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Abstract

This report gives an overview of the linear complementarity problem, as a
special case of mathematical programming with equilibrium constraints. The
interior point method and two versions of Lemke’s method are reviewed, as
methods for solving the linear complementarity problem. The report con-
cludes with a description of the Stackelberg game and the bimatrix game
as possible applications of mathematical programming with equilibrium con-
straints and the linear complementarity problem, and also considers Lemke-
Howson’s algorithm for solving the bimatrix game.
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1 Introduction

The purpose of this report is to look closer at the subclass of mathematical
programming with equilibrium constraints (MPEC) that involves the linear
complementarity problem (LCP) and consider different ways of solving them.
Before giving a description of the LCP, a brief presentation of the MPEC and
the variational inequality problem will be given. The equilibrium constraints
of the MPEC are normally expressed as parametric variational inequality
problems. As will be shown, the linear complementarity problem is a special
case of the variational inequality problem, and thus also a special case of the
MPEC.

The detailed outline of the report is as follows. First, a description of the
MPEC will be given in section 2. The problem formulation and description of
the linear complementarity problem will be given in section 3. Two methods
for finding solutions to LCPs will be considered in section 4: An interior point
method developed by Kojima, and Lemke’s method. Finally, Stackelberg
games and bimatrix games will be defined and related to MPEC and LCP
in section 5. Also, the Lemke-Howson method for finding equilibrium points
in the bimatrix game will be presented.
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2 Mathematical Programming with Equilib-
rium Constraints

2.1 Overview

A mathematical program with equilibrium constraints (MPEC) is defined as
”an optimization problem in which the essential constraints are defined by a
parametric variational inequality or complementarity system” [10]. MPEC
is a quite new field of research and is an extension of bilevel programming
(BP). The equilibrium constraints are normally expressed either as a comple-
mentarity system or as a variational inequality, where the former is a special
case of the latter. MPEC has a wide range of applications, for example in
economics and on the electricity market. The concept of MPEC has its ori-
gin in the economic concept of Stackelberg games. Stackelberg games and
bimatrix games will be discussed more in detail in section 5.

MPEC is a hierarchical program in two levels. It is sometimes referred to
as Mathematical Programming with Complementarity Constraints (MPCC),
due to the complementarity form of the equilibrium constraints. The com-
plementarity constraints can further be divided into Mixed Complementar-
ity Programs (MCP) and Generalized Linear Complementarity Programs
(GLCP). The GLCP, also known as the linear complementarity problem
over cones, unifies the problem classes of the monotone linear complementar-
ity problem, the linear program, convex quadratic programs and the mixed
monotone LCP [5].
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2.2 Problem formulation

The mathematical formulation of the MPEC is as follows. Let f and F be the
mappings f : Rn+m → R and F : Rn+m → Rm, let Z ⊆ Rn+m be a nonempty
closed set, and let C : Rn → Rm be a set-valued map with (possibly empty)
closed convex values. The set of all vectors x ∈ Rn for which C(x) $= ∅ is the
domain of C and denoted dom(C). Let X be the projection of Z onto Rn,
so that

X = {x ∈ Rn : (x, y) ∈ Z, for some y ∈ Rm}.

The set C(x) defines the values of y that are feasible for each given x ∈ X.
Z is the feasible region for the pair (x, y) of the upper-level problem. We
assume that X ⊆ dom(C). The MPEC typically involves two variables,
x ∈ Rn and y ∈ Rm, where some of the constraints are parametric variational
inequalities or a complementarity system, in which y are the so called primary
variables and x is the parameter vector. With the above definitions, the
general formulation of the MPEC optimization problem can be expressed as

minimize
x,y

f(x, y)

subject to (x, y) ∈ Z

y ∈ S(x)

(2.1)

where for each x ∈ X, S(x) is the set of solutions for a variational inequality.
As will be seen in section 3.1, the linear complementarity problem is a special
case of the variational inequality problem. The function f is the objective
function of the upper-level problem. F is the equilibrium function of the
inner-problem. Computationally this general form of the problem is very
hard to solve. The mathematical program with equilibrium constraints are
generally NP-hard. There are alternative ways of expressing the MPEC
problem. A more complementarity-oriented formulation is,

minimize
x

f(x)

subject to c(x) ≥ 0

0 ≤ x1 ⊥ x2 ≥ 0

(2.2)

where ⊥ is the complementarity operator, i.e for each component pair i of
the vectors x1 and x2, if x1i $= 0, then x2i = 0. MPEC problems can be
transformed into a nonlinear program (NLP) by replacing the complemen-
tarity constraint 0 ≤ x1 ⊥ x2 ≥ 0 with the constraint X1x2 ≤ 0, where
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X1 = diag(x1). This gives the NLP formulation of the problem:

minimize
x

f(x)

subject to c(x) ≥ 0

x1, x2 ≥ 0,

X1x2 ≤ 0

(2.3)

There are serious difficulties with solving (2.3), mainly because standard
stability assumptions are not met. However, there has been some success in
finding local optimal points for (2.3) using sequential quadratic programming
methods [9].
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3 The Linear Complementarity Problem (LCP)

3.1 Problem formulation

The Linear Complementarity Problem (LCP) is defined in the following way.

