INTRODUCTION TO RATIONAL CHEREDNIK ALGEBRAS

YI SUN

ABSTRACT. These are notes for a talk in the MIT-Northeastern Spring 2015 Graduate Representation Theory Seminar. The main source is [BR14].

Contents

1. Definition of rational Cherednik algebra	1
1.1. Complex reflection groups	1
1.2. Invariants of complex reflection groups	1
1.3. The definition of the rational Cherednik algebra	2
1.4. Specialization of Cherednik algebras	2
2. Basic properties of Cherednik algebras	2
2.1. Filtration on H	2
2.2. Dunkl operators and the PBW theorem	2
2.3. The center of $\mathbf{H}_{t,c}(W)$ at $t \neq 0$	3
2.4. The spherical Cherednik algebra	3
2.5. The Satake isomorphism	4
References	4

1. Definition of rational Cherednik Algebra

1.1. Complex reflection groups. A group W is a complex reflection group if it is equipped with a reflection representation V of dimension n and generated by a set of reflections $\{s_1, \ldots, s_d\}$ for which

$$\dim(s_i - \mathrm{id}_V) = 1.$$

Let $\operatorname{Ref}(W)$ denote the set of reflections of W, and let $\varepsilon : W \to \mathbb{C}^{\times}$ be the composition $W \to GL(V) \xrightarrow{\det} \mathbb{C}^{\times}$. For $s \in \operatorname{Ref}(W)$, choose elements $\alpha_s \in V^*$ and $\alpha_s^{\vee} \in V$ so that

$$\operatorname{Im}(s - \operatorname{id}_V) = \mathbb{C} \cdot \alpha_s^{\vee} \qquad \operatorname{Im}(s - \operatorname{id}_{V^*}) = \mathbb{C} \cdot \alpha_s.$$

Note that this implies $\ker(s - \mathrm{id}_V) = \ker(\alpha_s)$ and $\ker(s - \mathrm{id}_{V^*}) = \ker(\alpha_s^{\vee})$.

1.2. Invariants of complex reflection groups. The ring of functions $\mathbb{C}[V]$ admits a representation of W. Its W-invariants admit the following description.

Theorem 1.1 (Shephard-Todd, Chevalley). The algebra of invariants $\mathbb{C}[V]^W$ is a polynomial ring generated by homogeneous elements of degree d_1, \ldots, d_n so that

$$|W| = d_1 \cdots d_n$$
 and $|\operatorname{Ref}(W)| = \sum_i (d_i - 1).$

Date: February 4, 2015.

YI SUN

1.3. The definition of the rational Cherednik algebra. Let \mathcal{C} be the vector space of maps $\operatorname{Ref}(W) \to \mathbb{C}$ which are constant on conjugacy classes, and let $\widetilde{\mathcal{C}} = \mathbb{C} \times \mathcal{C}$. This implies that

$$\mathbb{C}[\mathcal{C}] = \mathbb{C}[T, (C_s)_{s \in \operatorname{Ref}(W)/W}]_{s \in \operatorname{Ref}(W)/W}]_{s \in \operatorname{Ref}(W)/W}$$

where T is projection to \mathbb{C} and C_s evaluation at $s \in \operatorname{Ref}(W)$.

Definition 1.2. The generic rational Cherednik algebra is the $\mathbb{C}[\widetilde{\mathcal{C}}]$ -algebra **H** which is the quotient of

$$\mathbb{C}[\mathcal{C}] \otimes T(V \oplus V^*) \rtimes \mathbb{C}[W]$$

by the relations

$$\begin{split} [x,x'] &= [y,y'] = 0\\ [y,x] &= T\langle y,x\rangle + \sum_{s\in \operatorname{Ref}(W)} (\varepsilon(s)-1)C_s \frac{\langle y,\alpha_s\rangle \cdot \langle \alpha_s^{\vee},x\rangle}{\langle \alpha_s^{\vee},\alpha_s\rangle} s, \end{split}$$

for $x, x' \in V^*$ and $y, y' \in V$.

