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The emergence and abundance of cooperation in nature poses a tenacious and challenging puzzle to
evolutionary biology. Cooperative behaviour seems to contradict Darwinian evolution because altruistic
individuals increase the fitness of other members of the population at a cost to themselves. Thus, in the
absence of supporting mechanisms, cooperation should decrease and vanish, as predicted by classical
models for cooperation in evolutionary game theory, such as the Prisoner’s Dilemma and public goods
games. Traditional approaches to studying the problem of cooperation assume constant population sizes
and thus neglect the ecology of the interacting individuals. Here, we incorporate ecological dynamics into
evolutionary games and reveal a new mechanism for maintaining cooperation. In public goods games,
cooperation can gain a foothold if the population density depends on the average population payoff.
Decreasing population densities, due to defection leading to small payoffs, results in smaller interaction
group sizes in which cooperation can be favoured. This feedback between ecological dynamics and game
dynamics can generate stable coexistence of cooperators and defectors in public goods games. However,
this mechanism fails for pairwise Prisoner’s Dilemma interactions and the population is driven to
extinction. Our model represents natural extension of replicator dynamics to populations of varying
densities.
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1. INTRODUCTION
Cooperative behaviour is abundant in animal and human

societies (Binmore 1994; Colman 1995; Dugatkin 1997;
Doebeli & Hauert 2005). Well-known examples include
vampire bats regurgitating blood to feed hungry con-
specifics (Wilkinson 1984), sticklebacks inspecting pred-

atory pikes preferably in pairs (Milinski 1987), alarm calls
from watchful sentinels warning other meerkats from
predators (Clutton-Brock et al. 1999), musk oxen defend-
ing their young against wolves in groups (Wilkinson &

Shank 1977), etc. In all these examples, cooperative
individuals provide a benefit to one or more individuals at
some cost to themselves. However, this behaviour is prone
to exploitation by defectors that readily accept support but

avoid the costs of assisting others. In the complex society
of humans, social interactions lead to multifaceted
dilemmas of cooperation. This is most apparent in the
consumption of various kinds of public resources, which

include public transportation, social welfare, drinking
water or clean air. All such resources are prone to
exploitation and overuse, as exemplified by the metaphor
of the The tragedy of the commons (Hardin 1968). Over the
past decades, a number of mechanisms have been

suggested which are capable of supporting cooperation

in absence of genetic relatedness. Most notably, this
includes repeated interactions and direct reciprocity

(Trivers 1971; Axelrod & Hamilton 1981), punishment
(Clutton-Brock & Parker 1995; Fehr & Gächter 2002),
spatially structured populations (Nowak & May 1992;
Hauert & Doebeli 2004) or voluntary participation in

social interactions (Hauert et al. 2002b). Unique to
humans is apparently the capacity for indirect reciprocity
(Alexander 1987; Nowak & Sigmund 1998, 2005) and the
internalization of benefits as a foundation for moral

systems.
Traditionally, the problem of cooperation in social

dilemmas (Dawes 1980; Hauert et al. 2006) is investigated
by means of the game theoretical models of the Prisoner’s

Dilemma for pairwise interactions and, more generally,
public goods games for groups of interacting individuals
(Kagel & Roth 1995). In a typical public goods
experiment, an experimenter endows, for example, four

players with 10 dollars each. All players then have the
opportunity to invest their money into a common pool
knowing that the experimenter will double the total
amount and divide it equally among all participants,
irrespective of whether they contributed. Thus, if every-

body invests their money, each player ends up with 20
dollars, i.e. doubles the invested money. However, every
player faces the temptation to defect, because each
invested dollar returns only 50 cents to the investor.

Consequently, the rational, selfish solution is to withhold
the money and attempt to free ride on the other players’
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contributions—but if everybody follows this reasoning, no
one increases the initial capital and foregoes the benefits of
the public good.

In formal terms, the payoffs for cooperators and
defectors in a group with k cooperators is given by

PDðkÞZ r
kc

N
; ð1:1aÞ

PCðkÞZPDðkÞKc; ð1:1bÞ
where r denotes the multiplication factor, c the cooperative
investment and N the size of the group engaging in public
goods interactions. For simplicity, the costs c are set to
unity in the remainder of the text. Note that for pairwise
interactions (NZ2), the public goods formalism can be
easily mapped onto the traditional formulation of the
Prisoner’s Dilemma in terms of costs that a cooperator
incurs and benefits that accrue exclusively to their
interaction partners (Hauert & Szabó 2003).

