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a b s t r a c t

The use of cone beam computed tomography (CBCT) is growing in the clinical arena due to

its ability to provide 3D information during interventions, its high diagnostic quality (sub-

millimeter resolution), and its short scanning times (60 s). In many situations, the short

scanning time of CBCT is followed by a time-consuming 3D reconstruction. The standard

reconstruction algorithm for CBCT data is the filtered backprojection, which for a volume

of size 2563 takes up to 25 min on a standard system. Recent developments in the area

of Graphic Processing Units (GPUs) make it possible to have access to high-performance

computing solutions at a low cost, allowing their use in many scientific problems. We have

implemented an algorithm for 3D reconstruction of CBCT data using the Compute Unified

Device Architecture (CUDA) provided by NVIDIA (NVIDIA Corporation, Santa Clara, Califor-

nia), which was executed on a NVIDIA GeForce GTX 280. Our implementation results in

improved reconstruction times from minutes, and perhaps hours, to a matter of seconds,
while also giving the clinician the ability to view 3D volumetric data at higher resolutions. We

evaluated our implementation on ten clinical data sets and one phantom data set to observe

if differences occur between CPU and GPU-based reconstructions. By using our approach,

the computation time for 2563 is reduced from 25 min on the CPU to 3.2 s on the GPU. The

GPU reconstruction time for 5123 volumes is 8.5 s.
. Introduction

omputed tomography is one of the most popular modalities
n the clinical arena, but reconstruction of cone beam com-
uted tomography (CBCT) data can be time consuming on a
Please cite this article in press as: P.B. Noël, et al., GPU-based cone beam
doi:10.1016/j.cmpb.2009.08.006

tandard system. Solutions that reduce the turn-around time
ould provide advantages during both diagnostic and treat-
ent interventions, e.g., real-time reconstruction and high

esolution reconstruction.
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The high demand for realism in computer games has
pushed the development of Graphic Processing Units (GPUs).
As a result, the performance of these units themselves are
multiple times higher than the supercomputers of only a
decade ago. Therefore, it is practical to apply the power
of GPUs to problems that exist in the field of medical
computed tomography, Comput. Methods Programs Biomed. (2009),

USA. Tel.: +1 716 400 7535.

imaging.
We use a NVIDIA GeForce GTX 280 which provides high per-

formance for a relatively low cost (US$ 350). The advantage
of a NVIDIA product is that a C-like programming environ-

erved.

dx.doi.org/10.1016/j.cmpb.2009.08.006
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ment, called Compute Unified Device Architecture (CUDA), is
provided.

CUDA has several advantages over traditional low-level
GPU programming languages. For example, it uses the stan-
dard C language, it allows for access to arbitrary addresses
in the device’s memory, it allows user-managed shared mem-
ory (16 kB in size) that can be shared amongst threads, and
it utilizes faster downloads and readbacks to and from the
GPU. However, in comparison to shader-based languages,
CUDA-based implementations are slightly slower. Compared
to traditional CPU calculations, the GPU computations have
some disadvantages. These include no support for recur-
sive functions, bottlenecks due to bandwidth limitations and
latencies between the CPU and the GPU, and the GPU’s devia-
tions from the IEEE 754 standard1, which includes no support
for NaNs.

Since computed tomographic reconstruction is compu-
tationally very demanding, several approaches to speed up
the process have been developed in recent years. The main
achievements have been made using Cell Broadband Engines
[2], Field Programmable Gate Arrays (FPGAs) [3,4], and GPU
[5,6]. A comprehensive summary of the different approaches
is given in [7], where four different approaches are compared
(PC Reference, FPGAs, GPU and Cell). The system parameter
for all techniques are 512 projections, with a projection size
of 10242 and a volume of 5123. The reconstruction times are
as follows: PC 201 s, FPGA 25 s, GPU 37 s, and Cell 17 s. A direct
comparison between the different approaches is difficult since
the architecture of the hardware used, especially for GPUs, is
frequently updated and may include additional new features.

