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Abstract

The aim of this note is to communicate a simple example of a Lie-Rinehart algebra
whose enveloping algebra is not a Hopf algebroid in the sense of Böhm and Szlachányi.

1 Introduction

The enveloping algebra of a Lie algebra is a classical example of a Hopf algebra. Hence it is
natural to ask whether the enveloping algebra of a Lie algebroid [Pra67] or more generally of a
Lie-Rinehart algebra [Rin63] carries the structure of a Hopf algebroid. It turns out that they
always are left bialgebroids (introduced under the name ×R-bialgebras by Takeuchi [Tak77]),
see [Xu01], and in fact left Hopf algebroids (introduced under the name ×R-Hopf algebras by
Schauenburg [Sch00]), see [KK10, Example 2]; see also [Hue08,MM10].

However, the question whether these left Hopf algebroids are full Hopf algebroids in the sense
of [Böh09] (generalising the notion from [Lu96]) remained open. In the light of [KP11, Proposi-
tion 3.11], this is known to be true for Lie algebroids [ELW99] and for the Lie-Rinehart algebras
associated to Poisson algebras [Hue98, Section (3.2)]. A counterexample was announced by
Kowalzig and the first author, see [KP11, Remark 3.12], but the construction contained a gap.
To our knowledge, the literature still contains no example of a left Hopf algebroid that is not
a full one. Hence the aim of the present note is to communicate such an example:

Theorem 1.1. Let K be a field, R := K[x, y]/〈x ·y, x2, y2〉, L be the 1-dimensional Lie algebra
with basis {α} and E ∈ DerK(R) be the derivation with E(x) = y,E(y) = 0.

1. There is a Lie-Rinehart algebra structure on (R,L) with R-module structure on L given
by x · α = y · α = 0 and anchor map given by ρ(α) = E.

2. There is no right V (R,L)-module structure on R that extends right multiplication in R.
In particular, V (R,L) is not a full Hopf algebroid.

The note is structured as follows: in Section 2 we recall some basic definitions. In Section
3 we provide a construction method of Lie-Rinehart algebras whose enveloping algebras do not
admit an antipode. The simplest example of these is the one in our theorem. Lastly, Section
4 illustrates the result by giving an explicit presentation of V (R,L) for our example in which
the nonexistence of an antipode becomes evident.

∗ulrich.kraehmer@glasgow.ac.uk
†a.rovi.1@research.gla.ac.uk

1



U.K. acknowledges support by the EPSRC grant “Hopf algebroids and Operads” and the
Polish Government Grants 2011/01/B/ST1/06474 and 2012/06/M/ST1/00169; A.R. is funded
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2 Background

This section contains background on Lie-Rinehart algebras [Rin63], see also [Hue98, Kow09,
KP11, MM10] for more information. For the corresponding differential geometric notion of a
Lie algebroid see [Pra67] and for example [Mac87] for further details.

We fix a field K. An unadorned ⊗ denotes the tensor product of K-vector spaces.

Definition 2.1. A Lie-Rinehart algebra consists of

1. a commutative K-algebra (R, ·),

2. a Lie algebra (L, [−,−]L) over K,

3. a left R-module structure R⊗ L→ L, r ⊗ ξ 7→ r · ξ, r ∈ R, ξ ∈ L, and

4. an R-linear Lie algebra homomorphism ρ : L→ DerK(R) satisfying

[ξ, r · ζ]L = r · [ξ, ζ]L + ρ(ξ)(r) · ζ, r ∈ R, ξ, ζ ∈ L. (2.1)

The map ρ is referred to as the anchor map.

There are two fundamental examples: if R is any commutative algebra, one can take L to
be DerK(R) with its usual Lie algebra and R-module structure, and ρ = id. The other extreme
is R = K and ρ = 0, L being any Lie algebra.

In his paper [Rin63], Rinehart generalised the construction of the universal enveloping alge-
bra of a Lie algebra to Lie-Rinehart algebras, see Section 2 therein for the precise construction.
The result is an associative K-algebra V (R,L) that is generated by the (sum of the) images of
a K-algebra map

R −→ V (R,L)

and a Lie algebra map

(L, [−,−]L) −→ (V (R,L), [−,−]), ξ 7−→ ξ̄

where [−,−] denotes the commutator in V (R,L). As Rinehart, we do not distinguish between
an element in R and its image in V (R,L) which is justified as the first map is always injective.
The construction is such that in V (R,L) one has for all r ∈ R, ξ ∈ L

