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A TWO–SCALE SOLUTION ALGORITHM FOR THE ELASTIC
WAVE EQUATION∗

TETYANA VDOVINA† , SUSAN E. MINKOFF‡ , AND SEAN M.L. GRIFFITH§

Abstract. Operator-based upscaling is a two-scale algorithm that speeds up the solution of
the wave equation by producing a coarse grid solution which incorporates much of the local fine-
scale solution information. We present the first implementation of operator upscaling for the elastic
wave equation. By using the velocity-displacement formulation of the three-dimensional elastic wave
equation, basis functions that are linear in all three directions, and applying mass lumping, the
subgrid solve (first stage of the two-step algorithm) reduces to solving explicit difference equations.
At the second stage of the algorithm, we upscale both velocity and displacement by using local subgrid
information to formulate the coarse-grid problem. The coarse-grid system matrix is independent of
time, sparse, and banded. This paper explores both serial and parallel implementations of the
method. The main simplifying assumption of the method (special zero boundary conditions imposed
on coarse blocks in the first stage of the algorithm) leads to an easily parallelizable algorithm because
very little communication is required between processors. In fact, for this upscaling implementation
calculation of the load vector for the coarse solve dominates the cost of a time step. We show that
for a homogeneous medium convergence is second-order in space and time so long as both the coarse
and fine grids are simultaneously refined. A series of heterogeneous-medium numerical experiments
demonstrate that the upscaled solution captures the fine-scale fluctuations in the input parameters
accurately. Most notable for use in a seismic inversion algorithm, the upscaling algorithm accurately
locates the depth of reflectors (interface changes).
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1. Introduction. For scientists to be able to produce oil and gas, to predict
earthquakes and other tectonic events such as tsunamis, to safely remediate contam-
inants, and to bury excess greenhouse gases underground, they must first be able to
image Earth’s subsurface. Rock layers, fluids, and faults need to be mapped and their
depths and lateral extent understood. To create an image of the subsurface, energy
is sent into the ground which generates a wave. The heterogeneous nature of the
subsurface causes a portion of these waves to be sent back to the surface where seis-
mometers (microphones) record the waves as they pass. From these signals scientists
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try to infer the structure of the subsurface (solve an inverse minimization problem
between measured data and data predicted by a wave equation model). This inference
is enormously complicated by both the very complex mechanical nature of rock and
the vast amounts of data which are often collected in seismic studies. Solving the
inverse problem involves repeated solution of the forward problem (wave equation)
and is prohibitively expensive for elastic wave propagation in three dimensions.

In this paper we explore ways to speed up the solution of the forward problem.
Seeking more efficient elastic algorithms is crucial for geoscience applications, since
solving the elastic wave equation on fine grids by standard methods is overwhelming
even for modern-age technology. In computational seismology, the domains of interest
may be as large as 100 wavelengths in each direction. Finite-difference methods
require 7 to 10 grid points per wavelength to minimize dispersion, so a typical three-
dimensional (3D) problem may include 109 grid points. Approximately 100 flops are
required to compute a finite-difference solution for the isotropic elastic wave equation
at each grid point [13]. Therefore, the number of flops per simulation consisting of 102–
104 time steps can be as high as 1015. A typical survey in computational seismology
involves 104–106 simulations or 1019 flops and could take thirty years to complete on
a Gflop machine.

To speed up solution of the wave equation we have adapted upscaling techniques
originally developed in the context of elliptic flow problems to the wave equation.
Examples of multiscale methods include the multiscale finite element method [17, 2]
and its mixed version [10], the variational multiscale method [18], operator-based
upscaling [4, 5, 7], mortar upscaling [28], and the heterogeneous multiscale method
[14], among others.

The multiscale approach to wave propagation problems was first introduced and
exploited in the framework of homogenization theory [9]. Assuming that a typical
wavelength is small and on the order of the period of the medium, one can explic-
itly construct the effective or homogenized partial differential operator with simple
coefficients that describe the macroscopic properties of the underlying medium. Re-
cently Ohwadi et al. [26, 27] developed a homogenization procedure that does not
assume scale separation or ergodicity (two assumptions typically required by stan-
dard homogenization theory). The method (metric-based upscaling) is developed in
the context of finite elements and makes use of oscillating test functions previously
discussed and implemented in papers by Hou et al. [17, 10]. The main difference be-
tween metric-based upscaling and other methods based on oscillating test functions is
that the test functions are constructed using global harmonic coordinates rather than
being the solution of a local cell problem. This approach allows the authors to avoid
the resonance problem and establish convergence in the presence of a continuum of
scales.

Operator-based upscaling uses a decomposition of the unknowns into the coarse-
and fine-scale components and solves the problem in two stages. (See papers by
Arbogast et al. for a thorough treatment of the method in the context of elliptic flow
problems [4, 5, 6, 3, 7].) The method proceeds as follows: At the first stage, the
problem is solved locally for fine-scale information interior to coarse blocks. At the
second stage, the impact of this subgrid information is incorporated into the global
problem solved on the coarse grid [4].

In the first paper to appear on operator upscaling for the wave equation [31], we
adapted the method to the constant density, variable sound velocity acoustic wave
equation in two dimensions. Operator upscaling was originally developed in the con-
text of mixed finite elements [4]. As a result, the upscaling algorithm introduces
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mass matrices on the fine and coarse scales and appears to be more expensive than
standard staggered finite-difference approaches [23, 34, 35] in terms of both memory
and speed. One way to reduce the storage and to avoid solving the linear system is
to use mass-lumping techniques [13] which result in diagonal mass matrices on both
the fine and coarse scales [22]. Since one must solve for most of the original fine-grid
unknowns at the subgrid stage of the algorithm, the majority of the computational
work occurs at this stage. The good news is that homogeneous boundary conditions
imposed along coarse block edges for the subgrid solve lead to a natural paralleliza-
tion strategy (i.e., there is no communication between coarse blocks at the first stage
of the algorithm so each processor can take ownership of a subset of coarse blocks
without need of input from other processors). In Vdovina et al. [31], we describe our
parallel algorithm for using operator upscaling to solve the acoustic wave equation in
detail and demonstrate that it provides near optimal speedup without the commu-
nication overhead required by standard data parallelism. The numerical accuracy of
the method is studied for several geophysically realistic experiments that show that
the upscaled solution captures the fine-scale fluctuations of the medium accurately. In
two related papers ([22, 32]), we study the physical meaning of the upscaled equations
and rigorously analyze convergence of the method.

Motivated by the efficiency and accuracy we observed applying operator upscaling
to the acoustic problem, we turn in this paper to the much more computationally
expensive problem of 3D elastic wave propagation. As in the case of acoustics, the
upscaling algorithm relies on a two-scale decomposition of unknowns that is best
described in the context of finite elements. However, we would like to avoid storing
and solving large linear systems typically associated with finite element methods. The
velocity-displacement formulation of the elastic wave equation (see Komatitsch et al.
[19, 21]) and mass lumping result in the spectral finite element method which we will
use as our basis for the upscaling algorithm described in this paper. In this upscaling
implementation we upscale both displacement and velocity (six unknowns in three
dimensions) which differs from the acoustic implementation which upscaled velocity
only (pressure was not upscaled).

For the elastic implementation described here, the interactions between basis
functions are more complicated than for acoustics. As a result, mass lumping does
not produce a diagonal mass matrix for the coarse problem, but the matrix does
have a sparse and banded structure, and it can be assembled once before the start of
the time-step loop. In contrast to our implementation of the upscaling algorithm for
acoustics, the most expensive part of the elastic upscaling algorithm is assembling the
coarse-grid load vectors and (in some cases) solution of the coarse-grid system matrix.
The coarse-grid load vectors are constructed from inner products that depend on
input parameters defined on the fine grid. One of the advantages of operator-based
upscaling is that it does not require explicit averaging of input data. Instead, we
approximate the coarse-grid inner products by fine-grid quadrature rules. In the case
of elasticity, this procedure involves approximating nine inner products for each of the
three velocity equations and two inner products for each of the three displacements.

