
Reasoning about Keys for XML

Peter Buneman

University of Pennsylvania

peter@cis.upenn.edu

Susan Davidson

University of Pennsylvania

susan@cis.upenn.edu

Wenfei Fan

Temple University

fan@joda.cis.temple.edu

Carmem Hara

Universidade Federal do Parana, Brazil

carmem@inf.ufpr.br

Wang-Chiew Tan

University of Pennsylvania

wctan@saul.cis.upenn.edu

Abstract

We study two classes of XML keys introduced in [6], and investigate their associated (�nite)
implication problems. In contrast to other proposals of keys for XML, these two classes of keys
can be reasoned about e�ciently. In particular, we show that their (�nite) implication problems
are �nitely axiomatizable and are decidable in square time and cubic time, respectively.

Keywords: XML, Keys, Constraints, (Finite) implication, Axiomatization.

1 Introduction

Keys are a fundamental concept within databases. They provide a means of locating a speci�c
object within the database and of referencing an object from another object (e.g. relationships);
they are also an important class of constraints on the validity of data. In particular, value-based
keys (as used in relational databases) provide an invariant connection from an object in the real
world to its representation in the database. This connection is crucial for modifying the database
as the world that it models changes.

As XML is increasingly used in the context of databases, the importance of a value-based method
of locating an element in an XML document is being recognized. Key speci�cations for XML have
been proposed in the XML standard [5], XML Data [22], and XML Schema [25]. More recently, in
[6] we give a proposal for keys which has the following bene�ts:1

1. Keys can be scoped within a class of elements.

2. The speci�cation of keys is orthogonal to the typing speci�cation for the document (e.g. DTD
or XML Schema).

3. Keys are de�ned in terms of one or more path expressions, i.e. they may involve one or more
attributes, subelements or more general structures.

1A detailed discussion of the di�erences between the proposal in [6] and those of the XML standard [5], XML
Data [22], and XML Schema [25] can be found in [6].

1

As an example, it is possible in our key language to express the following: 1) SSN is a key for a
Person element, no matter where the SSN element appears in a subtree rooted at Person; 2) The
FirstName and LastName subelements of Person also form a key; 3) The DateOfBirth subelement
of Person is unique, i.e. the label itself forms a key for that element. However, there are several
unanswered questions in that paper. First, what is the e�ect of the path expression language that is
chosen to de�ne keys? Second, how can these keys be reasoned about and can it be done e�ciently?

One of the most interesting questions involving keys is that of logical implication, i.e. deciding
if a new key holds given a set of existing keys. This is important for minimizing the expense of
checking that a document satis�es a set of key constraints, and may also provide the basis for
reasoning about how constraints can be propagated through view de�nitions. Another interesting
question is whether a set of keys is \reasonable" in the sense that there exists some (�nite) document
that satis�es the key speci�cation (�nite satis�ability). We therefore focus on these two problems
in this paper in context of two path expression languages proposed in [6], and show that two key
speci�cation languages de�ned with these path languages can be reasoned about e�ciently. One
key speci�cation language, referred to as Lw, is de�ned in terms of paths with wild card that
matches any tag, and the other, denoted by L, allows one to specify keys for elements at arbitrary
depths of XML document trees by supporting a combination of wild card and the Kleene star.

Note that in relational databases, the (�nite) implication problems for keys and more general
functional dependencies have been well studied (see, e.g., [2, 23]). These problems have also been
investigated for XML [17, 16, 15]. [17] studies the (�nite) implication problems associated with
a class of simple keys (and foreign keys) in the absence of DTDs, and [16, 15] investigates the
interaction between XML DTDs and these constraints. The key constraints considered in these
papers are de�ned in terms of XML attributes and are therefore not as expressive as the keys
studied in this paper. Constraints de�ned in terms of navigation paths have been studied for
semistructured [1] and XML data in [3, 9, 10, 11, 12]. These constraints are generalizations of
inclusion dependencies commonly found in relational databases, and are not capable of expressing
keys. Generalizations of functional dependencies have also been studied [18, 21]. However these
generalizations were investigated in database settings, which are quite di�erent from the tree model
for XML data considered in this paper.

Contributions. The main contributions of the paper are the following.

� We investigate the containment problem for two classes of regular path expressions, which are
star-free languages. While the containment problem for star-free languages is coNP-complete
in general [20], we show that the problems for these two classes are �nitely axiomatizable and
moreover, decidable in linear time and square time, respectively. These results are not only
interesting in their own right, but also important for the analysis of key implication.

� We show that keys de�ned in our speci�cation are always �nitely satis�able. We also establish
complexity and axiomatizability results for the (�nite) implication problems associated with
the two key languages Lw and L. More speci�cally, we provide sound and complete sets of
inference rules, and algorithms for determining (�nite) implication of keys expressed in these
two languages in square time and cubic time, respectively. The low complexities allow one to
use and reason about keys in our speci�cation e�ciently in practice.

2

It should be noted that we do not consider foreign keys and DTDs in this paper. Furthermore,
although this paper follows [6] in the de�nition of (absolute) keys, relative key implication is the
topic of another paper.

Organization. The rest of the paper is organized as follows. Section 2 de�nes XML trees,
value equality, and two key speci�cation languages for XML: Lw and L. Section 3 investigates
containment of regular path expressions used in keys of Lw and L. Section 4 establishes the
complexity and axiomatizability results for reasoning about keys of the two languages. Finally,
Section 5 outlines directions for further research. Proofs of the results are given in an appendix.
We omit the details of some proofs due to lack of space, but we encourage the reader to consult [7].

2 Key constraint languages

In this section, we �rst present a tree model for XML data, and then de�ne a notion of value
equality for XML trees. Value equality is central to the de�nition of keys for XML data. As
important is the path language used to refer to nodes or describe a collection of nodes in an XML
tree. We therefore introduce three languages for path expressions. Using these path languages, we
de�ne two key constraint languages for XML and describe their associated (�nite) satis�ability and
(�nite) implication problems.

2.1 A Tree Model and Value Equality

XML documents are typically modeled as trees, e.g., in DOM [4], XSL [13, 26], XQL [24] and XML
Schema [25]. We formally de�ne XML trees as follows.

De�nition 2.1: Assume a countably in�nite set E of element labels (tags), a countably in�nite set
A of attribute names, and a symbol S indicating text (e.g., PCDATA [5]). An XML tree is de�ned
to be T = (V; lab; ele; att; val; r) where V is a set of vertices (nodes) in T ; lab is a function from
V to E [A [fSg; ele is a partial function from V to sequences of V vertices such that for any
v 2 V , if ele(v) is de�ned then lab(v) 2 E; att is a partial function from V �A to V such that for
any v 2 V and l 2 A, if att(v; l) = v0 then lab(v) 2 E and lab(v0) = l; val is a partial function
from V to string values such that for any node v 2 V , val(v) is a string i� either lab(v) = S or
lab(v) 2 A; r is a distinguished vertex in V and is called the root of T ; without loss of generality,
assume lab(r) = r. We assume that there is a unique node in T labeled r.

For any v 2 V , if ele(v) is de�ned then nodes in ele(v) are called subelements of v. For any
l 2 A, if att(v; l) = v0 then v0 is called an attribute of v. In either case we say that there is a
parent-child edge from v to v0. Subelements and attributes of v are called children of v. An XML
tree T is said to be �nite if V is �nite. An XML tree must have a tree structure, i.e., for each
v 2 V , there is a unique path of parent-child edges from root r to v.

Intuitively, V is the set of nodes of the tree T . These nodes can be classi�ed into three types:
element nodes, attribute nodes, and text nodes. As illustrated in Fig. 1 text nodes (S) have no
name but carry text, attribute nodes (A) both have a name and carry text, and element nodes (E)
have a name. More speci�cally, if a node v is labeled � in E, then functions ele and att de�ne the
children of v, which are partitioned into subelements and attributes. Subelements of node v are

3

hdbi
hdriveri

hnamei Schumacher h/namei
hformula1 year=2000i

hteami Ferrari h/teami
h/formula1i

h/driveri
hdriveri

hnamei Barrichello h/namei
hborni 1972 h/borni
hformula1 year=1999i

hteami Stewart h/teami
hpositioni 7 h/positioni

h/formula1i
hformula1 year=2000i

hteami Ferrari h/teami
h/formula1i

h/driveri
h/dbi

E E
E

dbE

"Schumacher" A year
"2000"

Edriver

nameE formula1

E team

"Ferrari"

1

name bornEE

E

"Barrichello" "1972"

driver

E

A year

formula1
E

A year

formula1

S
S

S

S S

position
"1999"

team

"7""Stewart"

"2000"
team

"Ferrari"

S

S

E

S

S S

S S
S

S

Figure 1: Example of some XML data and its representation as a tree

ordered, whereas attributes of node v are unordered and are identi�ed by their labels (names). The
function val assigns string values to attribute nodes and text nodes. Because T has a tree structure,
sharing of nodes is not allowed in T . Observe that there is an one-to-one mapping between XML
trees and XML documents. Next we de�ne our notion of value equality on XML trees.