In populations of interacting individuals, the dynamics
of cooperators and defectors in the public goods game is
determined by their respective payoffs obtained in
randomly formed groups of N individuals. Thus, any
given focal individual finds itself in a group with NK1
other individuals. If x is the frequency of cooperators in the
population, then the chance that k of those other
individuals are cooperators is

NK1

k

 !
xkð1KxÞNK1Kk:

This probability is independent of whether the
focal individual is a cooperator or a defector. Therefore,
every focal individual encounters the same expected
number of cooperators, and hence the same expected
payoff from the other players during game interactions.
From this it follows that the only determinant of success
in the well-mixed public goods game is the payoff that
the focal individual receives from itself. This payoff is
zero if the focal individual is a defector, and is equal to
ðr=NK1Þc if the focal individual is a cooperator. The
traditional formulation of public goods games requires
1! r!N, such that defectors are better off and xZ0 is
globally stable. Conversely, for rON, the social
dilemma posed by the public goods game is relaxed
and cooperation dominates. However, also note that
even in this case, defectors are better off than
cooperators in any group consisting of both types. The
fact that evolution nevertheless favours cooperation
represents an instance of Simpson’s paradox (Simpson
1951; Hauert et al. 2002b). This follows by noting that
in this case cooperators receive, on average, higher
payoffs than defectors according to the argument given
above.

The basic idea of the present paper is that if the public
goods game is played in populations of varying densities,
then the effective group size S of the public goods
interactions also varies. Small population densities result
in small effective group sizes and vice versa if population
densities are large. Assuming that birth rates are
proportional to payoffs, population growth is small or
negative if defectors abound, because payoffs in groups
with many defectors are low according to equations (1.1a)
and (1.1b). However, if population densities decrease,
then the effective interaction group size S also decreases
until eventually rOS holds and cooperation is favoured.

Thus, we expect scenarios where large population
densities favour defection, leading to a decrease in
population density and hence to a decrease in S, which,
in turn, favours cooperation. Here, we show that this
feedback between game dynamics and ecological
dynamics can maintain cooperation and lead to stable
coexistence of cooperators and defectors.

2. GAME DYNAMICS AND POPULATION DYNAMICS
In order to combine game dynamics and population
dynamics in a replicator equation, we assume that x
denotes the fraction of cooperators, y the fraction of
defectors and zZ1KxKy the fraction of empty space.
Thus, xCy denotes a normalized population density, such
that 0 corresponds to extinction and 1 is the maximal
population density. The fractions x and y determine the
average payoffs of cooperators, fC, and of defectors, fD,
at any given point in time, as detailed below. To determine
the dynamics of x, y and z, we assume that cooperators
and defectors die at a constant rate d and give birth at a
rate proportional to their average payoffs. We also assume
that reproduction can only occur into empty space, so that
birth rates are proportional to z. This leads to the
following population dynamic model:

_xZ xðzfCKd Þ; ð2:1aÞ
_yZ yðzfDKd Þ; ð2:1bÞ
_zZK_xK _yZ ðxCyÞdKzðxfC CyfDÞ: ð2:1cÞ
This system of equations represents a natural extension
of the replicator dynamics (Taylor & Jonker 1978;
Hofbauer & Sigmund 1998). If the population density
xCy is kept constant ð _zZ0Þ by adjusting the death rate
accordingly, i.e. by setting dZz !f (where !fZ ðxfCCyfDÞ=
ð1KzÞ denotes the mean fitness), then the traditional
replicator dynamics is recovered.