The first implementations of operator upscaling for elliptic problems used numeri-
cal Green’s functions to treat the subgrid and coarse components independently [6, 3].
Unfortunately, numerical Green’s functions become prohibitive for the elastic wave
equation. The upscaling algorithm described in this paper relies on the augmented
solution (sum of coarse and fine solutions). In Vdovina and Minkoff [32] we show that
for the acoustic upscaling algorithm, the augmented solution approach leads to an
algorithm that is twice as fast as the algorithm based on numerical Green’s functions.
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In sections 2 and 3, we derive the weak form of the velocity-displacement formula-
tion for the 3D elastic wave equation and describe the two-scale finite element method
used as a basis for upscaling. Sections 4–6 contain the description of the elastic up-
scaling algorithm. In section 4, we introduce the augmented solution and establish
the connection between this solution and the standard numerical Green’s function
technique. The implementation of the sugbgrid and coarse problems is discussed in
sections 5 and 6, respectively. In section 7, we study the numerical convergence and
accuracy of the elastic upscaling algorithm. Our experiments show that the upscaling
algorithm performs well even in those challenging cases where the heterogeneity of
the input model is on a scale smaller than a single coarse block. Finally, in section 8
we describe parallelization of the elastic upscaling method and performance of the
algorithm.

2. Model problem and weak form. We derive the velocity-displacement for-
mulation from the equation of balance of linear momentum:

ρ(x)
∂2u(t,x)

∂t2
= ∇ · σ(x) + f(t,x) for t ∈ [0, T ] and x ∈ Ω ⊂ R

3,(2.1)

where u(t,x) is the displacement vector, ρ(x) is the density of the material, σ(x)
is the stress tensor, and f(t,x) is a body force [1, 8]. We convert the second-order
equation (2.1) into a first-order system by introducing velocity as the time derivative
of displacement:

ρ(x)
∂v
∂t

(t,x) = ∇ · σ(x) + f(t,x) in Ω,(2.2)

ρ(x)
∂u
∂t

(t,x) = ρ(x)v(t,x) in Ω.(2.3)

To this set of equations we add the following boundary and initial conditions:

u(0,x) = u0(x),(2.4)
v(0,x) = v0(x),(2.5)

σ · ν = 0 on ∂Ω,(2.6)

where ν is the unit outward normal to the boundary ∂Ω. The operator upscaling
method can be applied to a problem with arbitrary boundary conditions. The zero-
traction boundary condition (2.6) was chosen because it models the interface of a
solid with the air. In particular, this condition is used in geoscience applications to
model the surface of Earth [13, 19]. To formulate the variational problem, we choose
W to be the set of functions w(x) ∈ H1(Ω) such that w(x) = 0 on ∂Ω. Multiplying
(2.2)–(2.3) by w ∈ W , integrating over Ω, and applying the divergence theorem to
(2.2), we obtain the following variational problem: For all w(x) in W and t ∈ [0, T ]
find v(t,x) and u(t,x) in W such that(

ρ
∂v
∂t

,w
)

= − (σ,∇w) + (f ,w) ,(2.7) (
ρ
∂u
∂t

,w
)

= (ρv,w) ,(2.8)

where (·, ·) denotes the L2 inner product over Ω. The boundary term
∫
Γ

σ · νwdΓ
vanishes due to boundary condition (2.6).



3360 TETYANA VDOVINA, SUSAN E. MINKOFF, AND SEAN M.L. GRIFFITH

We use the following relation to eliminate stress variables from (2.7)–(2.8):

σij = λ

3∑
k=1

∂uk

∂xk
δij + μ

(
∂ui

∂xj
+

∂uj

∂xi

)
,(2.9)

where we use (x1, x2, x3) to refer to the components of the vector x. (See references
[1, 8] for details.) To minimize the use of subscripts, in the remainder of the paper
we denote the components of the vector x by (x, y, z).

In component form, the stress-free variational formulation of the elastic wave
propagation problem is given by the following equations:(

ρ
∂v1

∂t
, w

)
= −

(
(λ + 2μ)

∂u1

∂x
+ λ

∂u2

∂y
+ λ

∂u3

∂z
,
∂w

∂x

)
(2.10)

−
(

μ
∂u1

∂y
+ μ

∂u2

∂x
,
∂w

∂y

)

−
(

μ
∂u1

∂z
+ μ

∂u3

∂x
,
∂w

∂z

)
+ (f1, w) ,

(
ρ
∂v2

∂t
, w

)
= −

(
μ

∂u1

∂y
+ μ

∂u2

∂x
,
∂w

∂x

)
(2.11)

−
(

λ
∂u1

∂x
+ (λ + 2μ)

∂u2

∂y
+ λ

∂u3

∂z
,
∂w

∂y

)

−
(

μ
∂u2

∂z
+ μ

∂u3

∂y
,
∂w

∂z

)
+ (f2, w) ,

(
ρ
∂v3

∂t
, w

)
= −

(
μ

∂u1

∂z
+ μ

∂u3

∂x
,
∂w

∂x

)
(2.12)

−
(

μ
∂u3

∂y
+ μ

∂u2

∂z
,
∂w

∂y

)

−
(

λ
∂u1

∂x
+ λ

∂u2

∂y
+ (λ + 2μ)

∂u3

∂z
,
∂w

∂z

)
+ (f3, w) ,(

ρ
∂ui

∂t
, w

)
= (ρvi, w) for i = 1, 2, 3(2.13)

and w(x) in W , t ∈ [0, T ].
Various formulations of the elastic wave equation exist. Specifically, the velocity-

stress formulation of the elastic wave equation is widely used by the seismic com-
munity. Typically these equations are solved via finite differences [34, 23, 35]. As
an alternative, the stress-free formulation forms the basis for the spectral element
method (see Komatitsch et al. [19, 20, 21]). This formulation leads to reduced mem-
ory requirements and less expensive linear systems to solve. Thus we focus on this
formulation for the upscaling algorithm described in this paper. Other formulations
may very well be amenable to upscaling. Cohen and Fauqueux in [12] modified the
velocity stress formulation by introducing new vector-valued unknowns. They use
the resulting nonclassical decomposition of the elasticity system to develop a mixed
version of the spectral method.

3. Finite element method. We begin by constructing a 3D two-scale mesh.
We decompose the domain Ω into a coarse mesh TH(Ω), and then subdivide each
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Fig. 1. A single coarse grid block subdivided into 3 × 3 × 3 fine-grid blocks. (Note that the
computational domain would contain multiple coarse-grid blocks. However, for simplicity we show
only one here.) The squares represent the location of both coarse velocity and coarse displacement
unknowns vc and uc. The circles give the location of the subgrid velocity and displacement unknowns
δv and δu.

coarse block Ec into subgrid blocks. The finite element space over the composite fine
mesh is given by

WH,h = WH ⊕ δWh,(3.1)

where coarse space WH is defined on TH(Ω) and subgrid space δWh is defined for each
coarse block Ec. Both spaces consist of vector functions with components linear in all
three spatial directions. The nodes for the subgrid and coarse spaces are located at
the corners of the subgrid and coarse blocks, respectively (see Figure 1). Therefore,
each coarse and subgrid block has eight nodes and eight basis functions corresponding
to these nodes. We construct the subgrid and coarse basis functions as products of
1D linear Lagrange polynomials determined in terms of control points xq so that
lp(xq) = δpq [13].

In this work, we upscale both velocity and displacement. Using decomposi-
tion (3.1), we separate the displacement and velocity unknowns into coarse and sub-
grid parts. We approximate the derivatives with respect to time by second-order
centered finite differences and obtain the finite element formulation of the problem
represented by (2.10)–(2.13). Specifically, we want to find u = uc+δu and v = vc+δv
in WH,h so that for all w in WH,h

(3.2)(
ρ(vc

1 + δv1)n+1, w
)

= (ρ(vc
1 + δv1)n, w)

−Δt

[(
(λ + 2μ)

∂

∂x
(uc

1 + δu1)n+ 1
2 + λ

∂

∂y
(uc

2 + δu2)n+ 1
2 + λ

∂

∂z
(uc

3 + δu3)n+ 1
2 ,

∂

∂x
w

)

+
(

μ
∂

∂y
(uc

1 + δu1)n+ 1
2 + μ

∂

∂x
(uc

2 + δu2)n+ 1
2 ,

∂

∂y
w

)

+
(

μ
∂

∂z
(uc

1 + δu1)n+ 1
2 + μ

∂

∂x
(uc

3 + δu3)n+ 1
2 ,

∂

∂z
w

)
−

(
f

n+ 1
2

1 , w
)]

,
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(3.3)(
ρ(vc

2 + δv2)n+1, w
)

= (ρ(vc
2 + δv2)n, w)

