678 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 4, APRIL 2006

A Fast Hierarchical Quadratic Placement Algorithm

Gi-Joon Nam, Member, IEEE, Sherief Reda, Student Member, IEEE, Charles J. Alpert, Senior Member, IEEE,
Paul G. Villarrubia, and Andrew B. Kahng, Member, IEEE

Abstract—Placement is a critical component of today’s
physical-synthesis flow with tremendous impact on the final per-
formance of very large scale integration (VLSI) designs. Un-
fortunately, it accounts for a significant portion of the overall
physical-synthesis runtime. With the complexity and the netlist
size of today’s VLSI design growing rapidly, clustering for place-
ment can provide an attractive solution to manage affordable
placement runtimes. However, such clustering has to be carefully
devised to avoid any adverse impact on the final placement so-
lution quality. This paper presents how to apply clustering and
unclustering strategies to an analytic top-down placer to achieve
large speedups without sacrificing (and sometimes even enhanc-
ing) the solution quality. The authors’ new bottom-up clustering
technique, called the best choice (BC), operates directly on a
circuit hypergraph and repeatedly clusters the globally best pair
of objects. Clustering score manipulation using a priority-queue
(PQ) data structure enables identification of the best pair of
objects whenever clustering is performed. To improve the runtime
of PQ-based BC clustering, the authors proposed a lazy-update
technique for faster updates of the clustering score with almost
no loss of the solution quality. A number of effective methods for
clustering score calculation, balancing cluster sizes, handling of
fixed blocks, and area-based unclustering strategy are discussed.
The effectiveness of the resulting hierarchical analytic placement
algorithm is tested on several large-scale industrial benchmarks
with mixed-size fixed blocks. Experimental results are promising.
Compared to the flat analytic placement runs, the hierarchical
mode is 2.1 times faster, on the average, with a 1.4% wire-length
improvement.

Index Terms—Clustering, physical design, placement, very
large scale integration (VLSI).

I. INTRODUCTION

HE TASK of very large scale integration (VLSI) place-

ment is to assign exact locations to various circuit com-
ponents within the chip area. It typically involves optimizing a
number of objectives such as wire length, timing, and power.
The solution of placement has a significant impact on the final
performance of the design, thus being considered as one of most
critical tasks in the physical layout synthesis. However, the
placement itself is an extremely computation-intensive process,
which accounts for a significant portion of the overall physical-
synthesis runtime. With today’s multimillion component de-
signs, one iteration of a physical-synthesis flow can easily
take a few days. This length of turnaround time represents a

Manuscript received June 24, 2005; revised September 19, 2005. This paper
was recommended by Associate Editor P. H. Madden.

G.-J. Nam, C. J. Alpert, and P. G. Villarrubia are with the Austin Research
Laboratory, International Business Machines Corporation, Austin, TX 78758
USA.

S. Reda and A. B. Kahng are with the University of California, San Diego,
CA 92093 USA.

Digital Object Identifier 10.1109/TCAD.2006.870079

serious obstacle to the productive development cycle in today’s
competitive market. The objective of this work is to speed
up today’s placement process via an effective clustering tech-
nique, particularly on large-scale designs, with no loss of the
solution quality.

Clustering has been applied in several applications in VLSI
computer-aided design such as verification, extraction, global
routing, partitioning, and placement. Clustering is useful for
reducing the problem size so that the optimization can be run
more efficiently. Recent years have seen a continued explosion
in the size of placement problems that need to be optimized.
For example, the largest benchmark in the 1998 International
Symposium on Physical Desig (ISPD) benchmark suite [1] has
210000 gates. On the 2005 ISPD benchmark suite [19], some
designs have 2500000 gates. Despite the availability of ever
improving computing resources, placing these large designs
is increasingly challenging. Modern placers must be able to
produce high-quality solutions and scale to large design sizes.
It is not unreasonable to expect a placer to be able to succeed
on designs with five million gates, and this ceiling will continue
to rise as the design complexity increases.

Despite this increasing complexity, most placers still run
flat. Capo [6] and FengShui [25] are multilevel partitioning
placement algorithms, but the entire design is still dissolved
at each cut. Hu and Marek-Sadowska [14] applied clustering
to the Capo placer and showed that runtime speedups can be
achieved with only a small degradation of the wire length.
However, they were limited to just one level of clustering
hierarchy, i.e., fine granularity clustering, to minimize potential
quality degradation. A notable exception is the approach of
Chan et al. [7], [8]. They apply significant amount of clustering
in their multilevel mPL placement flow. The clustering makes
their nonlinear optimization process practical by reducing the
size of problem. Without clustering, the runtime would be
prohibitive. Clustering has also been applied in the simulated-
annealing-based placement [21]. The primary reason for the
absence of clustering in placement is that a poor clustering
and unclustering strategy could yield severe degradation in the
quality of results. Handling boundary conditions from dividing
into ever smaller bins and handling large fixed blocks can make
clustering lead to a potentially bad solution that one cannot
recover from.

This paper shows how hierarchical clustering and uncluster-
ing techniques can be integrated into CPLACE [2], which has
been used in the production of A large number of real designs.
CPLACE contains a flat analytic placement algorithm called
analytic top—down placement (ATP). The integration of hier-
archical clustering and unclustering techniques within ATP re-
sults in a new enhanced multilevel global placement algorithm

0278-0070/$20.00 © 2006 IEEE

NAM et al.: FAST HIERARCHICAL QUADRATIC PLACEMENT ALGORITHM

called the hierarchical ATP (hATP). We show that: 1) the hATP
leads to a large speedup for the flat global placement and
2) the solution quality is not only maintained, but often
improved. We also show how the degree of clustering and
unclustering trades off the solution quality for the runtime.
Preliminary experimental results are promising. Compared to
the flat ATP algorithm, the hATP is 2.1 times faster, on the
average, with a 1.4% wire-length improvement.

The rest of the paper is organized as follows. In Section II, we
provide a brief overview of the flat ATP algorithm implemented
within CPLACE. Section III reviews related works on cluster-
ing in placement and the motivation for this work. Particularly,
Section III-B presents the new best choice (BC) clustering
algorithm and the lazy-update speedup technique. Section IV
discusses the overall flow of the hierarchical version of the
ATP algorithm with clustering/unclustering techniques. The
effectiveness of the proposed method is demonstrated through
extensive experiments in Section V, finally, conclusions are
presented in Section VI.

II. ATP OVERVIEW

The proposed hATP algorithm integrates clustering and un-
clustering within a flat quadratic placer that we call the ATP.
Hence, we begin with a review of the ATP. The ATP global
placement algorithm is similar to the method reported by
Vygen [23]. It is a top-down analytic placement algorithm with
geometric partitioning.

The objective of an analytic quadratic placement is to mini-
mize quadratic wire lengths that can be formulated into

minimize ¢(Z, y) = Zwij [(Iz - xj)Q + (i — yj)Q] (D
i>]

where T = [z1,22,...,2,] and ¥ = [y1,y2,...,ys] are the
coordinates of the movable cells ¥ = [v1, 2, ..., v,] and w;; is
the weight of the net connecting v; and v;. The optimal solution
is found by solving one linear system for Z and one for 4 using
techniques such as the successive over-relaxation (SOR) or the
conjugate gradient (CG). Quadratic placement only works on a
placement with fixed objects (anchor points). Otherwise, it will
simply produce a degenerate solution where all cells are on top
of each other on a single point.