The average payoffs or fitnesses fC and fD are
determined by public goods interactions in randomly
formed groups. These interaction groups are formed by
interpreting the densities x; y; z as probabilities for
drawing a particular strategy and for failing to find a
participant, respectively. The general idea is that for large
proportions of empty space z individuals typically find
themselves in small groups of interacting individuals, and
vice versa if z is small. Specifically, we envisage a
scenario in which interaction groups are formed
randomly in such a way that the available N places are
randomly filled with either cooperators or defectors, or
are left empty, according to the probabilities x, y and z,
respectively; in particular, if zO0 individuals typically
find themselves in interaction groups of size S!N.
Thus, the chance that an individual finds itself in a group
of size S%N is given by the chance to find SK1
interaction partners:

NK1

SK1

 !
ð1KzÞSK1zNKS : ð2:2Þ

If an individual finds itself in a group of size S, it faces m
cooperators and SK1Km defectors among its SK1
interaction partners with probability

x

1Kz

! "m y

1Kz

! "SK1Km SK1

m

# $
:
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It follows that the average payoffs to defectors and
cooperators, PDðSÞ and PCðSÞ, in a group of size S are

PDðSÞZ
r

S

XSK1

mZ0

x

1Kz

! "m y

1Kz

! "SK1Km SK1

m

# $
m

Z r
x

1Kz
1K

1

S

# $
; ð2:3aÞ

PCðSÞZPDðSÞC
r

S
K1: ð2:3bÞ

Taking the weighted average over all possible group sizes
S, with the weights given by the probabilities described
by equation (2.2), yields the average fitness of defectors
and cooperators as

fD Z
XN

SZ2

NK1

SK1

 !
ð1KzÞSK1zNKSPDðSÞ;

fC Z
XN

SZ2

NK1

SK1

 !

ð1KzÞSK1zNKSPCðSÞ:

Evaluating the sums, this yields

fD Z r
x

1Kz
1K

1KzN

Nð1KzÞ

# $
; ð2:4aÞ

fC Z fDKFðzÞ; ð2:4bÞ
where

FðzÞZ1C ðrK1ÞzNK1K
r

N

1KzN

1Kz
: ð2:5Þ

We note that fC could in principle become negative, in
which case it could not be interpreted as a birth rate.
However, positivity of fC can be achieved by adding a
constant baseline birth rate to both fD and fC. As long as
the death rate is assumed to be larger than this baseline
birth rate, populations cannot persist in the absence of
public goods interactions, and the results will be
qualitatively unchanged. Therefore, we carry out the
analysis based on equations (2.4).

We note that we have excluded groups with SZ1, in
which only a single individual joins the public goods game,
because this no longer refers to social interactions and
cooperation becomes trivial for rO1. Thus, the exclusion
of such groups is a conservative assumption that never-
theless does not affect the qualitative conclusion that
population dynamics can promote cooperation. However,
we note that due to this restrictive assumption, cooperation
cannot persist for NZ2, i.e. in the Prisoner’s Dilemma. In
this case, there is no smaller effective group size S! r!N
that would favour cooperation. The parameter N simply
acts as an upper bound for the interaction group size. We
also note that since interaction groups are formed at
random, there is no spatial structure in this model.

(a) Homogenous populations

When analysing equations (2.1a)–(2.1c), it is useful to first
consider the special cases where one of the two strategies is
absent. In the absence of cooperators (xZ0), the average
payoff of defectors is fDZ0 and hence _y!0, such that
defectors decrease in frequency and eventually vanish and
the system converges to the steady state zZ1.

Conversely, in absence of defectors ( yZ0), the
dynamics becomes more interesting. In this case,
fCZ ðrK1Þð1KzNK1Þ, and depending on the values of the
parameters N, r and d, the system has one to three fixed
points determined by the roots of _xZxðzfCKd Þ (see
figure 1). If the death rate d is larger than the maximum of

the function zfC, i.e. if dOdmaxZ ðrK1ÞðNK1ÞNKN =ðNK1Þ,
then the population goes extinct ðx/0Þ. However, if
d!dmax, then cooperation can persist for sufficiently large
initial densities x0 (see figure 1). If x0 is too small, fitness
benefits from public goods interactions are insufficient to
prevent extinction,because individuals arenot encountering
sufficiently many interaction partners. The fact that
population persistence hinges on sufficiently high popu-
lation densities relates to the Allee effect (Stephens 1999),
which describes a positive correlation between population
density and per capita growth rate, such that at low densities,
populations become prone to extinction, typically due to
increasing difficulties in finding mating partners.

