# INTRODUCTION TO RATIONAL CHEREDNIK ALGEBRAS 

YI SUN

[^0]
## Contents

1. Definition of rational Cherednik algebra 1
1.1. Complex reflection groups $\quad 1$
1.2. Invariants of complex reflection groups 1
1.3. The definition of the rational Cherednik algebra 2
1.4. Specialization of Cherednik algebras 2
2. Basic properties of Cherednik algebras 2
2.1. Filtration on $\mathbf{H} \quad 2$
2.2. Dunkl operators and the PBW theorem 2
2.3. The center of $\mathbf{H}_{t, c}(W)$ at $t \neq 0 \quad 3$
2.4. The spherical Cherednik algebra 3
2.5. The Satake isomorphism 4

References 4

## 1. Definition of rational Cherednik algebra

1.1. Complex reflection groups. A group $W$ is a complex reflection group if it is equipped with a reflection representation $V$ of dimension $n$ and generated by a set of reflections $\left\{s_{1}, \ldots, s_{d}\right\}$ for which

$$
\operatorname{dim}\left(s_{i}-\mathrm{id}_{V}\right)=1
$$

Let $\operatorname{Ref}(W)$ denote the set of reflections of $W$, and let $\varepsilon: W \rightarrow \mathbb{C}^{\times}$be the composition $W \rightarrow G L(V) \xrightarrow{\text { det }} \mathbb{C}^{\times}$. For $s \in \operatorname{Ref}(W)$, choose elements $\alpha_{s} \in V^{*}$ and $\alpha_{s}^{\vee} \in V$ so that

$$
\operatorname{Im}\left(s-\mathrm{id}_{V}\right)=\mathbb{C} \cdot \alpha_{s}^{\vee} \quad \operatorname{Im}\left(s-\mathrm{id}_{V^{*}}\right)=\mathbb{C} \cdot \alpha_{s}
$$

Note that this implies $\operatorname{ker}\left(s-\mathrm{id}_{V}\right)=\operatorname{ker}\left(\alpha_{s}\right)$ and $\operatorname{ker}\left(s-\mathrm{id}_{V^{*}}\right)=\operatorname{ker}\left(\alpha_{s}^{\vee}\right)$.
1.2. Invariants of complex reflection groups. The ring of functions $\mathbb{C}[V]$ admits a representation of $W$. Its $W$-invariants admit the following description.

Theorem 1.1 (Shephard-Todd, Chevalley). The algebra of invariants $\mathbb{C}[V]^{W}$ is a polynomial ring generated by homogeneous elements of degree $d_{1}, \ldots, d_{n}$ so that

$$
|W|=d_{1} \cdots d_{n} \text { and }|\operatorname{Ref}(W)|=\sum_{i}\left(d_{i}-1\right)
$$

1.3. The definition of the rational Cherednik algebra. Let $\mathcal{C}$ be the vector space of maps $\operatorname{Ref}(W) \rightarrow \mathbb{C}$ which are constant on conjugacy classes, and let $\widetilde{\mathcal{C}}=\mathbb{C} \times \mathcal{C}$. This implies that

$$
\mathbb{C}[\widetilde{\mathcal{C}}]=\mathbb{C}\left[T,\left(C_{s}\right)_{s \in \operatorname{Ref}(W) / W}\right]
$$

where $T$ is projection to $\mathbb{C}$ and $C_{s}$ evaluation at $s \in \operatorname{Ref}(W)$.
Definition 1.2. The generic rational Cherednik algebra is the $\mathbb{C}[\widetilde{\mathcal{C}}]$-algebra $\mathbf{H}$ which is the quotient of

$$
\mathbb{C}[\widetilde{\mathcal{C}}] \otimes T\left(V \oplus V^{*}\right) \rtimes \mathbb{C}[W]
$$

by the relations

$$
\begin{aligned}
{\left[x, x^{\prime}\right] } & =\left[y, y^{\prime}\right]=0 \\
{[y, x] } & =T\langle y, x\rangle+\sum_{s \in \operatorname{Ref}(W)}(\varepsilon(s)-1) C_{s} \frac{\left\langle y, \alpha_{s}\right\rangle \cdot\left\langle\alpha_{s}^{\vee}, x\right\rangle}{\left\langle\alpha_{s}^{\vee}, \alpha_{s}\right\rangle} s,
\end{aligned}
$$