Let T = (V; lab; ele; att; val; r) be an XML tree, and v; v0 be two nodes in V . Informally, v; v0

are value equal if they have the same tag (label) and in addition, either they have the same (string)
value (when they are S or A nodes) or their children are pairwise value equal (when they are E

nodes). More formally,

De�nition 2.2: n1 and n2 are value equal , denoted by n1 =v n2, i� the following three conditions
are satis�ed: (1) lab(v) = lab(v0). (2) if lab(v) = S or lab(v) 2 A then val(v) = val(v0). (3) if
lab(v) 2 E then

� for any l 2 A, att(v; l) is de�ned i� att(v0; l) is de�ned, and val(att(v; l)) = val(att(v0; l));

� if ele(v) = [v1; : : : ; vk] then ele(v
0) = [v01; : : : ; v

0
k] and for all i 2 [1; k], vi =v v

0
i.

As an example, in Fig. 1, the single formula1 element of the �rst driver and the second
formula1 element of the second driver are value equal.

2.2 Path Languages

Three path languages, PLs, PLw and PL, are shown in the table below.

4

Path Language Syntax
PLs � ::= � j l:�

PLw p ::= � j l j p:p j
PL q ::= � j l j q:q j �

In PLs, a path is a (possibly empty) sequence of node labels. Here � represents the empty path,
node label l 2 E [A [fSg, and \." is a binary operator that concatenates two path expressions.
Intuitively, a path in PLs corresponds to the sequence of tags (labels) of nodes in a parent-child
path. The language PLw is a mild generalization of PLs by including the wild card symbol \ ",
which can match any node label. Another generalization of PLs, PL, allows the symbol \ *", a
combination of wild card and Kleene closure. This symbol represents any (possibly empty) sequence
of node labels. It should be noted that for any path expression P in any of the path languages, the
following equality holds: P:� = �:P = P . Also, observe that these path languages are subclasses
of regular path expressions [19]. Although the set of paths described by PLs is contained in both
PLw and PL, neither PLw nor PL subsumes each other.

For example, a:b:c is a path expression in PLs, PLw and PL while a: :c is a path expression in
PLw exclusively and a: � :c is a path expression in PL exclusively.

As mentioned earlier, a path intends to represent a parent-child path in an XML tree. Observe
that an attribute node must be a leaf in an XML tree and it cannot have outgoing edges. Therefore,
we assume in the rest of the paper that for any path expression P , if P contains an attribute, then
P is of the form P 0:l, where P 0 does not contain any attribute. In other words, an attribute can
only be the last symbol of a path expression. Next we describe some notation in connection with
path expressions.

Length. The length of a path expression P , denoted as jP j is the number of labels in the path
sequence. The empty path has length 0, \ " and \ *" are each counted as labels with length 1.

For example, a:b:c, a: :b and a: � :c are each of length 3.

Existence of a path. Let T be an XML tree, � be a path in PLs, and n1; n2 be nodes in T . We
say there is path � from n1 to n2, denoted by T j= �(n1; n2), if in T there is a path of parent-child
edges from n1 to n2 and the sequence of nodes labels in the path is �. Let P be a path expression
in PLw or PL. We say n2 is reachable from n1 by following P , denoted by T j= P (n1; n2), if there
is a path � 2 P such that T j= �(n1; n2).

For example, if T is the XML tree in Fig. 1 and n is the name subelement of the �rst driver then
T j= driver.name(r; n). Also, T j= *(r; n).

Node set. Let T be an XML tree, n be a node in T and P be a path expression in one of the path
languages. Then n[[P]] denotes the set of nodes in T that can be reached by following the path P
from node n. That is, n[[P]] = fn0 j T j= P (n; n0)g. We shall use [[P]] as an abbreviation for r[[P]],
where r is the root node of T .

Value Intersection. Let n1 and n2 be two nodes in an XML tree T and P be a path expression.
The value intersection of n1[[P]] and n2[[P]], denoted as n1[[P]] \v n2[[P]], is de�ned as follows:

n1[[P]] \v n2[[P]] = f(z; z0) j 9 � 2 P; z 2 n1[[�]]; z
0 2 n2[[�]]; z =v z

0g

5

Intuitively, n1[[P]] \v n2[[P]] consists of pairs of nodes that are value equal and are reachable by
following the same simple path in the language de�ned by P starting from n1 and n2, respectively.
This notion is central, and will be used in the de�nition of keys for XML.

For example, let n1 and n2 be the �rst and second driver elements in Fig. 1. Then n1[[]] \v n2[[]]
is a set consisting of a pair of nodes corresponding to the formula1 subelement of the �rst driver
and the second formula1 subelement of the second driver.

Containment. Let P and Q be two path expressions in PLs, PLw or PL. We use P � Q to
denote that the language de�ned by P is a subset of the language de�ned by Q.

For example, a:b:c � a: :c � : :c and a:b:c � a: � :c � a: �. However, a: � 6� a: � :c.

The containment problem for a path language is to determine, given any path expressions P and
Q in the language, whether P � Q. Observe that PLw and PL are subclasses of regular expressions.
It is known that containment of general regular expressions is not �nitely axiomatizable, i.e., there
is no �nite set of inference rules that is sound and complete for containment of regular expressions.
In contrast, in Section 3 we shall show that for PLw and PL, the containment problems are �nitely
axiomatizable.

2.3 Key constraint languages for XML

We next de�ne keys for XML and what it means for an XML document to satisfy a key.

De�nition 2.3: A key constraint ' for XML is an expression of the form (Q; fP1; : : : ; Pkg), where
Q and Pi are path expressions. Q is called the target path of ', and P1, ..., Pk are called the key
paths of '. Two classes of key constraints are de�ned as follows:

� Lw: the set of key constraints whose target path and key paths are in PLw.

� L: the set of key constraints whose target path and key paths are in PL.

A key speci�es two parts: the target path identi�es a set of nodes, referred to as the target set ,
on which the key is de�ned; and the set of key paths. The values of the key paths uniquely identify
an element in the target set. The target set is analogous to a set of tuples in a relation and the key
paths to the attributes of the relation designated as a key.

For example, (a; fb:cg) is a key in both Lw and L, (:a; fb: g) is a key in Lw, and (� :a; fbg) is a
key in L.

Observe that for any key ' whose target and key paths are in PLs, ' is in both Lw and L.
However, neither Lw nor L subsumes the other. Also, to simplify discussion, we assume that in
any key (Q; fP1; : : : ; Png), the target path Q does not contain any attribute. This is because in an
XML tree, an attribute node cannot have any outgoing edge.

XPath. As an aside, we observe that there is an easy translation from any of our path languages
used in a key constraint to XPath-like syntax. Informally, \/" is used as the concatenation operator
instead of \.". A path starting from the root is pre�xed with \/". Wild card \ " is replaced with
*", \ *" is replaced with \//" and \." is an XPath equivalent of �.

However, for discussions in this paper, we will use the conventional regular language syntax of
\ ", \ *" and \." for wild card, the combination of wild card and kleene star, and path concatenator.

6

De�nition 2.4: Let ' = (Q; fP1; : : : ; Pkg) be a key. An XML tree T satis�es ', denoted as T j= ',
i� for any n1; n2 in [[Q]], if for all i 2 [1; k] the value intersection of n1[[Pi]] and n2[[Pi]] is non-empty
then n1 = n2. That is, 8n1 n2 2 [[Q]] ((

^

1�i�k

n1[[Pi]] \v n2[[Pi]] 6= fg) ! n1 = n2). Note that the

target path Q starts at the root of T .

Intuitively, the key requires that if two nodes in [[Q]] are distinct, then the two sets of nodes
reached on some Pi must be disjoint up to value equality. More speci�cally, for any distinct nodes
n1; n2 in [[Q]], there must exist some Pi, 1 � i � k, such that for all paths � 2 Pi and for all nodes
x in n1[[�]] and y in n2[[�]], x 6=v y. The key has no impact on those nodes at which some key
path is missing, i.e. nodes n such that n[[Pi]] is empty for some Pi. For any n1; n2 in [[Q]], if Pi
is missing at either n1 or n2 then n1[[Pi]] and n2[[Pi]] are by de�nition disjoint. This is similar to
unique constraints of XML Schema. In contrast to unique constraints, however, our notion of key
speci�cation is capable of comparing nodes at which a key path may lead to multiple nodes.