(b) Heterogenous populations

Interestingly, population dynamics enables cooperators to
survive even when facing exploitation by defectors. In
order to analyse this scenario, we introduce the new
variable fZx=ðxCyÞ, i.e. the relative proportion of
cooperators, and rewrite equations (2.1a)–(2.1c) as

_f Z
_xyK _yx
ð1KzÞ2 ZKzf ð1Kf ÞFðzÞ; ð2:6aÞ

_zZKð1KzÞð fzðrK1Þð1KzNK1ÞKd Þ: ð2:6bÞ
Here, FðzÞ is given by equation (2.5). Thus, the dynamics
unfold in a rectangle determined by f 2½0;1$ and
z2½0;1$. The dynamics on the boundaries of this
rectangle are easily understood. The boundaries fZ0
and 1 represent the two homogenous scenarios discussed
in §2a. Thus, z converges to 1 on the boundary fZ0 (no
cooperators), and the dynamics on the boundary fZ1 has
one to three equilibria, corresponding to extinction or
possible persistence of cooperators (see figure 2).

The boundary zZ1 is attracting, as it is easy to see that
for sufficiently small population densities xCy, _zO0
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Figure 1. Population dynamics of cooperators engaging in
public goods interactions in absence of defectors for
different death rates d. Cooperators are unable to survive
for dOdmaxZ ðrK1ÞðNK1ÞNKN=ðNK1Þ and the only stable
equilibrium is x0Z0. However, for d!dmax, the system
undergoes a bifurcation and two interior equilibria appear:
one stable branch at higher x (solid line) and one unstable
branch at lower x (dashed line). Consequently, cooperators
thrive at sufficiently high densities but go extinct otherwise,
i.e. approach x0. For dZ0, the equilibrium x0 becomes
unstable and the system converges to xZ1. The dynamics is
illustrated for NZ5 and rZ3.
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holds. Thus, states where the population goes extinct are
locally attracting, essentially because at low population
densities, there are not enough public goods interactions
to sustain positive growth rates. In contrast, the opposite
boundary with maximal population density (zZ0) is
repelling, _zjzZ0O0 (see equations (2.6a) and (2.6b)),
because offspring production is limited by available space,
i.e. proportional to z.

Our analysis of the behaviour in the interior of the phase
space reveals four qualitatively different dynamic regimes,
which are illustrated in figure 2. These regimes depend
largely on the existence of interior equilibrium points.
Such points are of the formQZ ðẑ; f̂ Þ, where ẑ is solution of
FðẑÞZ0 and where f̂Zd=ðẑðrK1Þð1KẑNK1ÞÞ. It follows
from the results in Hauert et al. (2002a) that FðẑÞZ0 has
at most one solution in the interval ð0; 1Þ, and hence the

dynamical system (2.6a) and (2.6b) admits at most one
equilibrium point Q in the interior of the phase space.

In general, if Q exists, its stability depends on
parameter values. Specifically, standard stability analysis
shows that the equilibrium is locally stable whenever
ẑ! ~zZNK1=ðNK1Þ (i.e. whenever the total population
density at the equilibrium is higher than the population
density that can sustain the highest death rate in the
absence of defectors, see figure 1). Moreover, the
equilibrium is always a focus (i.e. the two eigenvalues of
the corresponding Jacobian matrix are never real).

