
Fundamenta Informaticae FICS’13 Special Issue 1–29 1

DOI 10.3233/FI-2012-0000

IOS Press

CoCaml: Functional Programming with Regular Coinductive Types

Jean-Baptiste Jeannin
Department of Computer Science
Carnegie Mellon University
jeannin@cs.cmu.edu

Dexter Kozen
Department of Computer Science
Cornell University
kozen@cs.cornell.edu

Alexandra Silva C

Department of Computer Science
Radboud University Nijmegen
alexandra@cs.ru.nl

Abstract. Functional languages offer a high level of abstraction which results in elegant, easy to
understand, programs. Central to the development of functional programming are inductive and
coinductive types and associated programming constructs, such as pattern-matching. Whereas in-
ductive types have a long tradition and are well supported in most languages, coinductive types are
subject of more recent research and less mainstream.

We present CoCaml, a functional programming language extending OCaml, which allows us to
define recursive functions on regular coinductive datatypes. These functions are defined like usual
recursive functions, but parameterized by an equation solver. We present a full implementation of
all the constructs and solvers and show how these can be used in a variety of examples, including
operations on infinite lists, infinitary λ-terms and p-adic numbers.

keywords: regular coinductive types, functional programming, recursion

Keywords: Context free languages, Kleene algebra, algebraically complete semirings, Conway
semirings, µ-semiring

1. Introduction

Functional languages offer elegant constructs to manipulate datatypes and define functions on them.
Their inherent high level of abstraction, which avoids explicit manipulation of pointers or references, has
CCorresponding author

2 J.-B. Jeannin, D. Kozen, A. Silva / CoCaml: Functional Programming with Regular Coinductive Types

played a key role in the increasing popularity of languages such as Haskell and OCaml. The combination
of pattern-matching and recursion provides a powerful tool for computing with algebraic datatypes such
as finite lists or trees. However, for coinductive objects such as infinite lists or trees, the situation is
less clear-cut. The foundations of coinductive types are much younger and hence all the theoretical
developments have not yet fully found their place in mainstream implementations.

Despite infinite objects being hard to tackle in general, several classes of them are more manageable.
For instance, ultimately periodic infinite lists or infinite trees with finitely many subtrees should offer
fewer challenges than lists/trees with no apparent regular structure. This class of coinductively defined
objects has been widely studied in the literature under the name of regular/rational types.

One might wonder whether the restriction to regular coinductive datatypes might make computing
with coinductive datatypes less attractive. On the contrary, regular coinductive types have a wide range of
applications and occur in many areas of computer science. For instance, unfoldings of finite graphs and
automata are prime examples of regular coinductive types. They can also be found in formal grammar
and data flow analysis in compiler construction. From a theoretical perspective, they also offer many
challenges in devising sound definition and proof principles.

This paper presents a full implementation of language constructs in OCaml for manipulating regular
coinductive datatypes. One can already define them in OCaml, but the means to define functions on them
are limited. Often the obvious definitions do not halt or provide the wrong solution. We do not change
the way datatypes are defined. Instead, we provide constructs that allow the programmer to specify how
to solve equations resulting from usual recursive definitions when these are applied to regular coinductive
objects.

Let us provide some motivation using an example of a function over one of the simplest coinductive
datatypes: infinite lists. The regular elements of this datatype are the eventually periodic infinite lists.
The type of finite and infinite lists of OCaml, ’a list, is a built-in coinductive type consisting of two
cases, [] for the empty list and hd :: tl for the list with head hd of type ’a and tail tl of type
’a list. Concrete regular infinite lists can then be defined coinductively using the let rec construct:

let rec ones = 1 :: ones
let rec alt = 1 :: 2 :: alt

The first example defines the infinite sequence of ones 1, 1, 1, 1, . . . and the second the alternating se-
quence 1, 2, 1, 2,

Although the let rec construct allows us to specify regular infinite lists, further investigation re-
veals a major shortcoming. For example, suppose we wanted to define a function that, given an infinite
list, returns the set of its elements. For the lists ones and alt, the function should return the sets {1} and
{1, 2}, respectively. Note that by regularity, the set of elements is always finite. One would like to write
a function definition using equations that pattern-match on the two constructors of the list datatype:

let rec set l = match l with
| [] -> []
| h :: t -> insert h (set t)

where insert adds an element to a set, represented by a finite list without duplicates. Sadly, this
function will not halt in OCaml on ones and alt, even though it is clear what the answers should be.

This problem arises from the fact that the standard semantics of recursion does not cope well with
regular coinductive objects. This has also been observed by others [21, 4, 7, 9, 30]. In [30], the authors
discuss the design of language constructs that could avoid the problem above and provide a mock-up

J.-B. Jeannin, D. Kozen, A. Silva / CoCaml: Functional Programming with Regular Coinductive Types 3

implementation in an OCaml-like language. In this paper, we give a full implementation and improve on
those results by showing how an alternative semantics, provided by equation solvers, can be given in a
lightweight, elegant fashion.

In this paper, we present CoCaml, an extension of OCaml in which functions defined by recursive
equations can be supplied with an extra parameter, namely a solver for the equations generated when the
function is applied to an argument which might be a regular coinductive object. The contributions of this
paper can be summarized as follows:

1. Implementation of a new language construct corec[solver], which takes an equation solver as
an argument.

2. Implementation of several generic solvers, which can be used as arguments of the corec construct.
These include iterator, a solver to compute fixpoints; constructor, used to compute regular
coinductive objects; gaussian, which solves a system using gaussian elimination; separate,
which splits regular lists into a finite prefix and a cyclic part, enabling easy display of regular infi-
nite lists. We also provide the user with means to define custom solvers using a Solver module.

3. A large set of examples illustrating the simplicity and versatility of the new constructs and solvers.
These include a library for p-adic numbers and several functions on infinite lists and λ-terms.

The importance of regular infinite objects in functional and coinductive logic programming has been
recognized by many authors [47, 19, 21, 44, 5, 4, 3, 40, 14, 45, 7, 9, 8, 48], and research is ongoing. The
chief distinguishing characteristic of our work is that we provide powerful programming language tools
in the form of a versatile set of equation solvers that allow the programmer to realize the full potential
of regular coinductive datatypes. A more detailed comparison with existing work will be made in a later
section.

The paper is organized as follows. In §2, we present the proposed solution for the motivational
example of the introduction and give a high level overview of the implementation and subtleties to be
tackled. In §3, we describe regular coinductive types in the context of a functional language and cap-
sule semantics, a heap-free mathematical semantics for higher order functional and imperative programs,
which provides the foundation for our implementation. In §4, we describe the implementation of several
generic solvers and examples of their applicability. We also provide a module that enables the user to de-
fine custom solvers and illustrate its applicability by defining a new solver. In §5, we give several detailed
examples illustrating the use of the new constructs and solvers, including functions on potentially infinite
lists, p-adic numbers, and infinitary λ-terms. In §6, we dive into the details behind the implementation.
We discuss related work in §7 and in §8 we conclude and give directions for future work.

2. Overview

Let us go back to the set example from the introduction and explain the steps we took in order to obtain
the desired solution in OCaml.

Note that the definition of set is not corecursive, as we are not asking for a greatest solution or a
unique solution in a final coalgebra, but rather a least solution in a different ordered domain from the one
provided by the standard semantics of recursive functions. The standard semantics of recursive functions

4 J.-B. Jeannin, D. Kozen, A. Silva / CoCaml: Functional Programming with Regular Coinductive Types

gives us the least solution in the flat Scott domain with bottom element ⊥ representing nontermination,
whereas we would like the least solution in a different CPO, namely (P(Z),⊆) with bottom element ∅.

When trying to compute the solution of set(alt) the compiler generates two equations, namely

set(alt) = insert 1 (set(2::alt))
set(2::alt) = insert 2 (set(alt))

The occurrence of set(alt) in the right hand-side of the second equation is what causes the non-
termination in the presence of the usual semantics of recursive functions.

The intended solution in this particular case is the least solution of the above equations in the domain
P(Z) ordered by set inclusion. The power of specifying how to solve equations in the codomain is the
main feature of our proposed solution.

For instance, the example above would be almost the same in CoCaml:

let corec[iterator []] set l = match l with
| [] -> []
| h :: t -> insert h (set t)

The construct corec with the parameter iterator [] specifies to the compiler that the equations
above should be solved using an iterator—in this case a least fixpoint computation—starting with the
initial element []. For the infinite list alt, which can abstractly be thought of as the circular structure

•

1 •

2

our extended compiler will generate two equations (nodes are given fresh names),

set(x) = insert 1 (set(y))
set(y) = insert 2 (set(x))

and then solve them using the specified solver iterator, which will produce the intended set {1, 2}.
As another example, in which a different type of solver is required, consider the map function, which

applies a given function to every element of a given list. Again, the obvious definition, when applied to a
circular structure, will not halt in OCaml. In CoCaml, we can specify that we want to get a solution with
the same structure as the argument. Again, the definition looks very much like the standard one:

let corec[constructor] map arg = match arg with
| f, [] -> []
| f, h :: t -> f(h) :: map(f,t)

As desired, applications of map to circular structures halt and produce the expected result. For instance,
map plusOne alt first generates two equations

map(x) = 1 :: (map(y))
map(y) = 2 :: (map(x))

Solving the equations produces the infinite list 2, 3, 2, 3, . . . as represented by the circular structure

J.-B. Jeannin, D. Kozen, A. Silva / CoCaml: Functional Programming with Regular Coinductive Types 5

•

2 •

3

Another motivating example, which we borrow from [30], is the set of free variables of an infinitary
λ-term (i.e. a λ-coterm). For ordinary well-founded λ-terms, the following definition works:

type term =
| Var of string
| App of term * term
| Lam of string * term

let rec fv = function
| Var v -> [v]
| App (t1,t2) -> union (fv t1) (fv t2)
| Lam (x,t) -> remove x (fv t)

However, if we call the function on an regular coterm, say

let rec t = App (Var "x", App (Var "y", t))

•

x •

y

then the function will diverge. However, CoCaml can compute the desired solution {x, y} using the
iterator [] solver as in the example above involving elements of an infinite regular list.