−Δt

[(
μ

∂

∂y
(uc

1 + δu1)n+ 1
2 + μ

∂

∂x
(uc

2 + δu2)n+ 1
2 ,

∂

∂x
w

)

+
(

λ
∂

∂x
(uc

1 + δu1)n+ 1
2 + (λ + 2μ)

∂

∂y
(uc

2 + δu2)n+ 1
2 + λ

∂

∂z
(uc

3 + δu3)n+ 1
2 ,

∂

∂y
w

)

+
(

μ
∂

∂z
(uc

2 + δu2)n+ 1
2 + μ

∂

∂y
(uc

3 + δu3)n+ 1
2 ,

∂

∂z
w

)
−

(
f

n+ 1
2

2 , w
)]

,

(3.4)(
ρ(vc

3 + δv3)n+1, w
)

= (ρ(vc
3 + δv3)n, w)

−Δt

[(
μ

∂

∂z
(uc

1 + δu1)n+ 1
2 + μ

∂

∂x
(uc

3 + δu3)n+ 1
2 ,

∂

∂x
w

)

+
(

μ
∂

∂y
(uc

3 + δu3)n+ 1
2 + μ

∂

∂z
(uc

2 + δu2)n+ 1
2 ,

∂

∂y
w

)

+
(

λ
∂

∂x
(uc

1 + δu1)n+ 1
2 + λ

∂

∂y
(uc

2 + δu2)n+ 1
2 + (λ + 2μ)

∂

∂z
(uc

3 + δu3)n+ 1
2 ,

∂

∂z
w

)

−
(
f

n+ 1
2

3 , w
) ]

,(
ρ

(
uc

q + δuq

)n+3/2
, w

)
=

(
ρ

(
uc

q + δuq

)n+ 1
2 , w

)
+ Δt

(
ρ

(
vc

q + δvq

)n+1
, w

)
,(3.5)

where n and Δt denote time level and time step, respectively.

4. Operator upscaling method. We do not solve (3.2)–(3.5) directly. Instead,
we localize the subgrid information by imposing homogeneous boundary conditions
on coarse blocks and apply the upscaling algorithm. The upscaling process consists
of two steps and produces a solution on the coarse grid. First, we restrict to subgrid
test functions δw in (3.2)–(3.5) and obtain a series of subgrid problems, one for each
coarse block Ec. In the second step, we use the subgrid solutions to augment the
problem solved on the coarse grid. The coarse-grid problem comes from (3.2)–(3.5),
where now the coarse basis functions wc are used as test functions.

In order to obtain local subgrid information, we need to solve (3.2)–(3.5) with sub-
grid basis functions used as test functions. However, these equations involve coarse
velocity and displacement solutions vc and uc that are unknown at the subgrid stage
of the algorithm. One way to obtain the subgrid information independently of the
coarse solutions is to use the numerical Green’s function technique [6, 3]. The numeri-
cal Green’s function technique allows one to eliminate the unknown coarse components
from the subgrid equations by breaking the original problem into a set of simple sub-
problems (essentially analogous to applying unit forcing functions at each node of
the coarse block and then using superposition to construct a total solution from the
sum of these solutions and the solution to the problem with the physical source as
right-hand side). After the coarse problem is solved, the subgrid solutions have to be
constructed as a linear combination of the influence functions and coarse coefficients.
This construction is extremely expensive, since it depends on several matrix-vector
products. In particular, implementation of numerical Green’s functions for the 3D
elastic wave equation involves eight matrix-vector products for each of the six un-
knowns at every time step. We propose to replace the numerical Green’s function
technique by a much less expensive approach.
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Our approach is based on the observation that the inner products in (3.2)–(3.5)
depend on the sum of the subgrid and coarse solutions rather than on the unknown
coarse solution alone. In order to solve (3.2)–(3.5) numerically, we approximate these
inner products using fine-grid quadrature rules. Our analysis shows that the sum
of the subgrid and coarse solutions evaluated at nodes internal to a coarse block
is completely independent of the unknown coarse information. In Lemma 4.1, we
introduce the augmented solution as a sum of the coarse and subgrid components and
explain the connection between this solution and the influence function solution that
comes from the numerical Green’s function technique.

Lemma 4.1. Let δv, δu and vc, uc be the subgrid and coarse components of the
velocity and displacement solutions. The augmented solutions v and u are defined on
the fine grid as follows:

v = δv + vc, u = δu + uc.(4.1)

We will use δv0 and δu0 to denote the solution of (3.2)–(3.5) with subgrid basis func-
tions used as test functions and vc and uc set to zero on time level n + 1.

1. At nodes internal to coarse block Ec, the augmented solution reduces to

vi,j,k = δv0
i,j,k, ui,j,k = δu0

i,j,k,(4.2)

where local indices i, j, k range over the subgrid nodes internal to coarse block
Ec.

2. At nodes located on coarse block faces, the augmented velocity and displace-
ment solutions reduce to the coarse solution evaluated at these nodes.

For the proof of this result we refer the reader to [33]. More detail on the numerical
Green’s function technique applied to upscaling of the acoustic wave equation can be
found in [33, 32, 31]. The practical significance of this lemma follows from the fact
that it provides a computationally inexpensive way to obtain the subgrid information
without having to construct the subgrid solution via numerous matrix-vector products
at the end of each time step. Timing studies performed for the acoustic problem
demonstrate that the upscaling algorithm based on the augmented solution is two
times faster than the version of the algorithm based on numerical Green’s functions
[32]. This result implies that employing the augmented solution is crucial for efficiency
and performance of the elastic upscaling algorithm. Lemma 4.1 indicates that the
coarse grid computation requires only the component of the subgrid solution that
represents the influence of the source. In the following section, we discuss the structure
of the linear system that corresponds to the subgrid equations.

5. Subgrid problem. We obtain the subgrid equations by using subgrid basis
functions as test functions in (3.2)–(3.5). The structure of the linear system that
corresponds to each of the resulting subgrid equations is determined by the basis
functions and quadrature rules that we use to approximate the inner products. As
mentioned in section 3, the basis functions are constructed as products of linear
Lagrange polynomials. We show below that this choice of basis functions leads to
a diagonal mass matrix. The process of replacing the mass matrix with a diagonal
matrix is known as mass lumping and relies on using a quadrature rule which evaluates
the function to be integrated at the node points where the basis functions have a
value of one [11], [13]. In the derivation that follows, we lump the subgrid mass and
stiffness matrices by applying a quadrature rule on the subgrid scale. Therefore, in
this derivation we assume that input parameters ρ, λ, and μ vary smoothly within
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a fine-grid cell. No further smoothness is required of the parameters. Application
of the mass-lumping technique allows us to write subgrid linear systems as explicit
difference equations. Since the difference form of the elastic system in three dimensions
is long, we keep the presentation simple here by describing the procedure leading to
the difference equations. The complete equations are given in Appendix A.

The mass matrices for the six velocity and displacement components are all com-
puted similarly. To simplify notation, we omit the time level index n + 1, use v to
refer to the first component of the velocity solution, and illustrate the mass matrix
computation for this component of velocity only. The inner product on the left-hand
side of (3.2) is the only inner product that contributes to the mass matrix. The com-
putation is based on the augmented solution and results of Lemma 4.1. We begin by
using the fact that the sum of subgrid and coarse solutions can be replaced by the
augmented solution v:

(ρ(x)(vc(x) + δv(x)), δwi,j,k(x))Ec
= (ρ(x)v(x), δwi,j,k(x))Ec

.(5.1)

To determine the entries of the mass matrix, we integrate over the support of basis
function δwi,j,k(x) = δwi(x)δwj(y)δwk(z) and use the trapezoid rule to approximate
the integrals. The support of basis function δwi,j,k is given by a tensor product of 1D
intervals [xi−1, xi+1] × [yj−1, yj+1] × [zk−1, zk+1] :

(ρ(x)v(x), δwi,j,k(x))Ec
(5.2)

=
∫ zk+1

zk−1

δwk(z)
∫ yj+1

yj−1

δwj(y)
∫ xi+1

xi−1

ρ(x)v(x)δwi(x) dx.

Applying the trapezoid rule on each of the intervals [zk−1, zk], [zk, zk+1], [yj−1, yj ],
[yj , yj+1], [xi−1, xi], and [xi, xi+1] and using the fact that each linear basis function
is nonzero at one grid node only, we obtain

(ρ(x)v(x), δwi,j,k(x))Ec
≈ ΔxΔyΔzρi,j,kv(xi,j,k) = ΔxΔyΔzρi,j,kδv0

i,j,k,(5.3)

where the last equality follows from statement 1 of Lemma 4.1. Equation (5.3) implies
that the mass matrix is diagonal with entries ΔxΔyΔzρi,j,k, where Δx, Δy, and Δz
denote the fine-grid space steps.