For example, '1 = (db:driver; fname; formula1g) and '2 = (db:driver; fformula1g) are two keys
in both Lw and L. The XML document depicted in Fig. 1 satis�es '1 because di�erent drivers
have di�erent name values. However, it does not satisfy '2 because the formula1 subelement of
the �rst driver and the second formula1 subelement of the second driver are value equal. Observe
that drivers may have multiple formula1 subelements. Unique constraints of XML Schema cannot
be speci�ed for such drivers.

It should be noted that two notions of equality are used to de�ne keys: value equality (=v)
when comparing nodes reached by following key paths, and node identity (=) when comparing two
nodes in the target set. This is a departure from keys in relational databases, in which only value
equality is considered.

Let � be a �nite set of Lw keys and T be an XML tree. We use T j= � to denote that T satis�es

�. That is, for any 2 �, T j= . We can de�ne satisfaction of a �nite set of L keys similarly.

2.4 Decision problems for keys

In relational databases, we are often interested in knowing if a given set of dependencies can be
satis�ed. In addition, if an instance satis�es a set of dependencies, it is useful to know what other
dependencies are necessarily satis�ed by that instance (logical implication). These problems can
also be de�ned in the context of XML keys.

Satis�ability. The (�nite) satis�ability problem for a key constraint language K is to determine,
given any �nite set � of keys in K, whether there exists an (�nite) XML tree satisfying �.

In relational databases, given any relational schema and a �nite set of keys over the schema, one
can always construct a non-empty instance of the schema that satis�es the keys by creating a tuple
for each relation. Thus the (�nite) satis�ability problem for relational keys is trivial. The (�nite)
satis�ability problem for keys in Lw or L is also trivial. Observe that any set of keys in Lw or L
can always be satis�ed by the single node tree. Therefore, we have the following observation.

Observation. For any �nite set � of keys in Lw or L, one can always �nd a �nite XML tree that
satis�es �.

7

l is a label
P:l:Q � P: :Q

(Containment)

P � P
(Re
exivity)

�:P � P P � �:P P:� � P P � P:�
(Empty-path)

P � Q Q � R

P � R
(Transitivity)

Table 1: Ipw: Inference rules for inclusion of PLw expressions

Logical Implication. Let � [f'g be a �nite set of keys. We use � j= ' to denote � implies ',
that is, for any XML tree T , if T j= �, then T j= '. The implication problem for a key language K
is to determine, given any �nite set of keys � [f'g in K, whether � j= '. The �nite implication

problem for K is to determine whether � �nitely implies ', that is, whether it is the case that for
any �nite XML tree T , if T j= �, then T j= '.

For example, f(a; fbg); (a:b; fcg)g j= (a; fb:cg). In fact we also have f(a:b; fcg)g j= (a; fb:cg). To
see this, observe that by the de�nition of keys, if an XML tree T satis�es (a:b; fcg), then the set of
c elements under any two distinct a:b nodes are pairwise disjoint up to value equality. Therefore,
if there exists any b:c nodes under a that are value equal, they must be under the same a node.
Hence T also satis�es (a; fb:cg).

Observe that given any �nite set �[f'g of Lw (L) constraints, if there is an XML tree T such
that T j=

V
� ^ :', then there must be a �nite XML tree T 0 such that T 0 j=

V
� ^ :'. More

speci�cally, let ' = (Q; fP1; : : : ; Pkg). Since T 6j= ', there are nodes n1; n2 2 [[Q]], xi 2 n1[[Pi]] and
yi 2 n2[[Pi]] for i 2 [1; k] such that xi =v yi but n1 6= n2. Let T 0 be the �nite subtree of T that
consists of all and only the nodes in the paths from root to xi; yi for all i 2 [1; k]. It is easy to verify
that T 0 j= � but T 0 j= :'. Therefore, key constraint implication has the �nite model property:

Proposition 2.1: For each of Lw and L, the implication and �nite implication problems coincide.

In light of Proposition 2.1, we can also use � j= ' to denote that � �nitely implies '. We
investigate the �nite implication problems for Lw and L in Section 4.

3 Inclusion of path expressions

In this section, we study containment of path expressions in our path languages PLw and PL

de�ned in the last section. The results of this section are not only interesting in their own right,
but also important in the analysis of key constraint implication to be studied in the next section.

We �rst give a set of inference rules for PLw expression inclusion, denoted by Ipw, in Table 1.

Proposition 3.1: The set Ipw is sound and complete for inclusion of path expressions in PLw. In

8

addition, inclusion of PLw expressions can be determined in linear time.

This can be veri�ed by a straightforward induction on the number of occurrences of \ " in path
expressions. The interested reader should see [8] for a detailed proof.

In light of Ipw, a linear time (recursive) function for testing inclusion of PLw expressions can be
constructed as follows. The function, Inclw(P; Q), returns true i� P � Q, where P;Q are path
expressions in PLw. Without loss of generality by the Empty-path rule, we assume that P (Q)
does not contain � unless P = � (Q = �).

Algorithm 3.1: Inclw(P; Q)

1. if P = Q = �

then return true;
2. if (P = l:P 0 and Q = l:Q0) or (P = l:P 0 and Q = :Q0) or (P = :P 0 and Q = :Q0)

then return Inclw(P
0; Q0);

else return false;

The inference rules for inclusion of PL expressions, denoted by Ip, are the same as those in Iw
except the following:

P:R:Q � P: � :Q
(Containment)

It should be mentioned that PL is a star-free language. Recall that in general, the containment
problem for star-free languages is co-NP complete [20]. In contrast, the containment problem for
PL has low complexity.

Theorem 3.2: The set Ip is sound and complete for inclusion of path expressions in PL. In
addition, inclusion of PL expressions can be determined in square time.

The soundness of Ip can be veri�ed by induction on the lengths of Ip-proofs. The proof of
completeness is more involved, and uses an idea of simulation. To give the proof, we �rst introduce
some notation.

An expression P in PL is in normal form i� it does not contain consecutive �'s, i.e., P does not
contain � : � and P does not contain � unless P = �. This is easily done using the Containment
rule. By the Empty-path rule, we can also assume that P does not contain � unless P = �. It takes
linear time to rewrite P to an equivalent normal form expression. We assume from here onwards
that a path expression P 2 PL is in normal form.

Let P;Q be path expressions in PL. To determine whether P � Q, we consider their nondeter-
ministic �nite state automata (NFAs) [19]. We use M(P) to denote a NFA for P . Observe that
M(P) has a \linear" structure as shown in Fig. 2. The number of states in M(P) is linear in the
size of P . Thus M(P) and M(Q) can be constructed in O(jP j) and O(jQj) time, respectively. Let

M(P) = (N1; T [f g; �1; S1; F1); M(Q) = (N2; T [f g; �2; S2; F2);

where N1; N2 are the sets of states, T is the alphabet, �1; �2 are transition functions, S1; S2 are
start states, and F1; F2 are �nal states of M(P) and M(Q), respectively. Note that we extend the

9

S
F

- -

Figure 2: A �nite state automata for a path expression of PL

de�nition of NFAs by treating the wild card symbol as a \letter", which matches any letter in T .
Observe that M(P) has the following properties (M(Q) has similar properties): 1) It has a single
�nal state F1. In addition, �1(F1; a) = ; for any a 2 T , but it is possible that �1(F1;) 6= ;. 2) For
any n 2 N1, if n 6= F1, then there must be a 2 T and n0 2 N1 such that �1(n; a) = fn0g and n 6= n0.
We write �1(n; a) = n0 if n0 is the only element of �1(n; a). 3) For any n 2 N1, either �1(n;) = n

or �1(n;) = ;.

We now de�ne a simulation relation, �, on N1 �N2. For any n1 2 N1 and n2 2 N2, n1 � n2 i�
one of the following conditions is satis�ed:

� If n1 = F1 then n2 = F2 and either �1(F1;) = ; or �2(F2;) = F2.

� For n1 6= F1, if �1(n1;) = n1 then �2(n2;) = n2. Moreover, for any a 2 T if �1(n1; a) = n01
for some n01 2 N1, then either �2(n2;) = n2 and n

0
1 � n2 or there exists n02 2 N2 such that

�2(n2; a) = n02 and n
0
1 � n

0
2.

To prove the completeness of Ip, it su�ces to show the following (see Appendix for proofs):

(1) P � Q i� S1 � S2.

(2) If S1 � S2, then P � Q can be proved using the inference rules Ip.

Given Ip and the claims, we provide a function Incl(n1; n2) for testing inclusion of PL expres-
sions. The function assumes the existence of M(P);M(Q) as described above. In addition, we
assume that P and Q are in normal form and do not contain � (unless they are �). The function
Incl(n1; n2) returns true i� n1�n2, where n1 and n2 are states from N1 and N2 respectively. Since
P � Q i� S1�S2, P � Q i� Incl(S1; S2). Initially, visited(n1; n2) is false for all n1 2 N1, n2 2 N2.