for $x, x^{\prime} \in V^{*}$ and $y, y^{\prime} \in V$.
1.4. Specialization of Cherednik algebras. For $(t, c) \in \widetilde{\mathcal{C}}$, define the specialization $\mathbf{H}_{t, c}$ of $\mathbf{H}$ to be

$$
\mathbf{H}_{t, c}:=\mathbb{C}_{t, c} \underset{\mathbb{C}[\widetilde{\mathcal{C}}]}{\otimes} \mathbf{H}
$$

where $\mathbb{C}[\widetilde{\mathcal{C}}] \rightarrow \mathbb{C}_{t, c}$ is given by evaluation at $(t, c)$. If $c=0$, we recover the trivial examples

$$
\mathbf{H}_{0,0}=\mathbb{C}\left[V \oplus V^{*}\right] \rtimes \mathbb{C}[W] \quad \text { and } \quad \mathbf{H}_{t, 0}=\mathcal{D}_{t}(V) \rtimes \mathbb{C}[W]
$$

where $\mathcal{D}_{t}(V)$ denotes the ring of differential operators on $V$, defined as the quotient of $\mathbb{C}\left[V \oplus V^{*}\right]$ by

$$
\left[x, x^{\prime}\right]=0 \quad\left[y, y^{\prime}\right]=0 \quad[y, x]=t\langle y, x\rangle
$$

Define also $\mathcal{D}_{T}(V)$ to be the $\mathbb{C}[T]$ algebra given as the quotient of $\mathbb{C}[T] \otimes \mathbb{C}\left[V \oplus V^{*}\right]$ by

$$
\left[x, x^{\prime}\right]=0 \quad\left[y, y^{\prime}\right]=0 \quad[y, x]=T\langle y, x\rangle
$$

## 2. Basic properties of Cherednik algebras

2.1. Filtration on $\mathbf{H}$. We define a filtration on $\mathbf{H}$ by

- $\mathbf{H}^{\leq-1}=0$;
- $\mathbf{H}^{\leq 0}=\mathbb{C}[\widetilde{\mathcal{C}}] \cdot \mathbb{C}\left[V^{*}\right] \cdot \mathbb{C}[W] ;$
- $\mathbf{H}^{\leq 1}=\mathbf{H}^{\leq 0} \cdot V+\mathbf{H}^{\leq 0}$;
- $\mathbf{H} \leq i=\left(\mathbf{H}^{\leq 1}\right)^{i}$ for $i \geq 2$.
2.2. Dunkl operators and the PBW theorem. Let $V^{\text {reg }}=V-\bigcup_{H} H=\left\{v \in V \mid \operatorname{Stab}_{W}(v)=1\right\}$ so that $\mathbb{C}\left[V^{\mathrm{reg}}\right]=\mathbb{C}[V]\left[\delta^{-1}\right]$. This implies that $\mathcal{D}_{T}\left(V^{\mathrm{reg}}\right)=\mathcal{D}_{T}(V)\left[\delta^{-1}\right]$. Denote by $\mathbf{H}^{\text {reg }}:=\mathbf{H}\left[\delta^{-1}\right]$. For $y \in V$, the Dunkl operator $D_{y}$ is the $\mathbb{C}[\widetilde{\mathcal{C}}]$-linear endomorphism of $\mathbb{C}[\widetilde{\mathcal{C}}] \otimes \mathbb{C}[V]$ given by

$$
D_{y}=T \partial_{y}-\sum_{s \in \operatorname{Ref}(W)} \varepsilon(s) C_{s}\left\langle y, \alpha_{s}\right\rangle \alpha_{s}^{-1}(s-1) \in \mathbb{C}[\mathcal{C}] \otimes \mathcal{D}_{T}\left(V^{\mathrm{reg}}\right) \rtimes \mathbb{C}[W]
$$

These operators yield a representation of $\mathbf{H}$ on $\mathbb{C}[\widetilde{\mathcal{C}}] \otimes \mathbb{C}[V]$.
Proposition 2.1. There is a representation of $\mathbf{H}$ on $\mathbb{C}[\widetilde{\mathcal{C}}] \otimes \mathbb{C}[V]$ where $V^{*}$ acts by multiplication, $V$ acts by Dunkl operators, and $W$ acts by the representation action on $V$.