Note that regular coinductive objects always have a finite representation in memory, i.e., they are
infinite but can be represented finitely with cycles. This is different from a setting in which infinite
elements are represented lazily and can be computed on the fly. A few of our examples, like substitution
on infinitary λ-terms or mapping a function on an infinite list, could be computed by lazy evaluation, but
most of them, such as free variables, cannot. If one implements the free variables example in Haskell
then one can not display the resulting set when the function is applied to a regular infinite term. One can
still do membership queries, such as is variable x in fv t? If the answer is positive Haskell will be able
to return it, however negative answers will be lost in an infinite search. Also note that even in the cases
where computation by lazy evaluation can be done and the regularity of the argument is preserved this
cannot be observed: what can then be observed are finite parts of the infinite unfolding of the term.

One should be careful not to confuse computing with regular coinductive objects with computing on
graphs or other forms of cyclic data structures. Coinductive objects are not graphs (although they are
represented internally as graphs). They are more accurately described as rational or regular elements of
a final coalgebra. They may be infinite, but they have a finite representation, as mentioned above. Func-
tions defined on them should be independent of the representation, which means that the function should
give equivalent results when applied to equivalent inputs. Here equivalent means the finite representation
unfolds to the same infinite object, or more accurately, has the same image in the final coalgebra.

6 J.-B. Jeannin, D. Kozen, A. Silva / CoCaml: Functional Programming with Regular Coinductive Types

The new construct has the big advantage that no change is needed in the specification of the datatype
(like in e.g [21]) or in the usual definition of functions. The detection of whether the input is regular
coinductive, i.e., it has cycles is done automatically. In this automatic detection, subtleties on how to
determine equality of two coinductive elements arise (see §6.3). Another feature of our implementa-
tion is the flexibility in the choice of the desired solver. We cast under the same umbrella different
solution methods. We provide several generic and versatile solvers (see §4), of which iterator and
constructor are examples, and we provide the user with the means to easily define his/her own solvers
(see §4.6).

3. Preliminaries

In this section, we present the basics of coinductive types and the theoretical foundations on well-
definedness of functions on coinductive types, which we will use to define the new language constructs.
We also describe capsule semantics, a heap-free mathematical semantics for higher order functional and
imperative programs, on which our implementation is based.

3.1. ML with Coalgebraic Datatypes

Coalgebraic (coinductive) datatypes are very much like algebraic (inductive) datatypes in that they are
defined by recursive type equations. The set of algebraic objects form the least (initial) solution of these
equations and the set of coalgebraic objects the greatest (final) solution.

Algebraic types have a long history going back to the initial algebra semantics of Goguen and
Thatcher [23]. They are very well known and are heavily used in modern applications, especially in the
ML family of languages. Coalgebraic types, on the other hand, are the subject of more recent research
and are less well known. Not all modern functional languages support them—for example, Standard ML
and F# do not—and even those that do support them do not do so adequately.

The most important distinction is that coalgebraic objects can have infinite paths, whereas algebraic
objects are always well-founded. Regular coalgebraic objects are those with finite (but possibly cyclic)
representations. We would like to define recursive functions on coalgebraic objects in the same way that
we define recursive functions on algebraic data objects, by structural recursion. However, whereas func-
tions so defined on well-founded data always terminate and yield a value under the standard semantics
of recursion, this is not so with coalgebraic data because of the circularities.

In Standard ML, constructors are interpreted as functions, and thus coinductive objects cannot be
formed. Whereas in OCaml, coinductive objects can be defined, and constructors are not functions.
Formally, in call-by-value languages, constructors can be interpreted as functions under the algebraic
interpretation, as they are in Standard ML, but not under the coalgebraic interpretation as in OCaml. In
Standard ML, a constructor is a function:

- SOME;
val it = fn : ’a -> ’a option

Since it is call-by-value, its arguments are evaluated, which precludes the formation of coinductive ob-
jects. In OCaml, a constructor is not a function. To use it as a function, one must wrap it in a lambda:

> Some;;
Error: The constructor Some expects 1 argument(s),

J.-B. Jeannin, D. Kozen, A. Silva / CoCaml: Functional Programming with Regular Coinductive Types 7

but is applied here to 0 argument(s)
> fun x -> Some x;;
- : ’a -> ’a option = <fun>

This allows the formation of coinductive objects:

> type t = C of t;;
type t = C of t
> let rec x = C x;;
val x : t = C (C (C (C (C (C (C (C ...)))))))

Despite these differences, inductive and coinductive data share some strong similarities. We have
mentioned that they satisfy the same recursive type equations. Because of this, we would like to define
functions on them in the same way, using constructors and destructors and writing recursive definitions
using pattern matching. However, to do this, it is necessary to circumvent the standard semantics of
recursion, which does not necessarily halt on cyclic objects. It has been argued in [30] that this is not
only useful, but feasible. In [30], new programming language features that would allow the specification
of alternative solutions and methods to compute them were proposed, and a mock-up implementation
was given that demonstrated that this approach is feasible. In this paper, we take this a step further and
provide a full implementation in an OCaml-like language. We also give several new examples of its
usefulness in addition to the examples of [30]. More importantly, we implement solvers in a much more
simplified and elegant manner and we provide the user with the ability of specifying his/her own solvers
without having to do so directly in the interpreter.

For full functionality in working with coalgebraic data, mutable variables are essential. Current func-
tional languages in the ML family do not support mutable variables; thus true coalgebraic data can only
be constructed explicitly using let rec, provided we already know what they look like at compile time.
Once constructed, they cannot be changed, and they cannot be created dynamically. This constitutes a
severe restriction on the use of coalgebraic datatypes. One workaround is to simulate mutable variables
with references, but this is ugly; it corrupts the algebraic typing and forces the programmer to work at a
lower pointer-based level. Capsules, which we describe next, offer the right abstraction to avoid the use
of reference, making construction and manipulation of coalgebraic data easy.

3.2. Capsule Semantics

Our implementation is based on capsule semantics [29], a heap-free mathematical semantics for higher
order functional and imperative programs. In its simplest form, a capsule is a pair 〈e, σ〉, where e is a
λ-term and σ is a partial map with finite domain from variables to λ-terms such that

• FV (e) ⊆ dom σ, and

• for all x ∈ dom σ, FV (σ(x)) ⊆ dom σ

where FV (e) denotes the set of free variables of e. (In practice, a capsule also contains local typing
information, which we have suppressed here for simplicity.) Capsules are essentially finite coalgebras;
more precisely, a capsule is a finite coalgebraic representation of a regular closed λ-coterm.

In capsule semantics, regular coinductive types and recursive functions are defined in the same way.
There is a special uninitialized value <> for each type. The capsule evaluation rules consider a variable
to be irreducible if it is bound to this value. The variable can be used in computations as long as there

8 J.-B. Jeannin, D. Kozen, A. Silva / CoCaml: Functional Programming with Regular Coinductive Types

is no attempt to deconstruct it; any such attempt results in a runtime error. “Deconstruction” here means
different things for different types. For a coinductive type, it means applying a destructor. For int, it
would mean attempting to perform arithmetic with it. But it can be used as the argument of a constructor
or can appear on the left-hand side of an assignment without error, as these do not require deconstruction.
This allows coalgebraic values and recursive functions to be created in a uniform way via backpatching
(a.k.a. Landin’s knot). Thus, let rec x = d in e is syntactic sugar for

let x = <> in (x := d);e

which in turn is syntactic sugar for

(fun x -> (x := d);e) <>

For example, let rec x = (x,x) in snd (snd x) becomes

let x = <> in (x := (x,x)); snd (snd x)

During the evaluation of (x,x), the variable x is bound to <>, so x is not reduced. 1 The value of
the expression is just (x,x). Now the assignment x := (x,x) is performed, and x is rebound to the
expression (x,x) in the environment. We have created an infinite coinductive object, namely an infinite
complete binary tree. Evaluating snd (snd x) results in the value (x,x).

Note that we never need to use placeholders or substitution to create cycles, as we are using the
binding of x in the environment for this purpose. This is a major advantage over previous approaches
[25, 41, 42, 45]. Once x is rebound to a non-<> value, it can be deconstructed after looking it up in the
environment.

The variable x also gives a handle into the data structure that allows it to be manipulated dynamically.
For example, here is a program that creates a cyclic object of length 3, then extends it to length 4:

> let rec x = 1 :: 2 :: 3 :: x;;
val x : int list = [1; 2; 3; 1; 2; 3; ...]
> let y = x in x := 0 :: y; x;;
- : int list = [0; 1; 2; 3; 0; 1; 2; 3; ...]