Algorithm 3.2: Incl(n1; n2)

1. if visited(n1; n2)
then return false
else mark visited(n1; n2) as true;

2. process n1, n2 as follows:
Case 1: if n1 = F1

then if n2 = F2 and (�1(F1;) = ; or �2(F2;) = F2)
then return true;
else return false;

Case 2: if �1(n1; a) = n01 and �2(n2; a) = n02 and �1(n1;) = ; and �2(n2;) = ;
then return Incl(n01; n

0
2);

Case 3: if �1(n1; a) = n01 and �2(n2;) = n2 and �2(n2; a) = n02
then return (Incl(n01; n2) or Incl(n

0
1; n

0
2))

else if �1(n1; a) = n01 and �2(n2;) = n2 and �2(n2; a) = ;

10

then return Incl(n01; n2);
3. return false

The correctness of the algorithm follows from the claims given above. The construction of
M(P);M(Q), as well as transforming P;Q to normal form, can be done in O(jP j) and O(jQj) time,
respectively. The �rst statement takes O(jP j � jQj) time. Since any pair of states (n1; n2) from
N1 �N2 is never processed twice, it is easy to see that the second statement and thus Incl(S1; S2)
run in O(jP j � jQj) time.

4 Key constraint implication

We now turn to �nite implication problems for Lw and L. For each of these languages, we pro-
vide a �nite axiomatization and an algorithm for determining �nite implication. Recall that by
Proposition 2.1, all the results established on �nite implication also hold for implication.

4.1 Axiomatization for Lw

The inference rules for Lw key implication, denoted by Iw, are shown in Table 2. The Superkey
rule states that if a set S of key paths uniquely identi�es a node in the target set [[Q]], then so does
any superset of S. This rule is also sound in the context of relational databases. In contrast, other
rules in Iw do not have relational counterparts. A brief discussion of the rules follows.

� Subnodes: observe that any node v in [[Q:Q0]] must be in the subtree of some node v0 in [[Q]].
Because XML trees do not allow sharing of nodes, v uniquely identi�es v0 in [[Q]]. Thus if a
key path P uniquely identi�es nodes in [[Q:Q0]], then Q0:P uniquely identi�es nodes in [[Q]].

� Path-containment: if a set S [fPi; Pjg of key paths uniquely identi�es nodes in [[Q]] and
Pi � Pj , then we can leave out Pj from the set of key paths for [[Q]]. This is because for any
nodes n1; n2 2 [[Q]], if n1[[Pi]] \v n2[[Pi]] 6= ;, then we must have n1[[Pj]] \v n2[[Pj]] 6= ; given
Pi � Pj . Thus by the de�nition of keys, S [fPig is a key for [[Q]].

� Target-containment: any key for the set [[Q]] is also a key for any subset of [[Q]]. Observe that
[[Q0]] � [[Q]] if Q0 � Q.

� Key-containment: for any nodes n1; n2 2 [[Q]], if n1[[P
0
i]] \v n2[[P

0
i]] 6= ;, then we must have

n1[[Pi]] \v n2[[Pi]] 6= ; given P 0
i � Pi. Thus if S [fPig is a key for [[Q]] then so is S [fP 0

ig.

� Pre�x-epsilon: If a set S[f�; Pg is a key of [[Q]], then we can extend a key path P by appending
to it another path P 0 and the modi�ed set is also a key of [[Q]]. This is because for any nodes
n1; n2 2 [[Q]], if n1[[P:P

0]] \v n2[[P:P
0]] 6= 0 and n1 =v n2 then we have n1[[P]] \v n2[[P]] 6= 0.

Note that n1 =v n2 if n1[[�]] \v n2[[�]]. Thus by the de�nition of keys, S [f�; P:P 0g is also a
key for [[Q]].

� Epsilon: this rule is sound because any XML tree has a unique root. In other words, in any
XML tree T , [[�]] = frg where r is the root of T .

11

(Q; S) P is any path expression
(Q; S [fPg)

(Superkey)

(Q:Q0; fPg)
(Q; fQ0:Pg)

(Subnodes)

(Q; S [fPi; Pjg) Pi � Pj

(Q; S [fPig)
(Path-containment)

(Q; S) Q0 � Q

(Q0; S)
(Target-containment)

(Q; S [fPig) P 0

i � Pi

(Q; S [fP 0

ig)
(Key-containment)

(Q; S [f�; Pg) P 0 2 PL

(Q; S [f�; P:P 0g)
(Pre�x-epsilon)

for any set of path expressions S
(�; S)

(Epsilon)

Table 2: Iw: Inference rules for Lw constraint implication

Given a �nite set � [f'g of Lw constraints, we use � `Iw ' to denote that ' is provable from
� using Iw. That is, there is an Iw-proof of ' from �.

To simplify the discussion, we assume that keys are in key normal form. A key constraint
� = (Q;S) in Lw is in the key normal form if for every pair of paths Pi and Pj in S, Pi 6� Pj . By
the Path-containment and Superkey rules, one can assume without loss of generality that keys are
always in the key normal form.

Theorem 4.1: The set Iw is sound and complete for �nite implication of Lw constraints.

Soundness of Iw can be veri�ed by induction on the lengths of Iw-proofs. For the proof of
completeness, given any �nite set �[f'g of keys in Lw, it su�ces to show that either � `Iw ', or
there is a �nite XML tree G such that G j= � and G j= :', i.e., � 6j= '. In other words, if � j= '

then � `Iw '.

To do so, we introduce some notation. An abstract tree with \ " extends an XML tree by
allowing \ " as a node label. Let T be an abstract tree with \ ", R1 be the labels in a parent-child
path in T , and a; b be nodes in T . We say T j= R1(a; b) if there is a parent-child path from a to b
such that the sequence of labels in the path is R1. Note that R1 is a path expression of PLw and
possibly contains occurrences of \ ". Let R2 be any path expression in PLw. We say T j= R2(a; b)
if R1 � R2. Given this, the de�nitions of node sets and satisfaction of key constraints in Lw can
be easily generalized for abstract trees. Abstract trees with \ " have the following property (proof
of the lemma can be found in the Appendix):

Lemma 4.2: Let � [f'g be a �nite set of Lw keys. If there is a �nite abstract tree T with \ "
such that T j= � and T j= :', then there is a �nite XML tree G such that G j= � and G j= :'.

Given these, we prove the completeness of Iw in two steps. Let � [f'g be a �nite set of keys
in Lw, where ' = (Q; fP1; :::; Pkg). Assume Q 6= �, since otherwise we have � `Iw ' by the rule

12

T1 T2

Q’P1 Pk

y1 yk

t1 tk

P1 Pk

x1 xk

t1 tk

r

Q
QiQ Q

r

n1
n1 n2

n2

x = y

n1 = n2

(b)(a)

P1 Pk P1 Pk

x1 xk y1 yk

t1 tk t1 tk

r r

Q
QiQ Q

r

n1
n1 n2

n2

x = y

n1 = n2

x = y

Q

P1 Pk

y1 yk

t1 tk

(c)(b)(a)

P1 Pk P1 Pk

x1 xk y1 yk

t1 tk t1 tk

P1 Pk

x1 xk

t1 tk
Pi’

xi yi

ti ti

r

Pi’

Qi

Figure 3: Abstract trees constructed in the proof of Theorem 4.1

Epsilon in Iw. We start with a �nite abstract tree T that does not satisfy '. The tree T consists
of two distinct branches T1 and T2 from its root r. Each branch has a Q path that leads to paths
P1; : : : ; Pk, as depicted in Fig. 3 (a). Let n1 be the (single) node in T1 and [[Q]], and n2 be the node
in T2 and [[Q]]. Moreover, for each i 2 [1; k], let xi be the node in T1 and [[Q:Pi]], and yi be the node
in [[Q:Pi]] and T2. Assume that for each i 2 [1; k], xi =v yi, but for any other pair x; y in T , x 6=v y.
This can be achieved as follows: in each element in T we add a new text subelement E (E does
not appear anywhere in the constraints) at the end of the sequence of its subelements, followed by
a text (S) subelement, and let xi:E:S =v yi:E:S for each i 2 [1; k], but for any other pair x; y in T ,
let x:E:S 6=v y:E:S. The only exception is that there is i 2 [1; k] such that Pi = �. In this case we
have to ensure that n1 =v n2. In other words, for all j 2 [1; k] and for any P 0

j such that P 0
j :P

00
j = Pj

for some P 00
j 2 PL, we let x0j =v y

0
j where x

0
j; y

0
j are the nodes in n1[[P

0
j]] and n1[[P

0
j]] respectively.

