INTRODUCTION TO RATIONAL CHEREDNIK ALGEBRAS

YI SUN

ABSTRACT. These are notes for a talk in the MIT-Northeastern Spring 2015 Graduate Representation Theory
Seminar. The main source is [BR14].
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1. DEFINITION OF RATIONAL CHEREDNIK ALGEBRA

1.1. Complex reflection groups. A group W is a complex reflection group if it is equipped with a reflection
representation V of dimension n and generated by a set of reflections {s1,..., sq} for which

dim(s; —idy) = 1.

Let Ref(1V) denote the set of reflections of W, and let € : W — C* be the composition W — GL(V) & cx.

For s € Ref(IW), choose elements a5 € V* and oy € V so that
Im(s —idy) =C - o Im(s —idy«) =C- as.
Note that this implies ker(s — idy ) = ker(a;) and ker(s —idy+) = ker(a).
1.2. Invariants of complex reflection groups. The ring of functions C[V] admits a representation of W.
Its W-invariants admit the following description.

Theorem 1.1 (Shephard-Todd, Chevalley). The algebra of invariants C[V]" is a polynomial ring generated
by homogeneous elements of degree d,...,d, so that

(W|=dy--dy and [Ref(W)| = > (d; - 1).
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1.3. The definition of the rational Cherednik algebra. Let C be the vector space of maps Ref(W) — C
which are constant on conjugacy classes, and let C = C x C. This implies that

C[év] = (C[T7 (CS)SERef(W)/W]7
where T is projection to C and Cy evaluation at s € Ref(W).

Definition 1.2. The generic rational Cherednik algebra is the (C[C~]-algebra H which is the quotient of

ClCleT(Ve V") xCW|
by the relations
[z,2"] = [y.y'] =0
ol =Tlwr)+ Y (els) — ), el 10l
sERef(W)
for x,2’ € V* and y,y € V.

1.4. Specialization of Cherednik algebras. For (¢,c) € CN, define the specialization H; . of H to be
Ht,c = (Ct,c ® H

c[C]

where C[C] — C; . is given by evaluation at (¢,c). If ¢ = 0, we recover the trivial examples
Hy o =C[V @ V] x C[W] and H, o =D,(V) x C[W],
where Dy (V') denotes the ring of differential operators on V, defined as the quotient of C[V & V*] by
[z,2'] =0  [y,y]=0 [y,2] =t(y,).
Define also Dy (V) to be the C[T] algebra given as the quotient of C[T] ® C[V @& V*] by

[z,2'] =0 [y,4']1=0  [y,2] =T{y, ).
2. BASIC PROPERTIES OF CHEREDNIK ALGEBRAS

2.1. Filtration on H. We define a filtration on H by

H="!=0;

H=? = C[C] - C[V*] - C[W];

HS! =H=C.V + H=;

HS! = (HSY)? for 4 > 2.

2.2. Dunkl operators and the PBW theorem. Let V'8 =V — |J, H = {v € V | Stabw(v) = 1}
so that C[V™8] = C[V][6~!]. This implies that Dy (V*®) = Dp(V)[6~!]. Denote by H™® := H[§~!]. For

y € V, the Dunkl operator D, is the C[C]-linear endomorphism of C[C] ® C[V] given by

Dy =Td,— Y e(s)Csly,as)a; (s — 1) € C[C] @ Dp (V™) x C[W].
s€Ref(W)

These operators yield a representation of H on C[C] @ C[V].

Proposition 2.1. There is a representation of H on C[C] ® C[V] where V* acts by multiplication, V acts
by Dunkl operators, and W acts by the representation action on V.

Proof. 1t suffices to check commutation relations involving elements of V. For y € V and x € V*, notice
that

[t s 2] = (e(s) ™ = 1) <<5vv5>>5
and therefore V

By checking directly, we see that wDyw_1 = Dy(y). Finally, for y,3 € V, we have that
[[Dy, Dy], 2] = [[Dy,z], Dy] — [[Dy, 2], Dy,
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where we have

Dy,2], D] = S (e(s) — e, Lemlesn )

v (af, as)

= Y (et -1, i T

V)

= [[Dy’,x]aDy],

which implies that [D,, D,/] commutes with C[V]. On the other hand, [D,, D,/] acts by 0 on 1 € C[V],
hence by 0 on all of C[V]. Because the action of Dp(V**8) on C[V] is faithful, this implies [D,, D,/] = 0,
completing the proof. O

Remark. This action is called the polynomial representation of H.
By analyzing the polynomial representation, we are able to obtain a PBW theorem for H.
Proposition 2.2. The linear map
C[C]® C[V]®© CW]© C[V*] ™' H
is an isomorphism of C[(:’V]—modules.
Proof. The polynomial representation yields a map
©:H — C[C] ® Dr(V'eE).
Denote by O the extension to H**® — C[C] ® Dr(V*¢). Consider the composition
n: C[C] ® C[V™8] @ C[W] ® C[V*] ™5™ Hres O C[c] @ Dr(V™8) x C[W].
Notice that gr(n) is an isomorphism, hence 7 is an isomorphism. Now, because mult™® is surjective by
definition, this implies that it and ©"¢ are both injections. This implies by restriction that the map
C[é] @ C[V] © ClW] @ C[v*] ™ orH
is injective, hence an isomorphism, which yields the desired. O

Corollary 2.3. The polynomial representation is faithful.

Proof. The proof of Proposition 2.2 also shows that O is injective by restriction from the isomorphism ©°&.

Faithfulness follows because the map D (V*®8) x C[W] — C|[C] ® Homg (C[V], C[V™°8]) is injective and the

image of the polynomial representation under this identification lands in C[C] ® Endy(C[V]). O
2.3. The center of H, .(WW) at ¢t # 0. Let Z denote the center of H and Z; . its specialization.
Proposition 2.4. If ¢t # 0, then the polynomial representation of H; . is faithful and 2, . = C.

