

w(k +1) = wp,op +dW(k) (10)

where wp,,, 1s the best weight vector previous to iteration £ and dw(k) is the delta weight
vector at iteration k. Depending on the error evaluation, the weights are replaced with the new

weights. If there is no improvement at the error in the random step, some random value is
subtracted from the weight value during the reversal step, that is

wik +1) = wy ., —dw(k) (1n

In [24], a directed procedure has been added to the random step to further improve with
reversals. The new weights are obtained from:

wik +1) = wp o, — dw(k) +dp(k) (12)

where dp(k) is the directed procedure and based on the history of success or failure of the
random steps.

Following parameters have been used as ANN inputs:

e Voltage at transformer bus before switching

e Equivalent resistance of the network

Equivalent inductance of the network

Equivalent capacitance of the network

Line length

Line capacitance

Remanent flux

6. Case Study
In this section, the proposed algorithm is demonstrated for two case studies that are a
portion of 39-bus New England test system, which its parameters are listed in [25].

A. Case 1

Figure 6 shows a one-line diagram of a portion of 39-bus New England test system which is
in restorative state. The generator at bus 35 is a black-start unit. The load 19 shows cranking
power of the later generator that must be restored by the transformer of bus 19. When the
transformer is energized, harmonic overvoltages can be produced because the transformer is
lightly loaded.

As mentioned in section 4, first, equivalent circuit of this system, seen behind bus 16, is
determined and values of equivalent resistance, equivalent inductance, and equivalent
capacitance are calculated, in other words, this system is converted to equivalent system of
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Figure 1. In this case, values of equivalent resistance, equivalent inductance and equivalent
capacitance are 0.00291 p.u., 0.02427, and 2.474 p.u., respectively. For testing trained ANN,
values of voltage at transformer bus (bus 19), line length, and remanent flux are varied and in
each step, optimum switching angle values are calculated from trained ANN and proposed
method. Table 2 contains the some sample result of test data of case 1.

Table 2. Case | some sample testing data and output
Delta-bar-delta algorithm:

V [p.u.] [I;“];I] @, [p.u.] B['ggg.']‘“ B'Isd":g'g"" Error [%]
0.9243 100 0.2 80.6 79.0 2.0150
0.9541 150 0.3 37.5 379 1.0054
1.0195 200 0.4 18.3 18.9 3.1244
1.0481 230 0.4 44.8 44.7 0.3241
1.0977 250 0.5 62.1 62.7 1.0237
1.0977 250 0.6 89.7 87.1 2.8766
1.1505 270 0.7 67.7 70.1 3.4791
1.1776 290 0.8 32.6 32.7 0.2374

Extended delta-bar-delta algorithm:

V [p.u.] [I;“I;l] @, [p.u.] B[Se[;]m B'?&I:'gE.?BD Error [%]
0.9243 100 0.2 80.6 81.4 0.9450
0.9541 150 0.3 37.5 37.9 1.0209
1.0195 200 0.4 18.3 18.8 2.8778
1.0481 230 0.4 44.8 44.2 1.4402
1.0977 250 0.5 62.1 63.2 1.8443
1.0977 250 0.6 89.7 86.8 3.2207
1.1505 270 0.7 67.7 68.6 1.3270
1.1776 290 0.8 32.6 333 2.2361

Directed random search algorithm:

V [p.u.] [I;“I;I] @, [p.u.] B[Se[;]m B'[Sd'eAg'.'iRs Error [%]
0.9243 100 0.2 80.6 78.3 2.8808
0.9541 150 0.3 37.5 36.8 1.8974
1.0195 200 0.4 18.3 18.2 0.3234
1.0481 230 0.4 44.8 453 1.0335
1.0977 250 0.5 62.1 60.8 2.1078
1.0977 250 0.6 89.7 89.1 0.6399
1.1505 270 0.7 67.7 66.0 2.5661
1.1776 290 0.8 32.6 332 1.9211
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Bus35 Bus22 Bus21 Line21_16 Busl6 Linel6_19 Bus19

Z135_22 Line22_21

Load21

Load19

Figure 6. Studied system for case 1.

