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ABSTRACT: Transportation systems are becoming more and 
more advanced due to progress made in computational 
techniques used in transportation. Autonomous navigation of 
vehicles is not only useful in robotics but also in town planning 
and management. In this paper, use of artificial navigation 
techniques used in navigation of autonomous vehicles is 
discussed. The methods are based on machine vision techniques 
which extract feature points in images captured by cameras 
mounted on vehicles. These images are fed to artificial 
intelligence algorithms to estimate self-position of vehicles. 
Knowing the self-position of vehicles, autonomous navigation of 
vehicles is made feasible. The methods work effectively and 
vehicles are navigated in cluttered environments. 

Index Terms—feature detectors, artificial intelligence, 
navigation, localization, 3D transformation.  

I. INTRODUCTION 

Transportation systems are being developed with the help of 
advanced computational techniques. Such systems are used 
in daily life these days because of their driver assistance 
services. Localization of intelligent vehicles is of utmost 
priority because for effective and efficient transportation of 
such vehicles, their self-position needs to be known. Apart 
from localization of intelligent vehicles, service robots 
needto know their self-position before such robots perform 
their next task. In case of intelligent vehicles, to stay in 
aspecific lane, the vehicle must know its current position. 
The position must be known in centimetre accuracy to 
follow road lane. GPS alone is not sufficient to meet the 
requirements of such a precise localization. Many other 
techniques are used along with GPS for the purpose viz. 
odometry, IMU. In this paper, artificial intelligence based 
methods are discussed for estimating self-position of 
transportation systems. 