But for any other pair of nodes, x; y 2 T , x 6=v y. Given T , we examine each � in �. If the tree
does not satisfy �, then we merge nodes in the tree such that the new tree satis�es �, as shown in
Fig. 3 (b) and (c). Let T 0 be the tree obtained after all keys in � have been processed. Obviously,
T 0 j= �. If T 0 j= ', then we show that it is indeed the case that � `Iw '. Otherwise by Lemma 4.2,
there is a �nite XML tree G such that G j= � but G 6j= '. That is, � 6j= '. The details of the proof
are given in Appendix.

Using Theorem 4.1 we can show the following:

Theorem 4.3: The �nite implication problem for Lw is decidable in cubic time.

A cubic time algorithm for determining Lw constraint implication is given below:

Algorithm 4.1: Finite implication of Lw constraints

Input: a �nite subset � [f'g of Lw constraints, where ' = (Q; fP1; :::; Pkg)
Output: true i� � j= '

1. for each (Qi; Si) 2 � [f'g do
repeat until no further change

if Si = S [fP 0; P 00g such that P 0 � P 00

13

then Si := Si n fP
00g

2. for each � 2 � do
(1) if � = (Q0; fP 0

1; :::; P
0
mg), Q � Q0 and

for all i 2 [1::m] there exists j 2 [1::k] such that either
(a) Pj � P 0

i or (b) there exists l 2 [1; k]
and R0

i 2 PLw such that Pl = � and Pj � P 0
i :R

0
i

then output true and terminate
(2) if � = (Q0:Q00; fPg), Q � Q0 and for some i 2 [1::k], either (a) Pi � Q00:P

or (b) there exists l 2 [1; k] and R 2 PLw such that Pl = � and Pi � P:R

then output true and terminate
(3) if � = (Q0; ;) and for some i 2 [1::k] either (a) Q:Pi � Q0 or (b) there exists

l 2 [1; k] and R;R0 2 PLw such that Pl = � and Q:R0 � Q0 and Q:Pi � Q0:R

then output true and terminate
3. output false

The correctness of the algorithm follows from Theorem 4.1 and its proof (see Appendix). We
next show that the algorithm is in cubic time. Step 1 of the algorithm transforms keys in � [f'g
to key normal form, i.e., it ensures that key paths in each key are pairwise non-containing. By
Proposition 3.1, this can be done in square time. In step 2 of the algorithm, each key constraint
� in � is processed at most once in one of the iterations. Case 2(1) of the algorithm requires one
to test for containment of path expressions between Pj and P

0
i (which can be done in linear time)

and also partition Pj in jPj j possible ways and test for containment with P 0
i :Ri

0. This requires
O(jPj j(jPj j + jP 0

i j)) time for each combination of i and j. Hence it is easy to verify that the
algorithm is O(n3) time in the size of � and '.

4.2 Axiomatization for L

Finally, we investigate �nite implication of keys de�ned in L. The inference rules for L constraint
implication are the same as those given Table 2, except here path expressions are in PL. Let us
denote the rules with this modi�cation as I. Given a �nite set � [f'g of L constraints, we use
� `I ' to denote that ' is provable from � using I.

As for Lw constraints, we de�ne the key normal form for L constraints as follows. A key
� = (Q;S) in L is in the key normal form if for every pair of paths Pi and Pj in S, Pi 6� Pj ,
and moreover, every path expression in � is in the normal form as de�ned in Section 3. By Path-
containment and Superkey rules in I, one can show that for every key � in L, there is a key �0 of
L in the key normal form such that for any XML tree T , T j= � i� T j= �0. Thus without loss of
generality, in the sequel we assume that keys of L are in the key normal form.

Theorem 4.4: The set I is sound and complete for �nite implication of L constraints.

The proof of the theorem is similar to that of Theorem 4.1. Soundness of I can be veri�ed by
induction on the lengths of I-proofs. To prove the completeness, we show that given any �nite set
�[f'g of keys in L, either � `I ', or there is a �nite XML tree G such that G j= � and G j= :'.
To do so, we de�ne an abstract tree with \ �" to be an extension of XML tree by allowing \ �"
as node label. Let T be an abstract tree with \ �". A path in T is a parent-child path that may

14

Q Q

−*
−*

−*
−*

−*
−*

−*
−*

n2

r

n1

x1

t1

xk

tk

y1

t1

yk

tk

P1 Pk P1 Pk

Figure 4: The abstract tree constructed in the proof of Theorem 4.4

contain occurrences of \ �". Let R1 be the sequence of labels in a path from node a to b in T ,
denoted by T j= R1(a; b). Observe that R1 is a path expression of PL. For any path expression R2

in PL, we say T j= R2(a; b) if R1 � R2. Given this, we can de�ne node sets and satisfaction of key
constraints in L for abstract trees with \ �". Analogous to Lemma 4.2, about abstract trees with
\ �" we have the following (see appendix for a proof):

Lemma 4.5: For any �nite set � [f'g of keys in L, if there is a �nite abstract tree T with \ �"
such that T j= � and T j= :', then there is a �nite XML tree G such that G j= � and G j= :'.

Along the same lines of the proof of Theorem 4.1, we verify the completeness of I as follows.
Let �[f'g be a �nite set of keys in L, where ' = (Q; fP1; :::; Pkg). If Q = �, then we have � `I '
by the rule Epsilon in I. If Q 6= �, we construct a �nite abstract tree T with \ �" such that T 6j= '

in the same way as in the proof of Theorem 4.1. The tree T has the form shown in Fig. 4. We then
modify T by \applying" keys in �. More speci�cally, for each � in �, if the tree does not satisfy
�, then we merge nodes in the tree such that the modi�ed tree satis�es �, again in the same way
as in the proof of Theorem 4.1. Finally, we obtain an abstract tree T 0 with \ �" such that T 0 j= �.
If T 0 6j= ', then by Lemma 4.5, there is a �nite XML tree G such that G j= � but G 6j= '. Thus
� 6j= '. Otherwise we can show � `I '. The rest of the proof is the same as that of Theorem 4.1.

Theorem 4.6: The �nite implication problem for L is decidable in quartic time.

Algorithm 4.1 can also be used to determine �nite implication of keys expressed in L. It should be
mentioned that checking containment of PL expressions is di�erent from that for PLw expressions.
Let �[f'g be a �nite set of keys in L. Without loss of generality, assume that all path expressions
in the set are in the normal form. As shown in Section 3, it takes linear time to transform a PL
expression to an equivalent PL expression in the normal form. Step 1 of the algorithm transforms
keys in � [f'g to the key normal form. By Theorem 3.2, this can be done in cubic time. Case
2(1) of the algorithm requires one to test for containment of path expressions between Pj and
P 0
i (which can be done in square time) and also partition Pj in jPj j possible ways and test for

containment with P 0
i :Ri

0. This requires O(jPj jjPj j(jPj j+ jP 0
i j)) time for each combination of i and

j. Hence it is easy to verify that the algorithm is now O(n4) time in the size of � and '.

15

X

(a)

X X

(b)

foo foo

Figure 5: An XML tree conforming to D, and an XML tree satisfying '

5 Discussions

We have investigated two classes of key constraints for XML data introduced in [6] and studied
their associated (�nite) satis�ability and (�nite) implication problems. These keys are capable of
expressing many important properties of XML data [6]; moreover, in contrast to other proposals,
keys de�ned in these two languages can be reasoned about e�ciently. More speci�cally, these
keys are always �nitely satis�able. In addition, inference rules and algorithms were provided for
determining (�nite) implication of key constraints of these two languages in square time and cubic
time, respectively. We believe that these key constraints are simple yet expressive enough to be
adopted by XML designers and maintained by systems for XML applications.

For further research, a number of issues deserve investigation. First, despite their simple syntax,
there is an interaction between DTDs and our key constraints. To illustrate this, let us consider a
simple key ' = (X; f g) and a simple DTD D:

<!ELEMENT foo (X, X)>

Obviously, there exists a �nite XML tree that conforms to the DTD D (see, e.g., Fig. 5 (a)), and
there is a �nite XML tree that satis�es the key ' (e.g., Fig. 5 (b)). However, there is no XML data
tree that both conforms to D and satis�es '. This is because D requires an XML tree to have two
distinct X elements, whereas ' requires that there is at most one X node immediately under the
root. This shows that in the presence of DTDs, the analysis of key satis�ability and implication
can be wildly di�erent. It should be mentioned that keys de�ned in other proposals for XML, such
as those introduced in XML Schema [25], also interact with DTDs or other type systems for XML.
This issue was recently investigated in [16] for a class of keys de�ned in terms of XML attributes.

A second question is about foreign keys. As shown by [17, 15], the implication and �nite
implication problems for a class of keys and foreign keys de�ned in terms of XML attributes are
undecidable, in the presence or absence of DTDs. However, under certain practical restrictions,
these problems are decidable in PTIME. Whether these decidability results still hold for more
complex keys and foreign keys needs further investigation.