Although the solution of (1) provides a placement solution
with an optimal squared wire length, the solution will have lots
of overlapping cells. To remove overlaps, either partitioning
[18], [22], [23] or density-driven additional forces [13] can be
applied. We adopt a geometric four-way partitioning [23]. A
four-way partitioning, or quadrisection, is a function: f : V —
i € {0,1,2,3} where 7 represents an index for one of the sub-
regions or bins By, B1, Ba, Bs. The assignment of cells to bins
needs to satisfy the capacity constraint for each bin. With the
given cell locations determined by quadratic optimization, the
four-way geometric partitioning tries to minimize the weighted
total cell movements defined as

Z size(v) - d (v, Yv), By(v)) Q)

679

Fig. 1. Geometric partitioning result in flat ATP.
Quadratic wire length:
59 :
(x i A)
/ Linear wire length:
/| i =
& Semi-linear wire length:
2 2
Xo X1 Xz X3 Xy (x;=x)"+ (13- x) + =y
Fig. 2. Net splitting and its wire-length modeling.

where v is a cell, (xy,y,) is the location of cell v from a
quadratic solution, and Bf(v) refers to one of four bins that
cell v is assigned to. The distance term d((x,y),B;) with
i € {0,1,2,3} is the Manhattan distance from coordinate (z, y)
to the nearest point to the bin B;. The distance is weighted by
the size of cell, size(v). This minimum total distance objective
function is quite different from the traditional min-cut objective
of partitioning because, in this geometric partitioning formula-
tion, the netlist is not considered at all. The intuition of the new
objective function is to obtain the partitioning solution with the
minimum perturbation to the previous quadratic-optimization
solution. This geometric partitioning is a nondeterministic
polynomial-time (NP)-hard problem. To find a near-optimal
solution efficiently, Vygen [23] proposes an efficient linear time
algorithm to solve a relaxed fractional minimum movement
partitioning problem. Fig. 1 shows the example of a geometric
partitioning solution.

A quadrisection allows for the definition of a placement level.
At level k, there are 4" placement subregions or bins. For each
bin, the process of quadratic optimization and the subsequent
geometric partition are repeated until each subplacement region
contains a trivial number of objects.

The ATP applies the net-splitting technique [23] during bin
refinement. It can be best explained with an example. In Fig. 2,
cells z; and x; are connected by a single net and located at the

680 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 4, APRIL 2006

Fig. 3. One pass of overlapping repartitioning.

lower-left and the upper-right bins, respectively. Considering
horizontal optimization, the net is split into three segments,
(xi,x1), (x1,23), and (z3,x;), where x1 and x3 are bin-
boundary coordinates. Then, during the subregion quadratic
optimization, only (z; — z1)? and (w3 — z;)? terms are op-
timized. Note that the term |x; — 23| is a constant. The net-
splitting technique has several advantages: 1) A net is modeled
by a semiquadratic wire length, as opposed to a pure quadratic
wire length; 2) cells are guaranteed to be located within the bin
boundary after quadratic optimization, allowing for simultane-
ous quadratic optimizations for subregions; and 3) the quadratic
optimization becomes faster as the placement level increases
due to more boundary constraints. The semilinear wire-length
model, which falls between quadratic and linear wire lengths,
is beneficial because a quadratic wire-length model tends to
penalize long wires exceedingly as pointed out in [18].

Often, cells in a given bin may overlap so much that obtain-
ing a geometric partitioning is difficult. In this case, even the
geometric partitioning algorithm needs to make arbitrary de-
cisions to partition cells, usually leading to inferior placement
solutions. To prevent this situation, a center-of-mass constraint
is added into an original quadratic formulation [18], [23].
The idea is still to minimize quadratic wire lengths but with
the center of mass of populated cells being enforced toward the
center of the subregion. The new center-of-mass point can be
literally the center of the subregion [18] or somewhere between
the original center-of-mass point and the center of the subregion
[23]. In either case, the new quadratic-optimization solution
distributes cells better and enables geometric partitioning to
find a higher quality partitioning solution.

At each placement level, the ATP applies the local refinement
technique called repartitioning (also known as reflow). Repar-
titioning consists of applying an arbitrary placement algorithm
(quadratic, partitioning-driven, or even simulated annealing) on
each 2 x 2 subproblem instance in a sequential manner. Huang
and Kahng [15] introduced an overlapping window technique
(Fig. 3) that shifts a placement window one column/row at a
time, yielding an overlapping pattern. With n x n subregions,
one pass of an overlapping technique consists of (n — 1)2
repartitioning operations. In general, an overlapping technique
requires significant CPU time but produces much better place-
ment solutions. The fundamental reason why repartitioning

can improve wire lengths of placement is that new cell loca-
tions and partitioning results of outside subregions (i.e., prior
repartitioning results) are immediately reflected for the current
2 x 2 window under consideration through terminal propaga-
tion techniques.

III. CLUSTERING FOR VLSI PLACEMENT

Clustering is one of the most important algorithmic contri-
butions to the hATP algorithm proposed in this paper. This
section first reviews the previous clustering techniques and a
new bottom-up clustering technique called the BC method is
presented.

Circuit clustering is an attractive solution to manage the run-
time and the quality of placement results on large-scale VLSI
designs. Naturally, it has a long history of research activity
[31-51, [71, [9], [11], [12], [14], [16], [17], [20], and [21].

In terms of the interactions between clustering and place-
ment, the prior study can be classified into two categories. The
first category of clustering in VLSI placement uses transient
clustering as part of the core placement algorithm [6], [24],
[25]. In these approaches, the act of clustering and unclustering
is generally part of the internal placement-algorithm iterations.
For example, in multilevel partitioning (MLP)-based placers
[16], a cluster hierarchy is first generated, followed by a se-
quence of partitioning and unclustering. A partitioning result of
a prior clustered netlist is projected to the next level through
unclustering, which becomes a seed for the subsequent parti-
tioning. Typically, several partitioning attempts are executed,
thereby providing for multiple clustering and unclustering op-
erations as part of the inner loop of the placement algorithm.
For further optimization, concepts such as V-cycling [16] have
been introduced where multiple clustering operations occur at
each level of the hierarchy.

The second category of clustering in VLSI placement in-
volves persistent clusters. In this case, the cluster hierarchy is
generated at the beginning of a placement in order to reduce
the size of a problem. The coarsened netlist is then presented to
the placer [14]. Usually, the clustered objects will be dissolved
at or near the end of a placement process, with a “clean-up”
operation applied to the uncoarsened netlist to improve the
results. In some cases, these approaches take the opportunity
to uncluster and/or recreate clusters at strategic points in a
placement flow [9]. However, in these methods, it can be argued
that the clustering algorithm itself is not part of the core place-
ment algorithm but rather a preprocessing step that produces
a smaller/simpler netlist structure for the placement algorithm.
For instance, in relatively time-consuming simulated-annealing
placement [21], a significant runtime speedup can be achieved
with persistent clustering.

We employ a semipersistent clustering strategy for our hi-
erarchical placement method. Semipersistent clustering falls
into the second category. Persistent clustering offers significant
runtime improvements at the expense of the quality of the final
placement solution. This problem is particularly magnified as
more clustering operations are performed. Another problem
associated with persistent clustering is the control of physical
cluster sizes. During the placement flow, the size of clustered

NAM et al.: FAST HIERARCHICAL QUADRATIC PLACEMENT ALGORITHM

objects may be too large relative to the decision granularity,
which results in the degradation of the final placement solution
quality. Therefore, the goal of our semipersistent clustering is
to address these two deficiencies. First, we seek to generate
high-quality clustering solution so that any potential loss of the
final placement solution quality is minimized (or prevented).
Second, we take advantage of the hierarchical nature of clus-
tering so that the clustered objects are dissolved slowly during
the placement flow. At the early stage of the placement algo-
rithm, a global optimization process is performed on the highly
coarsened netlist while local optimization/refinement can be
executed on the almost flattened netlist at a later stage.