Definition 3.1 (The Linear complementarity problem). Let w be a mapping
w : Rn → Rn. Given w, one seeks a vector z ∈ Rn such that

w = Mz + q, z ≥ 0, w ≥ 0, ziwi = 0 (3.1)

for i = 1, 2, . . . , n.

Using shorter notation, the linear complementarity problem defined above
can be expressed as the LCP (q, M). From the constraints z ≥ 0, w ≥ 0 and
ziwi = 0 follows that z and w are required to be nonnegative, and that at least
one of the component-pair zi, wi must be zero, e.g. if z1 $= 0, then w1 = 0.
This complementarity constraint can also be expressed as 0 ≤ z⊥w ≥ 0,
where ⊥ is the complementarity operator. As was mentioned earlier, the
equilibrium constraints of the MPEC are expressed by variational inequal-
ities. The variational inequality (VI) contains a broader class of problems
than the LCP. The standard mathematical formulation of the variational
inequality problem is the following.

Definition 3.2 (The Variational inequality problem). Determine a vector
z ∈ K ⊂ Rn, such that

(y − z)T F (z) ≥ 0, for all y ∈ K (3.2)

where F is a given continous function from K → Rn and K is a given closed
convex set.

Using shorter notation, the variational inequality problem can be stated
as VI (K, F ). The LCP is a special case of the variational inequality [4,
”Linear Complementarity Problem”], which can be seen by setting y = 0
and demanding that z and F (z) are nonnegative, i.e. in R+. The resulting
constraints F (z) ≥ 0, z ≥ 0 and zT F (z) ≤ 0 can be expressed with the
complementarity operator as

0 ≤ z⊥ F (z) ≥ 0.

which is the complementarity constraint of the LCP. From the LCP being a
special case of the variational inequality problem, it can be shown that the
LCP (q, M) and the VI (Mz + q, R+) have the same solutions.
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Theorem 3.1. Let F = Mz + q, M ∈ Rn×n, q ∈ Rn, z ∈ Rn
+. Then the

VI(F, R+) and the linear complementarity problem LCP(q, M) have precisely
the same solutions, if any.

Proof. Suppose that z solves VI(F, R+). By taking y = 0 in (3.2), we obtain

zT F (z) ≤ 0. (3.3)

Since z ∈ R+, it follows that also 2z ∈ R+. Thus by inserting y = 2z in (3.2),
we obtain

zT F (z) ≥ 0. (3.4)

Combining the inequalities (3.3) and (3.4), we get

zT F (z) = 0. (3.5)

which in turn yields
yT F (z) ≥ 0

for all y ∈ R+. In the same way, if z solves the LCP(q, M), then it can be
shown that z solves the VI(F, R+).

It can be noted that theorem 3.1 applies to complementarity problems
in general, i.e. also the nonlinear complementarity problem has the same
solutions as the variational inequality problem. However, in this report we
are mainly concerned with the LCP. A generalized proposition for the com-
plementarity problem can be found in [3, pp. 4-5].

The description of the variational inequality problem shows the relation
between the MPEC and the LCP. As was mentioned, the equilibrium con-
straints of the MPEC are expressed as variational inequalities. Thus, from
the LCP being a special case of the variational inequality, it follows that
a subgroup of MPEC are those problems whose equilibrium constraints are
defined by a LCP. In this sense, the LCP is a special case of the MPEC.

7



3.2 Existence and uniqueness of solutions

The notion of monotonicity is central in the existence and uniqueness of so-
lutions to the linear complementarity problem and the variational inequality
problem. As will be discussed in section 4, there are interior point meth-
ods that can solve monotone LCPs in polynomal time. Monotone LCPs are
therefore considered to be ”easy” problems. Some fundamental existence and
uniqueness theorems will be stated here. However, before stating the condi-
tions for existence and uniqueness of solutions for the LCP, some definitions
are needed.

Definition 3.3 (Principal minor). Let A be an n × n matrix. A k × k
submatrix of A formed by deleting n − k rows of A, and the same n - k
columns of A, is called a principal submatrix of A. The determinant of a
principal submatrix of A is called a principal minor of A.

Different characteristics of the M -matrix are important when it comes to
deciding whether a LCP (q, M) has any solutions. One common matrix class
is the class of P -matrices.