Third, as shown in [6], relative keys are important for hierarchically structured data, including
but not limited to XML data. We defer a full treatment of relative keys and their associated
decision problems to another publication [8].

Finally, one might be interested in using di�erent path languages to express keys, e.g., XPath
[14] expressions. Questions in connection with containment and equivalence of these powerful path
expressions, as well as (�nite) satis�ability and (�nite) implication of keys de�ned in terms of these

16

complex path expressions are, to the best of our knowledge, still open.

Acknowledgements. We thank Leonid Libkin and Micheal Benedikt for helpful discussions.

References

[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: From Relations to Semistructured

Data and XML. Morgan Kaufman, 2000.

[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.

[3] S. Abiteboul and V. Vianu. Regular path queries with constraints. In Proceedings of ACM

Symposium on Principles of Database Systems (PODS), pages 122{133, May 1997.

[4] V. Apparao, S. Byrne, M. Champion, S. Isaacs, I. Jacobs, A. Le Hors, G. Nicol, J. Robie,
R. Sutor, C. Wilson, and L. Wood. Document Object Model (DOM) Level 1 Speci�cation.
W3C Recommendation, Oct. 1998. http://www.w3.org/TR/REC-DOM-Level-1/.

[5] T. Bray, J. Paoli, and C. M. Sperberg-McQueen. Extensible Markup Language (XML) 1.0.
World Wide Web Consortium (W3C), Feb 1998. http://www.w3.org/TR/REC-xml.

[6] P. Buneman, S. Davidson, W. Fan, C. Hara, and W. Tan. Keys for XML. Draft manuscript,
2000.

[7] P. Buneman, S. Davidson, W. Fan, C. Hara, and W. Tan. Reasoning about keys for XML.
Technical Report TUCIS-TR-2000-005, Department of Computer and Information Sciences,
Temple University, 2000.

[8] P. Buneman, S. Davidson, W. Fan, C. Hara, and W. Tan. Reasoning about relative keys for
XML. Draft manuscript, 2000.

[9] P. Buneman, W. Fan, and S. Weinstein. Path constraints on semistructured and structured
data. In Proceedings of ACM Symposium on Principles of Database Systems (PODS), pages
129{138, June 1998.

[10] P. Buneman, W. Fan, and S. Weinstein. Interaction between path and type constraints. In
Proceedings of ACM Symposium on Principles of Database Systems (PODS), pages 56{67,
May 1999.

[11] P. Buneman, W. Fan, and S. Weinstein. Query optimization for semistructured data using
path constraints in a deterministic data model. In Proceedings of International Workshop on

Database Programming Languages (DBPL), 1999.

[12] P. Buneman, W. Fan, and S. Weinstein. Path constraints in semistructured databases. Journal
of Computer and System Sciences (JCSS), in press.

[13] J. Clark. XSL Transformations (XSLT). W3C Recommendation, Nov. 1999.
http://www.w3.org/TR/xslt.

17

[14] J. Clark and S. DeRose. XML Path Language (XPath). W3C Working Draft, Nov. 1999.
http://www.w3.org/TR/xpath.

[15] W. Fan and L. Libkin. Finite implication of key and foreign key constraints for XML data.
Technical Report TUCIS-TR-2000-003, Department of Computer and Information Sciences,
Temple University, 2000.

[16] W. Fan and L. Libkin. Finite satis�ability of key and foreign key constraints for XML data.
Technical Report TUCIS-TR-2000-002, Department of Computer and Information Sciences,
Temple University, 2000.

[17] W. Fan and J. Sim�eon. Integrity constraints for XML. In Proceedings of ACM Symposium on

Principles of Database Systems (PODS), pages 23{34, May 2000.

[18] C. S. Hara and S. B. Davidson. Reasoning about nested functional dependencies. In Proceedings
of ACM Symposium on Principles of Database Systems (PODS), pages 91{100, May 1999.

[19] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and Compu-

tation. Addision Wesley, 1979.

[20] H. Hunt, D. Rosenkrantz, and T. Szymanski. On the equivalence, containment, and covering
problems for the regular and context-free languages. Journal of Computer and System Sciences

(JCSS), 12:222{268, 1976.

[21] M. Ito and G. Weddell. Implication problems for functional constraints on databases supporting
complex objects. Journal of Computer and System Sciences (JCSS), 50(1):165{187, 1995.

[22] A. Layman, E. Jung, E. Maler, H. S. Thompson, J. Paoli, J. Tigue, N. H. Mikula, and S. De
Rose. XML-Data. W3C Note, Jan. 1998. http://www.w3.org/TR/1998/NOTE-XML-data.

[23] R. Ramakrishnan and J. Gehrke. Database Management Systems. McGraw-Hill Higher Edu-
cation, 2000.

[24] J. Robie, J. Lapp, and D. Schach. XML Query Language (XQL). Workshop on XML Query
Languages, Dec. 1998.

[25] H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. XML Schema Part 1: Structures.
W3C Working Draft, Apr. 2000. http://www.w3.org/TR/xmlschema-1/.

[26] P. Wadler. A Formal Semantics for Patterns in XSL. Technical report, Computing Sciences
Research Center, Bell Labs, Lucent Technologies, 2000.
http://www.cs.bell-labs.com/~wadler/topics/xml#xsl-semantics.

Appendix

Proof of Theorem 3.2: Given PL expressions P and Q, let M(P) and M(Q) be their NFAs, as
de�ned in Section 3. Suppose P � Q. To show that this can be proved by using Ip, it su�ces to
show the following claims:

18

Claim 1: P � Q i� S1 � S2, where � is a simulation relation as de�ned in Section 3.

Claim 2: If S1 � S2, then P � Q can be proved using inference rules in Ip.

Before we show the claims, �rst observe that given a simulation relation � such that S1 � S2,
one can de�ne a total function � : N1 ! N2 as follows: 1) �(S1) = S2. 2) Suppose �(n1) = n2. If
n1 = F1 then by the de�nition of � and the properties of M(P), we have F1 � F2. In this case
we de�ne �(F1) = F2. If n1 6= F1, then by the properties of M(P), there exist a 2 T and n01 2 N1

such that �1(n1; a) = n01 and n1 6= n01. By the de�nition of �, either �2(n2;) = n2 and n01 � n2,
or �2(n2; a) = n02 for some n02 2 N2 and n01 � n02. Choose one such state n02 and let �(n01) = n02.
Note that it is possible that n02 = n2. It is easy to verify that � is a function with the following
properties: �(S1) = S2, �(F1) = F2 and for any n1 2 N1, n1 � �(n1). In fact, � is a simulation
relation on N1 � N2. Thus without loss of generality, we assume that simulation relation � is a
function with these properties. As a result, there is no n2 2 N2 such that F1 � n2 and n2 6= F2.

To show Claim 1, recall [19] that the closure function of a transition function � is de�ned to be
�̂ : N � (T [f g)� ! P(N) such that:

�̂(n; �) = fng

�̂(n; w:a) = fp j 9x 2 �̂(n;w); p 2 �(x; a)g

where P(N) denotes the powerset of N . Let �̂1; �̂2 be the closure functions of �1 and �2, respectively.
Observe that P � Q i� for any � 2 P , if F1 2 �̂1(S1; �) then F2 2 �̂2(S2; �). Using this notion we
show Claim 1 as follows. Assume S1 � S2. By induction on j�j, where � is a path, one can show
that if n1 2 �̂1(S1; �) then there exists n2 2 �̂2(S2; �) such that n1 � n2. Thus if F1 2 �̂1(S1; �)
then by the de�nition of �, we must have F2 2 �̂2(S2; �). That is, P � Q. For the other direction,
assume P � Q. We can show that for any path �, if n1 2 �̂1(S1; �) then there exists n2 2 �̂2(S2; �)
such that n1 � n2. To see this, note that for any � 2 P , we have F1 2 �̂1(S1; �), and since P � Q,
F2 2 �̂2(S2; �). Thus we can de�ne F1�F2. In addition, for any path �, if �̂1(S1; �) � N1, then there
is path �0 such that F1 2 �̂1(S1; �:�

0). Thus the statement can be easily veri�ed by contradiction.
Observe that �̂1(S1; �) = fS1g and �̂2(S2; �) = fS2g. Thus S1 � S2. Hence Claim 1 holds.