The inner products on the right-hand side of (3.2)–(3.5) form the entries of the
load vectors. As in the case of the mass matrices, we approximate integrals directly
on the interval of support of the basis functions and analytically obtain an explicit
difference scheme that corresponds to (3.2)–(3.5). To illustrate the procedure, we
approximate the inner product that involves the derivatives of u1 and δw with respect
to x (see the second inner product on the right-hand side of (3.2)). As before, we
simplify notation by omitting subscript 1 and time level superscript n. The rest of the
inner products can be computed in a similar way. The inner product over the coarse
block Ec reduces to the integral over the support of basis function δwi,j,k:

(
(λ + 2μ)(x)

∂

∂x
u(x),

∂

∂x
δwi,j,k(x)

)
Ec

(5.4)

=
∫ zk+1

zk−1

∫ yj+1

yj−1

∫ xi+1

xi−1

(λ + 2μ)(x)
∂

∂x
u(x)

∂

∂x
δw(x)dx.
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Next, we replace u(x) by its finite element expansion reduced to coarse block Ec:

∫ zk+1

zk−1

∫ yj+1

yj−1

∫ xi+1

xi−1

(λ + 2μ)(x)
∂

∂x
u(x)

∂

∂x
δw(x)dx(5.5)

=
∫ zk+1

zk−1

∫ yj+1

yj−1

∫ xi+1

xi−1

(λ + 2μ)(x)
∂

∂x

⎛
⎝ ∑

i′,j′,k′
ûi′,j′,k′δwi′,j′,k′(x)

⎞
⎠ ∂

∂x
δw(x)dx,

where by ûi′,j′,k′ we denote the coefficients in the finite element expansion of u and
indices i′, j′, and k′ range over all subgrid nodes internal to coarse block Ec. Rear-
ranging the terms in the last equation, we obtain

∑
i′,j′,k′

ûi′,j′,k′

∫ zk+1

zk−1

δwk′δwk

∫ yj+1

yj−1

δwj′δwj

∫ xi+1

xi−1

(λ + 2μ)
∂

∂x
δwi′

∂

∂x
δwidx.(5.6)

As in the case of the mass matrix, we apply the trapezoid rule on each of the intervals
[zk−1, zk], [zk, zk+1], and [yj−1, yj], [yj, yj+1] and use the fact that basis functions are
nonzero at a single grid point:

(
(λ + 2μ)(x)

∂

∂x
u(x),

∂

∂x
δwi,j,k(x)

)
Ec

(5.7)

≈ ΔyΔz
∑
i′

ûi′,j,k

∫ xi+1

xi−1

(λ + 2μ)(zk, yj, x)
∂

∂x
δwi′ (x)

∂

∂x
δwi(x)dx.

Basis function δwi has zero interaction with all the basis functions except for δwi−1

on [xi−1, xi], δwi+1 on [xi, xi+1], and itself. Therefore, (5.7) becomes

ΔyΔz

[
ûi−1,j,k

∫ xi

xi−1

(λ + 2μ)(zk, yj, x)
∂

∂x
δwi−1(x)

∂

∂x
δwi(x)dx

+ ûi,j,k

∫ xi+1

xi−1

(λ + 2μ)(zk, yj, x)
(

∂

∂x
δwi(x)

)2

dx(5.8)

+ ûi+1,j,k

∫ xi+1

xi

(λ + 2μ)(zk, yj, x)
∂

∂x
δwi+1(x)

∂

∂x
δwi(x)dx

]
.

The hat basis function δwi(x) is continuous on each of the intervals [xi−1, xi] and
[xi, xi+1] with derivatives given by 1/Δx on [xi−1, xi] and −1/Δx on [xi, xi+1]. Using
this fact and applying the trapezoidal rule to approximate each of the integrals, we
obtain

ΔxΔyΔz

2

[
−ûi−1,j,k

(λ + 2μ)i−1,j,k + (λ + 2μ)i,j,k

Δx2

+ ûi,j,k
(λ + 2μ)i−1,j,k + 2(λ + 2μ)i,j,k + (λ + 2μ)i+1,j,k

Δx2
(5.9)

− ûi+1,j,k
(λ + 2μ)i,j,k + (λ + 2μ)i+1,j,k

Δx2

]
.
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Rearranging the terms gives(
(λ + 2μ)(x)

∂

∂x
u(x),

∂

∂x
δw(x)

)
Ec

≈ −ΔxΔyΔz

2

[
(λ + 2μ)i−1,j,k

ûi−1,j,k − ûi,j,k

Δx2

+ (λ + 2μ)i,j,k
ûi−1,j,k − 2ûi,j,k + ûi+1,j,k

Δx2
(5.10)

+ (λ + 2μ)i+1,j,k
ûi+1,j,k − ûi,j,k

Δx2

]
.

Recall that indices i, j, and k range over subgrid nodes internal to coarse block Ec.
Therefore, according to Lemma 4.1 augmented coefficients ûi,j,k that correspond to
these nodes reduce to the subgrid solutions δu0

i,j,k. Coefficients ûi−1,j,k and ûi−1,j,k

may be located on coarse block faces, in which case they become coarse solutions
evaluated at the face nodes. Notice also that in the case of homogeneous Lamé
parameters, expression (5.10) reduces to a second order finite-difference scheme:

−ΔxΔyΔz(λ + 2μ)
ui−1,j,k − 2ui,j,k + ui+1,j,k

Δx2
.(5.11)

In fact, in the case of a homogeneous medium, the explicit difference scheme that
corresponds to the subgrid problem becomes a standard second order in space and
time finite-difference scheme as studied by Cohen in [13].

6. Coarse problem. In this section, we will show that the coarse-grid mass
matrix has a sparse and banded structure and describe the procedure for assembling
the nonzero diagonals of the global mass matrix from the element matrices.

Each of equations (3.2)–(3.5) with coarse-grid basis functions used as test func-
tions generates a linear system of equations for the coefficients in the finite element
representation of the coarse velocity and displacement solutions. As in the subgrid
problem, we apply fine-grid quadrature to approximate the inner products in (3.2)–
(3.5), since these equations involve the density and Lamé parameters defined on the
fine grid, and we do not wish to average these input quantities. Although the re-
sulting coarse-grid mass matrices are not diagonal, they have a sparse and banded
structure. Moreover, we will show that we can use the same mass matrix for all six
equations. The banded structure of the mass matrix follows from the fact that each
coarse basis function has zero interaction with all basis functions except for itself and
its immediate neighbors (resulting in 27 nonzero diagonals). For example, in the case
of a domain discretized into 20 × 20 × 20 coarse grid blocks, the dense mass matrix
consists of 23 · 103 × 23 · 103 = 26 · 106 entries for each of the six equations. We need
to store only 27 · 23 · 103 nonzero entries (less than 1% of all entries). The nonzero
diagonals are assembled from the element mass matrices. As in the case of the sub-
grid problem, the procedure for computing the element mass matrices is based on the
augmented solution and results of Lemma 4.1. As before, we note that the sum of
the subgrid and coarse solutions is the augmented solution v and rewrite the inner
product over the whole domain as a sum of the inner products over the coarse blocks:

(ρ(x) (vc(x) + δv(x)) ,wc(x))Ω =
∑

Ec∈Ω

(ρ(x)v(x),wc(x))Ec
(6.1)

=
∑

Ec∈Ω

∑
δE∈Ec

∫
δE

ρ(x)v(x)wc(x)dx.(6.2)
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Here we omit the time-level index n and further rewrite (6.1) as a sum of the inner
products over the subgrid blocks located in coarse block Ec. Setting wc(x) equal to
each of the eight coarse basis functions wc

l for l = 1, . . . , 8 located at the corners of
coarse block Ec and applying the trapezoid rule on each block δE, we obtain

∑
δE∈Ec

∫
δE

ρ(x)v(x)wc
l (x)dx(6.3)