Definition 3.4 (P -matrix). A real square matrix M is a P -matrix if it
satisfies

zi(Mz)i > 0,

for all 0 $= z ∈ Rn.

It can be shown that a LCP (q, M) has at least one solution for every
real vector q if the matrix M is a P -matrix and all its principal minors are
positive.

Theorem 3.2. Let M ∈ Rm×m be a P-matrix with all of its principal minors
positive. Then the LCP (q, M) has a solution for all vectors q ∈ Rm.

As was mentioned earlier, several of the central existence and uniqueness
results are closely related to the monotonicity of the problem. There are
different types of monotonicity and they play a important role to the existence
of solutions for LCPs and VIs. In this report, monotonicity is defined in the
following way.

Definition 3.5 (Monotonicity). A mapping F : K ⊆ Rm → Rm is said to
be

1. monotone on K if for all pairs (u, v) ∈ K ×K,

(u− v)T (F (u)− F (v)) ≥ 0;
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2. strictly monotone on K if for all pairs (u, v) ∈ K ×K with u $= v,

(u− v)T (F (u)− F (v)) > 0;

3. strongly monotone on K if there exists a constant c > 0, such that for
all pairs (u, v) ∈ K ×K,

(u− v)T (F (u)− F (v)) ≥ c ‖ u− v ‖2 .

The results below are originally from [10, p. 54], in which they are pre-
sented for the variational inequality problem. Due to theorem 3.1, the results
in theorem 3.3 can be transfered to the LCP case as well.

Theorem 3.3. Let K be a closed convex set in Rm and F : K → Rm be
a continuous mapping. Let SOL(F, K) denote the (possibly empty) solution
set of the VI (F, K).

1. If F is monotone on K, then SOL(F, K), if nonempty, is a closed
convex set.

2. If F is strictly monotone on K, then SOL(F, K) consists of at most
one element.

3. If F is strongly monotone on K, then SOL(F, K) consists of exactly
one element.

The existence of solution is guaranteed when q is nonnegative. This will
be used in Lemke’s method described in section 4.3.

Theorem 3.4. If q is nonnegative, then the LCP (q, M) in (3.1) is always
solvable, where z = 0 is a trivial solution.

Proof. The proof of theorem 3.4 is trivial. Simply set z = 0 and verify that
the constraints in the definition of the LCP holds for all q ≥ 0.
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4 Methods for the LCP

4.1 Introduction

Quite many algorithms have been developed for solving the linear comple-
mentarity problem. The perhaps most well known method for solving LCPs is
Lemke’s method. One drawback with Lemke’s method is its worst-case expo-
nential running time, which makes it inefficient for larger problems. However,
there are methods for solving the LCP that run in polynomial time.

The two methods that will be considered in this report are Lemke’s
method and a polynomial-time interior point method. The interior method
presented in this report was developed by Kojima [7]. It has been inspired by
the algorithms that have been used for solving linear programs in polynomial-
time, originally developed by Karmarkar [6]. For the LCP to be solved in
polynomial time with the interior point method requires the matrix M to be
positive semi-definite.

4.2 Interior-point method

The interior point method presented in this report has a total computational
complexity of O(n3.5). However, modifications to the algorithm have been
suggested in [7], which would reduce the total computation complexity to
O(n3) operations.

The following assumptions are made for the LCP (q, M), with M ∈ Rn×n

and q ∈ Rn, that is to be solved with the interior point method considered
in the report:

• n ≥ 2. The case n = 1 has a trivial solution and will not be considered.

• The elements in M and q are integers.

• M is positive semi-definite, i.e. zT Mz ≥ 0 for all z ∈ R.

• Each row of M has at least one nonzero element.

Before presenting the algorithm, a system of equations that will be used
frequently in the algortihm will be defined. Let H be a mapping H : Rn

+ ×
R2n

+ → Rn × Rn defined by

H(µ, z, w) = (ZWe− µe, w −Mz − q) (4.1)

for all (µ, z, w) ∈ R1+2n
+ , where W = diag(w), i.e. the diagonal matrix of

w, and e is a n-dimensional vector of ones. It can be shown that (z, w) is a
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solution to the LCP if and only if it is a solution to equation (4.1) for µ = 0.
From this follows that LCP (q, M) is equivalent to

H(0, z, w) = 0 and (z, w) ∈ R2n
+ (4.2)

The symbol S is used for the set of all the feasible solutions of the LCP, Sint

is the interior of S and Scp are all the solutions of the LCP.

S = {(z, w) ∈ R2n
+ : w = Mz + q}

Sint = {(z, w) ∈ R2n
++ : w = Mz + q}

Scp = {(z, w) ∈ S : ziwi = 0, (i = 1, 2, . . . , n)}

The Rn
+ = {z ∈ Rn : z ≥ 0} is the nonnegative orthant of Rn, and Rn

++ =
{z ∈ Rn : z > 0} is the positive orthant of Rn.