Several groups have worked on implementing CT recon-
structions on GPUs. Over the last decade, the main
contributions in accelerated CT have been made by Mueller
and coworkers [5,8], where different implementations and
programming platforms are used to show the ability of
the graphic accelerator. In [8], a streaming-shader-based CT
framework is presented which pipelines the process; the con-
volution is done on the CPU and the backprojection on the GPU.
A similar implementation by using CUDA for parallel beam
and cone beam is presented in Yang et al. [6]. Reconstruction
of CBCT data from mobile C-arm units by using NVIDIA devices
is presented in [9,10].

Our approach is distinct from the previous work. We
have developed a solution that takes advantage of the avail-
able shared memory, loads all projection images into the
GPU memory, and computes the intensity of each voxel by
backprojecting in parallel. We investigate the limitation and
differences between the reconstruction on GPUs and on CPUs,
which most likely primarily occur as a result of the devia-
tion from the IEEE 754 standard. Since our hardware allows
different GPU architectures, we evaluate our algorithm using
two different architectures, i.e., sm 10 (basic) and sm 13 (dou-
Please cite this article in press as: P.B. Noël, et al., GPU-based cone beam
doi:10.1016/j.cmpb.2009.08.006

ble floating point precision). We monitored the differences
by performing a clinical evaluation of ten animal cases and
one phantom case. Due to the hardware differences between

1 The IEEE Standard for Binary Floating-Point Arithmetic (IEEE
754) is the most widely used standard for floating-point computa-
tion, and is followed by many CPU implementations [1].
Fig. 1 – Systematic drawing of a cone beam system..

GPUs (e.g., clock speed and memory size, and variations in
the system parameters of different computed tomography
modalities), a direct comparison between implementations is
difficult to perform.

2. Method

2.1. Cone beam computed tomography

In this section, we revisit a reconstruction method for CBCT
data as introduced by Feldkamp et al. [11]. Since we use a rota-
tional angiographic system (Toshiba Infinix VSI/02), which is
equipped with a flat panel detector, we only discuss the case
of equally spaced planar detectors.

In Fig. 1, the schematic drawing of the cone beam system
with a planar detector is presented. During acquisition, the
system follows a circular trajectory, with a radius of D placed at
the origin. The detector plane lies perpendicular to the central
axis of the X-ray beam.

The projection image P(·) at angular position � is the line
integral along the X-ray beam. A set of projections are acquired
at t discrete source positions with uniform angular spacing
��. During CBCT, � range is about 210◦ with angular separa-
tions of 2◦. A full rotation is not possible due to mechanical
limitations.

The reconstruction method is formulated as a weighted fil-
tered backprojection. As an initial step, the projection data
are log converted, individually weighted, and ramp filtered
(Pf). Next, the 3D volume is reconstructed by a backprojection.
Let r = [x, y, z] be the 3D position in the volume, and let (u, v)
denote the position of the intersection with the detector plane
of the ray starting from the source and passing through point
r. Therefore, the backprojection is given by:

f (�r) =
∑

�

Pf [u(x, z, �), v(y, z, �), �], (1)
computed tomography, Comput. Methods Programs Biomed. (2009),

where

u = SID × x

ISO − z
, (2)

dx.doi.org/10.1016/j.cmpb.2009.08.006
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Fig. 2 – Systematic drawing defining a sub-row. Different

4: calculate coordinates of voxel in sub-row
ARTICLE
c o m p u t e r m e t h o d s a n d p r o g r a m s

= SID × y

ISO − z
, (3)

ID is the source-to-image distance, and ISO is the source-
o-isocenter distance, where the isocenter is the point about
hich the system rotates. Since u and v usually do not corre-

pond to a discrete pixel position, we use bilinear interpolation
o calculate the value in the image. The computational cost of
one beam computed tomography for a volume of size N3 is
(N4).