≈
∑

δE∈Ec

ΔxΔyΔz

8

2∑
i,j,k=1

ρ(xi,j,k)v(xi,j,k)wc
l (xi,j,k),

where xi,j,k for i, j, k = 1, 2 are the quadrature nodes that coincide with the subgrid
nodes located at the corners of subgrid blocks δE. Lemma 4.1 states that the value
of the augmented solution at a particular grid node depends on the location of this
node. Therefore, we have to distinguish between the nodes located inside coarse block
Ec and the nodes located on its faces. We denote the set of nodes internal to coarse
block Ec by I, and nodes located on the boundary of the coarse block are contained
in set B. Using this notation, we rewrite the expression on the right-hand side of (6.3)
as a sum over all the subgrid nodes. Using Lemma 4.1, we replace the augmented
solution by the subgrid solution due to the source (denoted by superscript 0) at the
internal nodes and by the coarse solution at the boundary nodes:

ΔxΔyΔz

8

⎛
⎝8

∑
xi,j,k∈I

ρ(xi,j,k)δv0
i,j,kw

c
l (xi,j,k)(6.4)

+
∑

xi,j,k∈B

a(xi,j,k)ρ(xi,j,k)vc(xi,j,k)wc
l (xi,j,k)

⎞
⎠ ,

where we gain a factor of 8 for the summation over the internal nodes because each
internal node is shared by eight neighboring blocks. To complete the computation, we
evaluate the coarse solution vc at subgrid nodes xi,j,k using a finite element expansion.
The finite element expansion of the coarse solution evaluated at xi,j,k is a linear
combination of eight coefficients vc

l′ and basis functions wc
l′ :

ΔxΔyΔz

8

⎛
⎝8

∑
xi,j,k∈I

ρ(xi,j,k)δv0
i,j,kw

c
l (xi,j,k)(6.5)

+
∑

xi,j,k∈B

a(xi,j,k)ρ(xi,j,k)
8∑

l′=1

vc
l′w

c
l′(xi,j,k)wc

l (xi,j,k)

⎞
⎠ .

The second term in (6.5) is the only term that involves the unknown coarse
coefficients and gives input into the local mass matrix. Based on relation (6.5) we come
to the following conclusions about the coarse-grid mass matrix. First, the subgrid
solutions do not provide input into the mass matrices. Therefore, we can use the
same mass matrix for all the coarse equations. Second, since coarse basis functions
and density are functions of spatial location only, we compute the local mass matrices
and assemble the nonzero diagonals of the global matrix outside the time step loop.
Finally, relation (6.5) shows that the entries of the mass matrix are constructed from
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the weighted density values taken along coarse block faces with weights given by coarse
basis functions. This result is similar to the result obtained by Korostyshevskaya and
Minkoff [22] for the acoustic wave equation. Namely, this result shows that to a
certain degree the algorithm compensates for the homogeneous boundary condition
imposed on coarse blocks at the subgrid stage.

7. Numerical experiments. In this section we discuss the numerical conver-
gence and accuracy of the upscaling algorithm. To our knowledge, no dispersion or
stability analysis presently exists for the spectral finite element method. In Cohen
[13], the author provides stability analysis for the second order in space and time
finite-difference scheme that corresponds to the elastic wave equation with homoge-
neous input data. Recall from section 5 that in the case of a homogeneous medium,
explicit difference equations obtained at the subgrid stage of our algorithm reduce to
the standard finite-difference scheme discussed in [13]. In this work our rule of thumb
is therefore a 3D version of the stability condition provided in [13]:

Δt

√
1

Δx2
+

1
Δy2

+
1

Δz2
≤ 1√

V 2
p + V 2

s

,(7.1)

where Vp =
√

(λ + 2μ)/ρ and Vs =
√

μ/ρ are maximal compressional and shear
wave velocities respectively. To ensure that the stability condition is satisfied on both
the coarse and subgrids, we use the fine-grid space step in (7.1), since it produces
a more restrictive condition than the coarse space step. To minimize the effect of
dispersion, we follow the heuristic rule of thumb discussed in the papers by Komatitsch
et al. [20, 21]. We ensure that roughly five coarse-grid nodes are taken per minimum
wavelength in each spatial direction. The dispersion condition on the subgrid is then
automatically satisfied, since each coarse block is subdivided into a number of subgrid
blocks.

7.1. Numerical convergence. In this section, we present numerical experi-
ments that illustrate the convergence properties of the upscaling algorithm. As is
standard practice for evaluating the rate of convergence, we consider here waves prop-
agating in a homogeneous medium. The domain is a cube of size 1 m×1 m×1 m, and
the source function is chosen to produce the closed form velocity and displacement
solutions:

Vi = 2t sin(2πx) sin(2πy) sin(2πz),(7.2)
Ui = (t2 − 0.25Δt2) sin(2πx) sin(2πy) sin(2πz)(7.3)

for i = 1, 2, 3.
In experiment 1, we ran the upscaling code using one coarse block for the whole

domain. In this case, the coarse component of the solution is equal to zero due to
the zero-traction boundary condition (2.6), and the upscaling algorithm produces a
solution equivalent to a standard full finite element solution. Since our basis func-
tions are piecewise linear interpolating polynomials, we expect to see second-order
convergence. Table 7.1 summarizes the convergence results for Experiment 1. The
first two columns show the number of fine- and coarse-grid blocks in the domain.
Column three gives the number of time steps. Column four contains relative errors
at the final time between the first component of the augmented velocity solution and
analytical solution in the infinity norm. Finally, the last column displays the rate
of convergence. Each row of Table 7.1 presents a different subtest. When the grid
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Table 7.1

Relative errors for the first component of augmented velocity when the domain contains a single
coarse block (i.e., no upscaling is done).

Number of Number of Number of
||V1 − v1||∞

||V1||∞
Rate

fine blocks coarse blocks time steps
50 × 50 × 50 1 × 1 × 1 50 1.6664e−03 –

100 × 100 × 100 1 × 1 × 1 100 4.1485e−04 2.0
200 × 200 × 200 1 × 1 × 1 200 1.0377e−04 1.9

Table 7.2

Relative errors for the first component of augmented velocity for Experiment 2 in which both
the fine and coarse grids are refined.

Number of Number of Number of
||V1 − v1||∞

||V1||∞
Rate

fine blocks coarse blocks time steps
50 × 50 × 50 5 × 5 × 5 50 2.4554e−01 –

100 × 100 × 100 10 × 10 × 10 100 5.5976e−02 2.1
200 × 200 × 200 20 × 20 × 20 200 1.5578e−02 1.9
400 × 400 × 400 40 × 40 × 40 400 3.8776e−03 2.0

Table 7.3

Relative errors for the first component of augmented velocity for Experiment 3 in which the
fine grid is refined but the coarse grid is fixed.

Number of Number of Number of
||V1 − v1||∞

||V1||∞
Rate

fine blocks coarse blocks time steps
50 × 50 × 50 10 × 10 × 10 50 5.5967e−02 –

100 × 100 × 100 10 × 10 × 10 100 5.7067e−02 –
200 × 200 × 200 10 × 10 × 10 200 5.6439e−02 –
400 × 400 × 400 10 × 10 × 10 400 5.7506e−02 –

spacing is reduced by a factor of 2, the relative error goes down by a factor of 4. Thus
the last two columns of Table 7.1 demonstrate that for a homogeneous medium with
a single coarse block, the algorithm gives quadratic convergence.

In experiment 2, we show that if both the fine and coarse grids are refined, the
upscaling algorithm preserves the second-order convergence rate. In each subtest, we
reduce the grid spacing by half for both fine and coarse grids. The last two columns
of Table 7.2 indicate that the method in this case exhibits quadratic convergence.
One notes that although the input parameter fields (compressional and shear wave
velocities and density) are homogeneous for these experiments, we might still expect to
see less than quadratic convergence as the upscaling algorithm imposes zero boundary
conditions on coarse block edges at the subgrid stage of the algorithm.

Our goal in Experiment 3 is to demonstrate that convergence cannot be expected
if the coarse grid is fixed. In this experiment, we fix the coarse step size and reduce
the fine-grid space step (and time step) by a factor of 2 in each subtest. We see from
Table 7.3 that the error is constant. We conclude that the augmented solution error
in the infinity norm is dominated by the the coarse solution error. Therefore, if the
coarse grid is not refined, we cannot expect convergence.

In Experiment 4, we fix the fine grid and refine the coarse grid. We see second-
order convergence of the augmented solution to the true solution in this case (see
Table 7.4). As in Experiment 3, the coarse solution error dominates the augmented
error.
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Table 7.4

Relative errors for the first component of augmented velocity for Experiment 4 in which the
coarse grid is refined but the fine grid is held fixed.

