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Propositions

A proposition is a declarative sentence that is either true or false.
Examples of propositions:

The Moon is made of green cheese.
Trenton is the capital of New Jersey.
Toronto is the capital of Canada.
1 + 0 = 1
0 + 0 = 2

Examples that are not propositions.
Sit down!
What time is it?
x + 1 = 2
x + y = z
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Propositional Logic

Constructing Propositions
Propositional Variables: p,q, r , s, . . .
The proposition that is always true is denoted by T and the
proposition that is always false is denoted by F.
Compound Propositions; constructed from logical connectives and
other propositions
Negation ¬
Conjunction ∧
Disjunction ∨
Implication→
Biconditional↔
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Disjunction

The disjunction of propositions p and q is denoted by p ∨ q and has
this truth table:

p q p ∨q

T T T

T F T

F T T

F F F
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Conjunction

The disjunction of propositions p and q is denoted by p ∧ q and has
this truth table:

p q p ∧ q 

T T T

T F F

F T F

F F F
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Implication

If p and q are propositions, then p → q is a conditional statement
or implication which is read as “if p, then q” and has this truth
table:

p q p →q

T T T

T F F

F T T

F F T

In p → q, p is the hypothesis (antecedent or premise) and q is the
conclusion (or consequence).
Implication can be expressed by disjunction and negation:
p → q ≡ ¬p ∨ q
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Understanding Implication

In p → q there does not need to be any connection between the
antecedent or the consequent. The meaning depends only on the
truth values of p and q.
This implication is perfectly fine, but would not be used in ordinary
English. “If the moon is made of green cheese, then I have more
money than Bill Gates.”
One way to view the logical conditional is to think of an obligation
or contract. “If I am elected, then I will lower taxes.”
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Different Ways of Expressing p → q

if p, then q p implies q
if p,q p only if q
q unless ¬p q when p
q if p q whenever p
p is sufficient for q q follows from p
q is necessary for p a necessary condition for p is q
a sufficient condition for q is p
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Converse, Contrapositive, and Inverse
q → p is the converse of p → q
¬q → ¬p is the contrapositive of p → q
¬p → ¬q is the inverse of p → q

Example: Find the converse, inverse, and contrapositive of
“It is raining is a sufficient condition for my not going to town.”
Solution:
converse: If I do not go to town, then it is raining.
inverse: If it is not raining, then I will go to town.
contrapositive: If I go to town, then it is not raining.

How do the converse, contrapositive, and inverse relate to p → q ?
Clicker

1 converse ≡ contrapositive ?
2 converse ≡ inverse ?
3 contrapositive ≡ inverse ?

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 1.1-1.3 10 / 21



Biconditional
If p and q are propositions, then the biconditional proposition p ↔ q
has this truth table

p q p ↔q 

T T T

T F F

F T F

F F T

p ↔ q also reads as
p if and only if q
p iff q.
p is necessary and sufficient for q
if p then q, and conversely
p implies q, and vice-versa
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Precedence of Logical Operators

1 ¬
2 ∧
3 ∨
4 →
5 ↔

Thus p ∨ q → ¬r is equivalent to (p ∨ q)→ ¬r .
If the intended meaning is p ∨ (q → ¬r) then parentheses must be
used.

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 1.1-1.3 12 / 21



Satisfiability, Tautology, Contradiction

A proposition is
satisfiable, if its truth table contains true at least once. Example:
p ∧ q.
a tautology, if it is always true. Example: p ∨ ¬p.
a contradiction, if it always false. Example: p ∧ ¬p.
a contingency, if it is neither a tautology nor a contradiction.
Example: p.
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Logical Equivalence

Definition
Two compound propositions p and q are logically equivalent if the
columns in a truth table giving their truth values agree.
This is written as p ≡ q.