Proof. It suffices to check commutation relations involving elements of $V$. For $y \in V$ and $x \in V^{*}$, notice that

$$
\left[\alpha_{s}^{-1} s, x\right]=\left(\varepsilon(s)^{-1}-1\right) \frac{\left\langle\alpha_{s}^{\vee}, x\right\rangle}{\left\langle\alpha_{s}^{\vee}, \alpha_{s}\right\rangle} s
$$

and therefore

$$
\left[D_{y}, x\right]=T\langle y, x\rangle+\sum_{s}(\varepsilon(s)-1) C_{s} \frac{\left\langle y, \alpha_{s}\right\rangle\left\langle\alpha_{s}^{\vee}, x\right\rangle}{\left\langle\alpha_{s}^{\vee}, \alpha_{s}\right\rangle} s .
$$

By checking directly, we see that $w D_{y} w^{-1}=D_{w(y)}$. Finally, for $y, y^{\prime} \in V$, we have that

$$
\left[\left[D_{y}, D_{y^{\prime}}\right], x\right]=\left[\left[D_{y}, x\right], D_{y^{\prime}}\right]-\left[\left[D_{y^{\prime}}, x\right], D_{y}\right]
$$

where we have

$$
\begin{aligned}
{\left[\left[D_{y}, x\right], D_{y^{\prime}}\right] } & =\sum_{s}(\varepsilon(s)-1) C_{s} \frac{\left\langle y, \alpha_{s}\right\rangle\left\langle\alpha_{s}^{\vee}, x\right\rangle}{\left\langle\alpha_{s}^{\vee}, \alpha_{s}\right\rangle}\left[s, D_{y^{\prime}}\right] \\
& =\sum_{s}(\varepsilon(s)-1)^{2} C_{s} \frac{\left\langle y, \alpha_{s}\right\rangle\left\langle y^{\prime}, \alpha_{s}\right\rangle\left\langle\alpha_{s}^{\vee}, x\right\rangle}{\left\langle\alpha_{s}^{\vee}, \alpha_{s}\right\rangle^{2}} D_{\alpha_{s}^{\vee}} s \\
& =\left[\left[D_{y^{\prime}}, x\right], D_{y}\right],
\end{aligned}
$$

which implies that $\left[D_{y}, D_{y^{\prime}}\right]$ commutes with $\mathbb{C}[V]$. On the other hand, $\left[D_{y}, D_{y^{\prime}}\right]$ acts by 0 on $1 \in \mathbb{C}[V]$, hence by 0 on all of $\mathbb{C}[V]$. Because the action of $\mathcal{D}_{T}\left(V^{\mathrm{reg}}\right)$ on $\mathbb{C}[V]$ is faithful, this implies $\left[D_{y}, D_{y^{\prime}}\right]=0$, completing the proof.

Remark. This action is called the polynomial representation of $\mathbf{H}$.
By analyzing the polynomial representation, we are able to obtain a PBW theorem for $\mathbf{H}$.
Proposition 2.2. The linear map

$$
\mathbb{C}[\widetilde{\mathcal{C}}] \otimes \mathbb{C}[V] \otimes \mathbb{C}[W] \otimes \mathbb{C}\left[V^{*}\right] \xrightarrow{\text { mult }} \mathbf{H}
$$

is an isomorphism of $\mathbb{C}[\widetilde{\mathcal{C}}]$-modules.
Proof. The polynomial representation yields a map

$$
\Theta: \mathbf{H} \rightarrow \mathbb{C}[\widetilde{\mathcal{C}}] \otimes \mathcal{D}_{T}\left(V^{\mathrm{reg}}\right)
$$

Denote by $\Theta^{\text {reg }}$ the extension to $\mathbf{H}^{\text {reg }} \rightarrow \mathbb{C}[\mathcal{C}] \otimes \mathcal{D}_{T}\left(V^{\text {reg }}\right)$. Consider the composition

$$
\eta: \mathbb{C}[\widetilde{\mathcal{C}}] \otimes \mathbb{C}\left[V^{\mathrm{reg}}\right] \otimes \mathbb{C}[W] \otimes \mathbb{C}\left[V^{*}\right] \xrightarrow{\text { mult } \mathrm{reg}} \mathbf{H}^{\mathrm{reg}} \xrightarrow{\Theta^{\mathrm{reg}}} \mathbb{C}[\mathcal{C}] \otimes \mathcal{D}_{T}\left(V^{\mathrm{reg}}\right) \rtimes \mathbb{C}[W]
$$