.2. GPU-based implementation

.2.1. GPUs
he architecture of the GPU is built for high performance
ecause it is needed for the intensive and highly parallel com-
utations necessary for computer graphics. They are designed
ith more transistors devoted to data processing rather than
ata caching and flow control. More specifically, the GPU is
ell suited to address problems that can be expressed as data-
arallel computations, where the same program or kernel

s executed on many data elements simultaneously. Data-
arallel processing maps data elements to parallel processing
hreads.

For the NVIDIA architecture, the kernel is compiled to the
nstruction set of the device and the resulting program can be
alled by multiple threads. A thread block is a batch of threads
hat can cooperate with each other by efficiently sharing data
sing the fast shared memory and synchronizing their exe-
ution to coordinate memory accesses. There is a maximum
umber of threads that a block can contain. However, blocks
f same dimensionality and size that execute the same kernel
an be batched together into a grid of blocks, so that the total
umber of threads that can be launched to execute a single
ernel is much larger [12].

.2.2. GPU-based 3D computed tomography
he backprojection algorithm is the most computationally

ntensive portion of the reconstruction process. Therefore, we
ill focus on its implementation. However, the first step in the

lgorithm is the logarithmic conversion and filtering of the
rojection images. Both steps are implemented as GPU rou-
ines by using shared memory. As a separate step, the time for
hese operations is reduced from minutes to seconds.

Since the on-board GPU memory is limited, in our case
024 Mb, it is not possible to load both the entire set of projec-
ion images and the full volume into the memory. Therefore,
wo different possibilities exist: either to load the full volume
nd each projection consecutively, or to load all of the pro-
ections and then sub-parts of the volume consecutively. We
ecided to use the second approach for two reasons. First, the
otational angiographic system acquires 106 projection of size
0242 with an angular separation of 2◦ which makes it possible
o load all projections at once, and second, experiments have
hown that this approach performs better in terms of the total
unning time.
Please cite this article in press as: P.B. Noël, et al., GPU-based cone beam
doi:10.1016/j.cmpb.2009.08.006

We present the pseudo-code for our implementation
n Algorithm 1. After filtering, the projection images are
ploaded to the GPU memory as 2D textures, allowing us to
tilize the efficient bilinear interpolation function provided by
sub-rows are backprojected in parallel.

CUDA during the backprojection step. Next, we start a voxel-
based backprojection by first splitting the problem up into
separate slices of the volume, and then separating the slice
into several sub-rows of length 256 or 512 depending on the
volume size, as illustrated in Fig. 2. On the GPU, each slice
translates to a grid that represents each sub-row of voxels,
and each of these sub-rows creates a single block of threads
(one thread for each voxel) on which our kernel will execute.
For each block of threads, we use the shared memory to save
original xyz coordinates of the sub-row, the voxel intensities
of the sub-row (initially set to zero), and the translation and
rotations matrices, which describe the geometric relationship
between the different projection images (determined previ-
ously in a calibration step). The xyz coordinates are calculated
in the following way:

x = TNx × Gx + Tx (4)

y = slice (5)

z = Gy (6)

where TNx is the size of a block of threads (256 or 512), Gx and
Gy are the grid blocks indices, and Tx is the thread index. For
proper projection of a voxel, the thread block index and grid
index must be translated to the correct position in the volume.
In our case, we use a right-handed system to determine the
direction of the coordinate axes.

Algorithm 1. Algorithm for GPU-based backprojection
1: copy all projection into GPU memory as

textures
2: for each slice in volume do
3: initialize voxel intensities of the current

sub-row to zero in shared memory
computed tomography, Comput. Methods Programs Biomed. (2009),

into shared memory
5: copy all rotation and translation matrices

into shared memory
6: for each projection image do

dx.doi.org/10.1016/j.cmpb.2009.08.006
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Table 1 – Results for different volume sizes, where GPU-A is the GPU architecture.