V = voltage at transformer bus before switching, L.L. = line length, ®, = remanent flux,
B.S.Ay; = the best switching angle obtained by the harmonic index, B.S.Apgp = the best
switching angle obtained by the DBD, B.S.Agpgp = the best switching angle obtained by the
EDBD, B.S.Aprs = the best switching angle obtained by the DRS, and Error = switching angle
error.

B. Case?2

As another example, the system in Figure 7 is examined. In the next step of the restoration,
unit at bus 6 must be restarted. In order to provide cranking power for this unit, the transformer
at bus 6 should be energized. In this condition, harmonic overvoltages can be produced because
the load of the transformer is small. After converting this system to equivalent circuit of Figure
1, various cases of transformer energization are taken into account and corresponding optimum
switching angles are computed from proposed method and trained ANN. In this case, values of
equivalent resistance, equivalent inductance and equivalent capacitance are 0.00577 p.u.,
0.02069, and 0.99 p.u., respectively. Summery of few result are presented in Table 3. It can be
seen from the results that the ANNs are able to learn the pattern and give results to acceptable
accuracy.

Bus3i Bus2 Busl Bus39

Line2_1 Linel_39

Buss Bus9

Line5_6 Line8_5 Line%_8 Line3%_9

Load6

Figure 7. Studied system for case 2.

Conclusion

This paper presents an ANN application to evaluate optimum switching condition during
transformer energization for real time application. The proposed method is based on the
harmonic index which integrates the key parameters of overvoltages generation. The minimum
value of this index is corresponding to the best switching time for the transformer energization.
The delta-bar-delta, extended delta-bar-delta and directed random search has been adopted to
train ANN. Training ANN is based on equivalent circuit parameters to achieve good
generalization capability for trained ANN. Simulation results confirm the effectiveness and
accuracy of the proposed harmonic index and ANNs scheme.
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Table 3. Case 2 some sample testing data and output
Delta-bar-delta algorithm:

V [p.u.] 5“1;] @, [p.u.] B['i‘;.‘]f“ B'ﬁi;‘gﬁ“’ Error [%]
0.9335 125 0.8 75.4 74.6 1.0268
0.9512 155 0.7 429 42.8 0.2798
0.9906 175 0.6 56.1 543 3.2491
0.9906 175 0.5 90 89.5 0.5837
1.0502 215 0.4 82.3 83.4 1.3537
1.0595 225 0.3 29.4 28.9 1.7010
1.1025 240 0.2 45.6 443 2.8381
1.1293 265 0.2 51.2 50.5 1.4200

Extended delta-bar-delta algorithm:

V [p.u] []l““f]] @, [p.u] B['Sgg.‘]f“ B’?('l‘:;i”’” Error [%]
0.9335 125 0.8 75.4 72.9 3.2789
0.9512 155 0.7 429 42.1 1.7887
0.9906 175 0.6 56.1 55.7 0.7395
0.9906 175 0.5 90 88.7 1.4739
1.0502 215 0.4 82.3 84.7 2.9034
1.0595 225 0.3 294 29.5 0.4986
1.1025 240 0.2 45.6 46.1 1.1257
1.1293 265 0.2 51.2 52.7 2.8627

Directed random search algorithm:

V [p.u] []l“ﬂl;]] O, [p.u] Bl'ggg:]‘“ B‘[Sd'(‘?g‘.‘i“s Error [%]
0.9335 125 0.8 75.4 76.1 0.9575
0.9512 155 0.7 429 443 3.2421
0.9906 175 0.6 56.1 56.6 0.8216
0.9906 175 0.5 90 89.6 0.4479
1.0502 215 0.4 82.3 81.1 1.4442
1.0595 225 0.3 294 28.7 2.2215
1.1025 240 0.2 45.6 453 0.6354
1.1293 265 0.2 51.2 51.9 1.4113

V = voltage at transformer bus before switching, L.L. = line length, ®, = remanent flux,
B.S.Ay; = the best switching angle obtained by the harmonic index, B.S.Apgp = the best
switching angle obtained by the DBD, B.S.Agpgp = the best switching angle obtained by the
EDBD, B.S.Aprs = the best switching angle obtained by the DRS, and Error = switching angle
erTor.
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