A. Previous Studies in Clustering

We now review some of the relevant literature on clustering.
In edge coarsening (EC) [3], [16], objects are visited in a
random order, and only a set of unmatched adjacent objects
(i.e., objects that have never been visited or clustered before)
is considered for each object u. Among these objects, the one
with the largest weight is clustered to u. In EC, a hyperedge of
k pins is assigned a weight of 1/(k — 1). Karypis and Kumar
[17] modified the EC scheme and proposed the first-choice
(FC) clustering approach. In the FC approach, similar to EC,
objects are visited in a random order. But for each object w,
all objects that are adjacent to u are considered, regardless of
their matching status. Again, the object with the largest weight
is matched to u. Thus, a clustered object with multiple layers of
clustering hierarchy can be formed. To limit the cluster size,
the FC approach stops clustering when the coarsened netlist
reaches a certain threshold.

In another approach, Cong and Lim [12] transform a given
hypergraph into a graph by decomposing every k-pin hyperedge
into a clique, with an edge weight 1/(k — 1). Then, they:
1) rank edges according to a connectivity-based metric using
a priority-queue (PQ) data structure; 2) cluster two objects with
the highest ranking edge if their sizes do not exceed a certain
size limit; and 3) update the circuit netlist and the PQ structure
accordingly. We note that decomposing a hyperedge into a
clique can cause a discrepancy in edge weights once any two
objects of a k-pin hyperedge are clustered. This discrepancy
leads to incorrect edge weights as demonstrated by the follow-
ing example.

Example 1: Assume that two objects v; € e and vy € e
are clustered, where e is a k-pin hyperedge. In Karypis and
Kumar’s scheme [17], the clustering score of any other objects
in e becomes 1/(k — 1 — 1); while in Cong and Lim’s scheme
[12], the clustering score stays the same with 1/(k — 1). This
edge-weight discrepancy occurs because the transformation of
a hyperedge to a clique of edges is performed only once before
clustering starts. '

Chan et al. [7] uses a connectivity-based approach similar to
that of Cong and Lim [12]. The difference is that the area of a
clustered object is included in the objective function to produce
a more balanced clustering. The inclusion of the cluster size

"However, note that the clustered object {v1,v2} will have a score of
2/(k — 1) compared to other objects on the same hyperedge e [12].

Input: Flat Netlist
Output: Clustered Netlist

1. Until target object number is reached:
2. Find closest pair of objects
3. Cluster them
4. Update netlist

Fig. 4. Bottom—up clustering.

Input: Flat Netlist
Output: Clustered Netlist

Phase I. Priority-queue PQ Initialization:
1. For each object u:
2. Find closest object v, and its associated clustering score d
3. Insert tuple (&, v, d) into PQ with d as key
Phase II. Clustering:
1. While rarget object number is not reached and top tuple’s
score d > 0:
2. Pick top tuple (u, v, d) of PQ
3. Cluster # and v into new object u'
4. Update netlist
5. Find closest object v' to u’ with its clustering score d’
6. Insert tuple (u', v', d') into PQ with d' as key
7. Update clustering scores of all neighbors of u'

Fig. 5. BC clustering algorithm.

in an objective function is originally proposed in [20]. Another
recent approach [14] proposes fine-grain clustering particularly
targeted for improving the runtime in mincut-based placement.
The approach decomposes hyperedges into cliques and uses a
connectivity-based net-weighting scheme similar to [20]. A PQ
is used to rank all the edges according to the calculated net
weights. Clustering proceeds in an iterative fashion. At each
iteration, clustering is allowed only if both target objects have
never been visited before during the same iteration. A cluster is
typically limited to a few (two to three) objects; thus, the name
fine-grain clustering.

We think that the general drawbacks of previous approaches

are as follows.

1) The hypergraph-to-clique transformation [7], [12], [14],
[21] leads to a discrepancy in edge weights and increases
the size of required PQ.

2) Pass-based clustering methods (i.e., clustering iterations)
[3], [14], [16] that disallow an object to be revisited dur-
ing the same iteration lead to suboptimal choices because
an object might be prevented from getting clustered to its
best neighbor.

3) Non-PQ-based implementations [17] lead to suboptimal
clustering choices due to the lack of a global picture of
clustering sequences.

Given this brief overview of the related literature, we next

describe our clustering method, which avoids the general draw-
backs of previous methods.

B. BC Bottom-Up Clustering

The general concept of the bottom-up clustering and the
BC clustering are given in Figs. 4 and 5. The key idea of the
BC clustering is to identify the globally best pair of objects
to cluster by managing a PQ data structure with the clus-
tering score as a comparison key. PQ management naturally

682 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 4, APRIL 2006

provides an ideal clustering sequence, and it is always guar-
anteed that the two objects with the best clustering score will
be clustered.

The degree of clustering is controlled by a target clustering
ratio «. The target number of objects is determined by the
original number of objects divided by the target clustering ratio
a. The clustering operation is simply repeated until the overall
number of objects becomes the target number of objects. For
example, a target clustering ratio of o = 10 indicates that the
clustered netlist will have one tenth of the number of objects in
the original netlist.

The challenges associated with BC clustering are as follows:

1) using an efficient and effective clustering score function,

which leads to higher quality placement solutions;

2) accurately handling hyperedges;

3) an efficient netlist and PQ data structure updating after

each clustering is performed;

4) controlling the physical size of a clustered object for a

more balanced clustering result;

5) handling fixed blocks and attached movable objects

around these fixed blocks.

These challenges will be addressed as follows.

C. BC Clustering Score Function

The weight w, of a hyperedge e is defined as 1/|e|, which is
inversely proportional to the number of objects that are incident
to the hyperedge. Given two objects u and v, the clustering
score d(u, v) between u and v is defined as

2wt aw) 3

ecE|u,vee

d(u,v) =

where e is a hyperedge connecting objects u and v, w, is a
corresponding edge weight, and a(u) and a(v) are the areas
of u and v, respectively. The clustering score of two objects is
directly proportional to the total sum of edge weights connect-
ing them and is inversely proportional to the sum of their areas.
Suppose N, is the set of neighboring objects to a given object w.
We define the closest object to u, denoted ¢(u), as the neighbor
object with the highest clustering score to u, i.e., ¢(u) = v such
that d(u, v) = max{d(u, z)|z € Ny }.

In order to identify the globally closest pair of objects
with the best clustering score, a PQ-based implementation is
proposed as shown in Fig. 5. The BC algorithm is composed
of two phases. In phase 1, for each object u in the netlist,
the closest object v and its associated clustering score d are
calculated. Then, the tuple (u,v,d) is inserted to the PQ with
d as a comparison key. For each object u, only one tuple with
the closest object v is inserted. This vertex-oriented PQ allows
for more efficient data-structure management than edge-based
methods. Phase 1 is a simple PQ initialization step.

In the second phase, the top tuple (u,v,d) in the PQ is
picked up (step 2), and the pair of objects (u,v) are clustered
creating a new object u’ (step 3). The netlist is updated (step 4),
the closest object v’ to the new object u' and its associated
clustering score d’ are calculated, and a new tuple (v/,v’,d’)
is inserted to the PQ (steps 5-6). Since clustering changes the

Fig. 6. Clustering a pair of objects A and C.

netlist connectivity, some of previously calculated clustering
scores might become invalid. Thus, the clustering scores of the
neighbors of the new object u’ (equivalently all neighbors of u
and v) need to be recalculated (step 7), and the PQ is adjusted
accordingly. The following example illustrates clustering score
calculation and updating.

