
INTRODUCTION TO RATIONAL CHEREDNIK ALGEBRAS

YI SUN

Abstract. These are notes for a talk in the MIT-Northeastern Spring 2015 Graduate Representation Theory
Seminar. The main source is [BR14].
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1. Definition of rational Cherednik algebra

1.1. Complex reflection groups. A groupW is a complex reflection group if it is equipped with a reflection
representation V of dimension n and generated by a set of reflections {s1, . . . , sd} for which

dim(si − idV ) = 1.

Let Ref(W ) denote the set of reflections of W , and let ε : W → C× be the composition W → GL(V )
det→ C×.

For s ∈ Ref(W ), choose elements αs ∈ V ∗ and α∨s ∈ V so that

Im(s− idV ) = C · α∨s Im(s− idV ∗) = C · αs.

Note that this implies ker(s− idV ) = ker(αs) and ker(s− idV ∗) = ker(α∨s ).

1.2. Invariants of complex reflection groups. The ring of functions C[V ] admits a representation of W .
Its W -invariants admit the following description.

Theorem 1.1 (Shephard-Todd, Chevalley). The algebra of invariants C[V ]W is a polynomial ring generated
by homogeneous elements of degree d1, . . . , dn so that

|W | = d1 · · · dn and |Ref(W )| =
∑
i

(di − 1).
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1.3. The definition of the rational Cherednik algebra. Let C be the vector space of maps Ref(W )→ C
which are constant on conjugacy classes, and let C̃ = C× C. This implies that

C[C̃] = C[T, (Cs)s∈Ref(W )/W ],

where T is projection to C and Cs evaluation at s ∈ Ref(W ).

Definition 1.2. The generic rational Cherednik algebra is the C[C̃]-algebra H which is the quotient of

C[C̃]⊗ T (V ⊕ V ∗) oC[W ]

by the relations

[x, x′] = [y, y′] = 0

[y, x] = T 〈y, x〉+
∑

s∈Ref(W )

(ε(s)− 1)Cs
〈y, αs〉 · 〈α∨s , x〉
〈α∨s , αs〉

s,

for x, x′ ∈ V ∗ and y, y′ ∈ V .

1.4. Specialization of Cherednik algebras. For (t, c) ∈ C̃, define the specialization Ht,c of H to be

Ht,c := Ct,c ⊗
C[C̃]

H

where C[C̃]→ Ct,c is given by evaluation at (t, c). If c = 0, we recover the trivial examples

H0,0 = C[V ⊕ V ∗] oC[W ] and Ht,0 = Dt(V ) oC[W ],

where Dt(V ) denotes the ring of differential operators on V , defined as the quotient of C[V ⊕ V ∗] by

[x, x′] = 0 [y, y′] = 0 [y, x] = t〈y, x〉.
Define also DT (V ) to be the C[T ] algebra given as the quotient of C[T ]⊗ C[V ⊕ V ∗] by

[x, x′] = 0 [y, y′] = 0 [y, x] = T 〈y, x〉.

2. Basic properties of Cherednik algebras

2.1. Filtration on H. We define a filtration on H by

• H≤−1 = 0;

• H≤0 = C[C̃] · C[V ∗] · C[W ];
• H≤1 = H≤0 · V + H≤0;
• H≤i = (H≤1)i for i ≥ 2.

2.2. Dunkl operators and the PBW theorem. Let V reg = V −
⋃
H H = {v ∈ V | StabW (v) = 1}

so that C[V reg] = C[V ][δ−1]. This implies that DT (V reg) = DT (V )[δ−1]. Denote by Hreg := H[δ−1]. For

y ∈ V , the Dunkl operator Dy is the C[C̃]-linear endomorphism of C[C̃]⊗ C[V ] given by

Dy = T∂y −
∑

s∈Ref(W )

ε(s)Cs〈y, αs〉α−1
s (s− 1) ∈ C[C]⊗DT (V reg) oC[W ].

These operators yield a representation of H on C[C̃]⊗ C[V ].

Proposition 2.1. There is a representation of H on C[C̃] ⊗ C[V ] where V ∗ acts by multiplication, V acts
by Dunkl operators, and W acts by the representation action on V .

Proof. It suffices to check commutation relations involving elements of V . For y ∈ V and x ∈ V ∗, notice
that

[α−1
s s, x] = (ε(s)−1 − 1)

〈α∨s , x〉
〈α∨s , αs〉

s

and therefore

[Dy, x] = T 〈y, x〉+
∑
s

(ε(s)− 1)Cs
〈y, αs〉〈α∨s , x〉
〈α∨s , αs〉

s.