We next prove Claim 2. Assume there is a simulation relation � such that S1 � S2. By the
de�nition of � and the properties of M(P) given above, there is a total mapping � : N1 ! N2 such
that �(S1) = S2, �(F1) = F2, and for any n1 2 N1, n1 � �(n1). Let the sequence of states in M(P)
be ~v1 = p1; : : : ; pk, where p1 = S1 and pk = F1, and similarly, let the sequence of states in M(Q)
be ~v2 = q1; : : : ; ql, where q1 = S2 and ql = F2. It is easy to verify that for any i; j 2 [1; k], if i < j,
�(pi) = qi0 and �(pj) = qj0, then i0 � j0. We de�ne an equivalence relation � on N1 as follows:

pi � pj i� �(pi) = �(pj):

Let [p]� denote the equivalence classes of p with respect to �. An equivalence class is non-trivial
if it contains more than one state. For any equivalence class [p], let pi and pj be the smallest and
largest states in [p] respectively. That is, for any ps 2 [p], i � s � j. By treating pi as the start
state and pj as the �nal state, we have a NFA that recognizes a regular expression, denoted by Pi;j .
Similarly, we can de�ne P1;i and Pj;k such that P = P1;i:Pi;j :Pj;k. It is easy to verify that if [p] is a
non-trivial equivalence class, then there must be �2(�(pi);) = �(pi). In other words, �(pi) indicates
an occurrence of \ �" in Q. Observe that P1;i:Pi;j :Pj;k � P1;i: � :Pj;k. This is an application of the

19

Containment rule in Ip. By an induction on the number of non-trivial equivalence classes, one can
show that P � Q can always be proved using the Containment, Transitivity and Re
exivity rules
in Ip as illustrated above. Thus Ip is complete for inclusion of PL expressions.

Proof of Lemma 4.2: Let �[f'g be a �nite set of Lw keys, and T be a �nite abstract tree with
\ " such that T j= � and T j= :'. We de�ne a �nite XML tree G as follows. Let � be a label that
does not occur in any key of � [f'g. We replace every occurrence of \ " in T by �. Let G be
T with this modi�cation. Observe that G and T have the same set of nodes. In addition, for any
nodes a; b in G, if there is a path � such that G j= �(a; b), then there is a parent-child path R in T
such that T j= R(a; b). Observe that R is a path expression in PLw. In addition, R and � are the
same except for each occurrence of \ " in R, � appears at the corresponding position in �. Let us
refer to R as the path expression w.r.t. � and conversely, � as the path w.r.t. R. We show G j= �
and G j= :'. To do so, it su�ces to show the following:

Claim: Let P be a path expression in PLw, and a; b be nodes in G. Then there is � in P such that
G j= �(a; b) i� T j= P (a; b), i.e., T j= R(a; b) and R � P , where R is the path expression w.r.t. �.

From the claim follows immediately that for any path expression P in PLw, [[P]] consists of the
same nodes in T and G. For if node a is in [[P]] in T , then T j= P (r; a), where r is the root of T .
Thus there is a path expression R in T such that T j= R(r; a) and R � P . By the claim, we have
G j= �(r; a), where � is the path w.r.t. R and � 2 P . That is, a is in [[P]] in G. Conversely, if a is
in [[P]] in G, then there is a path � 2 P such that G j= �(r; a). Again by the claim, T j= R(r; a)
and R � P , where R is the path expression w.r.t. �. Thus a is in [[P]] in T .

Given these, we show G j= �. Suppose, by contradiction, there is a key � = (Q; fP1; :::; Pkg)
in � such that G j= :�. Then there must be two distinct nodes n1; n2 2 [[Q]] and moreover,
for all i 2 [1; k], there are path �i 2 Pi and nodes xi 2 n1[[�i]], yi 2 n2[[�i]] such that xi =v yi.
By the claim, T j= Pi(n1; xi) ^ Pi(n2; yi) for all i 2 [1; k]. Thus T 6j= �, which contradicts our
assumption. Similarly, we show G j= :'. Let ' = (Q; fP1; :::; Pkg). By T j= :', there exist
two distinct nodes n1; n2 2 [[Q]] and for all i 2 [1; k], there exist nodes xi; yi such that xi =v yi
and T j= Pi(n1; xi) ^ Pi(n2; yi). That is, there exists a path (expression) Ri in T such that
T j= Ri(n1; xi) ^ Ri(n2; yi), where Ri � Pi. Thus by the claim, there is path �i 2 Pi such that
xi 2 n1[[�i]], yi 2 n2[[�i]]. Hence G j= :'.

Next, we show the claim.

(1) Assume that T j= P (a; b), i.e., there is a parent-child path from a to b in T such that the
sequence of labels of the path is R and R � P . By the de�nition of G, we have G j= �(a; b), where
� is the path w.r.t. R. Recall that � is obtained by replacing occurrences of \ " with �. Since
R � P , obviously � 2 P .

(2) Conversely, assume that there exists a path � 2 P such that G j= �(a; b). By the de�nition
of G, we have T j= R(a; b), where R is the path expression w.r.t. �. We next show R � P by
induction on the number of occurrences of \ " in R, denoted by wR. When wR = 0, we have R = �

and R � P since � 2 P . Assume the statement for wR < k. We next show the statement also
holds for wR = k. Let R = R1: :R2, where R2 does not contain any \ ", and R1 contains less than
k occurrences of \ ". Observe that � must be �1:�:�2, where �2 = R2 and �1 is the path w.r.t. R1.
Thus j�1j = jR1j. By � 2 P and the de�nition of PLw expressions, we have j�j = jP j. Therefore,
we can write P as P = P1:l:P2 such that jP1j = j�1j = jR1j and jP2j = j�2j = jR2j. By the induction

20

hypothesis, R1 � P1 and R2 � P2. Moreover, by � � l and the choice of �, which is not in P , l
must be the wild card \ ". Thus R1: :R2 � P1: :P2 by Transitivity in I

p
w. Hence the statement also

holds for wR = k. This completes the proof of Lemma 4.2.

Proof of Theorem 4.1: We show that Iw is complete for �nite implication of Lw constraints.
Let � [f'g be a �nite set of keys in Lw, where � = f�1; : : : ; �ng, �i = (Qi; fPi1; :::; Pimi

g) and
' = (Q; fP1; :::; Pkg). We show that if � j= ' then � `Iw '. Let T be the �nite abstract tree given
in Fig. 3 (a). We execute the following algorithm on T :

for each i 2 [1; n] do /* Recall �i = (Qi; fPi1 ; :::; Pimi g) */

if there are nodes x; x01; : : : ; x
0
mi

in T1 and y; y
0
1; : : : ; y

0
mi

in T2 such that
T j= Qi(r; x) ^Qi(r; y)^

Pi1(x; x
0
1) ^ : : : ^ Pimi

(x; x0mi
)^ Pi1(y; y

0
1) ^ : : : ^ Pimi

(y; y0mi
)^

x01 =v y
0
1 ^ : : : ^ x

0
mi

=v y
0
mi

then merge x and y as follows:
Case 1: if there is Q0 such that Q0 � Q and Q0 � Qi (a pre�x of Q is contained in Qi)

then merge x, y and their ancestors as shown in Fig. 3 (b)
Case 2: if there is Q0 such that Q0 � Qi and Q � Q0 (Q is contained in a proper pre�x of Qi)

then merge x, y and their ancestors as shown in Fig. 3 (c)

In both cases in the above algorithm, we merge T1's and T2's nodes in path Qi. In Case 1, the
subtree under x and the subtree under y will both be under the same node x = y. In Case 2, since
Q is contained in a proper pre�x of Qi and by the de�nition of T , we must have mi = 1. That
is, �i = (Qi; fP

0
ig). The subtree P

0
i in T1 and T2 will both be rooted at the same node x = y, as

illustrated in Fig. 3 (c). Since ' is satis�ed at this point, that is, we will show that ' is provable,
we can therefore discard the rest of the key paths in fP1; :::; Pkg.

It is clear that this algorithm terminates. Let T 0 be the abstract tree with \ " obtained by
executing the algorithm. It is easy to verify T 0 j= �. Moreover, if T 0 6j= ', then by Lemma 4.2,
there is a �nite XML tree G such that G j= � and G 6j= '. Thus � 6j= '. If T 0 j= ', we show
� `Iw '. Observe that Case 1 can only happen if there is a PLw expression R such that Q � Qi:R

and in addition, for all j 2 [1;mi], there is s 2 [1; k] such that either (i) R:Ps � Pij or (ii) there is a
l 2 [1; k] such that Pl = � and for some PLw expression R0, R:Ps � Pij :R

0. Case 2 can only happen
if there is a PLw expression R such that Q:R � Qi and in addition for all j 2 [1;mi] (mi = 1),
there is s 2 [1; k] such that either (i) Ps � R:Pij or (ii) there is a l 2 [1; k] such that Pl = � and a
PLw expression R0 such that Ps � R:Pij:R

0. We consider the following cases:

(a) There exists �i = (Qi; fPi1; : : : ; Pimi
g) in � such that Q � Qi and for every l 2 [1;mi], there

is j 2 [1; k] such that Pj � Pil. This makes Case 1 of the algorithm applicable and corresponds to
the scenario Case 1(i) as discussed above. Merging n1 and n2 due to this constraint corresponds to
applications of the Target-containment, Key-containment, and Superkey rules. Thus � `Iw '. If
Case 1(ii) also applies, then Pre�x-epsilon rule is also needed.

