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ABSTRACT
Numerous methods exist for inferring the ancestry mosaic of
an admixed individual based on its genotypes and those of
its ancestors. These methods rely on bialleic SNPs obtained
from genotype calling algorithms, which classify each marker
as belonging to one of four states (reference allele, alternate
allele, heterozygous, or no call) based on probe hybridization
intensity signals. We demonstrate that this conversion of
probe intensities to discrete genotypes can lead to a loss
of information and introduce errors via incorrect genotype
calls.

We propose a method that directly infers ancestry from
probe intensities by minimizing the intensity difference be-
tween a target individual and one or more of its ances-
tors. We demonstrate our method on mice from the develop-
ing Collaborative Cross (CC) genetic reference population,
which are admixtures of a common set of eight ancestors.
Our samples were genotyped using a 7.8K-marker Illumina
Infinium platform called the Mouse Universal Genotyping
Array (MUGA). We compare our reconstructions with a
standard genotype-based method and validate our results
using DNA sequencing data. Our algorithm is able to use
information not captured by genotype calls and avoid errors
due to incorrect calls.
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1. INTRODUCTION
The genomes of individuals from admixed populations are

a mosaic of segments inherited from their ancestors. Map-
ping populations, in particular, are often derived from a set
of inbred founders where each individual’s genome is a mix-
ture of founder haplotype segments. Ancestry inference on
such an admixed individual refers to the problem of par-
titioning the individual’s genome into haplotype blocks la-
beled with the contributing ancestor, with or without a given
pedigree. The ability to infer ancestry accurately not only
enables linkage and association mapping, but it also adds to
our understanding of recombination.

Numerous methods have been proposed for inferring an-
cestry when given the genotypes of an individual and a set
of ancestral haplotypes. Such methods generally use bial-
lelic SNP data obtained from genotyping arrays or DNA
sequencing as input. In humans, mapping ancestry is an
essential step in admixture mapping, and methods such as
HAPMIX [9], HAPAA [12], and LAMP [11] use HMM-based
methods to infer the most likely ancestral blocks for each in-
dividual. While many methods require prior linkage disequi-
librium analysis and use only unlinked markers, HAPMIX
uses information from all neighboring markers and points
out the amount of information lost by filtering linked mark-
ers. However, most of these methods accept genotypes from
calling algorithms as ground truth and seldom discuss the
artifact of calling errors, although LAMP does attempt to
improve accuracy by analyzing sliding windows and taking
a majority vote.

Algorithms for inferring ancestry in model organisms with
known ancestors have also been proposed, such as HAPPY [8],
a package for QTL mapping designed for outbred crosses.
Methods for ancestry inference in recombinant inbred strains
include two designed for the Collaborative Cross [6, 18], the
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Figure 1: Intensity plots of four markers, colored by geno-

type calls obtained from Illumina’s GenomeStudio. Each

point represents a single MUGA sample with its reference

probe intensity on the x-axis and its alternate probe inten-

sity on the y-axis. ‘H’ calls are colored magenta, ‘N’ calls

are colored black, and the four nucleotides ‘A’, ‘C’, ‘G’, and

‘T’ are colored green, cyan, red, and blue, respectively. (a)

A typical biallelic marker with two homozygous clusters and

one heterozygous cluster. (b) A non-hybridizing marker with

arbitrary ‘H’ calls. (c) A multiallelic SNP with several het-

erozygous clusters, one of which is uniformly called ‘N’. (d)

A multiallelic SNP with one heterozygous cluster alternately

called both ‘N’ and ‘H’ due to batch effects in the calling

algorithm.

same strains upon which we test our algorithm [2]. GAIN [6],
which was designed with the CC in mind, is an HMM-based
algorithm that uses knowledge of the pedigree to efficiently
infer ancestry probabilities. One assumption of GAIN and
other existing methods is the use of high density genotypes.
SNPs from high density arrays are often heavily filtered
based on non-performing markers or questionable genotype
calls. However, studies using low density arrays do not have
the luxury of filtering out a significant percentage of SNPs
and keeping only reliable genotype calls.