It is easy to show:

Fact
p ≡ q if and only if p ↔ q is a tautology.
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De Morgan’s Laws

¬(p ∧ q) ≡ ¬p ∨ ¬q
¬(p ∨ q) ≡ ¬p ∧ ¬q

Truth table proving De Morgan’s second law.

p q ¬p ¬q (p∨q) ¬(p∨q) ¬p∧¬q

T T F F T F F

T F F T T F F

F T T F T F F

F F T T F T T

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 1.1-1.3 15 / 21



Important Logical Equivalences

Domination laws: p ∨ T ≡ T, p ∧ F ≡ F
Identity laws: p ∧ T ≡ p, p ∨ F ≡ p
Idempotent laws: p ∧ p ≡ p, p ∨ p ≡ p
Double negation law: ¬(¬p) ≡ p
Negation laws: p ∨ ¬p ≡ T, p ∧ ¬p ≡ F

The first of the Negation laws is also called “law of excluded middle”.
Latin: “tertium non datur”.
Commutative laws: p ∧ q ≡ q ∧ p, p ∨ q ≡ q ∨ p
Associative laws: (p ∧ q) ∧ r ≡ p ∧ (q ∧ r)

(p ∨ q) ∨ r ≡ p ∨ (q ∨ r)
Distributive laws: p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)
Absorption laws: p ∨ (p ∧ q) ≡ p, p ∧ (p ∨ q) ≡ p
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More Logical Equivalences
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A Proof in Propositional Logic

To prove: ¬(p ∨ (¬p ∧ q)) ≡ ¬p ∧ ¬q

¬(p ∨ (¬p ∧ q)) ≡ ¬p ∧ ¬(¬p ∧ q) by De Morgan’s 2nd law
≡ ¬p ∧ (¬(¬p) ∨ ¬q) by De Morgan’s first law
≡ ¬p ∧ (p ∨ ¬q) by the double negation law
≡ (¬p ∧ p) ∨ (¬p ∧ ¬q) by the 2nd distributive law
≡ F ∨ (¬p ∧ ¬q) because ¬p ∧ p ≡ F
≡ (¬p ∧ ¬q) ∨ F by commutativity of disj.
≡ ¬p ∧ ¬q by the identity law for F
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Conjunctive and Disjunctive Normal Form

A literal is either a propositional variable, or the negation of one.
Examples: p, ¬p.
A clause is a disjunction of literals.
Example: p ∨ ¬q ∨ r .
A formula in conjunctive normal form (CNF) is a conjunction of
clauses.
Example: (p ∨ ¬q ∨ r) ∧ (¬p ∨ ¬r)

Similarly, one defines formulae in disjunctive normal form (DNF) by
swapping the words ‘conjunction’ and ‘disjunction’ in the definitions
above.
Example: (¬p ∧ q ∧ r) ∨ (¬q ∧ ¬r) ∨ (p ∧ r).
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Transformation into Conjunctive Normal Form

Fact
For every propositional formula one can construct an equivalent one in
conjunctive normal form.

1 Express all other operators by conjunction, disjunction and
negation.

2 Push negations inward by De Morgan’s laws and the double
negation law until negations appear only in literals.

3 Use the commutative, associative and distributive laws to obtain
the correct form.

4 Simplify with domination, identity, idempotent, and negation laws.

(A similar construction can be done to transform formulae into
disjunctive normal form.)
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Example: Transformation into CNF
Transform the following formula into CNF.

¬(p → q) ∨ (r → p)

1 Express implication by disjunction and negation.

¬(¬p ∨ q) ∨ (¬r ∨ p)
2 Push negation inwards by De Morgan’s laws and double negation.

(p ∧ ¬q) ∨ (¬r ∨ p)
3 Convert to CNF by associative and distributive laws.

(p ∨ ¬r ∨ p) ∧ (¬q ∨ ¬r ∨ p)
4 Optionally simplify by commutative and idempotent laws.

(p ∨ ¬r) ∧ (¬q ∨ ¬r ∨ p)

and by commutative and absorbtion laws

(p ∨ ¬r)
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