By checking directly, we see that wDyw
−1 = Dw(y). Finally, for y, y′ ∈ V , we have that

[[Dy, Dy′ ], x] = [[Dy, x], Dy′ ]− [[Dy′ , x], Dy],
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where we have

[[Dy, x], Dy′ ] =
∑
s

(ε(s)− 1)Cs
〈y, αs〉〈α∨s , x〉
〈α∨s , αs〉

[s,Dy′ ]

=
∑
s

(ε(s)− 1)2Cs
〈y, αs〉〈y′, αs〉〈α∨s , x〉

〈α∨s , αs〉2
Dα∨s

s

= [[Dy′ , x], Dy],

which implies that [Dy, Dy′ ] commutes with C[V ]. On the other hand, [Dy, Dy′ ] acts by 0 on 1 ∈ C[V ],
hence by 0 on all of C[V ]. Because the action of DT (V reg) on C[V ] is faithful, this implies [Dy, Dy′ ] = 0,
completing the proof. �

Remark. This action is called the polynomial representation of H.

By analyzing the polynomial representation, we are able to obtain a PBW theorem for H.

Proposition 2.2. The linear map

C[C̃]⊗ C[V ]⊗ C[W ]⊗ C[V ∗]
mult→ H

is an isomorphism of C[C̃]-modules.

Proof. The polynomial representation yields a map

Θ : H→ C[C̃]⊗DT (V reg).

Denote by Θreg the extension to Hreg → C[C]⊗DT (V reg). Consider the composition

η : C[C̃]⊗ C[V reg]⊗ C[W ]⊗ C[V ∗]
multreg→ Hreg Θreg

→ C[C]⊗DT (V reg) oC[W ].

Notice that gr(η) is an isomorphism, hence η is an isomorphism. Now, because multreg is surjective by
definition, this implies that it and Θreg are both injections. This implies by restriction that the map

C[C̃]⊗ C[V ]⊗ C[W ]⊗ C[V ∗]
gr(mult)→ grH

is injective, hence an isomorphism, which yields the desired. �

Corollary 2.3. The polynomial representation is faithful.

Proof. The proof of Proposition 2.2 also shows that Θ is injective by restriction from the isomorphism Θreg.

Faithfulness follows because the map DT (V reg) o C[W ] → C[C̃] ⊗ Homk(C[V ],C[V reg]) is injective and the

image of the polynomial representation under this identification lands in C[C̃]⊗ Endk(C[V ]). �

2.3. The center of Ht,c(W ) at t 6= 0. Let Z denote the center of H and Zt,c its specialization.

Proposition 2.4. If t 6= 0, then the polynomial representation of Ht,c is faithful and Zt,c = C.

Proof. Faithfulness follows in the same way as in Corollary 2.3, where we note that the polynomial repre-
sentation of Dt(V ) oC[W ] is faithful only when t 6= 0.

Now, by faithfulness, the polynomial representation gives an embedding Ht,c(W ) ↪→ Dt(V ) o C[W ] '
D(V ) o C[W ] for t 6= 0. Any element of Zt,c must commute with C[V ∗] ⊂ D(V ) o C[W ], hence lie in
C[V ∗]. It is easy to check that no non-constant element of C[V ∗] commutes with all x ∈ V ∗, showing that
Zt,c = C. �

2.4. The spherical Cherednik algebra. The primitive central idempotent of C[W ] is

e =
1

|W |
∑
w∈W

w,

and the C[C̃]-algebra eHe is known as the generic spherical algebra. We denote its specialization by eHt,ce.
By Proposition 2.2, we see that

gr(eHe) = C[C̃]⊗ C[V ⊕ V ∗]W .
We first examine a few properties of the spherical algebra.