Figure 2a illustrates the first regime, in which Q exists
and is a stable focus ðẑ! ~zÞ. The basin of attraction ofQ is
substantial, but it does not span the entire phase space.
Whenever defectors abound or population densities are
too small, populations remain unable to recover from
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Figure 2. Full analysis of the population dynamics of cooperators and defectors engaging in public goods games in groups of
N individuals. Four panels illustrate the different dynamical scenarios. The phase space is spanned by the population density
xCy (or 1Kz) and the relative fraction of cooperators fZx=ðxCyÞ. The left boundary (zZ1) is attracting and consists of a line
of stable fixed points (filled circles), which represent states where the population cannot maintain itself and disappears.
Conversely, the right boundary, which denotes the maximal population density (zZ0), is repelling. Along the bottom boundary,
i.e. in absence of cooperators ( fZ0), population densities decrease and eventually vanish. Finally, along the top boundary, i.e. in
absence of defectors ( fZ1), there are two fixed points that are either both saddle points (open circles) as in (a), (c), (d ) or a
saddle point and a stable equilibrium (filled circle) as in (b). In addition, there may be an interior focusQ present.Q is stable if it
lies to the right of the dashed line, which marks ~zZNK1=ðNK1Þ. (a) Q is stable and cooperators and defectors can coexist.
Trajectories spiral towards Q, except for low initial population densities or abundant defection, in which case the population
goes extinct. (b) Increasing death rates push the unstableQ upwards until it disappears. This leads to persistence of cooperators
and elimination of defectors. The population vanishes for low initial population densities or abundant defection. (c) For smaller
multiplication factors r,Q becomes unstable and the population always goes extinct. Trajectories originating in the vicinity ofQ
approach zZ1 in an oscillatory manner with increasing amplitude. (d ) When eliminating the unstable focus Q by increasing d,
the population continues to go extinct but the oscillatory dynamics has disappeared. In summary, for increasing d, the dynamics
changes from the left to the right column, whereas for decreasing r, it changes from the top to the bottom row. The different
scenarios are illustrated for NZ8 and (a) rZ3; dZ0:5; (b) rZ5; dZ1:6; (c) rZ2:7; dZ0:5; (d ) rZ2:1; dZ0:5.
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exploitation and disappear. However, inside the basin of
attraction, the system exhibits oscillatory behaviour with
decreasing amplitude as the system converges toQ, which
represents stable coexistence of cooperators and defectors.

Increasing the death rate d generates the second
regime, which is illustrated in figure 2b. Larger d increases
f̂ and eventuallyQ crosses the boundary fZ1. OnceQ has
disappeared, the pure cooperator saddle point, which is
stable along the boundary fZ1, becomes a stable
equilibrium. In this case, cooperators and defectors
cannot coexist, but cooperators may survive depending
on initial conditions. Otherwise, the whole population
goes extinct. Note that for further increases of d, the fixed
points along fZ1 collide and disappear ðdOdmaxÞ, as
explained in §2a (cf. figure 1).

A stable interior equilibrium Q may be destabilized by
decreasing the multiplication factor r, which generates the
third dynamic regime (figure 2c). In this case, Q is an
unstable focus ðẑO ~zÞ and the system invariably converges
to the line of fixed points with zZ1, corresponding to
extinction of the population. However, owing to the
presence of the unstable focus, the system may exhibit
oscillatory behaviour, depending on initial conditions.
Owing to the instability of the equilibrium, the amplitude
of the oscillations keeps growing and the population
eventually disappears.

Increasing the death rate d in this third scenario
generates the final regime, which is illustrated in
figure 2d. Once Q has disappeared, the low-density saddle
point, which is unstable along fZ1, becomes unstable in all
directions. This change precludes oscillatory behaviour, but
does not affect the evolutionary outcome, and the system
keeps converging to the line zZ1. This scenario also applies
to public goods interactionswith r!2, for which no solution
to FðzÞZ0 exists (Hauert et al. 2002a) and cooperators are
always worse off than defectors ð fC! fDÞ. For r!2,
cooperation cannot be favoured, because the effective
group size is SR2 and thus never falls below r. Note that
this scenario includes pairwise Prisoner’s Dilemma
interactions because NZ2 implies r!2. Also note that
decreasing r in the second regime (figure 2b) again
destabilizes cooperation and generates this final regime
where populations eventually disappear.

3. CONCLUSIONS
The public goods game is a basic and generalmathematical
metaphor for the problem of cooperation in groups of N
interacting individuals. For anymultiplication factor r!N,
defectors dominate and cooperators vanish. In contrast,
we have demonstrated that by combining game dynamics
and ecological dynamics, cooperators may thrive if the
average population payoff determines the population
growth rate. Cooperation can be maintained because
decreasing population densities can reduce the effective
interaction group size S to a point where rOS. In these
groups, the social dilemma is relaxed and cooperation is
favoured. Conversely, high population densities generate
large effective interaction group sizes S, in which r!S, so
that defection is favoured. Thus, if populations are large
and defection is favoured, average fitness is low and
populations decrease, while if populations are small a high
frequency of cooperation leads to high average fitness and
triggers an increase in population density. The main result

of this paper is that this eco-evolutionary feedback can
stabilize cooperation at intermediate frequencies (figure 2).
At equilibrium, the population density is such that the
expected size of the interaction groups is exactly equal to
the multiplication factor r, so that cooperators and
defectors have equal payoffs.