Notice that $\operatorname{gr}(\eta)$ is an isomorphism, hence $\eta$ is an isomorphism. Now, because mult ${ }^{\text {reg }}$ is surjective by definition, this implies that it and $\Theta^{\text {reg }}$ are both injections. This implies by restriction that the map

$$
\mathbb{C}[\widetilde{\mathcal{C}}] \otimes \mathbb{C}[V] \otimes \mathbb{C}[W] \otimes \mathbb{C}\left[V^{*}\right] \xrightarrow{\operatorname{gr}(\text { mult })} \operatorname{gr} \mathbf{H}
$$

is injective, hence an isomorphism, which yields the desired.
Corollary 2.3. The polynomial representation is faithful.
Proof. The proof of Proposition 2.2 also shows that $\Theta$ is injective by restriction from the isomorphism $\Theta^{\mathrm{reg}}$. Faithfulness follows because the map $\mathcal{D}_{T}\left(V^{\text {reg }}\right) \rtimes \mathbb{C}[W] \rightarrow \mathbb{C}[\widetilde{\mathcal{C}}] \otimes \operatorname{Hom}_{k}\left(\mathbb{C}[V], \mathbb{C}\left[V^{\text {reg }}\right]\right)$ is injective and the image of the polynomial representation under this identification lands in $\mathbb{C}[\widetilde{\mathcal{C}}] \otimes \operatorname{End}_{k}(\mathbb{C}[V])$.
2.3. The center of $\mathbf{H}_{t, c}(W)$ at $t \neq 0$. Let $\mathcal{Z}$ denote the center of $\mathbf{H}$ and $\mathcal{Z}_{t, c}$ its specialization.

Proposition 2.4. If $t \neq 0$, then the polynomial representation of $\mathbf{H}_{t, c}$ is faithful and $\mathcal{Z}_{t, c}=\mathbb{C}$.
Proof. Faithfulness follows in the same way as in Corollary 2.3, where we note that the polynomial representation of $\mathcal{D}_{t}(V) \rtimes \mathbb{C}[W]$ is faithful only when $t \neq 0$.

Now, by faithfulness, the polynomial representation gives an embedding $\mathbf{H}_{t, c}(W) \hookrightarrow \mathcal{D}_{t}(V) \rtimes \mathbb{C}[W] \simeq$ $\mathcal{D}(V) \rtimes \mathbb{C}[W]$ for $t \neq 0$. Any element of $\mathcal{Z}_{t, c}$ must commute with $\mathbb{C}\left[V^{*}\right] \subset \mathcal{D}(V) \rtimes \mathbb{C}[W]$, hence lie in $\mathbb{C}\left[V^{*}\right]$. It is easy to check that no non-constant element of $\mathbb{C}\left[V^{*}\right]$ commutes with all $x \in V^{*}$, showing that $\mathcal{Z}_{t, c}=\mathbb{C}$.
2.4. The spherical Cherednik algebra. The primitive central idempotent of $\mathbb{C}[W]$ is

$$
e=\frac{1}{|W|} \sum_{w \in W} w
$$

and the $\mathbb{C}[\widetilde{\mathcal{C}}]$-algebra $e \mathbf{H} e$ is known as the generic spherical algebra. We denote its specialization by $e \mathbf{H}_{t, c} e$. By Proposition 2.2, we see that

$$
\operatorname{gr}(e \mathbf{H} e)=\mathbb{C}[\widetilde{\mathcal{C}}] \otimes \mathbb{C}\left[V \oplus V^{*}\right]^{W} .
$$

We first examine a few properties of the spherical algebra.
Proposition 2.5. The following properties hold:
(a) $e \mathbf{H}_{t, c} e$ is a finitely generated $\mathbb{C}$-algebra without zero divisors;
(b) $\mathbf{H}_{t, c} e$ is a finitely generated right $e \mathbf{H}_{t, c} e$-module;
(c) left multiplication yields an isomorphism $\mathbf{H}_{t, c} \rightarrow \operatorname{End}_{\left(e \mathbf{H}_{t, c} e\right)^{\text {op }}}\left(\mathbf{H}_{t, c} e\right)^{\mathrm{op}}$;