Any cycle must always contain at least one such variable. Two elements of a coalgebraic type are
considered equal iff they are bisimilar (see §6.3). For this reason, coalgebraic types are not really the
same as the circular data structures as studied in [41, 12, 25, 42]. The example above shows that we now
allow run time definition of regular coinductive lists, whereas OCaml only allows infinite lists that are
defined statically.

A downside to this approach is that the presence of the value <> requires a runtime check on value
lookup. This is a sacrifice we have made to accommodate functional and imperative programming styles
in a common framework, which is one of the main motivating factors behind capsules. For a basic
introduction to capsule semantics, see [29], and for a full account of capsule semantics in the presence
of coalgebraic types, see [32].

The reader might wonder what the connection between capsules and closures is. A closure represents
a single value, whereas a capsule represents the entire global state of a computation, with no need to use
heaps, stacks, or any notion of global store. The precise relationship between capsules and closures is
explained in [28].

1Actually, this is not quite true—a fresh variable is substituted for x by α-conversion first. But we ignore this step to simplify
the explanation.

J.-B. Jeannin, D. Kozen, A. Silva / CoCaml: Functional Programming with Regular Coinductive Types 9

3.3. Recursive functions on regular coinductive types

A general picture on how a recursive function h : C → A is defined is given by the commuting diagram

C

FC

A

FA

h

γ

Fh

α (1)

Here, F is a functor that determines the structure of the base cases and recursive calls. The function
γ : C → FC on input x ∈ C tests for the base cases, and in the recursive case, prepares the arguments
for the recursive calls. The function Fh : FC → FA performs the recursive calls and α : FA → A
takes the values from the recursive calls and assembles them into the value h(x).

Ordinary recursively defined functions on well-founded datatypes (or in other words datatypes de-
fined as the initial algebra of a given functor) fall into this framework. Indeed, if the domain C is the
initial F -algebra then we immediately know by initiality that h is unique, since it is a map into another
F -algebra. Another (dual) setting in which is easy to obtain h uniquely is if the codomain is a final
coalgebra.

This general idea has been well studied [3, 4, 14, 18, 43]. Most of that work is focused on conditions
ensuring unique solutions, primarily when the domain C is well-founded or when the codomain A is
a final coalgebra. Also closely related are the work of Widemann [45] on coalgebraic semantics of
recursion and cycle detection algorithms, the work on coinductive logic programming [39, 40, 7] and the
work on coinductive featherweight Java [8, 9], which address many of the same issues but in the context
of logic and object-oriented programming.

As we mentioned above, ordinary recursion over inductive datatypes corresponds to the case in which
C is well-founded. In this case, the solution h always exists and is unique. However, if C is not well-
founded, then the solution may not be unique, and the one given by the standard semantics of recursive
functions is usually not the one we want. Nevertheless, the diagram (1) can still serve as a valid defini-
tional scheme, provided we are allowed to specify an alternative solution method in A for the equations
defined by the diagram above. This has been object of study in the 2006 paper by Adamek, Milius and
Velebil [4] and in the recent papers by Jeannin, Kozen and Silva [30, 31].

The free variables example from §2 fits this precisely this scheme. Instantiating the diagram above
yields:

Term P(Var)

F (Term) F (P(Var))

fv

γ

idVar + fv2 + idVar × fv

α

10 J.-B. Jeannin, D. Kozen, A. Silva / CoCaml: Functional Programming with Regular Coinductive Types

where FX = Var+X2 + Var×X and

γ(Var x) = ι0(x) α(ι0(x)) = {x}
γ(App (t1, t2)) = ι1(t1, t2) α(ι1(u, v)) = u ∪ v
γ(Lam (x, t)) = ι2(x, t) α(ι2(x, v)) = v \ {x}.

Here the domain (regular λ-coterms) is not well-founded and the codomain (sets of variables) is not a
final coalgebra, but the codomain is a CPO under the usual set inclusion order with bottom element ∅,
and the desired solution is the least solution in this order; it is just not the one that would be computed
by the standard semantics of recursive functions. In such cases our language allows the programmer to
specify an alternative solution method implemented by a solver, like least fixpoint computation.

4. Equations and Solvers

When the programmer makes a function call f(a0), where f was defined using the corec keyword,
execution happens in three distinct steps:

• a set of equations is generated;

• the equations are sent to a solver; the solver can be built-in or user-defined;

• the result of running the solver on the set of equations is returned as the result of function call
f(a).

In this section we describe in detail how equations are generated, and the different possible choices for
the solver.

4.1. Equation Generation

An equation denotes an equality between two terms. Its left-hand-side is a variable xi that stands for
the call of f on some input ai. Its right-hand-side is a partially evaluated abstract syntax tree: it is an
expression of the language which can contain other variables xj .

When calling a recursive function f on an inductive (well-founded) term a0, this function can make
recursive calls, generating new calls to function f . The reason this computation finishes is because the
computation is well-founded: every path in the call tree reaches a base case.

Similarly, if the function f was defined with the corec keyword, its call on a coinductive term a0
might involve some recursive calls; those recursive calls might themselves involve some recursive calls,
and so on. This time the computation is not well-founded, but because a0 has a finite representation, the
set of possible such calls is finite, for example recursive calls were made on a1, . . . , an.

While executing those recursive calls, a fresh variable xi is generated for each ai, and the call to
f(ai) is partially evaluated to generate an equation, replacing the calls to f(aj) by their corresponding
xj . We thus generate a set of equations whose solution is the value of f(a0). Of course, the arguments
a0, . . . , an are not known in advance, so the xi have to be generated while the program is exploring the
recursive calls. This is achieved by keeping track of all the ai that have been seen so far, along with their
associated unknowns xi.

J.-B. Jeannin, D. Kozen, A. Silva / CoCaml: Functional Programming with Regular Coinductive Types 11

A solver takes a set of equations and returns a solution, or fails. We have currently implemented four
built-in solvers, three of which are quite versatile and can be used in many different applications. We
also give to the programmer the ability to define his/her own solvers.

4.2. The iterator Solver

In many cases the set of equations can be seen as defining a fixpoint of a monotone function. For example,
when the codomain is a CPO, and the operations on the right-hand sides of the equations are monotone,
then the Knaster–Tarski theorem ensures that there is a least fixpoint. Moreoever, if the CPO is finite or
otherwise satisfies the ascending chain condition (ACC), then the least fixpoint can be computed in finite
time by iteration, starting from the bottom element of the CPO.

The iterator solver takes an argument b representing the initial guess for each unknown. In the
case of a CPO, this would typically be the bottom element.

Internally, a guess is made for each unknown, initially b. At each iteration, a new guess is computed
for each unknown by evaluating the corresponding right-hand side, where the unknowns have been re-
placed by current guesses. When all the new guesses equal the old guesses, we stop, as we have reached
a fixpoint, the intended result. The right-hand sides are evaluated in postfix order, i.e., in the reverse
order of seeing and generating new equations, because it usually makes the iteration converge faster.

Note that this iterator solver is closely related to the least fixpoint solver described in [30, 35],
but it can also be used in applications where the desired fixpoint is not necessarily the least.

Example. We revisit the example from the introduction by applying this solver to create a function
set that computes the set of all elements appearing in a list. A regular list, even if it is infinite, has only
finitely many elements. If A is the type of the elements, the codomain of set is the CPO (P(A),⊆)
with bottom element ∅. Restricted to subsets of the set of variables appearing in the list, it satisfies the
ascending chain condition, which ensures that the least fixed point can be computed in finite time by
iteration.

For the implementation, we represent a set as an ordered list. The function insert inserts an element
into an ordered list without duplicating it if it is already there. The function set can be defined as:

let corec[iterator []] set l = match l with
| [] -> []
| h :: t -> insert h (set t)

The complexity of this solver depends on the number of iterations; at each iteration every equation is
evaluated, which leads to a complexity on the order of the product of the number of iterations by the
number of equations.

4.3. The constructor Solver

The constructor solver can be used when a function tries to build a data structure that could be cyclic,
representing a regular coinductive element. Internally, constructor first checks that the right-hand
side of every equation is a value (an integer, float, string, Boolean, unit, tuple on values or unknowns,
injection on a value or unknown). Then it replaces the unknown variables on the right-hand sides with
normal variables and adds them to the environment, thus creating the capsule representing the desired
data structure. Its complexity is linear in the number of equations.

12 J.-B. Jeannin, D. Kozen, A. Silva / CoCaml: Functional Programming with Regular Coinductive Types

Example. The map function on lists takes a function f and a list l, applies f on every element h of l,
and returns the list of the results f h. The constructor solver can be used to create a map functions
that works on all lists, finite or infinite.

let corec[constructor] map arg = match arg with
| f, [] -> []
| f, h :: t -> f(h) :: map (f,t)

4.4. The gaussian Solver

The gaussian solver is designed to be used when the function computes a linear combination of recur-
sive calls. The set of equations is then a Gaussian system that can be solved by standard techniques.

Example. Imagine one wants to simulate a biased coin, say a coin with probability 2/3 of heads, with
a fair coin. Here is a possible solution: flip the fair coin. If it comes up heads, output heads, otherwise
flip again. If the second flip is tails, output tails, otherwise repeat from the start. This protocol can be
represented succinctly by the following probabilistic automaton:

s

H t

T

1
2

1
2

1
2

1
2

Operationally, starting from states s and t, the protocol generates series that converge to 2/3 and 1/3,
respectively.