II. SELF-POSITION ESTIMATION 

Self-position estimation is needed prior to autonomous 
navigation of transportation systems. GPS is used for 
localization of intelligent vehicles. GPS consists of 24 
satellites which send signals to estimate position. One 
satellite needs to be received for each dimension of the 
user’s position that needs to be calculated. This suggests 
three satellites are necessary for position estimate for 
general user (for the x, y, and z dimensions of the receiver's 
position) however, the user rarely knows the exact time 
which they are receiving at, hence four satellite pseudo-
ranges are required to calculate these four unknowns. The 
satellite data is monitored and is controlled by the GPS 
ground segment - stations positioned globally to ensure the 
correct operation of the system. The user segment is the 
GPS user and the GPS reception equipment.  
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These have advanced considerably in recent years to allow 
faster and more accurate processing of received data. They 
typically contain pre-amplification, an analogue to digital 
converter and DSP processors etc. [3]. 
    Outdoor localization is a task which experiences many 
problems. Many sensors like laser range finders whichplay 
an important role in indoor localization are not suitable for 
outdoor localization because of the cluttered and 
unstructured environment. Global positioning system (GPS) 
discussed in Section can give valuable position information, 
but often the GPS satellites are occluded by buildings or 
trees. Because of these problems, vision has become the 
most widely used technique for outdoor localization. A 
serious problem with vision based systems is the 
illumination change because the illumination in outdoor 
environments is highly dependent on the weather conditions 
and on the time. In [2], the authors address the problem of 
long term mobile robot localization in largeurban 
environments where the environment changes dynamically. 
In their work, the authors use vision system tosupplement 
GPS and odometry [17] and provide accurate 
localization.The computations involved in vision based 
localization can be divided into the following four steps [14]: 
• Environment sensing: For vision based navigation, this 
means acquiring and digitizing camera images. 
• Detect landmarks: Usually this means extracting edges, 
smoothing, filtering, and segmenting regions onthe basis of 
differences in grey levels, color, depth or motion. 
• Landmark Identification: In this step, the system tries to 
identify the observed landmarks by searching inthe database 
for possible matches according to some measurement 
criterion. 
• Calculate position: Once a match (or a set of matches) is 
obtained, the system needs to calculate itsposition as a 
function of the observed landmarks and their positions in the 
database. 
     In order for a vehicle to localize itself and to navigate 
autonomously in an environment, a model of that 
environment is needed which associates camera positions 
and observations. Provided that such a model (called map) 
has been built, a localization task can be carried out by 
means of ordinary statistical operations viz. regression or 
interpolation. Among the several sensor devices used for 
localization, vision provides the richest source of 
information, traditionally being restricted to the use of 
standard CCD cameras. Lately, omnidirectional vision 
systems are becoming increasingly popular in the mobile 
robots field for tasks like environment modelling, while 
research is active in understanding the properties of such 
sensors on a theoretical level. The main advantage of an 
omnidirectional camera compared to a traditional one is its 
large field of view which for localization application, allows 
many landmarks to be simultaneously present in the scene 
leading to more accurate localization. [13] The approach 
used in [10] consists of using integral invariant features 
computed on omnidirectional images and showing their 
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interest in context of mobile robot localization. In their work 
the complex transformations induced by the geometry of the 
sensor are taken into account and integrate the virtual 
moments of the robot to evaluate invariant distributive 
features. After introducing the theoretical foundations of the 
integral invariant features construction, the authors 
presented their approach dealing simultaneously with 
models of omnidirectional sensor and of the effects of the 
robot movements on the transformed images. The 
experimental results presented show an improvement of the 
invariance of these features compared to the classical 
histograms, and so of the robot qualitative localization. 
   The integral method used to build invariant has the 
advantage of being more direct than differential or 
geometricalmethods. The integral method requires neither 
image segmentation as in geometrical methods nor 
derivativecomputation as in differential methods. The 
starting point of the invariant building is the Harr integral. It 
consistsof a course through the space of the transformation 
group parameters. It is typically expressed as 
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Where G is the transformation group, and g(x) the action of 
g, an element of G, on vector x. This invariant has been used 
in image query in case of Euclidean motion and for mobile 
robot localization although the Harr integral was not 
explicitly used. The authors interest concerns 
transformations of the image obtained with an unidirectional 
camera. The type of transformations is due to the robot 
movements and to the projection process. In their work, the 
study of the robot movements is limited to translations on 
the floor. Nevertheless, other transformations such as 
rotations or illumination changes could have been 
considered but have not been presented in their paper. 
Translations transform 3D point x (expressed in robot 
reference frame) into point x + t with t = (t1, t2, 0) a 
translation in the (Ox, Oy) plane. The camera is endowed 
with an omnidirectional sensor, generating transformations 
that can be divided into a projection on its parabolic mirror 
and an orthopaedic projection on to the image plane. In [8], 
authors propose an omnidirectional camerabased 
localization system that does not involve the use of 
historical position estimates. A modified hue profile is 
generated for each of the incoming omnidirectional images. 
The extracted hue regions are matched with that of the 
reference image to find corresponding region boundaries.As 
the reference image, exact position of the reference point 
and the map of the workspace are available, the current 
position of the robot can be determined by triangulation. 
The method was tested by placing the camera setup at a 
number of different random positions in a 11.0m x 8.5m 
room. The average localization error was 0.45m. No 
mismatch of features between the reference and incoming 
image was found. In [9], authors make use of 
omnidirectional camera for map building and localization of 
a robot. The image sequences of theomnidirectional camera 
are transformed into virtual top-view ones and melted into 
the global dynamic map. After learning the environment 
from training images, a current image is compared to the 
trainingset by appearance based matching. Appropriate 
classification strategies yield an estimate of the robot’s 

current position. Such methods are useful for navigation of 
transportation systems. 

III. 3D MODELING OF ENVIRONMENT 

Urban cities are occupied with tall canyons of buildings. In 
many urban navigation applications, high accuracy 
localization of moving vehicles is achieved using maps of 
urban environments. One such technique has been proposed 
by Jesse Levinson et al [18]. This approach integrates GPS, 
IMU, wheel odometry and LIDAR data acquired by an 
instrumented vehicle to generate high resolution 
environment maps. The idea of their work is to augment 
inertial navigation by learning a detailed map of the 
environment, and then to use a vehicle’s LIDAR sensor to 
localize itself relative to this map. The maps are 2-D 
overhead views of the road surface, taken in the infrared 
spectrum. Such maps capture a multitude of textures in the 
environment that may be useful for localization such as lane 
markings, tire marks, pavement and vegetating near the road 
(e.g. grass). The maps are acquired by a vehicle equipped 
with a state-of-the-art inertial navigation system (with GPS) 
and multiple SICK laser range finders. Such fusion of 
sensors is useful in many cases but suffers from many 
drawbacks in some applications. 