Each point (x, y) ∈ R2n that satisfies the system (4.1) for some µ > 0 is
called a center of the feasible region S. The set of all center points is denoted
Scen and is defined as

Scen = {(x, y) ∈ R2n
+ : H(µ, z, w) = 0 for some µ > 0}.

The algorithm uses Newton iterations on the system of equations (4.2) for
a parameter µ ≥ 0 that is made smaller for each iteration until the solution
is sufficiently accurate. The accuracy of the solution is controlled by the
constant L, which is used in the stopping criteria of the algorithm. In [7],
the size of L is defined as

L = -
n∑

i=1

n+1∑

j=1

log(|aij| + 1) + log(n2).+ 1, (4.3)

where aij is the (i, j)th element of the n × (n + 1) matrix A = [M q]. Here
-ξ. is defined as the largest integer not greater than ξ ∈ R+.

The values of z and w in the k:th iteration of the algorithm are denoted
zk and wk, respectively. Assuming that the initial point (z1, w1) is known,
the steps of the algorithm are:

• Step 0: Let α be a positive constant, α ≤ 0.1 and δ = α/(1− α). Let
k = 1.

• Step 1: If (zk)T wk ≤ 2−2L, then stop. Otherwise, go to step 2.

• Step 2: Let µ = (1 − δ/n1/2)(zk)T wk/n and (z, w) = (zk, wk). Define
the diagonal matrices Z and W .
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• Step 3: Compute the Newton direction (∆z, ∆w) using the following
two expressions

∆z = (µ + Z−1W )−1(µZ−1e−We) (4.4)

∆w = M∆z (4.5)

and then compute the new point

(zk+1, wk+1) = (zk, wk) + (∆z, ∆w). (4.6)

• Step 4: Let k = k + 1. Go to step 1.

The algorithm is iterated until the stopping criteria has been met. By
adjusting L, the obtained solution can be made as accurate as needed. For a
description of how to prepare an initial point for the interior point algorithm,
see [7].
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4.3 Lemke’s method: Augmented problem

In this report, Lemke’s method will be presented in two versions. The first
algorithm solves the augmented LCP (q, M) and is based on the algorithm
described in [1, p.267-282]. As will be seen, by fulfilling certain conditions
the solution will also be a solution to the original LCP(q, M).

The concepts of ”basic” and ”nonbasic” variables are central in Lemke’s
method, much in the same way as they are in the simplex method in linear
programming. A basic variables is equivalent to a variable with a linearly
independent column and a nonbasic variable is a variable with a linearly
dependent column. Thus, the basic variables can be varied, and this variation
is observed in the nonbasic variables. The (nonbasic) variable that is being
varied is referred to as the ”driving variable”.

”Pivoting” is another term that is frequently used in Lemke’s method.
Pivoting is the changing of a basic and a nonbasic variable in such a way
that the nonbasic variable becomes basic and the basic variable becomes
nonbasic. When a basic and a nonbasic variable are being pivoted, the system
of equation is modified in such a way that the new set of nonbasic variables
are expressed by the new set of basic variables.

The ”blocking variable” is the variable whose constraint is first to be
violated as the value of the driving variable is increased.

The augmented LCP is defined as the problem

w0 = q0 + 0 · z0 − dT z ≥ 0, z0 ≥ 0, z0w0 = 0, (4.7)

w = q + d · z0 + Mz ≥ 0, z ≥ 0, zT w = 0. (4.8)

In matrix form, the left inequality in (4.7) and (4.8) can be expressed as

[
w0

w

]
=

[
q0

q

]
+

[
0 −dT

d M

] [
z0

z

]
, (4.9)

and the augmented M and q can thus be expressed as

M =
(

0 −dT

d M

)
, q =

(
q0

q

)
,

where the constant q0 is nonnegative and sufficiently large and d ≥ 0. Let
z0 ≥ 0 be the smallest non-negative scalar such that w = q + dz0 ≥ 0 for all
z0 ≥ z0.

z0 = max{−qi/di}

Note that by making the assumption that qi is negative for at least one
i ∈ {1, . . . ,m}, it will follow that z0 ≥ 0.
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Lemma 4.1. A solution (q, M) for the augmented LCP, where z0 = 0, gives
a solution to the original LCP (q, M).

When using Lemke’s algorithm for the augmented LCP in computing, the
constraints in (4.7) can be replaced by the alternative formulation:

w = q + dz0 + Mz, z0 ≥ 0, z ≥ 0, zT w = 0.