Proof. Faithfulness follows in the same way as in Corollary 2.3, where we note that the polynomial repre-
sentation of D;(V') x C[W] is faithful only when ¢ # 0.

Now, by faithfulness, the polynomial representation gives an embedding H; .(W) < D,(V) x C[W] =~
D(V) x C[W] for t # 0. Any element of Z; . must commute with C[V*] C D(V) x C[W], hence lie in
C[V*]. It is easy to check that no non-constant element of C[V*] commutes with all 2 € V*, showing that
Zt,c = C D

2.4. The spherical Cherednik algebra. The primitive central idempotent of C[W] is
1
P

and the C[C]-algebra eHe is known as the generic spherical algebra. We denote its specialization by eH, ce.
By Proposition 2.2, we see that

gr(eHe) = C[C] @ C[V & V*]W.
We first examine a few properties of the spherical algebra.

Proposition 2.5. The following properties hold:
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(a) eH, e is a finitely generated C-algebra without zero divisors;

(b) Hy e is a finitely generated right eH, .e-module;

(c) left multiplication yields an isomorphism Hy . — Endcq, ,eyor (Hy,c€)°P;
Proof. Properties (a) and (b) follow because they hold for gr(eH, .e). For property (b), let ¢ : H, . —
End(cn, .eyor (Hy,c€)°P be the desired morphism. We consider the composition

¥ grH . gr—(?) grEnd .,  eyor (Hy €)% — Endg;(eH, .e)or (gr(Hy,ce))°P,

where the first map is by left multiplication and the second is an injection!. Recall from the proof of Propo-
sition 2.2 the isomorphism grH; . ~ C[V & V*] x C[W], under which this map is given by left multiplication
C[V ©® V*] X (C[W] — End(e(C[V@V*]xC[W])e)OP((C[V @ V*] X C[W])G)Op,

hence is an isomorphism by Lemma 2.6 applied to X = V x V* with the action of W, where the codimension
condition holds because the action of W preserves the pairing between V' and V*. We conclude that v is an
isomorphism, hence gr(¢) and ¢ are, as needed. O

Lemma 2.6. Let W act on a smooth affine variety X, let A = C[X], and let R = A x C[W]. Let
X8 = {z € X | Stabw (z) = 1}. If codim(X — X™°€) > 2 in each connected component, then the morphism
R — End(qwyer (A)°P is an isomorphism.

Proof. We claim that the morphism is injective even if the codimension condition does not hold. Because
Xre8 ig Zariski dense, we may localize to C[X*8] to check injectivity, so we may assume that W acts freely
on X. In this case, choose ), fi ® w; in the kernel so that ), fyw;(f) = 0 for f € A. Because W acts
freely on X, for any = and z; € C we may find some function f € A so that f(w; 1. 2) = 2, meaning that
>, fi(x)z; = 0, whence we conclude f; = 0, yielding injectivity.

If W acts freely on all of X, R and End(qwyer(A)°P are both AW _algebras of rank |[W|?, so injectivity
implies surjectivity. For surjectivity in general, for any f € Endqw e (A)°P, cover X'°¢ by affine open sets
X7. On each X7, we may choose some 3, al -w; € C[X™°¢] x C[W] with a! € C[X7] and w; € W which gives
rise to the restriction of f to X7. On X7 N X72, the restriction of _, al' - w; and > al® - w; gives rise to
the restriction of f to X7* N X72, hence their restrictions are equal. Therefore, the family of functions {ag}
glue to a function a; on X™# for which ) a; - w; € C[X"°8] x C[W] gives rise to f|xres. Each a; is regular
in codimension 2, hence regular by Hartog’s theorem. Thus )", a; - w; lies in R, finishing the proof. ]

2.5. The Satake isomorphism. For the rest of the talk, we work in the specialization ¢ = 0. Our goal will
be to prove the Satake isomorphism relating Zy . and eHg e.
Theorem 2.7 (Satake isomorphism). The map z — z - e is an isomorphism of algebras Z, . — eHj ce.
Lemma 2.8. If e is an idempotent of a ring A and left multiplication gives an isomorphism

A — End (e geyor (Ae)P,
then the map Z(A) — Z(eAe) given by a — ae is an isomorphism.

Proof. Notice that we have eAe = End 4 (Ae) by definition. Therefore, left multiplication on Ae yields a map
a: Z(A) — Z(eAe) so that a(z) = ze implies zm = ma(z) and by the given right multiplication yields a
map B : Z(eAe) — Z(A) so that mz = S(z)m. For z € Z(A), we then have that zm = B(a(z))m, so that
B o a =1id because the left multiplication is faithful. Similarly, we find that a o g = id. |

Proof of Theorem 2.7. By Proposition 2.5(c) and Lemma 2.8, we have Z . ~ Z(eHg ce), so we only need
show eHj .e is commutative. The Dunkl operators at ¢ = 0 yield an injection Hy . — C[V™8 @ V*] x C[W]
which restricts to an injection eHg .e — C[V™8 @ V*]W with the latter commutative, yielding the claim. O
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1f M and N are filtered modules, over a filtered ring A, we filter Hom 4 (M, N) by Hom 4 (M, N)S¢ = {f € Hom4 (M, N) |
f(MS3) € NSIFi}. There is a map grHoms (M, N) — Homg,(4)(gr(M),gr(N)) which sends [f;] € gr'Homa(M,N) to

([m]] = [fi(m?)] € gritd (N)) We apply this construction with A = eH; ce and M = N = Hy ce.