1.4. Specialization of Cherednik algebras. For $(t, c) \in \widetilde{C}$, define the specialization $\mathbf{H}_{t,c}$ of \mathbf{H} to be $\mathbf{H}_{t,c} := \mathbb{C}_{t,c} \underset{\mathbb{C}[\widetilde{C}]}{\otimes} \mathbf{H}$

where $\mathbb{C}[\widetilde{\mathcal{C}}] \to \mathbb{C}_{t,c}$ is given by evaluation at (t,c). If c = 0, we recover the trivial examples

$$\mathbf{H}_{0,0} = \mathbb{C}[V \oplus V^*] \rtimes \mathbb{C}[W] \qquad \text{and} \qquad \mathbf{H}_{t,0} = \mathcal{D}_t(V) \rtimes \mathbb{C}[W]$$

where $\mathcal{D}_t(V)$ denotes the ring of differential operators on V, defined as the quotient of $\mathbb{C}[V \oplus V^*]$ by

$$[x, x'] = 0 \qquad [y, y'] = 0 \qquad [y, x] = t \langle y, x \rangle.$$

Define also $\mathcal{D}_T(V)$ to be the $\mathbb{C}[T]$ algebra given as the quotient of $\mathbb{C}[T] \otimes \mathbb{C}[V \oplus V^*]$ by

$$[x, x'] = 0 \qquad [y, y'] = 0 \qquad [y, x] = T\langle y, x \rangle.$$

2. Basic properties of Cherednik Algebras

2.1. Filtration on H. We define a filtration on H by

•
$$\mathbf{H}^{\leq -1} = 0;$$

• $\mathbf{H}^{\leq 0} = \mathbb{C}[\widetilde{\widetilde{C}}] \cdot \mathbb{C}[V^*] \cdot \mathbb{C}[W];$

•
$$\mathbf{H}^{\leq 1} = \mathbf{H}^{\leq 0} \cdot V + \mathbf{H}^{\leq 0};$$

•
$$\mathbf{H}^{\leq i} = (\mathbf{H}^{\leq 1})^i$$
 for $i \geq 2$.

2.2. Dunkl operators and the PBW theorem. Let $V^{\text{reg}} = V - \bigcup_H H = \{v \in V \mid \text{Stab}_W(v) = 1\}$ so that $\mathbb{C}[V^{\text{reg}}] = \mathbb{C}[V][\delta^{-1}]$. This implies that $\mathcal{D}_T(V^{\text{reg}}) = \mathcal{D}_T(V)[\delta^{-1}]$. Denote by $\mathbf{H}^{\text{reg}} := \mathbf{H}[\delta^{-1}]$. For $y \in V$, the Dunkl operator D_y is the $\mathbb{C}[\widetilde{\mathcal{C}}]$ -linear endomorphism of $\mathbb{C}[\widetilde{\mathcal{C}}] \otimes \mathbb{C}[V]$ given by

$$D_y = T\partial_y - \sum_{s \in \operatorname{Ref}(W)} \varepsilon(s)C_s \langle y, \alpha_s \rangle \alpha_s^{-1}(s-1) \in \mathbb{C}[\mathcal{C}] \otimes \mathcal{D}_T(V^{\operatorname{reg}}) \rtimes \mathbb{C}[W]$$

These operators yield a representation of **H** on $\mathbb{C}[\widetilde{\mathcal{C}}] \otimes \mathbb{C}[V]$.

Proposition 2.1. There is a representation of **H** on $\mathbb{C}[\tilde{\mathcal{C}}] \otimes \mathbb{C}[V]$ where V^* acts by multiplication, V acts by Dunkl operators, and W acts by the representation action on V.

Proof. It suffices to check commutation relations involving elements of V. For $y \in V$ and $x \in V^*$, notice that

$$[\alpha_s^{-1}s, x] = (\varepsilon(s)^{-1} - 1) \frac{\langle \alpha_s^{\vee}, x \rangle}{\langle \alpha_s^{\vee}, \alpha_s \rangle} s$$

and therefore

$$[D_y, x] = T \langle y, x \rangle + \sum_s (\varepsilon(s) - 1) C_s \frac{\langle y, \alpha_s \rangle \langle \alpha_s^{\vee}, x \rangle}{\langle \alpha_s^{\vee}, \alpha_s \rangle} s$$

By checking directly, we see that $wD_yw^{-1} = D_{w(y)}$. Finally, for $y, y' \in V$, we have that

$$[[D_y, D_{y'}], x] = [[D_y, x], D_{y'}] - [[D_{y'}, x], D_y]$$

where we have

$$\begin{split} [[D_y, x], D_{y'}] &= \sum_s (\varepsilon(s) - 1) C_s \frac{\langle y, \alpha_s \rangle \langle \alpha_s^{\vee}, x \rangle}{\langle \alpha_s^{\vee}, \alpha_s \rangle} [s, D_{y'}] \\ &= \sum_s (\varepsilon(s) - 1)^2 C_s \frac{\langle y, \alpha_s \rangle \langle y', \alpha_s \rangle \langle \alpha_s^{\vee}, x \rangle}{\langle \alpha_s^{\vee}, \alpha_s \rangle^2} D_{\alpha_s^{\vee}} s \\ &= [[D_{y'}, x], D_y], \end{split}$$

which implies that $[D_y, D_{y'}]$ commutes with $\mathbb{C}[V]$. On the other hand, $[D_y, D_{y'}]$ acts by 0 on $1 \in \mathbb{C}[V]$, hence by 0 on all of $\mathbb{C}[V]$. Because the action of $\mathcal{D}_T(V^{\text{reg}})$ on $\mathbb{C}[V]$ is faithful, this implies $[D_y, D_{y'}] = 0$, completing the proof.