The advantage of this formulation is that the requirement on q0 to be suf-
ficiently large is removed, which makes it more practical in computations.
This version of the algorithm is commonly called the streamlined version of
Lemke’s method and will be described in section 4.4. The notion of nonde-
generacy is important to the existence and uniqueness of solution for Lemke’s
method.

Definition 4.1. Let Hq,M(z) = min(z, q + Mz). A vector z ∈ Rn is said to
be nondegenerate with respect to Hq,M if zi $= (q+Mz)i for each i ∈ 1, . . . , n.

This version of Lemke’s algorithm is used for solving the augmented problem
for z0 = 0, which will yield a solution for the original LCP as well. Lemke’s
method for the augmented LCP uses the following procedure:

1. Initialization. The input is the augmented LCP (q, M). If q ≥ 0,
then stop; The LCP (q, M) is solved for z = 0. Otherwise, find z0, the
smallest value for w = q+dz0 ≥ 0. Let wr denote the w-component that
equals zero when z0 = z0. Pivot 〈wr, z0〉. This causes the complements
w0 and z0 to be basic variables, while wr and zr becomes nonbasic.
Choose zr, the complement of wr, to be the new driving variable.

2. Determine the blocking variable. If z0 is the blocking variable, then
pivot 〈z0, driving variable〉. Use the minimum ratio test to determine
the blocking basic variable. If w0 is blocking, then stop.

3. Pivoting. The driving variable is blocked. If z0 is the blocking variable,
then pivot 〈z0, driving variable〉 and stop. A solution to (q, M) has been
found. If som other variable blocks the driving variable, then return to
step 1, using the complement of the most recent blocking variable as
the driving variable.

It will be shown that the algorithm presented above terminates in a finite
number of steps, if the augmented problem is nondegenerate.

Definition 4.2. A vector (z0, z) is said to be almost complementary with
respect to the equation (4.9) if the vector satisfies the following conditions:

z0w0 > 0 and ziwi = 0 for all i $= 0
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Lemma 4.2. When w0 and z0 are basic in Lemke’s algorithm, the column
of the driving variable contains at least one negative entry.

A proof of lemma 4.2 can be found in [1, p. 268].

Theorem 4.1 ([1] p. 270). When applied to a nondegenerate augmented
problem (q, M), Lemke’s algorithm terminates in finitely many steps.

Proof. By lemma 4.2, a suitable pivot entry is available at every iteration.
The nondegeneracy assumption implies that the algorithm generates a unique
almost complementary path. The almost complementary extreme points of
the feasible region for (q, M) that occur along this path correspond to almost
complementary nonnegative basic solutions of (4.7) and (4.8).

There are at most two almost complementary edges of the path incident
to an almost complementary extreme point of the feasible region to (q, M).
These edges can be taken away by making one of the members of the nonbasic
pair increase from the value 0. The nondegeneracy assumption guarantees
that all nonbasic variables can be made positive before a basic variable de-
creases to zero.

The almost complementary path cannot return to a previously encoun-
tered almost complementary extreme point. If it would, there would have
to be at least three almost complementary edges incident to it. For a given
problem, there can only exist a finite number of any kind of bases, and in
particular, there must be a finite number of almost complementary bases.
Therefore, the algorithm must terminate in a finite number of steps.
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4.4 Lemke’s method: Streamlined version

There is a second version of Lemke’s algorithm that is more practical when
it comes to computing, by some referred to as the ”streamlined” version of
Lemke’s method. In comparison Lemke’s method for the augmented problem,
the main difference is that the constraint

w0 = q0 − dT z ≥ 0

is removed, and thus the requirement to choose a sufficiently large constant
q0 disappears. The definition of this problem is

w = q + dz0 + Mz ≥ 0, z0 ≥ 0, z ≥ 0, zT w = 0. (4.10)

This system will be denoted as (q, d, M). The solution to the original LCP
can be obtained through the solution (q, d, M) when z0 = 0. Without the
constraint w0 ≥ 0, it is possible that the column of a driving variable could be
nonnegative, which might cause the variable to be unblocked. If no blocking
variable is found by increasing the driving variable, a second ray is generated.
A secondary ray is an almost complementary edge of the feasible region of
(q, d,M) that is necessarily unbounded. The algorithm has the following
form:

1. Initialization, Input (q, d, M). If q ≥ 0, then stop and return z = 0
as the solution to (q, M). Otherwise, let z0 be the smallest value of
the artificial variable z0 for which w = q + dz0 ≥ 0. Let wr denote w
that equals zero when z0 = z0. Pivot 〈wr, z0〉. After this pivot, the
complementary variables wr and zr are both nonbasic. Let the driving
variable be zr, i.e. the complement of wr.

2. Determination of the blocking variables (if any). If the column of the
driving variable has at least one negative entry, use the minimum ratio
test to determine the basic variable that blocks the increase of the
driving variable. If the driving variable is unblocked, then stop.