Example 2: Assume the input netlist with six objects
{A,B,C,D,E,F} and eight hyperedges {4, B}, {4,C},
{A,D}, {A,E}, {A,F}, {A,C}, {B,C}, and {A,C,F}
as in Fig. 6(a). The size of each object is 1. By calculat-
ing the clustering score of A to its neighbors, we find that
d(A,B)=1/4;d(A,C)=2/3; d(A,D)=1/4; d(A, E)=1/4;
and d(A, F) =5/12. d(A,C) has the highest score, and C
is declared as the closest object to A. Since d(A,C) is the
highest score in the PQ, A will be clustered with C' and the
circuit netlist will be updated as shown in Fig. 6(b). With a
new object AC introduced, the corresponding cluster scores
will be d(AC,F) =1/3, d(AC,E) =1/6, d(AC,D) = 1/6,
and d(AC, B) =1/3.

We can summarize the main advantages of our BC clustering
methodology as follows.

1) Clustering will always be performed on the globally best

pair of objects.

2) Direct hyperedge handling, without converting hyper-

edges into clique or star models [12], [14], is performed.

3) Object-based PQ manipulation. The size of the PQ is

equal to the number of objects (rather than the number
of clique edges [12]) in the netlist by recording only the
closest neighbor per object, leading to more efficient PQ
management.

As will be demonstrated in Section V, the BC scheme can
produce high-quality clustering results for analytic placement.
However, the overall clustering runtime is not yet competitive to
other faster clustering algorithms such as the EC [16] or the FC
[17] approaches. To improve the runtime of the BC, we propose
to update the PQ in a lazy fashion.

D. Lazy-Update Speedup Technique for BC Clustering

Analyzing the runtime characteristic of the BC clustering
algorithm of Fig. 5 (step 7), turned out to be the most time-
consuming task. To update the score PQ after each clustering,
each neighbor object of a newly created object needs to be
visited to find its new closest object and its clustering score.
The closest object of a given target object u can only be found
by visiting all the neighbor objects of u. Therefore, updating the

NAM et al.: FAST HIERARCHICAL QUADRATIC PLACEMENT ALGORITHM

Input: Flat Netlist
Output: Clustered Netlist

Phase II. Clustering:
1. While target object number is not reached and top tuple’s
score d > 0:
2. Pick top tuple (u, v, d) of PQ
3. If u is marked as invalid, re-calculate closest object v'
and score d'and insert tuple (u, v', d') to PQ
4. else
5. Cluster # and v into new object u’
6. Update netlist
7. Find closest object v' to u’ with its clustering score d'
8. Insert tuple (1, v', d') into PQ with d" as key
9. Mark all neighbors of u' as invalid

Fig. 7. Lazy-update speedup technique for BC clustering.

clustering scores after a clustering operation (step 7) typically
involves two levels of netlist exploration.

However, a statistical analysis of clustering score PQ man-
agement reveals the following facts.

1) An object in the PQ might be updated a number of times
before climbing up to the top (if ever). Effectively, all the
updates but the last one are useless since only the final
update determines the final location within the PQ.

2) In 96% of clustering score updates, a new score de-
creases, i.e., most of time, objects are moving downward
the PQ rather than popping up.

Motivated by these observations, we propose lazy-update
technique which delays updates of clustering scores as late
as possible, thus reducing the actual number of score-update
operations on the PQ. More specifically, a lazy update waits
until an object reaches the top of the PQ and updates the object’s
score only if necessary. The modification to the clustering phase
(phase 2) is shown in Fig. 7. In step 9 of the modified algorithm,
we mark neighbor objects without recalculating their scores
to indicate that their scores are invalid. If an object reaches
the top of PQ, we check whether it is marked or not. If it
is marked (invalid), its new closest object and its score are
recalculated and reinserted into the PQ (step 3); otherwise
(valid), it is clustered with its precalculated closest object. In
the experimental section, we demonstrate that the lazy-update
technique can dramatically reduce the clustering runtime with
almost no adverse impact on the clustering quality.

E. Cluster Size Growth Control

The presence of the area function in the denominator of (3)
provides an indirect way to automatically control the physical
sizes of clustered objects, potentially leading to more balanced
clustering results. Without such an area control, gigantic clus-
tered objects might be formed by continually absorbing small
objects around it. In general, these gigantic clustered objects
have a detrimental influence on the quality of the placement
solution. Two classes of cluster size-control methods are dis-
cussed here: indirect control versus direct control.

1) Indirect Size Control: The cluster size is controlled au-
tomatically via a clustering score function as in (3), which is
inversely proportional to the size of the cluster object. A more

683

generic form of this approach will be as follows. Given a target
object v and its neighbor v, a clustering score between u and v
is defined as

) =X = e @

where k£ > 1, and k can be either fixed number or it can be
dynamically adjusted by setting it to k = [(a(u) + a(v))/u],
where p is the average cell size multiplied by the clustering
ratio a. p represents the expected average size of clustered
objects. Another possibility is to use the total number of pins
instead of the object area because, in general, the number of
pins in a cluster is well correlated with its cluster size.

2) Direct Size Control: The clustering algorithm can take a
more direct approach by imposing a bound constraint on the
size of clusters. Given two objects u and v, two methods are
proposed as follows.

1) Hard Bound: If the total area a(u) + a(v) < k - u, then

accept clustering, else reject it.

2) Soft Bound: If the total area a(u) + a(v) < k - p, then
accept clustering, else accept it with a probability equal
to 2/ (a(w)+a())* _ 1 where k > 1.

With the hard bound, an upper bound on the cluster size is
strictly enforced; while with the soft bound, the upper bound is
slightly relaxed, where the probability of clustering two objects
declines as the sum of areas increases. The parameter & controls
the amount of relaxation. The plot of Fig. 8 demonstrates
the probability of clustering two objects for various values
of k. The z-axis is (a(u)+ a(v))/u, and the y-axis shows
the corresponding probability of a clustering occurrence. The
hard cluster bound can be incorporated in two ways during the
calculation of the closest objects.

1) Method A: Pick the closest object among all neigh-
bors and check if the chosen object satisfies the area
constraints.

2) Method B: Pick the closest object only from the set of
neighbor objects that satisfy the area constraints.

Basically, method A ensures to choose the object with the
highest clustering score despite that it might get rejected due
to the area constraint violation later, while method B ensures
that the chosen object meets the area constraints, despite that
its clustering score might not be the highest among neighbor
objects. In method A, if the chosen object does not satisfy
the area constraint, the clustering is aborted and these objects
are reinserted to a PQ with newly found closest objects. A
new top object from a PQ is taken for the next clustering.
Therefore, methods A and B produce different clustering se-
quences. A soft-bound method only makes sense with method
A. Empirically, we have found that using method A produces
better results than method B. The empirical comparison of
different methods of cluster size control will be presented
in Section V.