Proof. Properties (a) and (b) follow because they hold for $\operatorname{gr}\left(e \mathbf{H}_{t, c} e\right)$. For property (b), let $\phi: \mathbf{H}_{t, c} \rightarrow$ $\operatorname{End}_{\left(e \mathbf{H}_{t, c} e\right)^{\mathrm{op}}}\left(\mathbf{H}_{t, c} e\right)^{\mathrm{op}}$ be the desired morphism. We consider the composition

$$
\psi: \operatorname{gr}_{t, c} \xrightarrow{\operatorname{gr}(\phi)} \operatorname{grEnd}_{\left(e \mathbf{H}_{t, c} e\right)^{\mathrm{op}}}\left(\mathbf{H}_{t, c} e\right)^{\mathrm{op}} \rightarrow \operatorname{End}_{\operatorname{gr}\left(e \mathbf{H}_{t, c} e\right)^{\mathrm{op}}\left(\operatorname{gr}\left(\mathbf{H}_{t, c} e\right)\right)^{\mathrm{op}}, ~}^{\text {an }}
$$

where the first map is by left multiplication and the second is an injection ${ }^{1}$. Recall from the proof of Proposition 2.2 the isomorphism $\operatorname{gr} \mathbf{H}_{t, c} \simeq \mathbb{C}\left[V \oplus V^{*}\right] \rtimes \mathbb{C}[W]$, under which this map is given by left multiplication

$$
\mathbb{C}\left[V \oplus V^{*}\right] \rtimes \mathbb{C}[W] \rightarrow \operatorname{End}_{\left(e\left(\mathbb{C}\left[V \oplus V^{*}\right] \rtimes \mathbb{C}[W]\right) e\right)^{\mathrm{op}}\left(\left(\mathbb{C}\left[V \oplus V^{*}\right] \rtimes \mathbb{C}[W]\right) e\right)^{\mathrm{op}}, ., ~}^{\text {, }}
$$

hence is an isomorphism by Lemma 2.6 applied to $X=V \times V^{*}$ with the action of $W$, where the codimension condition holds because the action of $W$ preserves the pairing between $V$ and $V^{*}$. We conclude that $\psi$ is an isomorphism, hence $\operatorname{gr}(\phi)$ and $\phi$ are, as needed.

Lemma 2.6. Let $W$ act on a smooth affine variety $X$, let $A=\mathbb{C}[X]$, and let $R=A \rtimes \mathbb{C}[W]$. Let $X^{\mathrm{reg}}=\left\{x \in X \mid \operatorname{Stab}_{W}(x)=1\right\}$. If $\operatorname{codim}\left(X-X^{\mathrm{reg}}\right) \geq 2$ in each connected component, then the morphism $R \rightarrow \operatorname{End}_{\left(A^{W}\right)^{\mathrm{op}}}(A)^{\mathrm{op}}$ is an isomorphism.
Proof. We claim that the morphism is injective even if the codimension condition does not hold. Because $X^{\mathrm{reg}}$ is Zariski dense, we may localize to $\mathbb{C}\left[X^{\mathrm{reg}}\right]$ to check injectivity, so we may assume that $W$ acts freely on $X$. In this case, choose $\sum_{i} f_{i} \otimes w_{i}$ in the kernel so that $\sum_{i} f_{i} w_{i}(f)=0$ for $f \in A$. Because $W$ acts freely on $X$, for any $x$ and $z_{i} \in \mathbb{C}$ we may find some function $f \in A$ so that $f\left(w_{i}^{-1} \cdot x\right)=z_{i}$, meaning that $\sum_{i} f_{i}(x) z_{i}=0$, whence we conclude $f_{i}=0$, yielding injectivity.