PrH(s) = 1
2 + 1

8 + 1
32 + 1

128 + · · · = 2
3

PrH(t) = 1
4 + 1

16 + 1
64 + 1

256 + · · · = 1
3 .

However, these values can also be seen to satisfy a pair of mutually recursive equations:

PrH(s) = 1
2 + 1

2 · PrH(t) PrH(t) = 1
2 · PrH(s).

In CoCaml, we can model the automaton by a coinductive type and define a function computing the
probability of Heads using the gaussian solver:

type tree = Heads | Tails
| Flip of float * tree * tree

let corec[gaussian] probability t = match t with
Heads -> 1.

| Tails -> 0.
| Flip(p, t1, t2) -> p *. probability t1 +.

(1. -. p) *. probability t2

J.-B. Jeannin, D. Kozen, A. Silva / CoCaml: Functional Programming with Regular Coinductive Types 13

4.5. The separate Solver

In both OCaml and CoCaml, the default printer for lists prints up to some preset depth, printing “. . . ”
when this depth is exceeded. This will always happen if the list is circular.

let rec ones = 1 :: ones;;
val ones : int list = [1; 1; 1; 1; 1; 1; 1; ...]

This is not very satisfying. Often it may appear as if some pattern is repeating, but what if for instance
a 2 appears in 50th position and is not printed? A better solution might be to print the non-repeating part
normally, followed by the repeating part in parenthesis. For example, the list [1; 2] might be printed
12 and the list 1 :: 2 :: ones be printed 12(1). This can be achieved by creating a special solver
separate, which from the equations defining the lists outputs two finite lists, the non-repeating part and
the repeating part. From there it is easy to finish.

Internally, the equations given to the solver are a graph representing the list. A simple cycle-detection
algorithm allows us to solve the equations as desired. Its complexity is linear in the number of equations.

type ’a sep = I1 | I2 of ’a * sep | I3 of ’a list * ’a list
let corec[separate] separate i = match i with

[] -> I1
| i :: t -> I2(i, separate t)

However, this example is not completely satisfying. In fact, the function separate seems to not
be doing anything, and the solver is quite ad hoc, which contrasts greatly with the solvers we have seen
so far. Moreover, the type sep exists merely to make the type checker happy: the function looks like it
returns an element injected with I1 or I2; in reality this element is passed to the solver which returns
a pair of lists, injected with I3. Conceptually, the solver takes a list as an argument and returns a pair
of lists. This example shows the limits of the current typing mechanism as applied to functions on
coinductive data.

4.6. User-defined Solvers

The solvers we have presented so far are implemented directly in the interpreter. However, as versatile
as these solvers are, the programmer sometimes needs to define his/her own solver. This can be done by
defining a module of type Solver.

module type Solver = sig
type var
type expr
type t
val fresh : unit -> var
val unk : var -> expr
val solve : var -> (var * expr) list -> t

end

Type var is the type of the variables in the equations, and also the type of the left-hand sides of the
equations; type expr is the type of the right-hand sides of the equations; and type t is the return type of
the solver, and thus also of the function that is being defined.

Function fresh generates fresh elements of type var, it is called on each element of the coalgebra
that is encountered; it is the responsibility of the user to provide a function that generates elements of

14 J.-B. Jeannin, D. Kozen, A. Silva / CoCaml: Functional Programming with Regular Coinductive Types

type var that are all different. In most cases type var is simply string, and fresh strings can easily be
generated, for example with the function:

let fresh = let c = 0 in
(fun (x:unit) -> c := c+1;

"fresh" @ (string_of_int c))

But the programmer could choose a different type var, for instance to store more information in it.
To represent variables on the right-hand sides of equations, we need to be able to inject an element

of type var into the type expr. Function unk provides this. Typically expr is a sum type that contains
a special case Unknown of var, and the injection is just fun x -> Unknown x.

Finally, solve is the solver itself. By construction, an equation always has a variable on its left-hand
side, and an expr on its right-hand side, and is thus represented as a pair of type var * expr. Given
an element x of type var, and a set (represented as a list) of equations, it returns an element of type t
that is a solution for the variable x satisfying those equations.

Example. We could define the gaussian solver, as a user-defined solver Gaussian by taking var = string,
t = float, and

type expr =
Val of float

| Plus of expr * expr
| Minus of expr * expr
| Mul of expr * expr
| Unknown of var

fresh and unk are the typical ones shown above, and solve implements a gaussian-elimination al-
gorithm in CoCaml. In the definition of the type expr, we could have chosen to have Mul with arguments
float*exprwhich would automatically keep the equations linear. We write instead Mul of expr*expr

which is more general, and we check linearity dynamically. The declaration of function probability

becomes

let corec[Gaussian] probability t = match t with
Heads -> Val 1.

| Tails -> Val 0.
| Flip(p, t1, t2) -> Plus(Mul(Val p, probability t1),

Mul(Val (1.-. p), probability t2))

The right-hand side is slightly different and less clear than in the original definition. In some sense,
instead of working with the abstract syntax tree of the whole language, the programmer is able to define
his/her own small abstract syntax tree to work with, representing right-hand sides of functions. This is
reminiscent of a known technique to solve corecursive equations by defining a coalgebra whose carrier
is a set of expressions comprising the intermediate steps of the unfolding of the equations [37, 38, 13].

5. Examples

In this section, we show several examples of functions on coinductive types, including finite and infinite
lists, a library for p-adic numbers, and infinitary λ-terms.

J.-B. Jeannin, D. Kozen, A. Silva / CoCaml: Functional Programming with Regular Coinductive Types 15

5.1. Finite and Infinite Lists

We present an application of our main solvers through examples on lists, one of the simplest examples
of coinductive types. Through these examples, we show how easy it is to create recursive functions on
regular coinductive datatypes, as the process is very close to creating recursive functions on inductive
datatypes.

5.1.1. Test of Finiteness

We would like to be able to test whether a list is finite or infinite. The most intuitive way of doing this is
to write a function like:

let rec is_finite l = match l with
| [] -> true
| h :: t -> is_finite t

Of course, this does not terminate on infinite lists under the standard semantics of recursive functions.
However, if we use the corec keyword, the equations generated for [0] will look like

is_finite [0] = is_finite []
is_finite [] = true

and the result will be true. For the infinite list ones, the only equation will look like

is_finite(ones) = is_finite(ones)

and we expect the result to be false. Intuitively, the result of solving the equations should be true

if and only if the expression true appears on the right-hand side of one of the equations. This can
be achieved with the iterator solver, using as first guess the value we should observe if it is not finite,
here false:

let corec[iterator false] is_finite = function
| [] -> true
| h :: t -> is_finite t

5.1.2. List exists

Given a Boolean-valued function f that tests a property of elements of a list l, we would like to define a
function that tests whether this property is satisfied by at least one element of l. The function can simply
be programmed using the iterator solver, where the default value should be false:

let corec[iterator false] exists arg = match arg with
| f, [] -> false
| f, h :: t -> f(h) || exists (f, t)

Note that for this function to work, it is critical that the “or” operator || be lazy, so that the partial
evaluation of the expression f(h) || exists (f, t) can return true directly whenever f(h), even
if the result of evaluating exists(f, t) is not known.

16 J.-B. Jeannin, D. Kozen, A. Silva / CoCaml: Functional Programming with Regular Coinductive Types

5.1.3. The Curious Case of Filtering

Given a Boolean-valued function function f and a list l, we would like to define a function that cre-
ates a new list l1 by keeping only the elements of l that satisfy f. The first approach is to use the
constructor solver and do it as if the list were always finite:

let corec[constructor] filter_naive arg = match arg with
| f, [] -> []
| f, h :: t -> if f(h) then h :: filter_naive(f, t)

else filter_naive(f, t)

However, this does not quite work. For example, if called on the function fun x -> x <= 0 and the
list ones, it generates only one equation

filter_naive(ones) = filter_naive(ones)

and it is not clear which solution is desired by the programmer. However, it is clear that in this particular
case, the list [] should be returned. The problem arises whenever the function is called on an infinite
list l such that no element of l satisfies f. Rather than modify the solver, our solution is to be a little bit
more careful and return [] explicitly when needed:

let corec[constructor] filter arg = match arg with
| f, [] -> []
| f, h :: t: -> if f(h) then h :: filter(f, t)

else if exists(f, t) then filter(f, t)
else []

The main problem with this solution is that it has a quadratic complexity in the size of the internal
representation of its second argument — if considering each call to its first argument f to be O(1). It is
possible to get a linear complexity using an ad hoc solver, not presented here.

5.1.4. Other Examples on Lists

We have presented a few examples of functions on infinite lists. Some of them are inspired by classic
functions on lists supported by the List module of OCaml. Some functions of the List module, like sort-
ing, do not make sense on infinite lists. But most other functions of the List module can be implemented
in similar ways. We refer to the implementation provided as attachment for more details.

5.2. A Library for p-adic Numbers

In this section we present a library for p-adic numbers and operations on them.