Remark. This action is called the polynomial representation of **H**.

By analyzing the polynomial representation, we are able to obtain a PBW theorem for **H**.

Proposition 2.2. The linear map

$$\mathbb{C}[\widetilde{\mathcal{C}}] \otimes \mathbb{C}[V] \otimes \mathbb{C}[W] \otimes \mathbb{C}[V^*] \stackrel{\text{mult}}{\to} \mathbf{H}$$

is an isomorphism of $\mathbb{C}[\widetilde{\mathcal{C}}]$ -modules.

Proof. The polynomial representation yields a map

$$\Theta: \mathbf{H} \to \mathbb{C}[\widetilde{\mathcal{C}}] \otimes \mathcal{D}_T(V^{\operatorname{reg}})$$

Denote by Θ^{reg} the extension to $\mathbf{H}^{\text{reg}} \to \mathbb{C}[\mathcal{C}] \otimes \mathcal{D}_T(V^{\text{reg}})$. Consider the composition

$$\eta: \mathbb{C}[\widetilde{\mathcal{C}}] \otimes \mathbb{C}[V^{\mathrm{reg}}] \otimes \mathbb{C}[W] \otimes \mathbb{C}[V^*] \xrightarrow{\mathrm{mult}^{\mathrm{reg}}} \mathbf{H}^{\mathrm{reg}} \xrightarrow{\Theta^{\mathrm{reg}}} \mathbb{C}[\mathcal{C}] \otimes \mathcal{D}_T(V^{\mathrm{reg}}) \rtimes \mathbb{C}[W].$$

Notice that $gr(\eta)$ is an isomorphism, hence η is an isomorphism. Now, because mult^{reg} is surjective by definition, this implies that it and Θ^{reg} are both injections. This implies by restriction that the map

$$\mathbb{C}[\widetilde{\mathcal{C}}]\otimes\mathbb{C}[V]\otimes\mathbb{C}[W]\otimes\mathbb{C}[V^*]\stackrel{\mathrm{gr(mult)}}{
ightarrow}\mathrm{gr}\mathbf{H}$$

is injective, hence an isomorphism, which yields the desired.

Corollary 2.3. The polynomial representation is faithful.

Proof. The proof of Proposition 2.2 also shows that Θ is injective by restriction from the isomorphism $\Theta^{\text{reg.}}$. Faithfulness follows because the map $\mathcal{D}_T(V^{\text{reg}}) \rtimes \mathbb{C}[W] \to \mathbb{C}[\widetilde{\mathcal{C}}] \otimes \text{Hom}_k(\mathbb{C}[V], \mathbb{C}[V^{\text{reg}}])$ is injective and the image of the polynomial representation under this identification lands in $\mathbb{C}[\widetilde{\mathcal{C}}] \otimes \text{End}_k(\mathbb{C}[V])$.

2.3. The center of $\mathbf{H}_{t,c}(W)$ at $t \neq 0$. Let \mathcal{Z} denote the center of \mathbf{H} and $\mathcal{Z}_{t,c}$ its specialization.

Proposition 2.4. If $t \neq 0$, then the polynomial representation of $\mathbf{H}_{t,c}$ is faithful and $\mathcal{Z}_{t,c} = \mathbb{C}$.

Proof. Faithfulness follows in the same way as in Corollary 2.3, where we note that the polynomial representation of $\mathcal{D}_t(V) \rtimes \mathbb{C}[W]$ is faithful only when $t \neq 0$.

Now, by faithfulness, the polynomial representation gives an embedding $\mathbf{H}_{t,c}(W) \hookrightarrow \mathcal{D}_t(V) \rtimes \mathbb{C}[W] \simeq \mathcal{D}(V) \rtimes \mathbb{C}[W]$ for $t \neq 0$. Any element of $\mathcal{Z}_{t,c}$ must commute with $\mathbb{C}[V^*] \subset \mathcal{D}(V) \rtimes \mathbb{C}[W]$, hence lie in $\mathbb{C}[V^*]$. It is easy to check that no non-constant element of $\mathbb{C}[V^*]$ commutes with all $x \in V^*$, showing that $\mathcal{Z}_{t,c} = \mathbb{C}$.