IV. SELF-POSITION USING PATHWAY MAP 

An autonomous navigation of a vehicle on a pathway is 
achieved by estimating its self-position on a pathway. The 
vehicle transitions through a sequence of poses. In urban 
mapping, poses are five dimensional vectors, comprising the 
x − y coordinates of the vehicle, along with its heading 
direction (yaw), roll and pitch angle of the vehicle (the 
elevation z is irrelevant for this problem). Let x (t) denote 
the pose at time t. Poses are linked together through relative 
odometry data, acquired from the vehicle’s inertial guidance 
system. 
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Here g is the non-linear kinematic function which accepts as 
input a pose xt−1 and a motion vector u (t), and 
outputs a projected new pose x (t). The variable ϵt is a 
Gaussian noise variable with zero mean and covariance��.In 
log-likelihood form, each motion step induces a non-linear 
quadratic constraint. These constraints can be thought of as 
edges in a sparse Markov graph. For any pose x (t) laser 
angle relative to the vehicle coordinate frame α, the 
expected infrared reflectivity can easily be calculated. Let 
ℎ���, ���	be this function, which calculates the expected 
laser reflectivity for a given map m, a robot pose x (t) and a 
laser angle α. The observation process is modelled as 
follows 
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Here ��
�  is a Gaussian noise variable with mean zero and 

noise covariance�� .In log-likelihood form, this provides a 
new set of constraints, which are of the form. 
 
���

� − ℎ���, ����
 = ��

�����
� − ℎ���, ����

   (4) 
The unknowns in this function are the poses x (t) and the 
map m. The next state of the system is estimated from its 
current state. 



International Journal of Soft Computing and Engineering (IJSCE) 
ISSN: 2231-2307, Volume-5 Issue-5, November 2015 

23 
Published By: 
Blue Eyes Intelligence Engineering 
& Sciences Publication Pvt. Ltd. 

V. KNOWLEDGE ABOUT SURRONDINGS 

Surroundings around the vehicles are stored in a digital map 
to estimate the self-position of vehicle. The location 
estimation of a vehicle with respect to a 3D world model 
finds applications which include automaticnavigation, 
automatic integration of new information into a modelling 
system, the automatic generation of modelto image overlays. 
All of these will become increasingly important as 
modelling systems, such as Google Earth,progress towards 
more accurate 3D representations [23]. The 3D models are 
constructed from automatically aligned 3D scans acquired 
using a Leica HDS 3000 LIDARscanner, which also 
produces the model image set {γM}, acquired using a 
calibrated camera [2]. Model imagesare pre-processed to 
extract SIFT keypoints[5], filtering the results spatially to 
reduce the keypoint set. Keypoint locations are back-
projected onto the model surfaces. Each of these ‘model 
keypoint’ has an associated 3D location,scale and 3D 
surface normal. In addition a plane π is fit to the LIDAR 
points in a reasonably large surface area(80s x 80s, where s 
is the LIDAR sample spacing on the surface) surrounding 
the keypoint using a M-estimator. Many other classifiers are 
also used to learn from past navigation. SURF [25] feature 
points are also used for image matching. 

VI. MEMORY BASED SELF-POSITION 
ESTIMATION 

In order to move a vehicle autonomously, its previous 
positions need to be stored in memory. In [12] and [19], the 
authors propose a self-localization method that extracts 
information which is identical for the position of a sensor 
and invariant against the rotation of the sensor by generating 
an autocorrelation image from an observed image. The 
location of the sensor is estimated by evaluating the 
similarity among the autocorrelation image of the observed 
image and stored auto correlated images. The similarity of 
auto correlated images is evaluated in low dimensional 
eigenspaces generated with stored auto correlated images. 
They conducted experiments with real images and examined 
the performance of their method. Accurate self-position of 
vehicle can be achieved if there is not much clutter. 

VII. USING FEATURE VECTOR 

Features are used to calculate distance between two images. 
Natural landmarks are features extracted from the image 
sequences without any changes made to the 
environmentalmodel. The use of natural landmarks in 
localization is limited because of appreciable errors 
encountered due tochange in illumination, camera occlusion 
and shadows etc.  
     Artificial landmark localization approach makes use of 
landmarks which are inserted purposely in the 
environmentalmodel and these landmarks could be some 
visual patterns of different shapes and sizes. Artificial 
landmarksovercome the problem of illumination changes 
which occurs in natural landmark methods. The 
disadvantage ofusing artificial landmarks is that the 
environment has to be engineered, what in turn limits the 
flexibility andadaptability to different operational sites. 
However, this problem can be avoided by using simple, 
cheap andunobtrusive landmarks, which can be easily 
attached to walls of buildings in most of the environments. 