Similar effects promoting cooperation based on vari-
able sizes of the group engaging in public goods
interactions were observed in Hauert et al. (2002b).
These authors introduced a third strategic type, the
loners. Loners are risk averse and do not participate in
the public goods game, and instead rely on small but fixed
earnings. Thus, the presence of many loners implies small
interaction groups for the public goods game. This
generates a rock–scissors–paper type cyclic dominance of
cooperators, defectors and loners: if the population mainly
consists of defectors, then the loner’s payoff is higher than
the average fitness, and hence the frequency of the loners
increases. As the loner frequency increases, the size of the
interaction groups decreases, so that eventually co-
operation becomes advantageous and takes over. This, in
turn, creates the conditions for defectors to thrive and the
cycle continues. The cyclic dynamics has actually been
verified in experiments where students opted for the three
behavioural options in a periodically alternating manner
(Semmann et al. 2003). In contrast to the ecological model
presented here, the inclusion of loners cannot create a
locally stable interior equilibrium at which cooperators
and defectors persist. Nevertheless, the two scenarios are
similar in that in both cases, a third variable is introduced
(empty space and loners, respectively), and the dynamics
of this third quantity mediates the transitions between the
different regimes in the public goods game. However, also
note that both scenarios fail to promote cooperation in
pairwise Prisoner’s Dilemma interactions—in one case
only loners survive and in the other the population goes
extinct altogether.

Figure 2 gives a complete classification of the
configuration and stability of equilibrium states occurring
in the model given by equations (2.1a)–(2.1c). If the
interior equilibriumQ at which cooperators and defectors
coexist is present, it is always a focus, i.e. small
perturbation away from Q generates oscillatory dynamics.
In principle, destabilization of Q would therefore open up
the possibility of a Hopf bifurcation and of stable limit
cycles, leading to cyclic coexistence between cooperators
and defectors. However, extensive numerical simulations
indicate that such stable limit cycles do not occur in this
model. It would be interesting to investigate suitable
extensions and modifications of the model that would
generate limit cycles. One extension that seems particu-
larly worthwhile is the continuously varying cooperative
strategies, rather than just the all-or-nothing strategies
cooperate and defect, and how ecological feedback
mechanisms affect the evolutionary dynamics of continu-
ous cooperative investments. Continuously varying coop-
erative investments can lead to interesting new insights
and scenarios (Killingback et al. 1999; Wahl & Nowak
1999), including evolutionary diversification of cooperative
investments levels (Doebeli et al. 2004).

Biologically, the models studied here correspond to
scenarios in which the size of interaction groups only varies
as a consequence of variation in the overall population
density. However, one could also imagine scenarios in
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which the size of an interaction is influenced by how many
defectors and cooperators it contains. For example, the
tendency of individuals to join an interaction group might
depend on the expected benefit from joining the group, and
hence on the number of cooperators it contains.Moreover,
this tendencymight itself be an evolving trait (Aviles 2002).
Even if joining the group is not a behavioural choice, the
marginal benefit obtained from having an additional
cooperator added to an interaction group could depend
on how many cooperators the group already contains.
Thus, benefits from cooperation could be saturating or
synergistic (Hauert et al. 2006). It would be interesting to
extend the model presented here to such scenarios.

Furthermore, it would also be interesting to develop
empirical tests of the role of ecological dynamics for the
evolution of cooperation. There are a number of experi-
mental model systems that could be used for such studies
(Doebeli & Hauert 2005). For example, Greig & Travisano
(2004) reported that in the yeast Saccharomyces cerevisiae,
selfish strategies that do not produce an enzyme needed for
digestion of sucrose do well when population densities are
large, but fare poorly compared to cooperators producing
the enzyme when population densities are small. This
indicates that there is thepotential for anecological feedback
to maintain cooperation as envisaged in our models.

In conclusion, our model represents a step towards
understanding how the interplay between population
dynamics and game dynamics can affect the evolution of
cooperation. The results reported here demonstrate that
ecological feedbackmechanisms can facilitate the origin and
maintenance of cooperation in public goods interactions.
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