3. Pivoting. The driving variable is blocked. If the driving variable is
being blocked by z0, then pivot

〈z0, driving variable〉

and stop. A solution to (q, M) has been found. If some other variable
blocks the driving variable, then pivot

〈blocking variable, driving variable〉.

Return to Step 2, using the complement of the most recent blocking
variable as the new driving variable.
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As in the case with Lemke’s method for the augmented problem, the stream-
lined version of the method will terminate in finitely many steps.

Lemma 4.3. When applied to a nondegenerate LCP (q, d, M), the algorithm
will terminate in finitely many steps with either a secondary ray or else a
complementary feasible solution of (q, d, M) and thus a solution to (q, M).

Lemma 4.4. If the algorithm terminates with a secondary ray when applied
to (q, d, M), then M reverses the sign of some nonzero nonnegative z̃, so that

z̃i(Mz̃)i ≤ 0, (4.11)

for i = 1, . . . , n.

Proofs of the lemmas 4.3 and 4.4 can be found in [1, pp. 274-277]. An
assumption that is made is that the vector d is strictly positive.

Theorem 4.2. The algorithm will solve any nondegenerate LCP (q, M) if
M is a P -matrix.

Proof. Lemma 4.3 stated that the algorithm will terminate either with a
secondary ray or else as a solution to (q, M), if (q, d, M) is nondegenerate. If
the algorithm terminates with a secondary ray, then according to lemma 4.4,
M reverses the sign of some nonnegative element z̃. However, if the matrix M
is a P -matrix, then the definition of the P -matrix gives that sign cannot be
reversed. Therefore, if M is a P -matrix, then the algorithm cannot terminate
with a secondary ray. Thus, for a nondegenerate LCP in which M is a P -
matrix, the algorithm will terminate with a feasible solution to (q, d, M) and
thus with a solution to the original LCP (q, M).

It can further be noted that the algorithm can solve degenerate LCPs as
well, under certain circumstances. The risk of degenerate LCPs is that the
algorithm will cycle instead of terminate in finitely many steps. Different
methods have been developed to deal with cycling. Two possible approaches
for Lemke’s method are lexicographic degeneracy resolution and least-index
degeneracy resolution. Descriptions of these so called anti-cycling methods
can be found in [1, pp. 336-352]
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5 Applications

5.1 Introduction

In this section bimatrix games and Stackelberg games will be reviewed. The
Stackelberg game is closely related to the MPEC and is an extension of the
concept of the Nash game, in which a number of players each have a set of
strategies to choose from.

In a Nash game, cooperation is not allowed, and the players choose strate-
gies independently from each other. Each player is assumed to choose the
strategy which is expected to produce the greatest profit for himself. In a
Stackelberg game, there is one player who acts as a leader while the other
players are followers. A brief introduction to Nash and Stackelberg games
can be found in [11].

Assume there are N players and that the payoff function for the i:th
player is gi(x), for i = 1, . . . , N , where x = (x1, . . . , xN) contains the decision
variables and xi is the decision variable for the i:th players. The strategy
space for the i:th player is given by X ⊂ Rni , where ni is an integer and
signifies the number of strategies that player i has to choose between. Let
gi : Rni+nN → R and the player i’s decision variable xi ∈ Xi for i = 1, . . . , N .
In the Nash game, player i’s objective function gi(x) is expressed as

maximize
xi∈Xi

gi(x) i = 1, . . . , N. (5.1)

In other words, each player tries to maximize its own objective function.
However, the value of the objective function of a player depends on the
action of all player, not just one.

In a Stackelberg game, player 1 is a ”leader” and therefore gets to act
first. The leader’s choice of strategy is affected by how the other players are
expected to react to the leader’s action. The other players will try to find an
action that maximizes their profit under the circumstances that are imposed
by the leader’s choice of action. The leader is denoted by index 1 and the
other players are here denoted by the index -1, i.e. x−1 = (x2, . . . , xN).

The Stackelberg game is mathematically similar to the Nash game, but
with a new objective function and additional constraints:

maximize
x1∈X1

g1(x) (5.2)

subject to x−1 ∈ argmax{g−1 : x−1 ∈ X−1}. (5.3)

In the Stackelberg game, the leader seeks to maximize its objective func-
tion. This objective function is subject to the constraint that, in response to
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the leader’s action, the followers will choose an action that maximizes their
own individual objective functions.

The Stackelberg game is a bilevel optimization problem in the sense that
there is an upper-level problem (the leader, acting first, tries to maximize its
profit) and a lower-level problem (the followers, acting after the leader, seek
to maximize their profit). Typically, the leader can be a large dominating
firm in some market, while the followers are smaller, competing firms.