Number of Number of Number of
||V1 − v1||∞

||V1||∞
Rate

fine blocks coarse blocks time steps
200 × 200 × 200 5 × 5 × 5 200 2.4770e−01 –
200 × 200 × 200 10 × 10 × 20 200 5.6439e−02 2.1
200 × 200 × 200 20 × 20 × 20 200 1.5578e−02 1.9
200 × 200 × 200 40 × 40 × 40 200 3.7272e−03 2.1

7.2. Accuracy. To study the accuracy of the upscaling method applied to the
elastic wave equation, we compare the upscaled and full finite element solutions for
three sets of heterogeneous medium experiments. As we mentioned in the previous
section, the full finite element solution is obtained by running the upscaling algorithm
with a single coarse block. In the first experiment the medium is a layered earth model.
In the second experiment we consider a periodic checkerboard medium corresponding
to two alternating materials. The final experiment we discuss in this section is run on
a larger domain, and the input velocity and density fields are truly heterogeneous. In
this case we have chosen a single realization of a stochastic von Karman distribution
of a two-component material mixture [16, 15].

In computational seismology, a fundamental elastic wave source is a point force.
The source, located at position xs, is given by the following equation:

f(t,x) = Ah(t)g
(|x − xs|2

)
a,(7.4)

where A is the amplitude, a describes the orientation of the force, and h(t) and
g(|x − xs|) define the waveform [13, 12, 21, 29].

Classical results on approximation of differential equations assume regularity of
the source function. Since operator-based upscaling is based on a standard finite
element method, it does not impose any additional restrictions on the smoothness
of the source functions beyond those required by finite element or finite-difference
methods. As in the case with standard methods, the straightforward representation of
seismic sources by discrete delta functions produces solutions which, while reasonably
accurate, converge only weakly.

In all the experiments, we set a equal to x − xs so that the force is uniformly
distributed in all three spatial directions. We use the 3D version of a Gaussian for
the spatial component g:

g(x) =
1√

2πσ2
exp

{ |x − xs|
2σ2

}
,(7.5)

where σ controls the spatial support of the source. For the time-dependent component
of the source, we use a Ricker wavelet (a standard seismic source which is the second
derivative of a Gaussian; see [30]):

h(t) = −2π2f0 exp−(πf0t)2
(
1 − 2(πf0t)2

)
,(7.6)

where the central frequency f0 is set to 1.7 Hz (see Figure 2).
In the layered medium and checkerboard experiments, we will consider a cubical

domain of size 12× 12× 12 km discretized into 120× 120× 120 fine-grid blocks. The
wavelength is approximately 1 km, and therefore, the domain is 12 wavelengths in each
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Fig. 2. Plot of Ricker wavelet h(t) given by (7.6).

Table 7.5

Compressional and shear wave velocities of the layered medium for Experiment 1. Density is
assumed constant at ρ = 2 · 1012 kg/km3.

Layer depth (km) Vp (km/s) Vs (km/s)
0–1.6 2.5 1.5

1.7–3.8 1.9 1.3
3.9–4.1 3.7 2.0
4.2–5.8 2.7 1.6
5.9–8.1 3.0 1.75
8.2–8.4 1.9 1.3
8.5–10.1 3.3 1.9
10.2–12.0 3.7 2.0

spatial direction. Note that to avoid boundary reflections our source was placed in the
center of the domain for these experiments. The time step Δt = 1.56 ·10−2 seconds is
computed according to condition (7.1) with Vp = 3.7 km/s and Vs = 2.0 km/s, which
are the maximum values of wave velocities in these experiments, and the simulations
were run for 100 time steps.

In Experiment 1, we consider a layered medium with compressional and shear
wave velocities varying as described in Table 7.5. (Figure 3 also shows a plot of
compressional wave velocity.) Density in this experiment is assumed to be constant
at 2 · 1012 kg/km3, and compressional and shear velocities vary only in depth z.
Therefore, the wave field is homogeneous in the xy plane and identical in the xz and
yz planes. We first show a comparison of full finite element and augmented solutions
for the velocity when an experiment is run using a Gaussian source. While a Gaussian
may not be a typical seismic source, this experiment clearly illustrates the impact of
the input layers on the solution. In this experiment there are 120 fine blocks and
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Fig. 3. The yz plane slice of the compressional wave velocity for experiment 1. The domain
is discretized into 24 × 24 × 24 coarse blocks with 5 × 5 × 5 fine blocks per coarse block. The thin
velocity layers are approximately half as wide as a coarse grid block.

(a) (b)

Fig. 4. Comparison of yz plane slices for Experiment 1 with the Gaussian source function. The
slice is taken at 3.7 km in the x-direction. The numerical grids for upscaling contain 120×120×120
fine-grid blocks and 24×24×24 coarse-grid blocks. The velocity field is shown in Figure 3. (a) First
component of full finite element velocity solution (km/s). (b) First component of the augmented
velocity solution (km/s).

24 coarse blocks in each of the three directions. Figure 4 compares slices of the full
finite element velocity solution and the augmented solution for the Gaussian source
experiment. In Figures 5 and 6, we compare slices of the full finite element velocity
solution and the augmented and coarse solutions for the more realistic Ricker source.
We show only the slices in the yz plane.
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Fig. 5. Comparison of yz plane slices for Experiment 1 with the Ricker wavelet source function.
The slice is taken at 3.7 km in the x-direction. The numerical grids for upscaling contain 120 ×
120 × 120 fine grid blocks and 24 × 24 × 24 coarse grid blocks. The velocity field is shown in
Figure 3. (a) First component of full finite element velocity solution (km/s); (b) first component of
the augmented velocity solution (km/s); (c) second component of full finite element velocity solution
(km/s); (d) second component of the augmented velocity solution (km/s); (e) third component of
full finite element velocity solution (km/s); (f) third component of the augmented velocity solution
(km/s).

We see from Figures 4 and 5 that the augmented solution appears to be in re-
markable agreement with the full finite element solution. The coarse solution has
a more homogeneous structure than the full finite element solutions (see Figure 6)
but still captures the essential fluctuations of the input velocity fields. Note that the
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Fig. 6. Comparison of yz plane slices for Experiment 1 with the Ricker wavelet source function.
The slice is taken at 4 km in the x-direction. The numerical grids for upscaling contain 120×120×120
fine-grid blocks and 24×24×24 coarse-grid blocks. The velocity field is shown in Figure 3. (a) First
component of full finite element velocity solution (km/s); (b) first component of the coarse velocity
solution (km/s); (c) second component of full finite element velocity solution (km/s); (d) second
component of the coarse velocity solution (km/s); (e) third component of full finite element velocity
solution (km/s); (f) third component of the coarse velocity solution (km/s).

comparisons of coarse and full finite element solutions and augmented and full finite
element solutions are shown for different slice locations. We chose to plot the coarse
solution on the coarse grid while the augmented solution is plotted on the fine grid.

Figures 4–6 show that the wave front does not have a spherical shape, as it would
if the wave propagated in a homogeneous medium. The deformation is especially
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Fig. 7. Comparison of traces for the first component of velocity for Experiment 1. Solid curve
is the full finite element solution. Dashed curve is the coarse solution. Dotted curve is the difference
between the full finite element and coarse solutions.

obvious in the lower part of the domain where the wave propagates faster than in the
rest of the domain due to the overall gradual increase of the compressional and shear
wave velocities with depth (see Figure 4). The wave propagates faster between 3.9
and 4.1 km in the z-direction due to the high-velocity layer at this location in the
input velocity field (see Table 7.5 and Figure 3). Although the thickness of the layer
(0.3 km) is smaller than the size of the coarse block in the z-direction (0.5 km), both
the coarse and augmented solutions capture this variation in the velocity field. The
region of low amplitude located in the lower part of the domain reflects the decrease
in the velocity field that occurs between 8.2 and 8.4 km in the z-direction.

Figure 7 compares time traces at the arbitrary receiver location (x, y, z) = (8 km,
4 km, 6 km) for the first component of velocity. The solid and dashed curves represent
the full finite element and coarse solutions, respectively. The dotted curve shows the
difference (error) between these two solutions. Figure 7 shows that, as expected,
the shape of the Ricker pulse is distorted by the reflections from material interfaces.
Comparing the solid and dashed curves, we conclude that the coarse solution is in
good agreement with the full finite element solution. In fact, the relative error between
the full finite element and coarse solutions is about 1%.