Moreover, even the best genotype calling algorithms often
miscategorize markers with atypical hybridization intensity
patterns [4]. In genotype calling, probe hybridization inten-
sities are converted to one of four genotype calls (reference
allele, alternate allele, heterozygous, or no call) via a clas-
sification algorithm. This is a difficult problem and calling
algorithms can generate questionable results when marker
intensities deviate from the expected biallelic intensity pat-
tern. Furthermore, many markers have unexpected inten-
sity patterns due to polymorphisms in or around the target
probe sequences [4]. Sometimes sequence variations within
probes lead to a reduction in hybridization intensities, and
other times they manifest as intensity patterns that can dis-
criminate between more than two alleles (Figure 1). In ei-
ther case, traditional genotype calling methods that assume
biallelic SNPs do not correctly classify these markers. This
results in a loss of information, or worse, incorrect calls.

We propose an algorithm for ancestry inference that does

not require the conversion of hybridization intensities to dis-
crete genotypes. The use of hybridization intensities from
genotyping arrays is common in studies of copy number vari-
ation (CNV) [15]. We show that allele variations beside
CNVs manifest as variations in hybridization intensities as
well, and we try to implicitly capture these variants with
our methods.

Unlike existing methods, we directly use hybridization in-
tensities in our model, which attempts to minimize the dis-
tance in 2D intensities from the target individual to its an-
cestors. We do not filter any markers, allowing each marker
to be potentially informative on low-density genotyping ar-
rays. We implemented our method on CC strains geno-
typed with the 7,854-marker Mouse Universal Genotyping
Array [3]. Using available DNA sequencing data as ground
truth, our algorithm compared favorably to GAIN, which is
sensitive to incorrect genotype calls and loses information in
atypical markers.

2. MATERIALS AND METHODS

2.1 Materials
We implemented our methods on an admixed population

of eight inbred mouse strains known as the Collaborative
Cross (CC) [2, 3]. The CC is an ongoing community ef-
fort to develop a large panel of recombinant inbred mice
derived from a set of eight genetically diverse laboratory
strains. The set of founders consist of five classical in-
bred strains (A/J, C57BL/6J, 129S1/SvImJ, NOD/ShiLtJ,
NZO/H1LtJ) and three wild-derived strains (CAST/EiJ,
PWK/PhJ, WSB/EiJ). They were chosen to capture a high
level of genetic diversity, representing on average 90% of
known genetic variation across all 1-Mb intervals [10]. A
single CC strain is derived from the eight founders through
a funnel breeding scheme that consists of two generations
of mixing crosses, followed by 20 or more generations of in-
breeding (Figure 2). We applied our methods to samples at
various stages of the inbreeding process ranging from 4 gen-
erations of inbreeding, which is near the peak of genetic di-
versity (with a large number of founder segments and signifi-
cant heterozygosity), to 22 generations of inbreeding, where
samples are expected to be nearly completely inbred [16].
We implemented our algorithm on 461 CC mice from [3], fo-
cusing our results here on three lines with available sequence
data.

To ascertain the founder contributions and level of in-
breeding of CC lines, we designed the Mouse Universal Geno-
typing Array (MUGA), a 7,854-marker array based on the
Illumina Infinium platform [3]. Markers were selected to
locally discriminate amongst the eight inbred founders, so
that in the ideal case, a set of four founders would have
the alternate allele for each marker, and a maximum of four
adjacent markers would be sufficient to uniquely identify
the founder contributing to a homozygous genomic segment.
Therefore, despite being a low-density array, the MUGA
provides highly informative markers that are well-suited for
mapping genome ancestry. Our methods make use of nor-
malized probe intensities returned by Illumina rather than
the genotype calls [14].

To establish statistical distributions for each marker, we
genotyped a minimum of eight samples for each CC founder.
These were primarily biological replicates with a few tech-
nical replicates. We also genotyped at least two replicates

ACM-BCB 2012 106



Figure 2: Collaborative Cross breeding scheme. Each fun-

nel has an ordered list of eight founders which are crossed

for two generations, F1 and F2, then inbred for at least 20

generations to obtain recombinant inbred lines.

of each of the 28 possible F1 combinations (ignoring the
direction of the cross) for a total of 98 F1 samples. The
founder samples were primarily male to provide models for
each chromosome, whereas the F1 samples were primarily
female to provide heterozygous models of X. We used these
65 founder samples and 98 F1 samples to learn a clustering
model for each MUGA marker.