In [24], amobile robot localization system which uses 
passive visual landmarks to enhance the recognition 
capabilities of theon-board camera has been discussed and 
the focus is on the evaluation of the spatial localization 
uncertainty withtheoretical analysis and presentation of 
experimental results. In case of illumination changes, robust 
features need to be calculated for matching images. 

VIII. VISION BASED METHOD 

Navigation of vehicle is made autonomous by estimating 
self-position of vehicle using machine vision based 
techniques. In this approach, the appearance of an object is 
used for comparing images. Here, an appearance is a view 
of anobject from a certain position and direction. This 
approach consists of two steps: 
(1) Storing images and corresponding positions in a 
database. 
(2) Finding an image having a similar appearance to the 
input image from the database and obtaining its 
corresponding position. 
   Compared to landmark based approach, the appearance 
based approach does not require geometrical objectposition. 
However these methods cannot estimate a vehicle’s lateral 
position since they assume that the trajectoryof the self-
positions is the same as the trajectory when the database was 
constructed. In [4], authors use local feature descriptors and 
its experimental evaluation in a large, dynamic, populated 
environment where the time interval between the collected 
set is upto two months. The overview of the proposed 
method has been shown in the following diagram. The input 
is the current omni-image and the current odometryreading. 
The database consists of poses (x, y, θ) of the database 
images together with the extracted features. Output is the 
current estimate of the robot position based on the weight 
and distribution of particles.In [6], the authors addressed the 
issues of outdoor appearance based topological localization 
for a mobile robotover different lighting conditions using 
omnidirectional vision. Their databases, each consisting of 
large number ofomnidirectional images, have been acquired 
over different day times in dynamic outdoor environments. 
Two differenttypes of feature extractor algorithms, SIFT and 
the more recent SURF [20, 21], have been used to compare 
the images, and the two different approaches, WTA and 
MCL [22] have been used to evaluate performances. Given 
the challenges of highly dynamic and large environments, 
general performances of localization system are satisfactory. 
In case of false matching, RANSAC is used to remove 
outliers. 

IX. POSITIONING AND MAPPING 

Many times, map of the environment is not ready for 
estimating the self-position or there is need to build map 
along with estimating self-position. The simultaneous 
localization and mapping (SLAM) problem asks if it is 
possible for a robotic vehicle to be placedat an unknown 
environment and for the vehicle to incrementally build a 
consistent map of this environment whilesimultaneously 
determining its location within this map. A solution to the 
SLAM problem has been one of thenotable success to the 
robotics community. A two part tutorial of SLAM aims to 
provide a broad introduction toSLAM [15, 16].The main 
steps in SLAM are: 
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• Define robot initial position as the root of the world 
coordinate space or start with some pre-existing featuresin 
the map with high uncertainty of the robot position. 
• Prediction: When the robot moves, motion model provides 
new estimates of its new position and also theuncertainty of 
its location positional uncertainty always increases. 
• Measurement: (a) Add new features to map. (b) Re-
measure previously added features. 
• Repeat steps 2 and 3 as appropriate. 
       In [1], a system for Monocular Simultaneous 
Localization and Mapping (Mono-SLAM) relying solely on 
videoinput. The method makes it possible to precisely 
estimate the camera trajectory without relying on any 
motionmodel. The estimation is completely incremental- at 
a given time frame, only the current location is 
estimatedwhile the previous camera positions are never 
modified. In particular, simultaneous iterative optimization 
of thecamera positions is not performed and they have 
estimated 3D structure (local bundle adjustment). The key 
aspectof the system is a fast and simple pose estimation 
algorithm that uses information not only from the estimated 
3Dmap, but also from the epipolar constraint [7]. Many 
hybrid methods are also developed to estimate self-position 
of vehicle and build map of the environment. 

X. SUMMARY 

Transportation systems use artificial intelligence techniques 
to autonomously navigate vehicles in an environment. These 
techniques use many unsupervisory machine learning 
methods to estimate self-position of vehicles.In this paper, 
techniques which use 3D environment map, feature points 
and pathway map has been discussed. Each of these 
methods has its benefits and also suffers from drawbacks. 
Many hybrid methods are used to estimate self-position of 
vehicle accurately. 
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