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Abstract

One common technique for preventing data races in multi-threaded programs is to ensure
that all accesses to shared locations are consistently protected by a lock. We present a tool called
Locksmith for detecting data races in C programs by looking for violations of this pattern.
We call the relationship between locks and the locations they protect consistent correlation, and
the core of our technique is a novel constraint-based analysis that infers consistent correlation
context-sensitively, using the results to check that locations are properly guarded by locks.
We present the core of our algorithm for a simple formal language λB which we have proven
sound, and discuss how we scale it up to an algorithm that aims to be sound for all of C. We
develop several techniques to improve the precision and performance of the analysis, including a
sharing analysis for inferring thread locality; existential quantification for modeling locks in data
structures; and heuristics for modeling unsafe features of C such as type casts. When applied
to several benchmarks, including multi-threaded servers and Linux device drivers, Locksmith
found several races while producing a modest number of false alarms.

1 Introduction

Data races occur in multi-threaded programs when one thread accesses a memory location at the
same time another thread writes to it. While some races are benign, those that are erroneous can
have disastrous consequences [33, 41]. Moreover, race-freedom is an important program property
in its own right, because race-free programs are easier to understand, analyze, and transform [4,
46]. For example, race freedom is necessary for reasoning about code that uses locks to achieve
atomicity [17, 21].

In this paper, we present a static analysis tool called Locksmith for automatically finding all
data races in a C program. Our analysis aims to be sound so that any potential races are reported,
modulo the unsafe features of C such as arbitrary pointer arithmetic and type casting. We check
for data races by enforcing one of the most common techniques for race prevention: We ensure that
for every shared memory location ρ there is some lock ` that is held whenever ρ is accessed. While
this technique is not the only way to prevent races, it is common in multi-threaded software.

∗University of Maryland, Computer Science Department Technical Report CS-TR-4789, UMIACS Technical Re-
port UMIACS-TR-2006-13. This research was supposed in part by NSF CCF-0346989, CCF-0430118, and CCF-
0524036.
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Our goal is to produce a practical race-detection tool for C. A number of type systems have
been developed for preventing races given specifications [5, 6, 14, 15, 24], but these can require con-
siderable programmer annotations, limiting their practical application. Most completely-automatic
static analyses have considered Java [2, 47, 18, 37, 30], thus avoiding many of the problematic fea-
tures of C, such as type casts, low-level pointer operations, and non-lexically scoped locks. Those
that consider C are either unsound, do not check certain idioms, or may have trouble scaling. A
lengthy discussion of related work may be found in Section 5.

The core algorithm used by Locksmith is an analysis that can automatically infer the relation-
ship between locks and the locations they protect. We call this relationship correlation, and a key
contribution of our approach is a new technique for inferring correlation context-sensitively. We
present our correlation analysis algorithm for a formal language λB that abstracts away some of the
complications of operating directly on C code. Our analysis is constraint-based, using context-free
language reachability [44, 45] and semi-unification [26] for context-sensitivity. Because each location
must be consistently correlated with at least one lock, we use ideas from linear types to maintain
a tight correspondence between abstract locks used by the static analysis and locks created at run
time. We allow locks created in polymorphic functions to be treated distinctly at different call
sites, and we use a novel type and effect system to ensure that this is safe.

In order to move from λB to C, we use a number of additional techniques. One novel contribution
is that we support existential quantification, which allows us to model correlations among fields of a
data structure element, even after that element is merged into the “blob” typical of constraint-based
alias analysis [10]. We use flow-sensitive analysis to model lock acquires and releases, which need
not be lexically scoped. Our implementation includes a sharing analysis to model thread-local data,
and uses heuristics to model type casts, including the special case of casts to and from void *.
Finally, we use a lazy technique to efficiently model the large struct types typical of C programs.

We ran Locksmith on a set of benchmarks, including programs that use POSIX threads and
several Linux kernel device drivers. Our tool runs in seconds or minutes on our example programs,
although for some other programs we have tried it does not complete due to resource exhaustion.
Locksmith found a number of data races, and overall produces few total warnings, making it easy
to inspect the output manually. We also measured the effectiveness of the various analysis features
mentioned above, and we found that all are useful, reducing the number of warnings in total by as
much as a factor of three overall.