We have sequenced 3 of the the 461 CC strains that were
genotyped using MUGA. Each sample has approximately
30X genomic coverage in the form of 100 bp, paired-end
reads from an Illumina HiSeq 2000, with a mean fragment
size of 300 bp. These data were aligned to a CC consen-
sus genome using Bowtie 1.0 with the best-match criterion
and allowance for 3 or fewer mismatches per read alignment.
The CC consensus genome was formed by substituting the
majority allele among the 8 founders into the NCBI Genome
Reference Consortium Build 37 mouse reference genome [1]
at the high confidence SNP positions as determined by the
recent Welcome Trust mouse genome sequencing effort [5].
We used this aligned sequence data to validate the accuracy
of our ancestry inference.

2.2 Algorithm overview
In contrast to genotype-based algorithms, we infer an an-

cestor mosaic directly from probe intensities to avoid prob-
lems introduced by limitations in genotype calling. Using
intensities from replicate samples, we construct a 2D sta-
tistical model for each ancestor and find the set of ances-
tor intensities that best match the intensities of the target
sample. We frame this problem as an optimization with
penalties associated with making unnecessary transitions.

Given n markers and m inbred ancestors, our model min-
imizes the cumulative distance in 2D probe intensities from
the individual sample to each of the m′ = m +

(
m
2

)
two-

founder haplotype combination states (m homozygous and

(
m
2

)
heterozygous). Each of the m′ states has a representa-

tive cluster of probe intensities per marker that is pooled
from the available founder and F1 replicates on MUGA.
Transitions between different states are penalized via the
addition of a transition penalty.

2.3 Creating reference clusters on MUGA
We have at least eight replicates of each CC founder on

MUGA, as well as two or more replicates of each possible
F1 combination. Each founder strain forms a repeatable
2D probe intensity cluster (Figure 3). To create reference
clusters with increased statistical power, we pool together
founders in common clusters (as determined by Hotelling’s
T-square test with a p-value threshold of 0.001) and esti-
mate each final cluster’s mean and covariance. In a second
pass, we incorporate F1 samples. When the parental strains
of the F1 map to a common cluster, we incorporate the F1
sample into the existing cluster model. When the parental
strains of the F1 map to different clusters, we create a new
heterozygous cluster model (Figure 3). We do not specify an
expected number of alleles (clusters) prior to creating refer-
ence clusters, allowing for multiple homozygous alleles, each
associated with one or more inbred founders. In extreme
cases, a poorly performing marker might map all samples to
a single cluster. Our model handles this case transparently,
whereas traditional genotype calling makes arbitrary calls
that are likely erroneous.

2.4 Distance model
Our goal is to assign the set of most likely ancestor states

{f1, f2...fi...fn} for each marker at position i. The set of
possible ancestor states F contains m′ = m +

(
m
2

)
possible

haplotype combinations given m ancestral haplotypes1. At
marker i, each ancestor state f ∈ F has a cluster model
cluster(f, i) with a stored mean and covariance. We define
the distance at each marker i from the target sample to
each ancestor state f as the Mahalanobis distance [7] of the
sample’s 2D probe intensities to cluster(f, i) . Our goal
is to find the set of ancestor intensities that best models
the target sample’s intensities across the genome without
excessive transitioning. Hence, denoting the target sample’s
2D intensity vector as xi and the assigned ancestor as fi at
marker i, we wish to minimize

DM (x1, f1) +

n∑

i=2

DM (xi, cluster(fi, i)) + penalty(fi−1, fi),

(1)
where DM (xi, cluster(fi, i)) is the Mahalanobis distance

from the 2D point xi to the reference cluster of fi at position
i, and penalty(fi−1, fi) is the transition penalty from the
assigned state at marker i-1 to the state at marker i, defined
below.