5.2.1. The p-adic Numbers

The p-adic numbers [10, 46] are a well-studied mathematical structure with applications in several areas
of mathematics. For a fixed prime p, the p-adic numbers Qp form a field that is the completion of the
rationals under the p-adic metric in the same sense that the reals are the completion of the rationals under
the usual Euclidean metric. The p-adic metric is defined as follows. Define | · |p by

• |0|p = 0;

J.-B. Jeannin, D. Kozen, A. Silva / CoCaml: Functional Programming with Regular Coinductive Types 17

• if x ∈ Q, write x as x = apn/b, where n, a and b are integers and neither a nor b is divisible by p.
Then |x|p = p−n.

The distance between x and y in the p-adic metric is |x − y|p. Intuitively, x and y are close if their
difference is divisible by a high power of p.

Just as a real number has a decimal representation with a finite number of nonzero digits to the left
of the decimal point and a potentially infinite number of nonzero digits to the right, a p-adic number
has a representation in base p with a finite number of p-ary digits to the right and a potentially infinite
number of digits to the left. Formally, every element of Qp can be written in the form

∑∞
i=k dip

i, where
the di are integers such that 0 ≤ di < p and k is an integer, possibly negative. An important fact is that
this representation is unique (up to leading zeros), in contrast to the decimal representation, in which
1 = 0.999 If dk = 0 for k < 0, then the number is said to be a p-adic integer. If b is not divisible
by p, then the rational number a/b is a p-adic integer. Finally, p-adic numbers for which the sequence
(dk)k is regular (ultimately periodic) are exactly the rational numbers. This is similar to the decimal
representations of real numbers. Since our lists must be regular so that they can be represented in finite
memory, these are the numbers we are interested in. We fix the prime p (written p in programs) once and
for all, for instance as a global variable.

5.2.2. Equality and Normalization

We represent a p-adic number x =
∑∞

i=k dip
i as a pair of lists:

• the list d0, d1, d2, . . . in that order, which we call the integer part of x and which can be finite or
infinite; and

• if k < 0 and dk 6= 0, the list containing d−1, d−2, . . . , dk, which we call the fractional part of x
and which is always finite.

Since the representation x =
∑∞

i=k dip
i is unique up to leading zeros, the only thing we have to

worry about when comparing two p-adic integers is that an empty list is the same as a list of zeros, finite
or infinite. The following function equali uses the iterator solver and compares two integer parts of
p-adic numbers for equality:

let corec[iterator true] equali p = match p with
[], [] -> true

| h1 :: t1, h2 :: t2 -> h1 = h2 && equali (t1, t2)
| 0 :: t1, [] -> equali (t1, [])
| [], 0 :: t2 -> equali (t2, [])
| x -> false

Interestingly, comparing the fractional parts is almost the same code, with the rec keyword instead
of the corec keyword.

let rec equalf p = match p with (* of floating parts: not corecursive *)
[], [] -> true

| h1 :: t1, h2 :: t2 -> h1 = h2 && equalf (t1, t2)
| 0 :: t1, [] -> equalf (t1, [])
| [], 0 :: t2 -> equalf (t2, [])
| _ -> false

18 J.-B. Jeannin, D. Kozen, A. Silva / CoCaml: Functional Programming with Regular Coinductive Types

let equal p1 p2 = match p1, p2 with
(i1, j1), (i2, j2) -> equali (i1, i2) && equalf (j1, j2)

This happens quite often: if one knows how to do something with inductive types, the solution for
coinductive types often involves only changing the rec keyword to corec and some other minor ad-
justments. However, one must take care, as there are exceptions to this rule. In this example, since here
equali also works on inductive types, we could have used equali instead of equalf in equal.

Now that we have equality, normalization of a p-adic integer becomes easy using the constructor
solver:

let corec[constructor] normalizei i =
if equali(i, []) then []
else match i with i :: t -> i :: normalizei t

The function normalizei only requires equality with zero (represented as []), which is much easier
than general equality. We can now write a normalization on the fractional parts as a simple recursive
function (once again, with the same code), or just use normalizei, which also works on the fractional
parts.

5.2.3. Conversion from a Rational

We wish to convert a given rational a/b with a, b ∈ Z to its p-adic representation. Let us first try to
convert x = a/b into a p-adic integer if b is not divisible by p. Since x is a p-adic integer, we know that
x can be written x =

∑∞
i=0 dip

i, thus multiplying both sides by b gives

a = b

∞∑
i=0

dip
i.

Taking both sides modulo p, we get a = bd0 mod p. Since b and p are relatively prime, this uniquely
determines d0 such that 0 ≤ d0 < p, which can be found by the Euclidean algorithm. We can now
substract bd0 to get

a− bd0 = b

∞∑
i=1

dip
i.

This can be divided by p by definition of d0, which leads to the same kind of problem recursively.
This procedure defines an algorithm to find the digits of a p-adic integer. Since we know it will be

cyclic, we can use the constructor solver:

let corec[constructor] from_rationali (a,b) =
if a = 0 then []
else let d = euclid p a b in

d :: from_rationali ((a - b*d)/p, b)

where the call euclid p a b is a recursive implentation of a (slightly modified) Euclidean algorithm
for finding d0 as above.

If b is divisible by p, it can be written pnb0 where b0 is not divisible by p, and we can first find the
representation of a/b0 as an integer, then shift by n digits to simulate division by pn.

J.-B. Jeannin, D. Kozen, A. Silva / CoCaml: Functional Programming with Regular Coinductive Types 19

5.2.4. Conversion to a Float

Given a p-adic integer x =
∑∞

i=0 dip
i, define xk =

∑∞
i=0 dk+ip

i. Then for all k ≥ 0, xk = dk + pxk+1.
If the sequence (dk)k is regular, so is the sequence (xk)k, thus there exist n,m > 0 such that xk+m = xk
for all k ≥ n. It follows that

x = x0 =
n−1∑
i=0

dip
i + pnxn xn =

m−1∑
i=0

dn+ip
i + pmxn,

and further calculation reveals that x = a/b, where

a =

n+m−1∑
i=0

dip
i −

n−1∑
i=0

dip
m+i b = 1− pm.

But even without knowing m and n, the programmer can write a function that will automatically con-
struct a system of m+ n linear equations xk = dk + pxk+1 in the unknowns x0, . . . , xm+n−1 and solve
them by Gaussian elimination to obtain the desired rational representation. To accomplish this, we can
just use our gaussian solver:

let corec[gaussian] to_floati i = match i with
| [] -> 0.
| d :: t -> (float_of_int d) +.

(float_of_int p) *. (to_floati t)

This function returns the floating point representation of a given p-adic integer. It is interesting to note
that, apart from the mention of corec[gaussian], this is exactly the function we would have written
to calculate the floating-point value of an integer written in p-ary notation using Horner’s rule.

A similar program can be used to convert the floating part of a p-adic number to a float. Adding the
two parts gives the desired result.

5.2.5. Addition

Adding two p-adic integers is suprisingly easy. We can use (a slight adaptation of) the primary school
algorithm of adding digit by digit and using carries. A carry might come from adding the floating parts,
so the algorithm really takes three arguments, the two p-adic integers to add and a carry. Using the
constructor solver, this gives:

let corec[constructor] addi arg = match arg with
| [], [], c ->

if c = 0 then []
else (c mod p) :: addi ([], [], c/p)

| h :: t, [], c ->
addi (h :: t, [0], c)

| [], h :: t, c ->
addi ([0], h :: t, c)

| hi :: ti, hj :: tj, c ->
let res = hi + hj + c in
(res mod p) :: addi (ti, tj, res / p)

Once again, once we have addition on p-adic integers, it is easy to program addition on general p-adic
numbers.

20 J.-B. Jeannin, D. Kozen, A. Silva / CoCaml: Functional Programming with Regular Coinductive Types

5.2.6. Multiplication and Division

The primary school algorithm and the constructor solver can also be used for multiplication. How-
ever, we need to proceed in two steps. We first create a function mult1 that takes a p-adic integer i,
a digit j, and a carry c, and calculates i*j+c. We then create a function multi that takes two p-adic
integers i and j and a carry c and calculates i*j+c.

let corec[constructor] mult1 arg = match arg with
| [], d, c -> if c = 0 then []

else (c mod p) :: mult1 ([], d, c/p)
| hi :: ti, d, c ->

let res = hi * d + c in
(res mod p) :: mult1 (ti, d, res / p)

let corec[constructor] multi arg = match arg with
| n1, [], c -> c
| n1, h2 :: t2, c ->

(match (addi (mult1 (n1, h2, 0), c, 0)) with
| [] -> 0 :: multi (n1, t2, 0)
| hr :: tr -> hr :: multi (n1, t2, tr))

To extend this to general p-adic numbers, we can multiply both i and j by suitable powers of p before
applying multi, then divide the result back as necessary.

Division of p-adic integers can be done with only one function using a constructor solver in much
the same way as addition or multiplication. The algorithm also uses the euclid function and is closely
related to from_rational.

Some of the examples above on p-adic numbers could be done with lazy evaluation, namely the
arithmetic operations and conversion to a rational. However equality, normalization, conversion to a
float and printing (showing the cycle) could not.

5.3. Equality

Now that we have recursive functions on coinductive types, we might ask whether it would be possible
to program equality on a coinductive type. The answer is yes. The function is built in much the same
way as the equali function, with the iterator true solver. This is a general trend for coinductive
equality: two elements are equal unless there is evidence that they are unequal.