F. Handling Fixed Blocks During Clustering

The presence of fixed blocks in a netlist might alter how clus-
tering is performed. We observe that sometimes, particularly

684

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 4, APRIL 2006

1.4
1.2
2
o)
3
2 08
©
2
5 0.6 \\
©
O
e
o 04 \H
0.0 \\\\k=2 ke
T
0 o ——
0 1 2 3 4 5 6 7 8 9 10

input_cluster_area/average_cluster_size

Fig. 8. Probabilistic cluster size-control curves.

when a significant degree of clustering is performed, mov-
able cells directly connected to fixed blocks are being clus-
tered to objects located far away from them. This might
cause an adverse impact on timing results as well as on wire
lengths. Ideally, movable objects around fixed blocks need to
be placed around those directly connected fixed blocks after
placement, regardless of the degree of clustering performed. To
our knowledge, there has been no prior clustering work that
explicitly considers fixed blocks and their neighbor movable
objects. We have attempted the following techniques to address
this issue:

1) by ignoring all nets connected to fixed objects, since such
nets cannot be eliminated by clustering;

2) by ignoring all pins connected to fixed objects, thus
altering the weight of nets connecting movable objects
and fixed blocks;

3) by including fixed blocks during clustering, only to re-
move them from clusters after the clustering is over and
before the placement process starts;

4) by chaining all movable objects attached to a fixed block
by a set of additional artificial nets in order to control their
affinity to fixed blocks during placement.

However, none of the aforementioned techniques made dis-
tinguishable improvements to final placement results so far,
and none of the above techniques is used for the experimen-
tal sections. We leave this topic as future study to further
explore an effective method of handling fixed blocks during
clustering.

IV. hATP ALGORITHM

In this section, we present a new global placement algorithm
based on ATP (with geometric partitioning) with hierarchical
clustering and unclustering techniques. The method is called
hATP, and the overall flow is summarized in Fig. 9. With a
given initial netlist, a coarsened netlist is generated via BC clus-
tering, which is used as a seed for the subsequent ATP global

Input: netlist structure
Output: legal placement solution

hATP()

1. best-choice clustering()

2. for placement_level =1 to n

for each bin in current placement_level
quadratic optimization()
geometric partitioning()
area-based selective unclustering()

end_for

repartitioning()

9. end_for

10. uncluster_all()

11. legalization & detailed_placement()

© N W

Fig. 9. hATP algorithm.

placement. Steps 2-5 are the basic ATP algorithms described in
Section II. After quadratic optimization and quadrisection are
performed for each bin, an area-based selective unclustering
is performed to dissolve large clustered objects (step 6). At
the end of each placement level, a repartitioning refinement is
executed for local improvement (step 8). Steps 2-9 consist of
the main global placement algorithm. If there exist clustered
objects after the global placement, those are dissolved uncon-
ditionally (step 10) before the final legalization and detailed
placement are executed (step 11). As can be seen, the hATP
algorithm relies on three strategic components: BC clustering,
ATP global placement, and area-based selective unclustering.
Each component is briefly described next.

A. Semipersistent BC Clustering

This preprocessing style of clustering helps reduce the over-
all global placement runtime by producing a smaller/simpler
netlist structure. The generated clustering hierarchy is pre-
served during the most global placement phase only, being
dissolved selectively based on the size of objects. Thus, it is
called semipersistent clustering. Clustering offers the advantage
of significant runtime improvements. However, in order to

NAM et al.: FAST HIERARCHICAL QUADRATIC PLACEMENT ALGORITHM

Fig. 10. Geometric partitioning result in hATP.

minimize any potential loss of (or possibly to improve) the
quality of final placement solutions, a high-quality clustering
technique is absolutely required. To provide effective runtime
and quality tradeoffs, the BC clustering algorithm, introduced
in Section III, was employed in a semipersistent context. The
degree of clustering is controlled by a user-specified parame-
ter, clustering ratio c. Clustering is performed until the final
number of movable cells reaches the target number of objects
defined as the initial number of movable objects divided by
a clustering ratio . Thus, a higher value of a implies more
extensive clustering.

B. Analytic Top-Down Global Placement (ATP)

With the generated clustering hierarchy, the basic ATP global
placement algorithm is applied as described in Section II.
Fig. 10 shows an example of a quadrisection result of hATP
on the same circuit with Fig. 1. For this example, the clustering
ratio « is set to 5. Note that the overall cell distribution and
the partitioning solution are very similar to that of flat ATP
(Fig. 1). This can be attributed to the high-quality BC clustering
technique.

C. Area-Based Selective Unclustering

In our semipersistent clustering scenario, the clustering hier-
archy is preserved during the most global placement. However,
if the size of a clustered object is relatively large to the decision
granularity, the geometric partitioning result on this object
can affect not only the quality of global placement solution
but also the subsequent legalization due to the limited amount
of available free space. To address this issue, we employ an
adaptive area-based unclustering strategy. For each bin, the
size of each clustered object is compared to the available free
space. If the size is bigger than the predetermined percentage of

TABLE 1
BENCHMARK CHARACTERISTICS

Bench| Cells | Blks | IOs Nets | Density | Util

AL | 270163| 4235| 14100 292425| 44.74%| 22.54%
BL | 276194| 14461 17380| 327102| 69.37%| 20.37%
CL | 351056| 26713| 6360| 395918| 82.32%| 37.59%
DL | 425610| 14665| 17960| 465927 56.25%| 34.91%
EL | 457516| 3460| 7094| 478842| 72.12%| 51.90%
FL | 880410| 53481 23255(1010392(74.77%| 48.19%
AD | 389226 0] 35944 | 401463| 87.65%| 83.55%
BD | 285085 0] 13286 309050(87.76%| 85.87%
CD 56436 2| 1968| 57595| 57.43%| 57.32%

the available free space, the clustered object is dissolved. Our
empirical analysis shows that with the appropriate threshold
value (5%), most clusters can be preserved during the global
placement flow with an insignificant loss of wire length. The
area-based selective unclustering is another knob to provide
a tradeoff between the runtime and the quality of a placement
solution. More aggressive unclustering (lower threshold
value) produces better wire lengths at the cost of higher CPU
time. The detailed tradeoff results will be discussed in the
experimental section.

V. EXPERIMENTAL RESULTS

The hATP placement algorithm is implemented within the
industrial placement tool CPLACE [2]. To demonstrate the ef-
fectiveness of hATP, two classes of experiments are performed:

1) Clustering technique evaluation—BC versus FC within
hATP.

2) Hierarchical placement evaluation—flat ATP versus
hATP.

For all experiments, several large-scale industrial bench-
marks are used, ranging from 56000 to 1000000 objects.
The detailed characteristics are presented in Table I with the
following information.

1) Cells: the number of placeable (movable) objects.

2) Blocks: the number of fixed blocks, i.e., logic macros,
blocked areas, reserved areas for outside modules, etc.

3) IOs: the number of I-O ports.

4) Nets: the number of nets.

5) Density%: the overall design density, e.g., the sum of cell
area divided by the total placement area.

6) Util%: the design utilization (density) defined as the
total area of placeable cells (not including fixed blocks)
divided by the available free space [2]. Note that the
design has an abundant free space available for mo-
vable cells.

Two sets of benchmarks are used. The benchmarks with
names ending with an “L” are low-utilization designs, and
those ending with “D” have high design utilization. For all
experiments, a workstation with four Intel Xeon 2.40-GHz
CPUs, a 512-KB cache, and 6 GB of memory is used.

686

0.14

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 4, APRIL 2006

0.12

0.1

0.08

Clustering Score

0.02

L |

M‘J

i

0 a
0 50000 100000

150000 200000 250000

Clustering Move

Fig. 11.

0.14

EC clustering score plot. Total clustering score = 5301.05. Clustering runtime = 9.23 s.