2.4. The spherical Cherednik algebra. The primitive central idempotent of $\mathbb{C}[W]$ is

$$e = \frac{1}{|W|} \sum_{w \in W} w,$$

and the $\mathbb{C}[\tilde{\mathcal{C}}]$ -algebra $e\mathbf{H}e$ is known as the generic spherical algebra. We denote its specialization by $e\mathbf{H}_{t,c}e$. By Proposition 2.2, we see that

$$\operatorname{gr}(e\mathbf{H}e) = \mathbb{C}[\widetilde{\mathcal{C}}] \otimes \mathbb{C}[V \oplus V^*]^W.$$

We first examine a few properties of the spherical algebra.

Proposition 2.5. The following properties hold:

- (a) $e\mathbf{H}_{t,c}e$ is a finitely generated \mathbb{C} -algebra without zero divisors;
- (b) $\mathbf{H}_{t,c}e$ is a finitely generated right $e\mathbf{H}_{t,c}e$ -module;
- (c) left multiplication yields an isomorphism $\mathbf{H}_{t,c} \to \operatorname{End}_{(e\mathbf{H}_{t,c}e)^{\operatorname{op}}}(\mathbf{H}_{t,c}e)^{\operatorname{op}};$

Proof. Properties (a) and (b) follow because they hold for $\operatorname{gr}(e\mathbf{H}_{t,c}e)$. For property (b), let $\phi : \mathbf{H}_{t,c} \to \operatorname{End}_{(e\mathbf{H}_{t,c}e)^{\operatorname{op}}}(\mathbf{H}_{t,c}e)^{\operatorname{op}}$ be the desired morphism. We consider the composition

$$\psi: \operatorname{gr}\mathbf{H}_{t,c} \xrightarrow{\operatorname{gr}(\phi)} \operatorname{grEnd}_{(e\mathbf{H}_{t,c}e)^{\operatorname{op}}}(\mathbf{H}_{t,c}e)^{\operatorname{op}} \to \operatorname{End}_{\operatorname{gr}(e\mathbf{H}_{t,c}e)^{\operatorname{op}}}(\operatorname{gr}(\mathbf{H}_{t,c}e))^{\operatorname{op}},$$

where the first map is by left multiplication and the second is an injection¹. Recall from the proof of Proposition 2.2 the isomorphism $\operatorname{gr} \mathbf{H}_{t,c} \simeq \mathbb{C}[V \oplus V^*] \rtimes \mathbb{C}[W]$, under which this map is given by left multiplication

$$\mathbb{C}[V \oplus V^*] \rtimes \mathbb{C}[W] \to \operatorname{End}_{(e(\mathbb{C}[V \oplus V^*] \rtimes \mathbb{C}[W])e)^{\operatorname{op}}}((\mathbb{C}[V \oplus V^*] \rtimes \mathbb{C}[W])e)^{\operatorname{op}},$$

hence is an isomorphism by Lemma 2.6 applied to $X = V \times V^*$ with the action of W, where the codimension condition holds because the action of W preserves the pairing between V and V^* . We conclude that ψ is an isomorphism, hence $gr(\phi)$ and ϕ are, as needed.

Lemma 2.6. Let W act on a smooth affine variety X, let $A = \mathbb{C}[X]$, and let $R = A \rtimes \mathbb{C}[W]$. Let $X^{\text{reg}} = \{x \in X \mid \text{Stab}_W(x) = 1\}$. If $\text{codim}(X - X^{\text{reg}}) \ge 2$ in each connected component, then the morphism $R \to \text{End}_{(A^W)^{\text{op}}}(A)^{\text{op}}$ is an isomorphism.

Proof. We claim that the morphism is injective even if the codimension condition does not hold. Because X^{reg} is Zariski dense, we may localize to $\mathbb{C}[X^{\text{reg}}]$ to check injectivity, so we may assume that W acts freely on X. In this case, choose $\sum_i f_i \otimes w_i$ in the kernel so that $\sum_i f_i w_i(f) = 0$ for $f \in A$. Because W acts freely on X, for any x and $z_i \in \mathbb{C}$ we may find some function $f \in A$ so that $f(w_i^{-1} \cdot x) = z_i$, meaning that $\sum_i f_i(x)z_i = 0$, whence we conclude $f_i = 0$, yielding injectivity.