The problem formulation in (5.2) and (5.3) is an MPEC, where the ex-
pression (5.3) has the same role as the constraint y ∈ S(x) in (2.1). In
contrast, a bimatrix game is a two player non-zero sum game, meaning that
the gain of one player does not have to be equal to the loss of the other
player. Bimatrix games will be looked closer at in section 5.2.
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5.2 Bimatrix games

An early example of application of the linear complementarity problem is
bimatrix games. Bimatrix games are found in game theory and consist of
two players. The aim of each player is to find the strategy that returns the
highest profit (or the lowest cost) for that player. Both participants control
some, but not all, of the possible actions. The strategy of each player is
either a pure strategy or a randomized strategy. A pure strategy means
that the player will choose the same action every time the game is played.
A randomized strategy means that each possible action has a probability
assigned to it, the probability that the player will choose that action.

A further description of the bimatrix game can be found in [2, pp.277-298]
and [8].

A bimatrix game can be defined in the following way. Let A ∈ Rm×n and
B ∈ Rm×n. The cost for player one is given by the element aij in matrix
A and the cost for player two is given by bij in the matrix B, where i is
player one’s pure strategy and j is player two’s pure strategy, i = 1, . . . ,m,
j = 1, . . . , n. The element xi in player one’s randomized strategy vector
x ∈ Rm is the probability that player one will choose the pure strategy i.
Player two’s randomized strategy vector is y ∈ Rn. From this naturally
follows that

x ≥ 0,
m∑

i=1

xi = 1,

y ≥ 0,
n∑

j=1

yj = 1.

Thus, the expected cost will be xT Ay for player one and xT By for player
two. The bimatrix game can be expressed as Γ(A, B), where A and B are
the cost matrices of player one and player two, respectively.

As an example, consider the bimatrix game Γ(A, B), where

A = BT =

[
10 20
30 15

]
. (5.4)

The element aij, on row i and column j in matrix A, determines the cost for
player one. The cost for player two is determined by the element bij, located
on the same position in matrix B. Here i represents the i:th element of
player ones strategy set, and j represents the j:th element in the strategy set
of player two. In other words, i and j are the strategies that player one and
player two choose, respectively. The example problem (5.4) was originally
given in [1, p. 287]. The solutions to problem will be given in section 5.3.
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A situation in which neither player gains anything from changing its ran-
domized strategy, assuming that the opponent does not change strategy as
well, is called a Nash equilibrium.

Definition 5.1 (Nash Equilibrium). A randomized strategy pair (x∗, y∗),
where x∗ ∈ Rm, y∗ ∈ Rn, is called a Nash Equilibrium if

(x∗)T Ay∗ ≤ xT Ay∗ for all x ≥ 0 and
m∑

i=1

xi = 1, (5.5)

(x∗)T By∗ ≤ xT Ay for all y ≥ 0 and
n∑

i=1

yi = 1. (5.6)

The bimatrix game Γ(A, B) can be transformed into a LCP by making
the assumption that the elements of A and B are positive. The equilibrium
solutions of the bimatrix game are not affected by this assumption; if some
elements would be negative in A or B, a sufficiently large scalar can be added
to all elements in both matrices so that the matrices become positive. The
LCP would have the form

u = −em + Ay ≥ 0, x ≥ 0, xT u = 0, (5.7)

v = −en + BT x ≥ 0, y ≥ 0, yT v = 0, (5.8)

where em and en are vectors containing only ones, of length m and n, respec-
tively. If (x∗, y∗) is a Nash equilibrium, then (x′, y′) is a solution to (5.7),
where

x∗ = x′/eT
mx′,

y∗ = y′/eT
ny′,

where x′ and y′ need to be non-zero. The assumption that A and B are
positive matrices implies that x′ and y′ are nonnegative. The q-vector and
M -matrix for the LCP(q, M) would be written as

q =

[
−em

−en

]
, M =

[
0 A

BT 0

]
. (5.9)

The resulting problem can then be written in the LCP form

w = Mz + q, z ≥ 0, w ≥ 0, zT w = 0,

with

z =

[
x
y

]
and w =

[
u
v

]
.

21



5.3 Solving the bimatrix game

The Lemke-Howson algorithm is a method used for solving bimatrix games.
The algorithm, which is also described in [1, p. 284-287], is combinatorial
and finds a Nash equilibrium in the bimatrix game. As can be seen, it is
similar to the previously described Lemke’s method used for solving LCPs.