The code can be found below, with the small simplification of having expressions on pairs instead
of general tuples. The argument to the equal function is a capsule, whose environment is represented
as an association list. The function assoc is similar to the standard OCaml function List.assoc and
looks up an element in an association list, returning its associated value.

type expr =
| Var of string
| Int of i
| Inj of string * expr
| Pair of expr * expr

let corec[iterator true] equal arg = match arg with
(Var x1, env1), (Var x2, env2) ->

J.-B. Jeannin, D. Kozen, A. Silva / CoCaml: Functional Programming with Regular Coinductive Types 21

•

x x

(a)

•

x •

y

(b)

•

x •

•

x x

(c)

Figure 1. A substitution example.

equal ((assoc (x1, env1), env1), (assoc (x2, env2), env2))
| (Var x1, env1), s2 -> equal ((assoc (x1, env1), env1), s2)
| s1, (Var x2, env2) -> equal (s1, (assoc (x2, env2), env2))
| (Int i1, env1), (Int i2, env2) -> i1 = i2
| (Inj(inj1, e3), env1), (Inj(inj2, e4), env2) ->

inj1 = inj2 && equal ((e3, env1), (e4, env2))
| (Pair(e1, e2), env1), (Pair(e3, e4), env2) ->

equal((e1, env1), (e3, env1)) && equal((e1, env1), (e3, env1))
| _ -> failwith "type error"

5.4. Other Examples

Besides the examples presented here, we have implemented all the examples that Jeannin, Kozen and
Silva collected in [30] to CoCaml. Among those, substitution in a infinite λ-term (λ-coterm) and de-
scending sequences can be implemented with the constructor solver; free variables of a λ-coterm and
abstract interpretation of while loops can be implemented using the iterator solver; and the examples
involving probabilistic protocols, like calculating the probability of heads of a coin-flip protocol or the
expected number of flips, can be implemented using the gaussian solver. Further examples include
algorithms for finite automata and abstract interpretation.

To complement the example of in §2 involving the free variables of a λ-coterm, we show another
non-well-founded example on λ-coterms, namely the substitution of a term t for all free occurrences of
a variable y. A typical implementation would be

let rec subst t y = function
| Var x -> if x = y then t else Var x
| App (t1,t2) -> App (subst t y t1, subst t y t2)

For simplicity, we have omitted the case of function abstraction, since it is not relevant for the example.
For example, to replace y in Fig. 1(b) by the term of Fig. 1(a) to obtain Fig. 1(c), we would call

subst (App x x) y t, where t is the term of Fig. 1(b), defined by let rec t = App x (App y t).
The usual semantics would infinitely unfold the term on the left, attempting to generate

22 J.-B. Jeannin, D. Kozen, A. Silva / CoCaml: Functional Programming with Regular Coinductive Types

•

x •

• •

x x •

. . .•

x

x x

This computation would never finish.
A minor adaptation of the definition of subst above results in a function that will return the desired

regular infinitary λ-term:

let corec[constructor] subst arg = match arg with
| x, t, Var v -> if v = x then t else Var v
| x, t, App(t1, t2) -> App(subst (x, t, t1), subst (x, t, t2))

6. Implementation

We have implemented an interpreter for CoCaml. The implementation is about 5000 lines of OCaml. We
have also used CoCaml on a number of examples, of which we have presented a few here. So far we have
written about 1500 lines of CoCaml. The implementation is provided in the supplementary material.

6.1. Overview

In this section, we explain how the translation of the construct corec[solver] is implemented. Briefly,
the body of the function is partially evaluated, replacing recursive calls by variables, and this forms the
right-hand side of an equation. The generated equations are then solved using the parameter solver.

Note that equations can only be correctly generated if all the recursive calls are applied to an argu-
ment, and none of them are nested. This argument needs to be explicit, and examples such as

let corec[constructor] alternating_bools =
false :: map not alternating_bools

are thus ruled out. Right-hand sides can contain calls to previously defined corec functions as long as
they are not nested.

When a function f is defined using the corec keyword, it is bound in the current environment. For
simplicity, we impose the restriction that f takes only one argument (by forbidding curried definitions
with the corec keyword). This is a mild restriction, as this argument can be a tuple. Also, because of
how functions defined with corec are evaluated, we disallow nested recursive calls to f .

The interesting part occurs when the function f is called on an argument a. Since our language is
call-by-value, a is first evaluated and bound in the current environment. We then proceed to generate the
recursive equations that the value of f(a) must satisfy.

J.-B. Jeannin, D. Kozen, A. Silva / CoCaml: Functional Programming with Regular Coinductive Types 23

6.2. Partial Evaluation

Partial evaluation is much like normal evaluation except when encountering a recursive call to f . When
such a recursive call f(aj) is encountered, its argument is evaluated, and the call is replaced by a variable
xj corresponding to aj . The variable xj might be fresh if aj had not been seen before, or it might be the
one already associated with aj .

Coming back up the abstract syntax tree, some operations cannot be performed. If the condition of
an if statement was only partially evaluated, we cannot know which branch to evaluate next; the same
thing happens for the condition of a while loop or an argument that is pattern-matched.

Particular care must be taken when evaluating the && and || constructs. These are usually imple-
mented lazily. If the first argument of && evaluates to false, then it should return false. But if it only
partially evaluates, then the second argument cannot be evaluated. However, we choose to partially eval-
uate it anyway, in case it contains recursive calls; thus our implementations of && and || in the partial
evaluator are not strictly lazy.

6.3. Equality of Regular Coinductive Terms

Equality of values, and in particular equality of cyclic data structures, plays a central role in the process
of generating the equations corresponding to the call of a recursive function. A new equation is generated
for each recursive call whose argument has not been previously seen. To assess whether the argument
has been previously seen, a set of objects previously encountered is maintained. At each new recursive
call, the argument is tested for membership in this set by testing equality with each member of the set.
To ensure termination, equality on values that are observationally equivalent must return true.

Unfortunately, OCaml’s documentation tells us that “equality between cyclic data structures may not
terminate.” In practice, the OCaml equality test returns false if it can find a difference in finite time,
otherwise continues looping forever. In short, it never returns true when the arguments are cyclic and
bisimilar.

> let rec zeros = 0 :: zeros and ones = 1 :: ones;;
val zeros : int list = [0; 0; 0; 0; 0; 0; 0; ...]
val ones : int list = [1; 1; 1; 1; 1; 1; 1; ...]
> zeros = ones;;
- : bool = false
> zeros = zeros;; (* does not terminate *)
> let rec zeros2 = 0 :: 0 :: zeros2;;
val zeros2 : int list = [0; 0; 0; 0; 0; 0; 0; ...]
> zeros = zeros2;; (* does not terminate *)

We would like to create a new equality, simply denoted =, that would work the same as in OCaml on
every value except cyclic data structures. On cyclic data structures, this equality should correspond to
observational equality, so that both calls zeros = zeros and zeros = zeros2 above should return
true. Note that the OCaml physical identity relation == is not suitable: zeros == zeros2 would
return false. More importantly, even two instances of a pair of integers formed at different places in
the program would not be equal under ==, although they are observationally equivalent.

To allow cyclic data structures and recursive functions, values are represented internally with cap-
sules. We are thus interested in creating observational equality on capsules. Recall that capsules are

24 J.-B. Jeannin, D. Kozen, A. Silva / CoCaml: Functional Programming with Regular Coinductive Types

essentially finite coalgebras, finite coalgebraic representations of a regular closed λ-coterm. Let us de-
scribe the equality algorithm on a simplification of our language where value expressions can only be
variables, literal integers, injections into a sum type or tuples.

Let Cap be the set of capsules. The domain of the equality is the set of pairs of capsules – Cap2 =
Cap× Cap. The codomain is the two-element Boolean algebra 2. The diagram (1) is instantiated to

Cap2 2

2 + Cap2 + list (Cap2) 2 + 2 + list 2

h

γ

id2 + h+map h

α

where the functor is FX = 2 + X + list X . Here, list X denotes lists of elements of type X , and the
map function iterates a function over a list, returning a list of the results.

The function γ matches on the first component of each capsule distinguishing between the base cases
and then ones in which equality needs to be recursively determined. If they are both literal integers, it
returns ι1(true) if they are equal and ι1(false) otherwise. If either one is a variable, it looks up its
value in the corresponding environment. If they are injections of e1 and e2, it returns ι2(e1, e2). If they
are tuples, it creates a list l of pairs whose nth element is the pair of the nth elements of the first and
second tuple and returns ι3(l). The function α, which processes the results of recursive calls, is the
identity on the first two projections, and on ι3(l) returns the conjunction of all Boolean values in the list
l, that is true if all the elements of l are true, false otherwise.

The naive algorithm given by this diagram is quadratic and it compares all pairs of variables in the
capsules. However it turns out that we can see the capsules as finite automata, and they are equal if and
only if their corresponding automata are equivalent. There is a known nα(n) algorithm by Hopcroft and
Karp [26], where α is the inverse of the Ackermann function.2

7. Related Work

Syme [42] describes the “value recursion problem” and proposes an approach involving laziness and
substitution, eschewing mutability. He also gives a formal calculus for reasoning about the system, along
with several examples. One major concern is with side effects, but this is not a particular concern for
us. His approach is not essentially coalgebraic, as bisimilar objects are not considered equal. Whereas
he must perform substitution on the circular object, we can use variable binding in the environment, as
this is invisible with respect to bisimulation, which is correspondingly much simpler. He also claims that
“compelling examples of the importance of value recursion have been missing from the literature”. We
have tried to fill the gap in this paper. Many more examples appear in other works, notably in [30] and,
for instance, in work of Ancona which we discuss below.