The velocity field used for the next set of experiments varies periodically on the
fine scale. We consider a checkerboard medium with cells of size 4 × 4 × 4 fine-grid
blocks (see Figure 8). Each cell has a compressional wave velocity of 2.5 or 3.7 km/s
and a shear wave velocity of 1.5 or 2.0 km/s. The coarse grid is discretized into
24 × 24 × 24 grid blocks in experiment 2a and 15 × 15 × 15 coarse-grid blocks in
experiment 2b. Therefore, in experiment 2a the size of the coarse blocks is close to
the period of the medium (the size of each checkerboard cell). In experiment 2b,
each coarse block is two times larger than the fine-scale period. Figures 9 shows
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Fig. 8. A yz slice of the compressional wave velocity for the checkerboard experiments. The
domain is discretized into 24 × 24 × 24 coarse blocks with 5 × 5 × 5 fine blocks in each coarse block
in Experiment 2a and 15 × 15 × 15 coarse blocks with 8 × 8 × 8 fine blocks in each coarse block in
Experiment 2b.
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Fig. 9. Comparison of xy plane slices for Experiment 2a. The slice is taken at 6.3 km in
the z-direction. The numerical grids for upscaling contain 120 × 120 × 120 fine-grid blocks and
24 × 24 × 24 coarse-grid blocks. The velocity field is shown in Figure 8. (a) Third component of
full finite element velocity solution (km/s); (b) third component of the augmented velocity solution
(km/s).

the xy slices of the third component of the solutions from experiment 2a. Figure 10
compares the xy slices of the full finite element and augmented solutions from exper-
iment 2b. Figures 9 and 10 show that the augmented upscaled solution captures the
checkerboard variations of the wave velocity field.

The velocity field for the final experiment is a single realization from a stochastic
distribution which models a two-component mixture of materials that vary based on
input correlation lengths in x and y, a roughness parameter (or Hurst number), and
a percentage distribution of the two materials. For this experiment, the materials are
distributed evenly (a 50/50 mixture), and the correlation lengths were chosen to be 200
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Fig. 10. Comparison of xy plane slices for Experiment 2b. The slice is taken at 6.3 km in
the z-direction. The numerical grids for upscaling contain 120 × 120 × 120 fine-grid blocks and
15 × 15 × 15 coarse-grid blocks. The velocity field is shown in Figure 8. (a) Third component of
full finite element velocity solution (km/s); (b) third component of the augmented velocity solution
(km/s).

Fig. 11. The xy plane slice of the compressional wave velocity for experiment 3. The domain
is discretized into 80 × 80 × 80 coarse blocks with 4 × 4 × 4 fine blocks per coarse block. The black
circle corresponds to the location of the receivers.

m in the x-direction and 300 m in the y-direction for each material. The 2D stochastic
model is extended to three dimensions by duplication of the layer for each value
of z. These correlation lengths guarantee fine-scale heterogeneity below the coarse-
grid block size of 0.4 km × 0.4 km × 0.4 km. The two materials have compressional
velocity values of 2.5 km/s and 3.0 km/s (see Figure 11). The values for shear wave
velocity for the two materials are 1.5 and 1.75 km/s, respectively, and the densities are
2.2 ·1012 and 2.3 ·1012 kg/km3. In this experiment, we consider a much larger domain
than in the previous experiments. The domain is 32 km × 32 km × 32 km, and we
ran the simulation for 3.85 s with Δt = 1.92 · 10−2 s. As before, the wavelength is
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Fig. 12. Comparison of yz plane slices for Experiment 3. The slice is taken at 18.1 km in
the x-direction. The numerical grids for upscaling contain 320 × 320 × 320 fine-grid blocks and
80 × 80 × 80 coarse-grid blocks. The velocity field is shown in Figure 11. (a) First component of
full finite element velocity solution (km/s); (b) first component of the augmented velocity solution
(km/s).
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Fig. 13. Comparison of xy plane slices for Experiment 3. The slice is taken at 18.1 km in
the z-direction. The numerical grids for upscaling contain 320 × 320 × 320 fine-grid blocks and
80 × 80 × 80 coarse-grid blocks. The velocity field is shown in Figure 11. (a) First component of
full finite element velocity solution (km/s); (b) first component of the augmented velocity solution
(km/s).

approximately 1 km, so the total propagation distance is approximately 7 wavelengths
if the source is placed in the center of the domain. As in the previous experiments,
the source is a Ricker wavelet in time.

Figures 12 and 13 show slices of the full finite element and augmented solutions
for the first component of velocity. We see that the upscaled solution captures many
of the essential features of the heterogeneous medium.

Figure 14 compares time traces at receiver locations (x, y, z) = (16 km, 8 km, 12
km) and (x, y, z) = (16 km, 8 km, 18 km). The black circle in Figure 11 indicates
the location of receivers in the xy plane. The solid and dashed curves show the full fi-
nite element and coarse solutions, respectively, corresponding to the random medium
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(a) (b)

Fig. 14. Comparison of time traces for the first component of velocity for Experiment 3. The
solid curve is the full finite element solution. The dashed curve is the coarse solution. The dotted
curve is the full finite element solution for a homogeneous medium with a single (average) value for
each of the three input parameters. (a) Receiver location is (x, y, z) = (16 km, 8 km, 12 km); (b)
receiver location is (x, y, z) = (16 km, 8 km, 18 km).

shown in Figure 11. The dotted curve is the full finite element solution for an experi-
ment with a single value for each of the three input parameters (determined by taking
an average of the parameters for the two materials). Comparing traces in 14, we see
that while the full finite element and coarse solutions may have different amplitudes,
the coarse solution does a good job of locating interfaces between materials (events)
and would therefore be of use as part of an inversion scheme.

8. Parallel implementation and performance. The parallel implementation
of the elastic upscaling method is based on two facts about the upscaling algorithm:
(1) the subgrid stage of the algorithm is embarrassingly parallel, and (2) the coarse
load vector calculation and the subgrid solve dominate the time step. Table 8.1 gives
timings for the time-step loop of the serial elastic upscaling code. In each row of the
table a different test is performed. Specifically, the number of coarse-grid blocks is
doubled in each spatial direction, while the fine grid remains fixed at 80 × 80 × 80
blocks. The first column of Table 8.1 shows the number of coarse blocks in the domain.
Column two gives the total time taken by the time-step loop and is the sum of the
times shown in columns three (subgrid problems) and four (coarse problem). The time
taken to solve the coarse problem is further decomposed into times for the linear solve
and load vector calculation shown in columns five and six, respectively. As we see from
Table 8.1, the time step is dominated by the coarse solve, with the time for the coarse
solve being taken almost entirely by load vector calculations for this experiment.
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Table 8.1

Observed timings in seconds of a single time step of the elastic upscaling code for varying
numbers of coarse blocks. The fine grid is 80 × 80 × 80 blocks.

Number of Time-step Subgrid Coarse Linear Load vector
coarse blocks loop problems problem solve computation

1 5.644 1.066 4.578 0.000 4.578
23 5.962 1.018 4.943 0.000 4.943
43 6.654 1.013 5.642 0.000 5.641
53 7.711 1.043 6.218 0.001 6.217
103 9.989 1.105 8.885 0.017 8.867
203 17.92 1.329 16.591 0.431 16.16

In order to complete the load vector calculation at each time step, we must
compute and assemble six load vectors, one for each of the three components of
displacement and the three components of velocity. Computing a single entry of
the load vector for any component of velocity requires the evaluation of ten inner
products. Displacement components are slightly less expensive and require three
inner products only. Still, each of these inner products is a triple integral. Thus, for a
coarse grid that consists of 15 coarse blocks in each direction (or a 16×16×16 coarse
grid), we must evaluate 163 · (3 · 10 + 3 · 3) = 159,744 triple integrals at each time
step. The great cost associated with the load vector computation suggests that if,
in addition, to parallelizing subgrid problems we parallelize the coarse problem, the
resulting algorithm will be more efficient. Therefore, we parallelize the computation
of the coarse-grid load vector and use the sparse linear solver SuperLU_DIST [24] to
solve the coarse-grid linear system in parallel.