We set up a dynamic program to find the path which
minimizes distp1,qn , the distance from state p at the first
marker to state q at the last marker. The main dynamic
programming recurrence then becomes

distfi=p,fi+1=q =DM (xi, cluster(q, i)) + penalty(p, q)

+min{distf0=r,fi=p|∀r ∈ F}. (2)

1With the exception of sex chromosomes on male samples,
which only have m states.
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Table 1: Transitions between different states p and q
p is q is p and q share Graphical penalty(p, q)

homozygous homozygous a haplotype depiction
yes yes no mean DM between different homozygous clusters

yes/no no/yes yes 1.5* mean DM between homozygous and heterozygous clusters
no no yes 1.5* mean DM between different heterozygous clusters

yes/no no/yes no 5.0*mean DM between homozygous and heterozygous clusters
no no no 5.0*mean DM between different heterozygous clusters

Figure 3: Creating reference clusters. (a)To create homozy-

gous reference clusters, we first pool all inbred founders with

overlapping clusters as determined by replicate samples. The

SNP shown here has three homozygous clusters. (b) We then

create heterozygous reference clusters by pooling F1 samples

between founders in different clusters. This SNP has three

heterozygous clusters. We also refine homozygous clusters by

adding F1 samples between founders in the same homozygous

clusters. The means of homozygous clusters 1, 2, and 3 are

shown as crosses. Data points for all samples are shown in

the background to provide context. They are not used in the

cluster modeling.

Since our algorithm does not require knowledge of pedi-
gree, transition penalties are based on observed differences
in probe intensities rather than expected recombination fre-
quency. Using our predetermined founder and F1 clusters,
we calculate the mean Mahalanobis distance from homozy-
gous clusters to other homozygous clusters, from heterozy-
gous clusters to homozygous clusters, and from heterozy-
gous clusters to other heterozygous clusters. Using these
mean Mahalanobis distance values, we allow for transitions
between homozygous states when we encounter a single SNP

with typical Mahalanobis distance between two different ho-
mozygous clusters. Since heterozygous clusters typically
have a smaller distance to all other clusters, the penalty
to transitioning to or from heterozygous states is equivalent
to 1.5 times the typical Mahalanobis distance between het-
erozygous states and other states. Transitions that suggest
two independent recombination events at the same locus (co-
incident transitions) are rare and are penalized more heavily
in our model. We set this penalty to be five times the mean
Mahalanobis distance between different states. The set of
possible transitions between state p and state q, where p �= q,
are shown in Table 1. Transition penalties are symmetric,
and there is no penalty value for staying in the same state,
that is, penalty(p, q) = penalty(q, p) and penalty(p, p) = 0.

For our CC dataset genotyped on MUGA, the penalty
values are 0.082 between different homozygous states, 0.066
between heterozygous and compatible homozygous states,
and 0.047 between compatible heterozygous states. Coinci-
dent transitions have penalty values of 0.22 and 0.16.

2.5 Refining recombination breakpoints
Determining recombination breakpoints between founders

that share similar or identical sequences near transitions is a
challenge. In this case, although the dynamic programming
algorithm will specify a transition between some pair of ad-
jacent markers, we report the breakpoint as an interval of
ambiguity where the true breakpoint falls. On a transition
from ancestor states p to q, we start from the breakpoint as-
signed by the dynamic programming and extend the ambigu-
ous interval both ways. We stop when we reach a left end-
point i where DM (xi, cluster(p, i)) < DM (xi, cluster(q, i))
and cluster(p, i) �= cluster(q, i), as well as a right endpoint
j where DM (xj , cluster(p, j)) > DM (xj , cluster(q, j)) and
cluster(p, j) �= cluster(q, j), where x represents the target
sample’s intensities.

2.6 Funnel constraints
Assuming a founder order of ABCDEFGH for a CC

strain, heterozygous combinations of the initial founder mat-
ing pairs AB, CD, EF , and GH cannot reappear in later
generations, since the genomic material passed from an F1
cross is carried on a single haplotype in all subsequent gen-
erations [?, ?]. When applying our algorithm to CC samples
with available funnel information, we incorporate this con-
straint by removing these prohibited founder states.