If W acts freely on all of X, R and $\operatorname{End}_{(A^W)^{\operatorname{op}}}(A)^{\operatorname{op}}$ are both A^W -algebras of rank $|W|^2$, so injectivity implies surjectivity. For surjectivity in general, for any $f \in \operatorname{End}_{(A^W)^{\operatorname{op}}}(A)^{\operatorname{op}}$, cover X^{reg} by affine open sets X^j . On each X^j , we may choose some $\sum_i a_i^j \cdot w_i \in \mathbb{C}[X^{\operatorname{reg}}] \rtimes \mathbb{C}[W]$ with $a_i^j \in \mathbb{C}[X^j]$ and $w_i \in W$ which gives rise to the restriction of f to X^j . On $X^{j_1} \cap X^{j_2}$, the restriction of $\sum_i a_i^{j_1} \cdot w_i$ and $\sum_i a_i^{j_2} \cdot w_i$ gives rise to the restriction of f to $X^{j_1} \cap X^{j_2}$, hence their restrictions are equal. Therefore, the family of functions $\{a_i^j\}$ glue to a function a_i on X^{reg} for which $\sum_i a_i \cdot w_i \in \mathbb{C}[X^{\operatorname{reg}}] \rtimes \mathbb{C}[W]$ gives rise to $f|_{X^{\operatorname{reg}}}$. Each a_i is regular in codimension 2, hence regular by Hartog's theorem. Thus $\sum_i a_i \cdot w_i$ lies in R, finishing the proof.

2.5. The Satake isomorphism. For the rest of the talk, we work in the specialization t = 0. Our goal will be to prove the Satake isomorphism relating $\mathcal{Z}_{0,c}$ and $e\mathbf{H}_{0,c}e$.

Theorem 2.7 (Satake isomorphism). The map $z \mapsto z \cdot e$ is an isomorphism of algebras $\mathcal{Z}_{0,c} \to e\mathbf{H}_{0,c}e$.

Lemma 2.8. If e is an idempotent of a ring A and left multiplication gives an isomorphism

$$A \to \operatorname{End}_{(eAe)^{\operatorname{op}}}(Ae)^{\operatorname{op}},$$

then the map $Z(A) \to Z(eAe)$ given by $a \mapsto ae$ is an isomorphism.

Proof. Notice that we have $eAe = \operatorname{End}_A(Ae)$ by definition. Therefore, left multiplication on Ae yields a map $\alpha : Z(A) \to Z(eAe)$ so that $\alpha(z) = ze$ implies $zm = m\alpha(z)$ and by the given right multiplication yields a map $\beta : Z(eAe) \to Z(A)$ so that $mz = \beta(z)m$. For $z \in Z(A)$, we then have that $zm = \beta(\alpha(z))m$, so that $\beta \circ \alpha =$ id because the left multiplication is faithful. Similarly, we find that $\alpha \circ \beta =$ id.

Proof of Theorem 2.7. By Proposition 2.5(c) and Lemma 2.8, we have $\mathcal{Z}_{0,c} \simeq \mathcal{Z}(e\mathbf{H}_{0,c}e)$, so we only need show $e\mathbf{H}_{0,c}e$ is commutative. The Dunkl operators at t = 0 yield an injection $\mathbf{H}_{0,c} \to \mathbb{C}[V^{\mathrm{reg}} \oplus V^*] \rtimes \mathbb{C}[W]$ which restricts to an injection $e\mathbf{H}_{0,c}e \to \mathbb{C}[V^{\mathrm{reg}} \oplus V^*]^W$ with the latter commutative, yielding the claim. \Box

References

[BR14] Cédric Bonnafé and Raphaël Rouquier. Calogero-Moser cells. 2014.

E-mail address: yisun@math.mit.edu

¹If M and N are filtered modules, over a filtered ring A, we filter $\operatorname{Hom}_A(M, N)$ by $\operatorname{Hom}_A(M, N)^{\leq i} = \{f \in \operatorname{Hom}_A(M, N) \mid f(M^{\leq j}) \subset N^{\leq j+i}\}$. There is a map $\operatorname{grHom}_A(M, N) \to \operatorname{Hom}_{\operatorname{gr}(A)}(\operatorname{gr}(M), \operatorname{gr}(N))$ which sends $[f_i] \in \operatorname{gr}^i \operatorname{Hom}_A(M, N)$ to $([m^j] \mapsto [f_i(m^j)] \in \operatorname{gr}^{i+j}(N))$. We apply this construction with $A = e\mathbf{H}_{t,c}e$ and $M = N = \mathbf{H}_{t,c}e$.