1. Initialization. Use the LCP (q, M) of order m+n as input, with q and M
as in (5.9). Select an index k ∈ {1, . . . ,m}. Let s ∈ arg min1≤j≤n bkj.
Pivot 〈xk, vs〉. This yields an almost complementary, but infeasible
solution. Let r ∈ arg min1≤i≤mais. Pivot 〈ur, ys〉. The solution is now
almost complementary and feasible. The basic pair is (xk, uk), and the
nonbasic pair is (ur, xr). If r = k, then stop: A solution has been
found. Otherwise, let xr be the driving variable.

2. Determine the blocking variable (if any). Use the minimum ratio test
to determine whether there is a basic variable that blocks the increase
of the driving variable. If not, stop.

3. Pivoting. The driving vaiable is blocked. Pivot

〈blocking variable, driving variable〉

If the blocking variable belongs to the basic pair, a solution to (q, M)
is at hand. Otherwise return to Step 2 using the complement of the
most recent blocking variable as the new driving variable.

Theorem 5.1. The Lemke-Howson algorithm finds a solution of every non-
degenerate LCP corresponding to a bimatrix game.

Proof. The proof is by contradiction. If a solution is not found in Step 1,
then an almost complementary extreme point of the feasible set given by

u = −em + Ay ≥ 0, x ≥ 0,

v = −en + BT x ≥ 0, y ≥ 0,

is at hand. It remains to show that in Step 2, the driving variable is always
blocked, i.e., that termination with a ray is impossible.

If termination with a ray occurs, there must exist an almost complemen-
tary extreme point (u, v, x, y) and a vector (ũ, ṽ, x̃, ỹ) such that

[
ũ
ṽ

]
=

[
0 A

BT 0

] [
x̃
ỹ

]
, 0 $= (x̃, ỹ) ≥ 0. (5.10)
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Point along the ray are of the form (u + λũ, v + λṽ, x + λx̃, y + λỹ) where
λ ≥ 0, and for all such λ

(u + λũ)i(x + λx̃)i = 0 i $= k,

(v + λṽ)i(y + λỹ)i = 0 i $= k.

This implies that for all i $= k

uixi = ũixi = uix̃i = ũix̃i = 0,

viyi = ṽiyi = viỹi = ṽiỹi = 0.

It must be the case that either x̃ $= 0 or ỹ $= 0. If x̃ $= 0, then ṽ = BT x̃ >
0. This implies that yj +λyj = 0 for all j and all λ ≥ 0. But then u+λũ < 0,
which is a contradiction. If x̃ = 0, then (5.10) implies ỹ $= 0 from which it
follows that ũ = Aỹ > 0. This implies that xi = 0 for all i $= k. From x̃ = 0
it follows that ṽ = BT x̃ = 0. Accordingly, ṽ must be the same vector as
the one defined in Step 1 where the initial value of xk was specified, i.e., the
smallest positive value of xk so that −1 + mjkxk ≥ 0, where mjk denotes an
element in M .

By the nondegeneracy assumption, only vs = 0. The other components
of v must be positive. Thus

yj + λỹj = 0, for all j $= s.

We now see that the terminating ray is the original ray. This means that
the almost complementary path must have returned to a previously visited
extreme point which is impossible. This contradiction completes the proof.

We now return to the example problem (5.4) in section 5.2, which is
originally from [1, p. 287]. Applying the Lemke-Howson algorithm to the
example problem, the solutions z = ( 1

10 , 0,
1
10 , 0) and z = (0, 1

15 , 0,
1
15) are

obtained. The first solution represents the situation x = (1, 0) and y = (1, 0)
and the second represents the situation when x = (0, 1) and y = (0, 1). In
both cases both players adopt pure strategies, i.e. they choose the same
action every time.

Which one of the two solutions that will be found by the Lemke-Howson
method depends on which column that is pivoted first in Step 0. There is no
guarantee that the Lemke-Howson method will find all equilibrium points to
a bimatrix game. In the example problem (5.4) there is an additional solution
which the Lemke-Howson method cannot reach, namely z = ( 1

90 ,
2
45 ,

1
90 ,

2
45),

i.e. the strategy pair x = (1
5 ,

4
5) and y = (1

5 ,
4
5).
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6 Summary

In the report, an overview of the Linear Complementarity Problem (LCP)
as an special case of the Mathematical Programming with Equilibrium Con-
straints (MPEC) has been given. MPEC was described as an optimization
problem ”in which the essential constraints are defined by a parametric vari-
ational inequality or complementarity system”. The linear complementarity
problem is a special case of the MPEC. Two methods for solving LCPs have
been described: The interior point method and Lemke’s method. The inte-
rior point method runs in polynomial time while the running time of Lemke’s
method is exponential. Two versions of Lemke’s method were considered, one
for augumented problems and one streamlined version. Stackelberg games
were described as an application source for the MPEC. The bimatrix games
were looked at closer as an application for the LCP. Also, the Lemke-Howson
method was reviewed as a method for solving bimatrix games.
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