Parallelizing the subgrid problems is straightforward. Because the subgrid prob-
lems are independent of one another, they can be parceled out to the available pro-
cessors and solved separately without requiring communication. Computation of the
load vectors is also essentially embarrassingly parallel. Calculating an entry of a load
vector requires the evaluation of several inner products over the support of the coarse
basis function associated with the load vector entry. Recall from section 6 that the
support of each coarse basis function consists of eight coarse blocks. Parallelizing the
load vector calculation relies on the observation that coarse blocks in the support of a
basis function might be stored across multiple processors, but the inner products can
be evaluated over the blocks stored on each processor separately and then summed.
Therefore, the only communication in the load vector computation occurs when the
pieces of the local vectors are assembled via MPI_Allreduce.

In addition to parallelizing the subgrid solve and load vector calculation, we also
parallelize I/O. Because our parallel algorithm is based on calculations done over
a single coarse block, our input algorithm splits coarse blocks as evenly as possible
among processors. To avoid memory restrictions, we distribute the coarse blocks by
reading one xy slice of the input fields at a time (see Minkoff [25]). The layer is
then broadcast to each process, and each processor keeps the portion of the layer
corresponding to its set of coarse blocks and discards the remainder. Output slices of
the augmented and coarse solutions are handled similarly. In terms of memory usage,
parallelizing I/O allows us to avoid storing the global fine-grid unknowns on a single
process at any point of the algorithm.

Upscaling does not require storage of ghost cell information. Therefore, the sub-
grid stage of the upscaling algorithm consumes less memory than standard domain
decomposition techniques. Unfortunately we do need to store a coarse-grid mass
matrix and the coarse solution in addition to the subgrid solution. Although the
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Table 8.2

Observed timings in seconds of a single time step of the parallel elastic upscaling code for
different number of processes. The numerical grids consist of 320 × 320 × 320 fine blocks and
16 × 16 × 16 coarse blocks.

Number of Time-step Subgrid Coarse Linear Load vector
processes loop problems problem solve computation

1 179.36 15.25 163.70 0.43 163.27
2 89.23 7.27 81.79 0.26 81.53
4 45.98 3.64 42.25 0.20 42.02
8 22.59 1.81 20.74 0.15 20.59
16 11.32 0.91 10.40 0.14 10.26
32 5.72 0.46 5.25 0.12 5.13
64 2.98 0.23 2.74 0.12 2.62
128 1.54 0.12 1.41 0.12 1.29

Table 8.3

Observed timings in seconds of a single time step of the parallel elastic upscaling code for
different number of processes. The numerical grids consist of 320 × 320 × 320 fine blocks and
32 × 32 × 32 coarse blocks.

Number of Time-step Subgrid Coarse Linear Load vector
processes loop problems problem solve computation

1 238.07 17.00 220.23 8.30 211.92
2 119.41 8.39 110.63 4.58 106.05
4 60.03 4.22 55.62 2.62 53.00
8 30.61 2.23 28.28 1.70 26.58
16 17.07 1.00 16.02 2.75 13.27
32 8.17 0.51 7.63 0.95 6.68
64 4.51 0.25 4.24 0.88 3.36
128 2.88 0.13 2.74 0.96 1.78

coarse-grid problem is significantly smaller than the full fine-scale problem, these
additional memory requirements are very likely to make the upscaling algorithm as
expensive in terms of memory as standard domain decomposition methods. However,
if the upscaled coarse solution is used as the forward solution for an iterative inversion
scheme, it is likely that less memory would be required to solve the inverse problem.

Tables 8.2 and 8.3 summarize the observed timing results (in seconds) for the
parallel elastic upscaling code for a problem of size 64 × 64 × 64 km discretized into
320 × 320 × 320 fine grid blocks. The serial full finite element code takes 140.30 s to
run a single time step of this problem. Table 8.2 shows fixed speedup timing results
for the coarse grid of size 16 × 16 × 16 blocks, and Table 8.3 shows timing results
for the coarse grid of size 32 × 32 × 32 blocks. Table 8.4 illustrates scaled speedup.
Scaled speedup requires us to double the size of the problem every time the number
of processes is doubled. Since the ratio between problem size and the number of
processes remains constant, the optimal scaled speedup does not change.

We can see from Tables 8.2, 8.3, and 8.4 that even on a single process the cost
of operator upscaling is comparable to the cost of the full finite element algorithm.
As expected, the total time is dominated by the coarse problem. The time required
to solve the subgrid problems and assemble the load vectors is cut in half when we
double the number of processes. The time required to solve the linear system does
not decrease after 32 processes. Better speedup of the linear system solve might be
achievable with a different parallel solver. Luckily the linear solver is relatively cheap
unless the number of coarse blocks is very large (i.e., not much upscaling is done).
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Table 8.4

Scaled speedup timings in seconds of a single time step of the parallel elastic upscaling code for
different number of processes. Each node solves a problem of size 80× 80× 80 fine grid blocks. The
largest problem is size 320 × 320 × 320 fine grid blocks. Each coarse block consists of 4 × 4 × 4 fine
grid blocks.

Number of Time-step Subgrid Coarse Linear Load vector
processes loop problems problem solve computation

1 6.28 0.34 5.92 0.43 5.494
2 6.40 0.33 6.06 0.58 5.479
4 7.03 0.35 6.66 1.08 5.575
8 7.81 0.33 7.46 1.92 5.540
16 8.74 0.33 8.39 2.79 5.600
32 10.42 0.34 10.06 4.35 5.712
64 14.50 0.34 14.14 8.08 6.050

When the coarse problem is larger, as in the experiment presented in Table 8.4,
the time required to solve the coarse-grid linear system becomes more significant. The
second column of Table 8.4 shows that speedup decreases when the problem is solved
on more than 16 processes. Columns three and six indicate that the time required to
solve the subgrid problems and construct load vectors remains essentially the same
for any number of processes, as expected for scaled speedup. The linear solver, on
the other hand, takes more time whenever we increase the number of processes.

9. Conclusion. In this paper we present the first operator upscaling algorithm
for the 3D elastic wave equation. We upscale all six unknowns (three velocities and
three displacements). We have shown that both the coarse, and reconstructed fine-
scale solutions capture some of the fluctuations of the input velocity fields even if
these fluctuations occur on a scale smaller than a single coarse block. Most notable
for inversion studies, the locations of “reflectors” (especially evident for the layered
medium experiment) are well captured by the upscaled solution.

Experimental studies in a homogeneous medium indicate that the operator up-
scaling algorithm implemented using linear basis functions exhibits second-order con-
vergence in both space and time. While one might expect this result for standard
finite element methods, it is less intuitive in the case of upscaling due to the zero
boundary conditions imposed on coarse block edges in the subgrid stage of the algo-
rithm. For the algorithm to exhibit this convergence, the coarse grid must be refined.
We describe both serial and parallel implementations of the method. The subgrid
problems are embarrassingly parallel due to the choice of boundary conditions im-
posed on each coarse block in the subgrid solve. In addition, we have shown that
the local subgrid equations are explicit. The coarse-grid system matrix has a sparse
and banded structure and is independent of time and subgrid solutions. Therefore,
the matrix can be assembled outside of the time-step loop and its setup is cheap in
terms of both memory and computational effort. The load vectors, on the other hand,
have to be updated at each time step. The computation of the load vectors requires
approximation of multiple inner products with input parameters defined on the fine
grid. The load vector calculation is therefore the most expensive part of the algorithm.
Once again, however, parallelization of this calculation is easily distributed over the
support of each coarse basis function without need for additional storage, and the
resulting algorithm exhibits optimal speedup for both the load vector calculation and
the subgrid solve.

Other implementations of the method for elasticity are possible. Specifically a
mixed formulation of the spectral element method discussed by Cohen et al. in [13, 12]
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would use H1-L2 variational spaces and the nonclassical transformation of the elastic
wave equation into a first-order system for displacement and vector-valued variables
γ. In the full fine-scale version of the method, the vector-valued variables γ have local
support on each grid element and are discontinuous from one element to another,
which creates a natural framework for upscaling. In addition, this mixed formulation
of the method ensures conservation of energy on both the fine and coarse scales and
allows for the implementation of perfectly matched layers for modeling unbounded
domains.

Appendix A. In this appendix, we provide explicit difference equations that
correspond to the subgrid problem. We approximate the inner products in the subgrid
equations by using first-order Gauss–Lobatto quadrature. In section 5, we illustrate
the procedure by evaluating a single inner product on the right-hand side of (3.2) for
the first component of velocity. Applying the same approach to the rest of the inner
products, we obtain the following system of equations:
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where q = 1, 2, 3 and i, j, k denote local indices that range over all the subgrid nodes.
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