If $W$ acts freely on all of $X, R$ and $\operatorname{End}_{\left(A^{W}\right)^{\text {op }}}(A)^{\text {op }}$ are both $A^{W}$-algebras of rank $|W|^{2}$, so injectivity implies surjectivity. For surjectivity in general, for any $f \in \operatorname{End}_{\left(A^{W}\right)^{\mathrm{op}}}(A)^{\mathrm{op}}$, cover $X^{\text {reg }}$ by affine open sets $X^{j}$. On each $X^{j}$, we may choose some $\sum_{i} a_{i}^{j} \cdot w_{i} \in \mathbb{C}\left[X^{\text {reg }}\right] \rtimes \mathbb{C}[W]$ with $a_{i}^{j} \in \mathbb{C}\left[X^{j}\right]$ and $w_{i} \in W$ which gives rise to the restriction of $f$ to $X^{j}$. On $X^{j_{1}} \cap X^{j_{2}}$, the restriction of $\sum_{i} a_{i}^{j_{1}} \cdot w_{i}$ and $\sum_{i} a_{i}^{j_{2}} \cdot w_{i}$ gives rise to the restriction of $f$ to $X^{j_{1}} \cap X^{j_{2}}$, hence their restrictions are equal. Therefore, the family of functions $\left\{a_{i}^{j}\right\}$ glue to a function $a_{i}$ on $X^{\text {reg }}$ for which $\sum_{i} a_{i} \cdot w_{i} \in \mathbb{C}\left[X^{\mathrm{reg}}\right] \rtimes \mathbb{C}[W]$ gives rise to $\left.f\right|_{X^{\text {reg }}}$. Each $a_{i}$ is regular in codimension 2, hence regular by Hartog's theorem. Thus $\sum_{i} a_{i} \cdot w_{i}$ lies in $R$, finishing the proof.
2.5. The Satake isomorphism. For the rest of the talk, we work in the specialization $t=0$. Our goal will be to prove the Satake isomorphism relating $\mathcal{Z}_{0, c}$ and $e \mathbf{H}_{0, c} e$.
Theorem 2.7 (Satake isomorphism). The map $z \mapsto z \cdot e$ is an isomorphism of algebras $\mathcal{Z}_{0, c} \rightarrow e \mathbf{H}_{0, c} e$.
Lemma 2.8. If $e$ is an idempotent of a ring $A$ and left multiplication gives an isomorphism

$$
A \rightarrow \operatorname{End}_{(e A e)^{\mathrm{op}}}(A e)^{\mathrm{op}},
$$

then the map $Z(A) \rightarrow Z(e A e)$ given by $a \mapsto a e$ is an isomorphism.
Proof. Notice that we have $e A e=\operatorname{End}_{A}(A e)$ by definition. Therefore, left multiplication on $A e$ yields a map $\alpha: Z(A) \rightarrow Z(e A e)$ so that $\alpha(z)=z e$ implies $z m=m \alpha(z)$ and by the given right multiplication yields a $\operatorname{map} \beta: Z(e A e) \rightarrow Z(A)$ so that $m z=\beta(z) m$. For $z \in Z(A)$, we then have that $z m=\beta(\alpha(z)) m$, so that $\beta \circ \alpha=$ id because the left multiplication is faithful. Similarly, we find that $\alpha \circ \beta=\mathrm{id}$.

Proof of Theorem 2.7. By Proposition 2.5(c) and Lemma 2.8, we have $\mathcal{Z}_{0, c} \simeq \mathcal{Z}\left(e \mathbf{H}_{0, c} e\right)$, so we only need show $e \mathbf{H}_{0, c} e$ is commutative. The Dunkl operators at $t=0$ yield an injection $\mathbf{H}_{0, c} \rightarrow \mathbb{C}\left[V^{\text {reg }} \oplus V^{*}\right] \rtimes \mathbb{C}[W]$ which restricts to an injection $e \mathbf{H}_{0, c} e \rightarrow \mathbb{C}\left[V^{\mathrm{reg}} \oplus V^{*}\right]^{W}$ with the latter commutative, yielding the claim.

## References

[BR14] Cédric Bonnafé and Raphaël Rouquier. Calogero-Moser cells. 2014.
E-mail address: yisun@math.mit.edu

[^1]
[^0]:    Abstract. These are notes for a talk in the MIT-Northeastern Spring 2015 Graduate Representation Theory Seminar. The main source is [BR14].

[^1]:    ${ }^{1}$ If $M$ and $N$ are filtered modules, over a filtered ring $A$, we filter $\operatorname{Hom}_{A}(M, N)$ by $\operatorname{Hom}_{A}(M, N) \leq i=\left\{f \in \operatorname{Hom}_{A}(M, N) \mid\right.$ $\left.f\left(M^{\leq j}\right) \subset N^{\leq j+i}\right\}$. There is a map $\operatorname{grHom}_{A}(M, N) \rightarrow \operatorname{Hom}_{\operatorname{gr}(A)}(\operatorname{gr}(M), \operatorname{gr}(N))$ which sends $\left[f_{i}\right] \in \operatorname{gr}^{i} \operatorname{Hom}_{A}(M, N)$ to $\left(\left[m^{j}\right] \mapsto\left[f_{i}\left(m^{j}\right)\right] \in \operatorname{gr}^{i+j}(N)\right)$. We apply this construction with $A=e \mathbf{H}_{t, c} e$ and $M=N=\mathbf{H}_{t, c} e$.