Proposition 2.5. The following properties hold:
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(a) eHt,ce is a finitely generated C-algebra without zero divisors;
(b) Ht,ce is a finitely generated right eHt,ce-module;
(c) left multiplication yields an isomorphism Ht,c → End(eHt,ce)op(Ht,ce)

op;

Proof. Properties (a) and (b) follow because they hold for gr(eHt,ce). For property (b), let φ : Ht,c →
End(eHt,ce)op(Ht,ce)

op be the desired morphism. We consider the composition

ψ : grHt,c
gr(φ)→ grEnd(eHt,ce)op(Ht,ce)

op → Endgr(eHt,ce)op(gr(Ht,ce))
op,

where the first map is by left multiplication and the second is an injection1. Recall from the proof of Propo-
sition 2.2 the isomorphism grHt,c ' C[V ⊕ V ∗]oC[W ], under which this map is given by left multiplication

C[V ⊕ V ∗] oC[W ]→ End(e(C[V⊕V ∗]oC[W ])e)op((C[V ⊕ V ∗] oC[W ])e)op,

hence is an isomorphism by Lemma 2.6 applied to X = V ×V ∗ with the action of W , where the codimension
condition holds because the action of W preserves the pairing between V and V ∗. We conclude that ψ is an
isomorphism, hence gr(φ) and φ are, as needed. �

Lemma 2.6. Let W act on a smooth affine variety X, let A = C[X], and let R = A o C[W ]. Let
Xreg = {x ∈ X | StabW (x) = 1}. If codim(X −Xreg) ≥ 2 in each connected component, then the morphism
R→ End(AW )op(A)op is an isomorphism.

Proof. We claim that the morphism is injective even if the codimension condition does not hold. Because
Xreg is Zariski dense, we may localize to C[Xreg] to check injectivity, so we may assume that W acts freely
on X. In this case, choose

∑
i fi ⊗ wi in the kernel so that

∑
i fiwi(f) = 0 for f ∈ A. Because W acts

freely on X, for any x and zi ∈ C we may find some function f ∈ A so that f(w−1
i · x) = zi, meaning that∑

i fi(x)zi = 0, whence we conclude fi = 0, yielding injectivity.
If W acts freely on all of X, R and End(AW )op(A)op are both AW -algebras of rank |W |2, so injectivity

implies surjectivity. For surjectivity in general, for any f ∈ End(AW )op(A)op, cover Xreg by affine open sets

Xj . On each Xj , we may choose some
∑
i a
j
i ·wi ∈ C[Xreg]oC[W ] with aji ∈ C[Xj ] and wi ∈W which gives

rise to the restriction of f to Xj . On Xj1 ∩Xj2 , the restriction of
∑
i a
j1
i · wi and

∑
i a
j2
i · wi gives rise to

the restriction of f to Xj1 ∩Xj2 , hence their restrictions are equal. Therefore, the family of functions {aji}
glue to a function ai on Xreg for which

∑
i ai · wi ∈ C[Xreg] o C[W ] gives rise to f |Xreg . Each ai is regular

in codimension 2, hence regular by Hartog’s theorem. Thus
∑
i ai · wi lies in R, finishing the proof. �

2.5. The Satake isomorphism. For the rest of the talk, we work in the specialization t = 0. Our goal will
be to prove the Satake isomorphism relating Z0,c and eH0,ce.

Theorem 2.7 (Satake isomorphism). The map z 7→ z · e is an isomorphism of algebras Z0,c → eH0,ce.

Lemma 2.8. If e is an idempotent of a ring A and left multiplication gives an isomorphism

A→ End(eAe)op(Ae)op,

then the map Z(A)→ Z(eAe) given by a 7→ ae is an isomorphism.

Proof. Notice that we have eAe = EndA(Ae) by definition. Therefore, left multiplication on Ae yields a map
α : Z(A) → Z(eAe) so that α(z) = ze implies zm = mα(z) and by the given right multiplication yields a
map β : Z(eAe) → Z(A) so that mz = β(z)m. For z ∈ Z(A), we then have that zm = β(α(z))m, so that
β ◦ α = id because the left multiplication is faithful. Similarly, we find that α ◦ β = id. �

Proof of Theorem 2.7. By Proposition 2.5(c) and Lemma 2.8, we have Z0,c ' Z(eH0,ce), so we only need
show eH0,ce is commutative. The Dunkl operators at t = 0 yield an injection H0,c → C[V reg ⊕ V ∗] oC[W ]
which restricts to an injection eH0,ce→ C[V reg⊕V ∗]W with the latter commutative, yielding the claim. �
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1If M and N are filtered modules, over a filtered ring A, we filter HomA(M,N) by HomA(M,N)≤i = {f ∈ HomA(M,N) |
f(M≤j) ⊂ N≤j+i}. There is a map grHomA(M,N) → Homgr(A)(gr(M), gr(N)) which sends [fi] ∈ griHomA(M,N) to(

[mj ] 7→ [fi(m
j)] ∈ gri+j(N)

)
. We apply this construction with A = eHt,ce and M = N = Ht,ce.