Volume size GPU-A Total [s] Convolution [s] Backprojection [s]
3 2.2 1.0

2.2 2.9
2.2 6.3
2.2 21.7

Fig. 3 – The head phantom used in our evaluation.
256 sm 10 3.2
2563 sm 13 5.1
5123 sm 10 8.5
5123 sm 13 21.7

7: apply rotation and translation matrices to
voxel coordinates

8: project voxel into the image
9: add pixel intensity in image to voxel

intensity
10: end for
11: write sub-row back into volume on host
12: end for

Due to mechanical limitations of the gantry for our cone
beam computed tomography unit, the rotation range is 210◦.
In a short-scan case like this, the introduction of a weighting
function to handle redundant data is needed. Parker intro-
duced such a weighting function for a scan over � plus the
opening angle of the fan [13]. These weighting functions lead
to mathematically exact reconstructions in the continuous
case. Therefore, we implemented these weights and also the
original weights defined by Feldkamp to achieve mathemati-
cally correct reconstructions.

3. Evaluations

For all evaluations, we used a standard system (Intel Core2
Quad, 2.83 GHz, 4 GB of RAM) equipped with a NVIDIA GeForce
GTX 280. The performance profile of the GPU is: 240 Stream
Processors with 1296 MHz Shader Clock which equals a peak
performance of almost 1 TFlops.2

To evaluate the speed up over the CPU provided by the GPU,
we determine total time, convolution time, and the backpro-
jection time. The total time is the sum of convolution and
backprojection time. All results are generated for both archi-
tectures (basic and double floating point precision) to see if
there are numerical or running time differences.

Additionally, we evaluate our algorithm on two different
types of CBCT data, head phantom (Fig. 3) and animal study
data. For both types of data, 106 projections of size 10242 with
an angular separation of 2◦ were acquired. The gantry has a
source-to-image distance of 110 cm, a source-to-isocenter dis-
tance of 75 cm, a pixel size of 0.019 cm, and an angular speed of
50◦/s (dps). Distortion correction of the projections is not nec-
essary since our system is equipped with a flat panel detector.
We compare the intensity profile across the horizontal medial
axes of the center slices from both reconstruction methods.
Please cite this article in press as: P.B. Noël, et al., GPU-based cone beam
doi:10.1016/j.cmpb.2009.08.006

The intensity profile is compared for one animal case and the
head phantom.

For the ten animal cases, we calculate the absolute dif-
ference volume between CPU data, volCPU, and the GPU data,

2 In high performance computing, Flops is an acronym
meaning floating point operations per second, which is a
measure of a computer’s performance.
volGPU, as:

� = ||volCPU − volGPU|| (7)

Next, we determine the arithmetic mean and the standard
deviation for all gray values within �.

4. Results

Table 1 shows the reconstruction time of two different volume
sizes (2563, 5123) and for the two different GPU architectures.
Note, additionally we calculated the transfer time between the
main memory and the GPU memory. The total transfer time for
a 2563 volume and 106 projection images was 0.75 s, i.e., one
fourth of the total reconstruction is devoted to the transfering
of data, which is significant. However, the total reconstruc-
tion time is substantially reduced compared to the standard
CPU times while providing reconstructed volumes of a higher
resolution. Compared to the double precision floating point
architecture (sm 13), the basic architecture (sm 10) results in
a faster reconstruction by up to 60 percent. The overall perfor-
mance of our approach is comparable to existing techniques.
Different types of input data and the frequent release of new
computed tomography, Comput. Methods Programs Biomed. (2009),

GPUs make it difficult to directly compare the results of the
other approaches with our results.

dx.doi.org/10.1016/j.cmpb.2009.08.006
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Fig. 4 – Reconstruction from CPU (left), GPU (middle), and intensity profiles from the CPU-CT in red and from the GPU-CT in
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.1. Head phantom

n Fig. 4, we present the centerslices from the CPU and GPU
econstructions and the intensity profile across the horizon-
al central axis. Both reconstructions are performed in double
oating point precision. Visually, the intensity profiles for both
pproaches are identical in shape and comparable numeri-
ally.

.2. Animal study

n Fig. 5, we show the centerslices from the GPU and the CPU
econstruction and the intensity profile across the central hor-
zontal axis. Both reconstructions are performed in double
oating point precision. Visually, the intensity profiles for both
pproaches are identical in shape and position.