0.12

0.1

0.08 f-

006 R [}

Clustering Score

004 R

0.02

0 i i

0 50000

100000

150000 200000 250000

Clustering Move

Fig. 12. FC clustering score plot. Total clustering score = 5612.83. Clustering runtime = 9.03 s.

A. BC Clustering Experiment

In this experiment, we demonstrate that the ATP algorithm
produces better placement solutions with the BC approach than
with other clustering approaches. To speed up the placement
process significantly, a rather high clustering ratio o = 10 is
used to reduce the number of objects in benchmark by an order
of magnitude. For comparison purposes, we implement two
approaches: EC [16] and FC [17].?

We first construct clustering score plots (3) for a typical
benchmark AD, as shown in Figs. 11-14. The x axis represents

2We also tried the fine-granularity clustering proposed in [14]. However, this
method is not devised for an extensive degree of clustering such as a = 10.
Even with a = 2, we observed that the BC produces better placement solutions
than fine-granularity clustering. Thus, those results are not included here.

the sequence of clustering operations, and the y axis is the
corresponding clustering score. For example, 10 on the z axis
represents the tenth clustering operation. We also compute the
total clustering score value of each clustering method. From
the figures, the total clustering score of the EC, the FC, and the
BC are 5301, 5612, and 6671, respectively. The BC achieves
the highest total clustering score among these three methods.
With lazy-update speedup technique, we observe that the BC
clustering runtime is reduced by 50% with almost no loss in the
total clustering score—a negligible drop from 6671 to 6658—as
shown in Figs. 13 and 14.

We now investigate how different clustering algorithms can
affect the final placement results. Table II presents the final
placement wire length of the EC, the FC, and the BC clustering
algorithms on the circuits of Table I. All results are normalized
with respect to the EC. In the table, “CPU” shows clustering

NAM et al.: FAST HIERARCHICAL QUADRATIC PLACEMENT ALGORITHM

0.14

0.12

0.1

0.08

0.06

Clustering Score

0.04

0.02

0 50000 100000

150000 200000 250000

Clustering Move

Fig. 13.

0.14

BC clustering score plot. Total clustering score = 6671.53. Clustering runtime = 97.35 s.

0.12

0.1

0.08

0.06

Clustering Score

0.04

0.02

0 50000 100000

150000

200000

250000

Clustering Move

Fig. 14. BC with lazy-update clustering score plot. Total clustering score = 6658.23. Clustering runtime = 49.84 s.

CPU times with respect to that of the EC and “WL(%)”
presents the percentage improvement in half-perimeter wire
length (HPWL) over the EC’s HPWL. We make the following
observations.

1) BC clustering dominates over other standard clustering
methods on all benchmarks with an average improvement
of 4.3% over the EC and 3.2% over the FC.

A lazy update significantly improves BC clustering run-
time for all benchmarks with an average runtime reduc-
tion of 57% and with almost no impact to the quality of
results, only a 0.11% change in the final HPWL.

2)

Fig. 15 shows the runtime breakdown of BC clustering on the
largest benchmark FL. From the plot, we immediately notice
that the runtime reduction with the lazy update increases as

clustering progresses, i.e., as more clusterings are performed,
the lazy update becomes more effective.

In the next experiment for clustering evaluation, we examine
how the cluster size control affects the quality of placement. We
have found that the cluster size control is particularly critical
to dense designs (AD, BD, and CD). For sparse benchmarks
(the ones ending with “L”), no distinguishable impact has
been found with different size-control methods. Three addi-
tional area-control methods are implemented and compared
to the standard area-control method with (3). In Table III,
“Automatic” refers to the method using (4) with & = 2. “Hard”
and “Soft” refer to the bounding methods of Section III-E2.
Both hard and soft bounds are executed with k = 3. All size-
control methods are implemented within our BC clustering
framework. The quality of the solution is measured by the final
placement wire length. We also report the maximum and the

688

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 4, APRIL 2006

TABLE 1I
CLUSTERING RESULTS. ALL RESULTS ARE NORMALIZED WITH RESPECT TO EC
EC FC BC BC+LazyUpdate
Bench
WL(%)| CPU |WL(%)| CPU |WL(%)| CPU [WL(%)| CPU
AL 0.00 1.00 | -0.43% | x098 | 3.19% | x9.77 | 2.10% | x4.02
BL 0.00 1.00 3.30% x0.94 6.99% x8.69 6.28% x3.61
CL 0.00 1.00 2.14% x0.96 3.43% x4.99 4.23% x3.29
DL 0.00 1.00 0.44% x1.03 2.22% x9.76 2.07% x3.84
EL 0.00 1.00 | 2.37% | x098 | 5.72% | x4.92 | 6.27% | x3.37
FL 0.00 1.00 | -1.14% | x1.04 | 4.33% | x14.48 | 4.25% | x4.50
Avg. 0.00 1.00 | 1.11% | x098 | 431% | x8.76 | 420% | x3.77
700
600
Regular Upo/IZte
500
e
(]
£ 400
c
2
D
£
5 300
w
=
6]
200
Lazy Up:ljie/
100 J—
/ /
—
0 ///é//
10 20 30 40 50 60 70 80 90 100
Clustering Percentage (%)

Fig. 15.

average cluster sizes after clustering is done. From the table, we
observe that a careful control of the cluster size can improve the
placement wire length by up to 13%. The results also indicate
that a probabilistic control of cluster size, “Soft,” produces
the best results. We believe that a soft probabilistic control
occasionally provide a way to form high-quality but slightly
larger clusters, which lead to better results.

B. Hierarchical Placement Experiment

This section presents comparative results between flat (i.e.,
no clustering) and hATP runs. Figs. 16 and 17 show the nor-
malized wire lengths and the CPU times of the hATP relative
to the flat ATP. The values are the average of six sparse
circuits ending with “L.” The degree of clustering, clustering
ratio «, varies from 1 (no clustering) to 20. Wire lengths
and CPU times are measured after global placement, not the
final placement, because: 1) The focus of this paper is the
global placement algorithm and 2) the final wire length could
be influenced by the degree of detailed placement performed.
However, a half-perimeter wire length was measured after
the legalization is performed for a fair comparison. Thus,

Runtime breakdown of BC clustering with/without lazy update on benchmark FL.

there exists no overlap of cells.> From these data, we observe
the following.

1) With o < 7, the hierarchical clustering actually improves
the performance ranging from 0% to 7% on circuit by
circuit and 1% on the average. The runtime speedup
ranges from 2z to 4zx.

With 7 < a < 10, virtually the same wire-length place-
ment solutions with those of the flat ATP are achievable
in four—five times less CPU time.

With o > 10, the wire length starts to degrade compared
to the flat ATP, but the maximum degradation is only
limited up to 5%. The runtime speedup seems to saturate
to 5—6x, even with more clustering. This is because
the legalization and the detailed placement CPU times
become a new bottleneck to the overall placement time.

2)

3)

Overall, the experimental results demonstrate that the appro-
priate amount of clustering can help to reduce the wire length
with significant CPU-time savings in the ATP algorithm. This is

3Note that there is a strong correlation between global placement and final
wire lengths. Typically, a better global-placement wire length leads to a better
final wire length.