3. RESULTS

3.1 Reference intensity clusters
We created reference clusters for 7,854 MUGA markers

using a total of 65 CC founder samples and 98 CC F1 sam-
ples. The eight CC founders segregated into a single cluster
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Table 2: Number of SNPs that disagree between our algorithm vs. GAIN
Total SNPs disagreeing SNPs where our algorithm SNPS where GAIN

between our algorithm and GAIN agrees with sequence data agrees with sequence data
OR867m532 33,026 24,092 8,934
OR1237m224 17,536 14,524 3,011
OR3067m352 38,621 23,095 15,526

Total 89,183 52,144 (69.2%) 27,471 (30.8%)

for 1,104 markers. We observed the expected two homozy-
gous clusters in 5,550 markers, with a reference allele cluster,
an alternate allele cluster, and a single heterozygous cluster
among our reference samples. The remaining 1,200 mark-
ers exhibit three or more clusters among the eight inbred
founders, with 1,021 exhibiting three homozygous clusters,
and 179 exhibiting four or more (Figure 4). The maximum
number of homozygous clusters we observed was six.

Of the 6,750 informative markers, we have a mean of 2.21
homozygous clusters per SNP, or 3.66 clusters per SNP in-
cluding heterozygous clusters. Thus, using our reference
clusters, each SNP provides more information than a typ-
ical genotype call with 2 homozygous and 1 heterozygous
alleles. This is especially advantageous for low-density plat-
forms such as the MUGA and allows us to break ties between
similar founders and refine recombination breakpoints, as
discussed below.

Figure 4: Intensity plots with replicates of CC founders

highlighted and all other samples drawn as background.

Founders with overlapping clusters are pooled to create a sin-

gle homozygous cluster. (a) A typical biallelic marker with

the expected two homozygous clusters. (b) A poorly per-

forming marker with a single cluster. (c) A marker with four

homozygous clusters. (d) A marker with three homozygous

clusters.

3.2 Comparisons using sequencing data
Using available sequencing data as ground truth, we com-

pared the predictions of our algorithm to those of GAIN, a
genotype-based method optimized for animals with complex
pedigrees such as CC animals [6]. GAIN uses knowledge of

the breeding funnel and generations of inbreeding to approx-
imate transition probabilities in a hidden Markov model. As
with most genotype-based methods, GAIN infers heterozy-
gous genotypes and requires genotypes from only the inbred
founders. We used the consensus genotype calls given by
Illumina’s GenomeStudio software [14] from all samples of
each CC founder. Since GAIN requires that all founders
be called a homozygous allele at each marker, we filtered
the 7,854 MUGA markers by eliminating all markers where
a CC founder’s consensus call was “H” or “N,” as well as
markers where all eight founders have the same call, leav-
ing 5,782 markers. In comparison, our algorithm uses every
marker. This includes 6,750 informative markers with more
than one cluster, nearly 1000 markers more than the ones
used by GAIN.

We ran our algorithm and GAIN on three CC samples
with DNA sequencing data available: OR867m532, OR1237m224,
and OR3067m352. We examined the non-ambiguous re-
gions where the two methods disagree and imputed high-
confidence SNPs from theWellcome Trust Sanger Institute [5]
for these regions based on the inferred ancestries. We then
estimated the true genotypes by examining the aligned reads
at each SNP locus, considering only loci with a coverage of
ten or more reads. Loci where the second most common nu-
cleotide showed up with a frequency of more than 0.2 were
declared heterozygous.

Of all high-confidence Sanger SNPs in regions where the
two methods disagree, 69.2% of SNPs imputed using ances-
tor assignments from our method agree with the sequenc-
ing data, compared to 30.8% of SNPs imputed from GAIN
that agree with sequencing (Table 2). With the assumption
that our aligned sequencing data and Sanger SNPs are cor-
rect, loci with imputed SNPs that differ from the sequenc-
ing data most likely result from erroneous ancestry assign-
ments. As seen in the sample plot of chromosomes 3 and 5
on OR1237m532 (Figure 6), errors in GAIN are often driven
by incorrect genotype calls, where a single miscalled geno-
type can result in an incorrect assignment. These incorrect
genotype calls often occur in markers with intensity clus-
ters that do not separate as well as typical biallelic intensity
clusters, and the discretization from intensities to genotype
calls in these cases easily lead to errors in algorithms relying
on correct genotype calls.