Sperber and Thiemann [41] propose replacing ref cells with a safe pointer mechanism for dealing
with mutable objects. Again, this is not really coalgebraic. They state that “ref cells, when compared

2Hopcroft and Karp initially thought the algorithm was linear, but the complexity was later corrected to nα(n)

J.-B. Jeannin, D. Kozen, A. Silva / CoCaml: Functional Programming with Regular Coinductive Types 25

to mechanisms for handling mutable data in other programming languages, impose awkward restrictions
on programming style,” a sentiment with which we wholeheartedly agree.

Capsule semantics address the same issues as Felleisen’s and Hieb’s theories of syntactic state [20],
but capsules are considerably simpler. A major advantage is the elimination of the explicit context present
in [20].

Hirschowitz, Leroy, and Wells [25] suggest a safe initialization method for cyclic data structures.
Again, their approach is not coalgebraic and uses substitution, which precludes further modification of
the data objects once they are created.

Close to our work is the recent paper by Widemann [45], which is explicitly coalgebraic. He uses
final coalgebras to interpret datatype definitions in a heap-based model with call-by-value semantics.
Circular data objects are represented by cycles of pointers created by substitution. The main focus is
low-level implementation of evaluation strategies, including cycle detection, and examples are mainly
search problems. He also proposes a “front-end language” constructs as an important problem for future
work, which is one of the issues we have addressed here.

Recently, copatterns [1, 2] have been developed to analyze and manipulate infinite data structures and
coinductive datatypes, a goal similar to the one of CoCaml. However the approach taken is different, as it
does not restrict to regular coinductive types. Thus some of our examples, such as free variables or prob-
ability, cannot be handled. Copatterns have an extensively developed type theory and are implemented
in Agda.

The question of equality of circular data structures in OCaml has been subject of investigation in,
e.g, [24], where the cyclist can be found. The cyclist library provides some functions on infinite
lists in OCaml. However, this is limited to lists and does not handle any other coinductive type. Another
relevant paper where functions on list in an ML like language are discussed is [15]. There is also work in
Scheme [6] which defined observational equality for trees and graphs. The language constructs we apply
in this paper could also be easily transferred to Scheme.

In the area of logic programming, similar challenges have been tackled. Coinductive logic program-
ming (coLP) [39, 40] has been recently introduced as a step forward towards developing logic programs
containing both finite and regular coinductive terms. The operational semantics is obtained by comput-
ing the greatest fixed point of a logic program. Inspired by coLP, Ancona and Zucca defined corecursive
FeatherWeight Java (coFJ) [8] which extends FeatherWeight Java with language support for cyclic struc-
tures. In [9] they provide a translation from coFJ into coLP, clarifying the connections between the two
frameworks, and, more notably, providing an effective implementation of coFJ. In [48], they define a
type system for coFJ that allows the user to specify that certain methods are not allowed to return unde-
termined when the solution of the equation system is not unique. Ancona has also improved the state of
the art on regular corecursion in Prolog [7], by extending the interpreter with a new clause that enables
simpler definitions of coinductive predicates.

In the context of type theory, theorem provers like Coq and Agda allow coinductive programs and
proofs. In Coq for example, one can define coinductive datatypes similar to the ones found in OCaml,
and define functions and proofs on them [16, 22]. The coinductive functions that can be defined in Coq
or Agda correspond to a subset of the functions that can be defined using the constructor solver of
CoCaml. None of the functions using the other solvers presented in this paper are expressible. However,
unlike CoCaml, Coq and Agda ensure that all functions terminate and all proofs are sound. For coin-
ductive functions, this is traditionally done using a guardedness condition, a syntactic check on the body
of the function or the proof [16]. This is sometimes restrictive, and less restrictive conditions have been

26 J.-B. Jeannin, D. Kozen, A. Silva / CoCaml: Functional Programming with Regular Coinductive Types

developed, focusing on programs in Coq [11, 22] and Agda [17], or on proofs in Coq [27, 34].
Work on cyclic structures in lazy languages can be found in e.g. [19, 21, 36, 44]. In these works,

explicit modeling of back pointers (and visited nodes) is used, requiring for instance the use of nested da-
tatypes, and no new program construct is proposed. In our work, we do not touch the datatype definition:
the cyclic structure of an object is detected automatically.

The closest to our work, in the context of OCaml, is [30], where Jeannin, Kozen and Silva discuss at
length what is needed to extend OCaml with language support to define functions on regular coinductive
types. They provide a mock-up implementation also in a OCaml-like language. However, their proposal
to specify alternative semantics (solution methods) is not generic and they do not provide any support for
user defined solvers. In this paper, we give a full implementation and improve on their results by showing
how alternative semantics, provided by equation solvers, can be given in a lightweight, elegant fashion.
We implement several generic solvers, which are versatile enough to cover a wide range of examples,
and give the user means to be able to define his/her own solver. All the examples discussed in [30] and
also in [8] fit in our framework.

8. Conclusions and future work

Coalgebraic (coinductive) datatypes and algebraic (inductive) datatypes are similar in many ways. They
are defined in the same way by recursive type equations, algebraic types as least (or initial) solutions and
coalgebraic types as greatest (or final) solutions. Because of this similarity, one would like to program
with them in the same way, by defining functions by structural recursion using pattern matching. How-
ever, because of the non-well-foundedness of coalgebraic data, it must be possible for the programmer
to circumvent the standard semantics of recursion and specify alternative solution methods for recursive
equations. Up to now, there has been little programming language support for this.

In this paper we have presented CoCaml, an extension of OCaml with new programming language
constructs to address this issue for regular coinductive types. We have shown though numerous examples
that regular coalgebraic types can be useful in many applications and that computing with them is in most
cases no more difficult than computing with algebraic types. Although these alternative solution methods
are nonstandard, they are quite natural and can be specified in succinct ways that fit well with the familiar
style of recursive functional programming. We have a full implementation of our framework, including
several generic solvers and support for user-defined solvers.

As future work, we would like to provide, in addition to the power of the user being able to define
his/her own solvers, static checks that can be performed on a solver and its associated functions to ensure
that the computation stays safe. Right now most of the checks are dynamic.

Equations can only be correctly generated if all the recursive calls are applied to an argument, and
none of them are nested. We currently check this dynamically. However, we believe we can enforce this
through an extended type system on which we are currently working.

We are currently extending the implementation to include regular coinductive objects in more struc-
tured categories like vector spaces. This would allow us to cover functions on rational streams and
trees [38], broadening further the spectrum of applications and examples.

Finally, we would like to develop methods for proving the correctness of the implementation of
recursive functions on coalgebraic data. This would open the door of connecting our work to very recent
work on coinduction in program verification [33].

J.-B. Jeannin, D. Kozen, A. Silva / CoCaml: Functional Programming with Regular Coinductive Types 27

Acknowledgments

Thanks to Bob Constable, Jean-Christophe Filliâtre, Nate Foster, Edgar Friendly, Alain Girault, Fritz
Henglein, Helle Hvid Hansen, Bart Jacobs, Jonathan Kimmitt, Andrew Myers, Stefan Milius, François
Pottier, Ross Tate, and Baltasar Trancón y Widemann for stimulating discussions. Thanks to Hersh
Mehta for help with the implementation.

References
[1] Abel, A., Pientka, B.: Wellfounded recursion with copatterns: a unified approach to termination and produc-

tivity, ICFP, 2013.

[2] Abel, A., Pientka, B., Thibodeau, D., Setzer, A.: Copatterns: programming infinite structures by observa-
tions, POPL, 2013.

[3] Adámek, J., Lücke, D., Milius, S.: Recursive Coalgebras of Finitary Functors, Theoretical Informatics and
Applications, 41, 2007, 447–462.

[4] Adámek, J., Milius, S., Velebil, J.: Elgot Algebras, Log. Methods Comput. Sci., 2(5:4), 2006, 1–31.

[5] Adámek, J., Milius, S., Velebil, J.: Iterative algebras at work, Mathematical. Structures in Comp. Sci., 16(6),
December 2006, 1085–1131.

[6] Adams, M. D., Dybvig, R. K.: Efficient nondestructive equality checking for trees and graphs, Proc. 13 ACM
SIGPLAN Int. Conf. Functional Programming, 2008.

[7] Ancona, D.: Regular corecursion in Prolog, SAC (S. Ossowski, P. Lecca, Eds.), ACM, 2012, ISBN 978-1-
4503-0857-1.

[8] Ancona, D., Zucca, E.: Corecursive Featherweight Java, FTfJP’012 - Formal Techniques for Java-like
Programs, 2012.

[9] Ancona, D., Zucca, E.: Translating Corecursive Featherweight Java in Coinductive Logic Programming,
Co-LP 2012 - A workshop on Coinductive Logic Programming, 2012.

[10] Baker, A.: An Introduction to p-adic Numbers and p-adic Analysis, http://www.maths.gla.ac.uk/
˜ajb/dvi-ps/padicnotes.pdf, March 2011, School of Mathematics and Statistics, University of
Glasgow.