[ξ̄, r] = ρ(ξ)(r), rξ̄ = r · ξ, (2.2)

where the product in V (R,L) is denoted by concatenation.
As indicated in the introduction, V (R,L) has the structure of a left Hopf algebroid. Its

counit endows R with the structure of a left V (R,L)-module, in such a way that the induced
action of r ∈ R is given by left multiplication, and the induced action of ξ ∈ L is given by
the anchor map. For a full Hopf algebroid, composing the counit with the antipode yields also
a right V (R,L)-module structure on the base algebra R extending right multiplication in R,
see [KP11, Proposition 3.11] for full details. Thus the nonexistence of such a right module
structure on the base algebra R indeed implies the nonexistence of an antipode.
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3 Proof of Theorem 1.1

We now prove Theorem 1.1. We begin by considering more generally Lie-Rinehart algebras
(R,L) whose R-module structure on L is given by a character χ : R→ K.

Proposition 3.1. Let (R, ·) be a commutative K-algebra, (L, [−,−]L) be a Lie algebra and
ρ : L → DerK(R) be a Lie algebra map. Define an R-module structure on L by r · ξ := χ(r)ξ,
where χ : R → K is a character on R. Then (R,L) is a Lie-Rinehart algebra if and only if ρ
is R-linear and ρ(ξ)(r) ∈ kerχ for all r ∈ R, ξ ∈ L.

Proof. This follows as the Leibniz rule (2.1) takes the form

[ξ, χ(r)ζ]L = χ(r)[ξ, ζ]L + χ(ρ(ξ)(r))ζ

and hence by the K-linearity of the bracket becomes equivalent to ρ(ξ)(r) ∈ kerχ.

Note that for these examples, [−.−]L is even R-linear, so L is a Lie algebra over R. However,
in general we have ρ 6= 0.

Assume now that (R,L) is a Lie-Rinehart algebra as in the above proposition, and that
right multiplication in R can be extended to a right V (R,L)-module structure on R. Denote
by ∂(ξ) ∈ R the element obtained by acting with ξ ∈ L on 1 ∈ R under this right action. This
defines a K-linear map ∂ : L→ R, and in V (R,L) we have

ρ(ξ)(r) = [ξ̄, r] = ξ̄r − rξ̄ = ξ̄r − r · ξ = ξ̄r − χ(r)ξ̄,

so by acting with this element on 1 ∈ R, one sees that this map ∂ satisfies

ρ(ξ)(r) = ∂(ξ) · (r − χ(r)). (3.1)

A K-linear map ∂ with this property defines a right V (R,L)-module structure extending mul-
tiplication on R if and only if it satisfies the condition ∂([ξ, ζ]L) = ρ(ξ)(∂(ζ))− ρ(ζ)(∂(ξ)). It
also corresponds to a generator of the Gerstenhaber bracket on ΛRL, see [Hue98], but we shall
not need these facts:

Proof of Theorem 1.1. The first part is verified by explicit computation; the Lie-Rinehart al-
gebra is of the form as in Proposition 3.1 with χ given by χ(x) = χ(y) = 0.

For 2., take r = x and ξ = α in (3.1). One obtains y = E(x) = ρ(α)(x) = ∂(α) ·x. However,
there is no element z ∈ R such that y = z · x.

4 A Hopf algebroid without antipode

Carrying out Rinehart’s construction explicitly yields a presentation of the associative K-
algebra V (R,L) in terms of generators x, y, ᾱ satisfying the relations

ᾱx = y, ᾱy = xᾱ = yᾱ = x2 = y2 = xy = yx = 0.

Hence V (R,L) has a K-linear basis given by {ᾱn, x, y}n∈N.
In view of Axiom (iii) in [Böh09, Definition 4.1], the antipode S of any Hopf algebroid H

over R satisfies S(t(r)) = s(r) where s, t : R → V (R,L) are the source and the target map of
the underlying left bialgebroid, respectively. For the left bialgebroid V (R,L), these are both the
inclusion of R into V (R,L), hence an antipode on V (R,L) would satisfy S(x) = x, S(y) = y.

However, the antipode of a Hopf algebroid is an algebra antihomomorphism, S(gh) =
S(h)S(g) for all g, h ∈ H, see e.g. [Böh09, Proposition 4.4 (i)]. So in V (R,L), one would have

y = S(y) = S(ᾱx) = S(x)S(ᾱ) = xS(ᾱ).
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This illustrates directly that V (R,L) admits no antipode, since there is no element z ∈ V (R,L)
such that y = xz.
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