NAM et al.: FAST HIERARCHICAL QUADRATIC PLACEMENT ALGORITHM

TABLE 1II
IMPACT OF CLUSTER-SIZE CONTROL ON TOTAL HPWL FOR DENSE DESIGNS
Bench Stnd Automatic Hard Soft
enc
Max Avg |WL(%)| Max Avg |WL(%)| Max Avg |WL(%)| Max Avg |WL(%)
AD 14823 | 171.4 0.00 1140 1604 | -0.88% | 364 1699 | 0.47% | 1668 169.6 | 0.56%
BD 28600 | 150.0 0.00 1140 1146 | 3.71% 405 1479 | 5.89% | 1520 1479 | 4.86%
CD 9060 113.5 0.00 610 109.8 [30.05% | 280 116.1 | 29.11% | 1075 1149 |34.16%
Avg. - - 0.00 - - 10.96% - - 11.82% - - 13.19%
1.06
1.05 A
1.04 /\\//
1.03 /
1.02
1.01 /\/
0.99 [¥k /
0.98
2 4 6 8 10 12 14 16 18 20
Clustering ratio
Fig. 16. Normalized hATP placement wire length.
1
0.9
0.8 \
0.7 \
0.6
0.5
0.4 \
0.3 D —
*\’\#N
0.2 ooy
0.1
2 4 6 8 10 12 14 16 18 20

Fig. 17. Normalized hATP placement CPU time.

partly due to the linearization effect of clustering. Once a group
of cells is clustered together in the semipersistent clustering
flow, those cells will be placed in the same vicinity until the
unclustering happens. This reduces the gap between quadratic

Clustering ratio

689

and linear wire lengths, because the wire lengths among objects
in the same cluster are considered to be near zero. However, at
the same time, this is why high-quality clustering is required
up front.

690 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 4, APRIL 2006

TABLE 1V
COMPARISON BETWEEN FLAT (NO CLUSTERING) AND
BC + LAZY-UPDATE CLUSTERING CPLACE RUNS

Bench WL(%) CPU| CL-CPU
AL 2.09% x0.40 1.17%
BL -4.28% x0.52 1.35%
CL 3.27% x0.51 1.14%
DL 0.87% x0.45 1.35%
EL 1.59% x0.33 1.10%
FL 1.41% x0.46 1.68%
AD 8.23% x0.50 0.98%
BD -0.34% x0.47 0.94%
CD -0.36% x0.69 0.51%

Avg. 1.39% x0.48 1.14%
TABLE V

WIRE-LENGTH COMPARISON WITH AREA-BASED SELECTIVE
UNCLUSTERING CONTROLS

1% 5% | 10% | 15% | 20% | 25% | 30%
AL § 099 | 1.00 | 1.01 | 1.04 | 1.06 | 1.08 | 1.09
BL § 101 | 1.00 | 1.0O | 1.01 | 1.04 | 1.09 | 1.15
CL § 1.00 | 1.00 | 1.00 | 1.01 | 1.02 | 1.02 | 1.04
DL § 1.00 | 1.00 | 1.04 | 1.07 | 1.07 | 1.08 | 1.04
EL § 099 | 1.00 | 1.00 | 1.08 | 1.24 | 1.43 | 1.53
FL § 099 | 1.00 | 1.05 | 1.05 | 1.09 | 1.07 | 1.09

Table IV presents the detailed performance of the hATP with
clustering ratio o = 10. The hATP run with BC-lazy-update
clustering speeds up the overall placement by 2.1z on the
average. More interestingly, with BC clustering, the hATP is
able to produce 1.39% better final wire lengths on the average.
Column “CL-CPU” shows the portion of the clustering CPU
time in the overall CPLACE run. Although BC-lazy-update
clustering takes 3.77x more CPU time than EC as shown in
Table 1II, it takes only 1.14% of the overall placement CPU
time, which is negligible. Please note that the hATP produces
better wire lengths than the flat ATP algorithm on six out of
nine circuits.

Another important consideration in the hATP is the unclus-
tering strategy. Table V demonstrates that area-based selective
unclustering strategy can affect the quality of the solution. The
top row represents the unclustering area threshold. If a cluster
size is bigger than “x%” of the available free space within a bin,
the clustered object is dissolved. The larger the “x%” value, the
less the unclustering operation is executed. The wire lengths are
normalized to those of the “5%” threshold value. The results
show that the more clusters are preserved, the higher potential
damage are made to final placement wire lengths. As expected,
this contrasts to the fact that more preserved clustered objects
lead to a higher runtime speedup.

VI. CONCLUSION

In this paper, we developed a new multilevel ATP algo-
rithm called hATP. It takes advantage of the bottom-up BC

clustering algorithm in a semipersistent context to accomplish
significant runtime speedup over its flat version without loss
of wire length. We also observe that an appropriate amount
of clustering actually improves the wire-length quality due to
the linearization effect of clustering. We also explored various
aspects of clustering/unclustering strategies within the analytic
placement, such as the clustering cost function and the area-
control methods during clustering and unclustering. We believe
that an even higher quality of placement solutions is achievable
by a better handling of fixed blocks during clustering, and this
remains as a future study.

REFERENCES

[1] C.J. Alpert, “The ISPD98 circuit benchmark suite,” in Proc. Int. Symp.
Physical Design, Monterey, CA, 1998, pp. 80-85.

[2] C. J. Alpert, G.-J. Nam, and P. G. Villarrubia, “Effective free space
management for cut-based placement,” IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst., vol. 22, no. 10, pp. 1343-1353, Oct. 2003.

[3] C.J. Alpert, J. H. Huang, and A. B. Kahng, “Multilevel circuit partition-
ing,” in Proc. ACM/IEEE Design Automation Conf., Anaheim, CA, 1997,
pp. 530-533.

[4] C.J. Alpert and A. B. Kahng, “A general framework for vertex order-
ings, with application to netlist clustering,” in Proc. ACM/IEEE Design
Automation Conf., San Diego, CA, 1994, pp. 63-67.

[5] T. N. Bui, “Improving the performance of Kernighan-Lin and simu-
lated annealing graph bisection algorithms,” in Proc. ACM/IEEE Design
Automation Conf., Las Vegas, NV, 1989, pp. 775-778.

[6] A. E. Caldwell, A. B. Kahng, and I. L. Markov, “Can recursive
bisection alone produce routable placements?,” in Proc. ACM/IEEE
Design Automation Conf., Los Angeles, CA, 2000, pp. 477-482.

[7]1 T. Chan, J. Cong, T. Kong, and J. Shinnerl, “Multilevel optimization for
large-scale circuit placement,” in Proc. IEEE/ACM Int. Conf. Computer-
Aided Design, San Jose, CA, 2000, pp. 171-176.

[8] T. Chan, J. Cong, T. Kong, J. Shinnerl, and K. Sze, “An enhanced
multilevel algorithm for circuit placement,” in Proc. IEEE/ACM Int.
Conf. Computer-Aided Design, San Jose, CA, 2003, pp. 299-305.

[9] C.-C. Chang, J. Cong, D. Pan, and X. Yuan, “Multilevel global place-
ment with congestion control,” IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst., vol. 22, no. 4, pp. 395-409, Apr. 2003.

[10] C.-C.Chang,J. Cong, Z. Pan, and X. Yuan, “Physical hierarchy generation
with routing congestion control,” in Proc. ACM/IEEE Int. Symp. Physical
Design, Del Mar, CA, 2002, pp. 36-41.

[11] J. Cong, L. Hagen, and A. B. Kahng, “Random walks for circuit
clustering,” in Proc. IEEE Int. Conf. ASIC, Rochester, NY, 1991,
pp. 14.2.1-14.2.4.

[12] J. Cong and S. K. Lim, “Edge separability-based circuit clustering with
application to multilevel circuit partitioning,” IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst., vol. 23, no. 3, pp. 346-357, Mar. 2004.