Unlike genotype-based methods, our reference clusters can
make use of markers where ancestors have “H” or “N” calls,
and they can discriminate between ancestors with the same
genotype call but have different hybridization intensity pat-
terns. For example, our algorithm defines a recombination
breakpoint between 15,059,945 bp and 15,922,708 bp on
chromosome 17, where the ancestor of OR1237m224 transi-
tions from homozygous WSB/EiJ (purple in Figure 5) to ho-
mozygous CAST/EiJ (green). GAIN reports the recombina-
tion breakpoint to be between 14,675,894 bp and 18,347,703
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bp, a region 2.8Mb larger than that reported by our algo-
rithm. From the pileups of our aligned sequencing reads, we
can refine the true breakpoint to the 5Kb region centered
around 15,060,000 bp. Our algorithm is able to more pre-
cisely discriminate the breakpoint region due to a marker
with an “N” genotype call and a marker with three homozy-
gous clusters flanking the breakpoint. GAIN does not con-
sider the marker immediately upstream of the true break-
point at 15,059,945 bp since four of the eight CC founders
are called “N” at the locus, along with the target individ-
ual. However, WSB/EiJ and CAST/EiJ clearly segregate
into separate clusters at the marker, with the target indi-
vidual falling in WSB/EiJ’s reference cluster, which is rec-
ognized by our algorithm. The marker downstream of the
true breakpoint at 15,922,708 bp has three homozygous ref-
erence clusters, with WSB/EiJ and CAST/EiJ sharing the
same genotype calls but segregating into different clusters.
GAIN is unable to differentiate between the two founders at
that marker due to their shared genotype call, but our algo-
rithm is able to assign the target individual to CAST/EiJ’s
reference cluster (Figure 5).

3.3 Other platforms and populations
Our algorithm works across different genotyping platforms.

In addition to testing on the MUGA, we have also tested our
algorithm on CC animals genotyped with the 600K-marker
Mouse Diversity Array (MDA) [17], a high-density genotyp-
ing array on the Affymetrix platform. Since we have fewer
replicates of CC founders and F1s genotyped on the MDA,
instead of creating reference clusters and calculating Ma-
halanobis distances, we used other distance measures, such
as 2D Euclidean and Manhattan distances, to calculate dis-
tance between the individual sample and each ancestor. In
the case of F1 strains without available samples, we approxi-
mate the intensities of the F1 by taking the mean intensities
of its two parental strains. This approximation has given us
results similar to those of using real F1 samples. Though
results are not shown for the MDA due to space limitations,
our algorithm outperforms GAIN on the MDA as well.

Although we have focused our results on samples from
the CC, our algorithm has been implemented on other pop-
ulations that have been genotyped on MUGA as well. We
have tested our algorithm on heterogeneous stocks such as
the Diversity Outbred (DO) population being developed at
The Jackson Laboratory [13], as well as transgenic, knock-
out, and knockin mice from the Mutant Mouse Regional
Resource Centers (MMRRC). These mice are derived from
two or more ancestors. For an ancestor that is not a CC
founder, we assign a most likely CC founder-derived ref-
erence cluster at each MUGA marker and run our algo-
rithm with the most likely set of reference clusters repre-
senting the ancestor. Since the CC founders capture most
genetic diversity in the mouse, the reference clusters we cre-
ated using CC founders and F1s work well for modeling
non-CC ancestors as well (Figure 7). An online tool im-
plementing our algorithm on the MUGA can be found at
www.csbio.unc.edu/CCStatus.

4. DISCUSSION
Existing methods for ancestry inference assume accurate

genotype calls that capture all variance within a marker.
However, markers may capture multiallelic information due
to unexpected polymorphisms in the target probe sequence,

Figure 5: Intensity information better resolves a recombina-

tion breakpoint on chromosome 17 of sample OR1237m224.