[11] Bertot, Y., Komendantskaya, E.: Inductive and Coinductive Components of Corecursive Functions in Coq,
Electr. Notes Theor. Comput. Sci., 203(5), 2008, 25–47.

[12] Boudol, G., Zimmer, P.: Recursion in the call-by-value lambda-calculus, FICS (Z. Ésik, A. Ingólfsdóttir,
Eds.), NS-02-2, University of Aarhus, 2002.

[13] Capretta, V.: Coalgebras in functional programming and type theory, Theor. Comput. Sci., 412(38), 2011,
5006–5024.

[14] Capretta, V., Uustalu, T., Vene, V.: Corecursive Algebras: A Study of General Structured Corecursion, For-
mal Methods: Foundations and Applications, 12th Brazilian Symp. Formal Methods (SBMF 2009) (M. V. M.
Oliveira, J. Woodcock, Eds.), 5902, Springer, Berlin, 2009.

[15] Caspi, P., Pouzet, M.: A Co-iterative Characterization of Synchronous Stream Functions, Electr. Notes Theor.
Comput. Sci., 11, 1998, 1–21.

[16] Coquand, T.: Infinite Objects in Type Theory, TYPES, 1993.

http://www.maths.gla.ac.uk/~ajb/dvi-ps/padicnotes.pdf
http://www.maths.gla.ac.uk/~ajb/dvi-ps/padicnotes.pdf

28 J.-B. Jeannin, D. Kozen, A. Silva / CoCaml: Functional Programming with Regular Coinductive Types

[17] Danielsson, N. A.: Beating the Productivity Checker Using Embedded Languages, PAR, 2010.

[18] Eppendahl, A.: Coalgebra-to-Algebra Morphisms, Electronic Notes in Theoretical Computer Science, 29,
1999.

[19] Fegaras, L., Sheard, T.: Revisiting catamorphisms over datatypes with embedded functions (or, programs
from outer space), Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages, POPL ’96, ACM, New York, NY, USA, 1996.

[20] Felleisen, M., Hieb, R.: The Revised Report on the Syntactic Theories of Sequential Control and State,
Theoretical Computer Science, 103, 1992, 235–271.

[21] Ghani, N., Hamana, M., Uustalu, T., Vene, V.: Representing cyclic structures as nested datatypes, Proc. of
7th Symp. on Trends in Functional Programming, TFP 2006 (H. Nilsson, Ed.), Univ. of Nottingham, 2006.

[22] Giménez, E.: Structural Recursive Definitions in Type Theory, ICALP, 1998.

[23] Goguen, J. A., Thatcher, J. W.: Initial Algebra Semantics, 15th Symp. Switching and Automata Theory, IEEE,
1974.

[24] Grebeniuk, D.: Library ocaml-cyclist, https://forge.ocamlcore.org/projects/
ocaml-cyclist/, June 2010.

[25] Hirschowitz, T., Leroy, X., Wells, J. B.: Compilation of extended recursion in call-by-value functional lan-
guages, PPDP 2003, 2003.

[26] Hopcroft, J. E., Karp, R. M.: A linear algorithm for testing equivalence of finite automata, Technical report,
Cornell University, 1971.

[27] Hur, C.-K., Neis, G., Dreyer, D., Vafeiadis, V.: The power of parameterization in coinductive proof, POPL,
2013.

[28] Jeannin, J.-B.: Capsules and Closures, Proc. 27th Conf. Math. Found. Programming Semantics (MFPS
XXVII) (M. Mislove, J. Ouaknine, Eds.), Elsevier Electronic Notes in Theoretical Computer Science, Pitts-
burgh, PA, May 2011.

[29] Jeannin, J.-B., Kozen, D.: Computing with Capsules, J. Automata, Languages and Combinatorics, 17(2–4),
2012, 185–204.

[30] Jeannin, J.-B., Kozen, D., Silva, A.: Language Constructs for Non-Well-Founded Computation, 22nd Eu-
ropean Symposium on Programming (ESOP 2013) (M. Felleisen, P. Gardner, Eds.), 7792, Springer, Rome,
Italy, March 2013.

[31] Jeannin, J.-B., Kozen, D., Silva, A.: Well-Founded Coalgebras, Revisited, Technical Report http://hdl.
handle.net/1813/33330, Computing and Information Science, Cornell University, May 2013.

[32] Kozen, D.: New, Proc. 28th Conf. Math. Found. Programming Semantics (MFPS XXVIII) (U. Berger, M. Mis-
love, Eds.), Elsevier Electronic Notes in Theoretical Computer Science, Bath, England, June 2012.

[33] Leino, K. R. M., Moskal, M.: Co-induction Simply: Automatic Co-inductive Proofs in a Program Verifier,
Technical report, Microsoft Research, 2013.

[34] Niqui, M.: Coalgebraic Reasoning in Coq: Bisimulation and the lambda-Coiteration Scheme, TYPES, 2008.

[35] Pottier, F.: Lazy Least Fixed Points in ML, Available from pauillac.inria.fr/˜fpottier/
publis/fpottier-fix.pdf.

[36] d. S. Oliveira, B. C., Cook, W. R.: Functional programming with structured graphs, ICFP (P. Thiemann,
R. B. Findler, Eds.), ACM, 2012, ISBN 978-1-4503-1054-3.

https://forge.ocamlcore.org/projects/ocaml-cyclist/
https://forge.ocamlcore.org/projects/ocaml-cyclist/
http://hdl.handle.net/1813/33330
http://hdl.handle.net/1813/33330
pauillac.inria.fr/~fpottier/publis/fpottier-fix.pdf
pauillac.inria.fr/~fpottier/publis/fpottier-fix.pdf

J.-B. Jeannin, D. Kozen, A. Silva / CoCaml: Functional Programming with Regular Coinductive Types 29

[37] Silva, A., Rutten, J. J. M. M.: Behavioural Differential Equations and Coinduction for Binary Trees, WoLLIC
(D. Leivant, R. J. G. B. de Queiroz, Eds.), 4576, Springer, 2007, ISBN 978-3-540-73443-7.

[38] Silva, A., Rutten, J. J. M. M.: A coinductive calculus of binary trees, Inf. Comput., 208(5), 2010, 578–593.

[39] Simon, L., Mallya, A., Bansal, A., , Gupta, G.: Coinductive logic programming, 22nd Int. Conf. Logic
Programming (ICLP 2006) (S. Etalle, M. Truszczyński, Eds.), 4079, Springer, August 2006.

[40] Simon, L., Mallya, A., Bansal, A., , Gupta, G.: Co-logic programming: Extending logic programming with
coinduction, 34th Int. Colloq. Automata, Languages and Programming (ICALP 2007) (L. Arge, C. Cachin,
T. Jurdzinski, A. Tarlecki, Eds.), 4596, Springer, July 2007.

[41] Sperber, M., Thiemann, P.: ML and the Address Operator, 1998 ACM SIGPLAN Workshop on ML, September
1998.

[42] Syme, D.: Initializing Mutually Referential Abstract Objects: The Value Recursion Challenge, Proc. ACM-
SIGPLAN Workshop on ML (2005), Elsevier, March 2006.

[43] Taylor, P.: Practical Foundations of Mathematics, Number 59 in Cambridge Studies in Advanced Mathe-
matics, Cambridge University Press, 1999.

[44] Turbak, F. A., Wells, J. B.: Cycle Therapy: A Prescription for Fold and Unfold on Regular Trees, PPDP,
ACM, 2001, ISBN 1-58113-388-X.

[45] y Widemann, B. T.: Coalgebraic Semantics of Recursion on Circular Data Structures, CALCO Young Re-
searchers Workshop (CALCO-jnr 2011) (C. Cirstea, M. Seisenberger, T. Wilkinson, Eds.), August 2011.

[46] Wikipedia: p-adic numbers, http://en.wikipedia.org/w/index.php?title=P-adic_
number&oldid=553107165, 2012.

[47] Wright, J. B., Thatcher, J. W., Wagner, E. G., Goguen, J. A.: Rational Algebraic Theories and Fixed-Point
Solutions, FOCS, IEEE Computer Society, 1976.

[48] Zucca, E., Ancona, D.: Safe Corecursion in coFJ, FTfJP’012 - Formal Techniques for Java-like Programs.
2013, 2013.

http://en.wikipedia.org/w/index.php?title=P-adic_number&oldid=553107165
http://en.wikipedia.org/w/index.php?title=P-adic_number&oldid=553107165

	Introduction
	Overview
	Preliminaries
	ML with Coalgebraic Datatypes
	Capsule Semantics
	Recursive functions on regular coinductive types

	Equations and Solvers
	Equation Generation
	The iterator Solver
	The constructor Solver
	The gaussian Solver
	The separate Solver
	User-defined Solvers

	Examples
	Finite and Infinite Lists
	Test of Finiteness
	List exists
	The Curious Case of Filtering
	Other Examples on Lists

	A Library for p-adic Numbers
	The p-adic Numbers
	Equality and Normalization
	Conversion from a Rational
	Conversion to a Float
	Addition
	Multiplication and Division

	Equality
	Other Examples

	Implementation
	Overview
	Partial Evaluation
	Equality of Regular Coinductive Terms

	Related Work
	Conclusions and future work