[13] H. Eisenmann and F. M. Johannes, “Generic global placement and floor-
planning,” in Proc. ACM/IEEE Design Automation Conf., San Francisco,
CA, 1998, pp. 269-274.

[14] B. Hu and M. M. Sadowska, “Fine granularity clustering-based place-
ment,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 23,
no. 4, pp. 527-536, Apr. 2004.

[15] D. J.-H. Huang and A. B. Kahng, “Partitioning based standard cell
global placement with an exact objective,” in Proc. ACM/IEEE Int. Symp.
Physical Design, Napa Valley, CA, 1997, pp. 18-25.

[16] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel hyper-
graph partitioning: Application in VLSI domain,” in Proc. ACM/IEEE
Design Automation Conf., Anaheim, CA, 1997, pp. 526-529.

[17] G. Karypis and V. Kumar, “Multilevel k-way hypergraph partitioning,”
in Proc. ACM/IEEE Design Automation Conf., New Orleans, LA, 1999,
pp. 343-348.

[18] J. M. Kleinhans, G. Sigl, F. M. Johannes, and K. J. Antreich, “GORDIAN:
VLSI placement by quadratic programming and slicing optimization,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 10, no. 3,
pp- 356-365, Mar. 1991.

[19] G.-J. Nam, C. J. Alpert, P. G. Villarrubia, B. Winter, and M. Yildiz, “The
ISPD2005 placement contest and benchmark suite,” in Proc. ACM/IEEE
Int. Symp. Physical Design, San Francisco, CA, 2005, pp. 216-220.

[20] D. M. Schuler and E. G. Ulrich, “Clustering and linear placement,” in
Proc. ACM/IEEE Design Automation Conf., Dallas, TX, 1972, pp. 50-56.

NAM et al.: FAST HIERARCHICAL QUADRATIC PLACEMENT ALGORITHM

[21] W.-J. Sun and C. Sechen, “Efficient and effective placement for very large
circuits,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 14,
no. 3, pp. 349-359, Mar. 1995.

[22] N. Viswanathan and C.-N. Chu, “FastPlace: Efficient analytical place-
ment using cell shifting, iterative local refinement and a hybrid net
model,” in Proc. ACM/IEEE Int. Symp. Physical Design, Phoenix, AZ,
2004, pp. 26-33.

[23] J. Vygen, “Algorithms for large-scale flat placement,” in Proc. ACM/IEEE
Design Automation Conf., Anaheim, CA, 1997, pp. 746-751.

[24] M. Wang, X. Yang, and M. Sarrafzadeh, “DRAGON2000: Standard-
cell placement tool for large industry circuits,” in Proc. IEEE Int. Conf.
Computer-Aided Design, San Jose, CA, 2001, pp. 260-263.

[25] M. Yildiz and P. Madden, “Global objectives for standard-cell place-
ment,” in Proc. IEEE Great Lakes Symp. VLSI, West Lafayette, IN, 2001,
pp. 68-72.

Gi-Joon Nam (S’99-M’01) received the B.S. de-
gree in computer engineering from Seoul National
University, Seoul, Korea, and the M.S. and Ph.D.
degrees in computer science and engineering from
the University of Michigan, Ann Arbor.

Since 2001, he has been with the International
Business Machines Corporation Austin Research
Laboratory, Austin, TX, where he is currently work-
ing on the physical design space, particularly place-
ment and timing closure flow. His general interests
include computer-aided design algorithms, combina-
torial optimizations, very large scale integration system designs, and computer
architecture.

Dr. Nam has been serving on the technical program committee for the
Association for Computing Machinery (ACM)/IEEE International Symposium
on Physical Design, International Conference on Computer Design, and the
International System-on-Chip Conference. He is a member of ACM.

Sherief Reda (S’01) received the B.Sc. and M.Sc.
degrees in electrical and computer engineering from
Ain Shams University, Cairo, Egypt, in 1998 and
2000, respectively, and is currently working towards
the Ph.D. degree at University of California at San
Diego, La Jolla.

He has over 20 refereed publications in the ar-
eas of physical design, very-large-scale-integration
(VLSI) test and diagnosis, combinatorial opti-
mization, and computer-aided design (CAD) for
deoxyribonucleic-acid chips (DNA) chips.

Mr. Reda received the Best Paper Award at the 2002 Design, Automation
and Test in Europe Conference and Exhibition and the First Place Award at the
2005 International Symposium on Physical Design placement contest.

Charles J. Alpert (S’92-M’96-SM’02) received the
B.S. and B.A. degrees from Stanford University,
Stanford, CA in 1991 and the Ph.D. degree in com-
puter science from the University of California, Los
Angeles, in 1996.

He is the Technical Lead of the Design Tools
Group at the International Business Machines Cor-
poration Austin Research Laboratory, Austin, TX.
His research interests include physical synthesis and
design closure.

Dr. Alpert has served as the General Chair and
Technical Program Chair for the International Symposium on Physical Design
and the Tau Workshop on Timing Issues in the Synthesis and Specification of
Digital Systems. He has also served on the technical program committees for
the Association for Computing Machinery (ACM)/IEEE Design Automation
Conference and International Conference on Computer-Aided Design. He
has received three Best Paper Awards from the ACM/IEEE Design Automa-
tion Conference and was awarded the Semiconductor Research Corporation’s
Mahboob Khan Mentor Award in 2001.

Paul G. Villarrubia received the B.S. degree in elec-
trical engineering from Louisiana State University,
Baton Rouge, in 1981 and the M.S. degree from the
University of Texas, Austin, in 1988.

He is currently a Senior Technical Staff Member
at International Business Machines Corporation
Austin Research Laboratory, Austin, TX, where he
leads the development of placement and timing clo-
sure tools and where he has worked in the areas
i of physical design of microprocessors, physical de-

sign tools development, and tools development for
application-specific integrated-circuit timing closure. His research interests
include placement, synthesis, buffering, signal integrity, and extraction. He
is the author or coauthor of more than 18 publications and is the holder of
21 patents.

Mr. Villarubia received one Design Automation Conference Best Paper
Award. He is a member of the 2005 International Conference on Computer
Aided Design on Transition Pattern Coding and was an Invited Speaker at the
2002 and 2004 International Symposium on Physical Design Conference.

Andrew B. Kahng (A’89-M’03) received the A.B.
degree in applied mathematics from Harvard Uni-
versity, Cambridge, MA, and the M.S. and Ph.D.
degrees in computer science from the University of
California at San Diego, La Jolla.

From 1989 to 2000, he was a member of the
Computer Science Faculty, University of California,
Los Angeles. Since 1997, he has been defining the
physical design roadmap for the International Tech-
nology Roadmap for Semiconductors (ITRS). Since
2001, he has been the Chair of U.S. and international
working groups for the design technology for the ITRS. He has been active
in the Microelectronics Advanced Research Corporation Gigascale Silicon
Research Center since its inception. He is currently a Professor of computer
science and engineering and electrical and computer engineering at the Univer-
sity of California, San Diego. He is the author of more than 200 papers in the
very large scale integration (VLSI) computer-aided-design (CAD) literature.
His research includes physical design and performance analysis of VLSI, as
well as the VLSI design manufacturing interface. Other research interests
include combinatorial and graph algorithms and large-scale heuristic global
optimization.

Dr. Kahng was the founding General Chair of the Association for Computing
Machinery (ACM)/IEEE International Symposium on Physical Design and was
the Cofounder of the ACM Workshop on System-Level Interconnect Planning.
He received three Best Paper Awards and a National Science Foundation (NSF)
Young Investigator Award.