(a) Assigned ancestry from our algorithm (top) and GAIN

(bottom). Both algorithms show a recombination breakpoint

between WSB/EiJ (purple) and CAST/EiJ (green) around

15Mb. Our algorithm shows the region containing the break-

point as 15,059,945 - 15,922,708 bp, while GAIN shows the re-

gion as 14,675,894 - 18,347,703 bp. (b) Sequencing data pin-

points the breakpoint to a 5Kb region centered around 15.06

Mb. Here, we show the number of SNPs from aligned reads

which are informative between WSB/EiJ and CAST/EiJ, col-

ored by the SNP’s allele. (c) The marker immediately up-

stream of the true breakpoint. CC founders are highlighted

and OR1237m224 is marked as “x.” This marker was fil-

tered by GAIN due to the high number of ’N’ calls among

CC founders, but the sample falls within the cluster with the

WSB/EiJ allele. (d) A marker downstream of the true break-

point. WSB/EiJ and CAST/EiJ share the same genotype call

at the marker, so GAIN cannot discriminate between the two.

However, WSB/EiJ and CAST/EiJ fall in different reference

clusters, so we can accurately assign the sample to the cluster

containing CAST/EiJ.
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Figure 6: Errors in GAIN are often due to questionable genotype calls. Here we show results from GAIN on chromosomes

3 (left) and 5 (right) of sample OR1237m224. The histograms on the top show the SNPs with alleles imputed from GAIN

that differ from sequence data, out of all SNPs in regions where our assignments differ from GAIN’s. This suggests the small

heterozygous segments assigned by GAIN on both chromosomes are erroneous. GAIN’s ancestry assignment is depicted in the

middle, and the bottom plots show SNPs where the sample is called ‘H’. In both chromosomes, the errors occur in regions of

markers where the sample is called ‘H’ yet has an intensity vector close to the correct homozygous cluster (dark gray). CC

inbred founders are highlighted in the intensity plots, and the intensity of OR1237m224 is marked “x.”

Figure 7: The ancestry of a transgenic mouse from the

Mutant Mouse Regional Resource Centers. This strain

is homozygous on a C57BL/6J (blue) background, with a

target mutation on chromosome 15 at 76.08Mb (denoted

by the arrow) carried by an ES cell line derived from

129S6/SvEvTac (red). Our algorithm finds the region con-

tributed by 129S6/SvEvTac (in box), which can be useful in

predicting which SNPs are in linkage disequilibrium with the

target allele.

and we have observed a substantial number of markers in
multiple genotyping platforms which consist of more than
two homozygous intensity clusters. Our ancestry inference
algorithm clusters ancestors based on probe intensities and
solves a shortest distance optimization problem from the
intensities of the target individual to those of a set of an-
cestors. By using probe intensities instead of discretized
genotype calls, we obtain more information from multial-
lelic markers and markers with many“N” calls, and we elim-
inate errors due to incorrect genotype calls in markers with
atypical intensity patterns.

Low-density arrays fundamentally limit the resolution of
detectable ancestral segments due to the sparsity of markers.

However, our algorithm still may not capture small ances-
tral segments that span just one or two markers, especially
if intensity clusters are not as well-separated within these
markers. Developing a marker-based penalty model based
on the distances at each marker, instead of using the same
penalties across all markers, would help us better resolve the
correct ancestors in these regions.

We have demonstrated that probe hybridization inten-
sities provide valuable information that is often lost after
genotype calling. Although some perceive intensities as noisy
data, our intensity-based ancestry inference produces good
results that eliminate noise originating from incorrect geno-
type calls. Furthermore, we are able to specify recombi-
nation regions more precisely due to additional information
from intensities. Intensity-based methods can be used to
solve many other problems that traditionally rely on dis-
cretized genotype calls, such as haplotype phasing or calcu-
lating genomic similarity between strains. Using intensity-
based methods eliminates the need for genotype calling, which
is time-consuming and subject to errors. In cases where
discretized genotype calls are desired, genotype calling al-
gorithms that allow for an arbitrary number of alleles per
marker could lead to more accurate results than would tra-
ditional biallelic calls.
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