Fig. 6 illustrates the arithmetic mean difference for the ten
ifferent cases. The average arithmetic mean difference over
ll cases is 0.0137 Hounsfield units (HU). In Fig. 7, we present
he RMS difference for all cases. The average RMS difference
ver all cases is 0.3495 HU. All results are for a Hounsfield range
f 1400 HU. These errors are caused by different factors, which
Please cite this article in press as: P.B. Noël, et al., GPU-based cone beam
doi:10.1016/j.cmpb.2009.08.006

ould be a result of the variation from the IEEE 754 standard,
he bilinear interpolation provided by CUDA, or implementa-
ional differences. Since the earlier results are all generated
y using double floating point precision, we performed one

ig. 5 – Reconstruction from CPU (left), GPU (middle), and intensi
reen (right). (For interpretation of the references to colour in this
he article.)
figure legend, the reader is referred to the web version of

reconstruction with both architectures sm 10 and sm 13. Fur-
ther, we calculated the arithmetic mean difference and the
RMS difference between the absolute difference of the two vol-
umes. The arithmetic mean is 6.92 × 10−4 HU and the standard
deviation is 2.73 × 10−5 HU. Since the differences are minor,
we can assume that the differences are not significant for the
computed tomography problem.

Finally, a 3D rendering of one rabbit head is presented in
Fig. 8, showing that high resolution renderings like this are
now achievable in a short amount of time, using a low-cost
standard system.

5. Discussion

In this paper, we presented an efficient and clinically orien-
tated algorithm to reconstruct computed tomography data in
almost real-time, demonstrating the power of GPUs in the field
of medical imaging. For future work, implementations of other
medical imaging problems using a GPU should be considered.
In the field of computed tomography, there exists other and
more efficient reconstruction algorithms whose running time
may benefit by using a similar approach.
computed tomography, Comput. Methods Programs Biomed. (2009),

In our evaluations, we report promising results on two
different types of data sets. The amount of time needed
for reconstruction is significantly reduced. We looked at the
numerical differences between CPU and GPU implementation,

ty profiles from the CPU-CT in red and from the GPU-CT in
figure legend, the reader is referred to the web version of

dx.doi.org/10.1016/j.cmpb.2009.08.006
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alue variation for the 10 clinical cases.
Fig. 6 – The arithmetic mean gray v

and the differences are not significant. Further, by using the
standard GPU architecture (not double floating point preci-
sions), the differences are not significant.

As mentioned in the introduction, compared to implemen-
tations which use a shader (CG, GLSL), our implementation
is slightly slower. This slowdown is caused by the fact that
with CUDA, the graphics subsystem ASIC hardware cannot
be exploited for some of the operations. Nevertheless, CUDA
is the latest platform provided by NVIDIA and it is likely
that these issues will be improved in time, allowing us to
make improvements in our implementation and therefore our
results. Another limitation of programming on a GPU, from
which most implementations will suffer, is the fact that a
Please cite this article in press as: P.B. Noël, et al., GPU-based cone beam
doi:10.1016/j.cmpb.2009.08.006

bottleneck exists between the CPU and GPU memory when
transferring large datasets. Improvements in the hardware
bandwidth between the CPU and GPU will further improve
reconstruction times.

Fig. 7 – The standard deviation of the diffe
computed tomography, Comput. Methods Programs Biomed. (2009),

Fig. 8 – A 3D rendering of the rabbit data reconstructed
using GPUs.

rence volume for the 10 clinical cases.

dx.doi.org/10.1016/j.cmpb.2009.08.006
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In the future, higher resolution volumes could become
tandard since they provide more information for diagnostic
nd treatment purposes. In our implementation, our kernel
unction allows reconstruction of all volume sizes which are

ultiples of 256. The additional weighting functions make the
pproach a little slower but results in a mathematically correct
econstruction. The time and relatively simple implementa-
ion by using CUDA makes our approach attractive compared
o other CPU-based techniques.
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