(b) For some �i 2 �, �i = (Qi; fPi1g) such that Qi = Q0:Q00, Q � Q0, jQ00j > 0 and for some
j 2 [1; k], Pj � Q00:Pi1. This makes Case 2 of the algorithm applicable and corresponds to the
scenario Case 2(i) as discussed above. Merging n1 and n2 due to this constraint corresponds to
applications of Subnodes, Target-containment, Key-containment rules, and Superkey rule (when
k > 1). Thus again � `Iw '. If Case 2(ii) also applies, then Pre�x-epsilon rule is also needed.

21

(c) For some �i 2 �, �i = (Qi; ;) such that Qi = Q0:Q00, Q � Q0, and for some j 2 [1; k], Pj � Q00.
This again makes Case 2 of the algorithm applicable and corresponds to the scenario Case 2(i) as
discussed above. Identifying n1 and n2 by this constraint corresponds to applications of Superkey
(i.e., if (Qi; ;) then (Qi; f�g)) Subnodes (i.e., if (Q

0:Q00; f�g) then (Q0; fQ00g)), Target-containment,
Key-containment rules, and Superkey rule (when k > 1). Hence � `Iw '. If Case 2(ii) also applies,
then Pre�x-epsilon rule is also needed.

Therefore, if � j= ', then � `Iw '. That is, Iw is complete for Lw constraint implication.

Proof of Lemma 4.5: The proof is similar to that of Lemma 4.2, except the proof of a claim. Let
�[f'g be a �nite set of keys in L, and T be a �nite abstract tree with \ �" such that T j= � and
T 6j= '. We de�ne a �nite XML tree G as follows. Let � be a label that does not occur in any key
of � [f'g. We substitute � for every occurrence of \ �" in T . Let G be T with this modi�cation.
Observe that G and T have the same set of nodes. In addition, for any nodes a; b in G, if there is
a path � such that G j= �(a; b), then there is a parent-child path R in T such that T j= R(a; b).
Observe that R is a path expression in PL and may contain \ �". In addition, R and � are the
same except for each occurrence of \ �" in R, the label � appears at the corresponding position in
�. Let us refer to R as the path expression w.r.t. � and conversely, � as the path w.r.t. R. We show
G j= � and G j= :'. To do so, it su�ces to show the following claim. For if the claim holds, then
we can show G j= � and G j= :' as in the proof of Lemma 4.2.

Claim 1: Let P be a path expression in PL, and a; b be nodes in G. Then exists � in P such that
G j= �(a; b) i� T j= P (a; b), i.e., T j= R(a; b) and R � P , where R is the path expression w.r.t. �.

(1) Assume that T j= P (a; b), i.e., there is a parent-child path R from a to b in T such that R � P .
By the de�nition of G, we must have G j= �(a; b), where � is the path w.r.t. R. Recall that � is
obtained by substituting � for occurrences of \ �". Since R � P , we have � 2 P .

(2) Conversely, assume that there exists a path � 2 P such that G j= �(a; b). By the de�nition of
G, we have T j= R(a; b), where R is the path expression w.r.t. �. Thus it su�ces to show R � P .
To do so, we consider the NFAs of R, P and � as de�ned in Section 3:

M(R) = (NR; A [f g; �R; SR; FR);

M(P) = (NP ; A [f g; �P ; SP ; FP);

M(�) = (N�; A [f�g; ��; S�; F�);

where A is an alphabet that contains neither \ " nor �. Recall that NFAs for PL expressions have
a \linear" structure as shown in Fig. 2. In particular, since � does not contain \ �", it has a strict
linear structure. Let the sequence of states in N� be s1; : : : ; sm, where s1 = S� and sm = F�. Then
for any i 2 [1;m � 1], there is exactly one l 2 A [f�g such that ��(si; l) 6= ;. More precisely,
��(si; l) = si+1. For any l 2 A [f�g, ��(F�; l) = ;. By the de�nition of G, there is a function f
from N� to NR. More speci�cally, let the sequence of states in NR be n1; : : : ; nk, where n1 = SR
and nk = FR. Then we have the following:

(a) f(S�) = SR and f(F�) = FR.

(b) For any i; j 2 [1;m], if f(si) = ni0 , f(sj) = nj0 and i < j, then i0 � j0.

(c) For any i 2 [1;m] and l 2 A, ��(si; l) = si+1 i� �R(f(si); l) = f(si+1) and f(si) 6= f(si+1).

(d) For any i 2 [1;m], ��(si; �) = si+1 i� �R(f(si);) = f(si+1) and f(si) = f(si+1). In particular,

22

if �R(FR;) = FR then ��(sm�1; �) = F� and f(sm�1) = f(F�) = FR.

We de�ne an equivalence relation � on N� such that s � s0 i� f(s) = f(s0). Let us use [s]
to denote the equivalence class of s w.r.t. �. We assume without loss of generality that R is in
the normal form. Then observe that [s] consists of at most two states; if [s] = fsg, then there is
l 2 A such that ��(s; l) = s0, and if [s] = fs; s0g then there is some i 2 [1;m � 1] such that s = si,
s0 = si+1, ��(s; �) = s0 and f(s) = f(s0). Given these, we de�ne a function g from NR to the
equivalence classes such that for all n 2 NR, g(n) = [s] i� f(s) = n.

Recall in the proof of Theorem 3.2, we have shown the following: for any PL expressions Q and
Q0, let M(Q);M(Q0) their NFAs, NQ; NQ0 the sets of states in M(Q);M(Q0), SQ; SQ0 the start
states of M(Q);M(Q0), and FQ; FQ0 the �nal states of M(Q);M(Q0), respectively, then 1) Q � Q0

i� SQ � SQ0 , where � is a simulation relation as de�ned in Section 3; 2) there is a function � from
NQ to NQ0 such that �(SQ) = SQ0 , �(FQ) = FQ0 , and for any s 2 NQ, s� �(s). By � 2 P , we have
that the language de�ned by � (which consists of a single string �) is contained in the language
de�ned by P , i.e., � � P . Thus there exists such a function � from N� to NP and a simulation
relation � such that �(S�) = SP , �(F�) = FP , and for any s 2 N�, s� �(s). It is easy to verify:

Claim 2: for all s; s0 2 [s], �(s) = �(s0).

Indeed, as observed earlier, if s; s0 2 [s], then there is some i 2 [1;m � 1] such that s = si,
s0 = si+1 and ��(s; �) = s0. Since � does not appear in P , if �(s) = n0 and �(s0) = n00, then there
must be �P (n

0;) = n00 and n0 = n00, by the de�nition of simulation relations. As a result, we can
de�ne �([s]) to be �(s). Given these, to show R � P , it su�ces to show that for any n 2 NR,

n � �(g(n)):

For if it holds, then SR � �(g(SR)) = �(S�) = SP . We next show that this holds. Assume, by
contradiction, there is n 2 NR such that it is not the case that n� �(g(n)). Let n be such a state
with the largest index in the sequence of states in NR starting from SR. Then by the de�nition of
simulation relations given in Section 3, we must have one of the following cases.

(i) n = FR and either 1) �(g(FR)) 6= FP , or 2) �(g(FR)) = FP but �R(FR;) = FR, �P (FP ;) = ;.
The �rst case contradicts the assumption that g(FR) = [F�] and �([F�]) = �(F�) = FP . In the
second case, by �R(FR;) = FR, we have g(FR) = fF�; sm�1g and ��(sm�1; �) = F�. By Claim 2,
there must be �(sm�1) = �(F�) = FP and �P (FP ;) = FP . Again this contradicts the assumption.

(ii) n 6= FR and either 1) �R(n;) = n but �P (�(g(n));) 6= �(g(n)), or 2) there is some l 2 A such
that �R(n; l) = n0 but neither �P (�(g(n)); l) 6= �(g(n0)) nor �P (�(g(n));) = �(g(n)). In the �rst
case, we must have g(n) = fsi; si+1g and ��(si; �) = si+1. By Claim 2, there must be �(si) = �(si+1),
�P (�(si);) = �(si) and �(g(n)) = �(si). Thus �P (�(g(n));) = �(g(n)), which contradicts the
assumption. In the second case, given �R(n; l) = n0, there must be either �P (�(g(n)); l) = �(g(n0))
or �P (�(g(n));) = �(g(n)), by the de�nition of simulation relations and g(n)� �(g(n)). Again this
contradicts the assumption. Thus we have n � �(g(n)) for all n 2 NR. This shows that Claim 1
holds and completes the proof of Lemma 4.5.

23