In summary, this paper makes the following contributions:

• We describe a context-sensitive correlation analysis for the language λB. Given a source
program in λB, our analysis determines whether every memory location in the program is
consistently correlated with a lock. Our analysis models locks linearly and uses a novel effect
system to treat locks created in different calls to a function distinctly. (Section 2)

• We scale up our analysis to the C programming language with a series of additional techniques,
including flow-sensitivity, existential quantification, and a sharing analysis to infer thread-
local data. (Section 3)

• We evaluate our implementation on a small set of benchmarks. Locksmith was able to find
several races with few overall warning messages. (Section 4)

Although we focus on locking in this paper, we believe that the concept of correlation may be
of independent interest. For example, a program may correlate a variable containing an integer
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pthread_mutex_t L1 = ..., L2 = ...;
int x, y, z;

void munge(pthread_mutex_t *l, int *p) {
pthread_mutex_lock(l);
*p = 3;
pthread_mutex_unlock(l);

}
...
munge(&L1, &x);
munge(&L2, &y);
munge(&L2, &z);

Figure 1: Locking Example in C

length with a array having that length [56]; it may correlate an environment structure with the
closure that takes it as an argument [35]; or it may correlate a memory location with the region in
which that location is stored [25, 27].

2 Race Freedom as Consistent Correlation

Consider the C program in Figure 1. This program has two locks, L1 and L2, and three integer
variables, x, y, and z (we omit initialization code for simplicity). The function munge takes a lock
and a pointer and writes through the pointer with the lock held. Suppose that the program makes
the three calls to munge as shown, and that this sequence of calls is invoked by two separate threads.

This program is race-free because for each location, there is a lock that is always held when that
location is accessed. In particular, L1 is held for all accesses to x, and L2 is held for all accesses to
both y and z. More formally, we say that a location ρ is correlated with a lock ` if at some point a
thread accesses ρ while holding `. We say that a location ρ and a lock ` are consistently correlated
if ` is always held by the thread accessing ρ. Thus if all locations in a program are consistently
correlated, then that program is race free.

Establishing consistent correlation is a two-step process. First, we determine what locks ` are
held when the thread accesses some location ρ. Having gathered this information, we can then ask
whether ρ is consistently correlated with some lock.

To simplify our presentation, we present the core of our algorithm for a small language λB in
which locations can be guarded by at most one lock (rather than a set of locks), and in which the
lock correlated with a memory read or write is made explicit in the program text. This allows us
to defer the problem of determining what locks are held at each dereference and focus on checking
for consistent correlation. In Section 3, we describe how to extend our ideas to find data races in
the full C programming language, including how to infer held lock sets at each program point.

2.1 The Language λB

Figure 2 presents the syntax of λB, a polymorphic lambda calculus extended with integers, com-
parisons, pairs, a primitive for generating mutual exclusion locks, and updatable references. We
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e ::= x | v | e1 e2 | if0 e0 then e1 else e2
| (e1, e2) | e.j | let f = v in e2 | fix f.v | f i
| newlock | ref e | !e2 e1 | e1 :=e3 e2

v ::= n | λx.e | (v1, v2)

Figure 2: λB Syntax

let L1 = newlock in
let L2 = newlock in
let x = ref 0 in
let y = ref 1 in
let z = ref 2 in

let munge l p =
p :=l 3 in

munge1 L1 x;
munge2 L2 y;
munge3 L2 z

munge

lp

xyz L2L1

(1(2 31 2(3

Figure 3: Locking example in λB and its constraint graph

annotate function occurrences f i with an instantiation site i, as in some other context-sensitive
analyses [44]. Dereferences !e e1 and assignments e1 :=e e2 take as an additional argument an
expression e that evaluates to a lock, which is acquired for the duration of the memory access and
released afterward. To keep the presentation simpler λB does not include other language features
such as recursive data structures, although those are handled by Locksmith. The left side of
Figure 3 gives the program in Figure 1 modeled in λB. The body of munge has been reduced to
the expression p :=l 3, indicating that l will be held during the assignment to p.

To check whether this program is consistently correlated, a natural approach would be to
perform a points-to analysis for all of the pointers and locks in the program. At the assignment
p :=l 3 in the program, we could correlate all of the locations ρ to which p may point with the
singleton lock ` to which l points. The lock l must point to a single ` or else some location ρ might
be accessed sometimes with one lock and sometimes with another. Unfortunately, this condition is
not satisfied in our example: the points-to set of l is {L1, L2}, since it will be L1 at the first call
to munge and L2 at the second call. Thus our hypothetical algorithm would erroneously conclude
that no single lock is held for all accesses, leading to false reports of possible races.

The problem is that correlation between l and p is not being treated context-sensitively. Even
if we were to use a context-sensitive alias analysis [10], the points-to sets mentioned above would
be the same, assuming that within the body of the function we summarized all calls, which is a
standard technique.

We address this problem in two steps. First, we introduce correlation constraints of the form
ρ B `, which indicate that the location ρ is correlated with the lock `. Here, ρ and ` are location
and lock labels, used to represent locations and locks that arise at run time. Our analysis generates
correlation constraints based on occurrences of !e e1 and e1 :=e e2 in the program. Second, we
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formalize an analysis to propagate correlation constraints in a context-sensitive way throughout the
program, by creating a variety of other (flow) constraints and solving them to determine whether
correlations are consistent. We define consistent correlation precisely as follows.

Definition 1 (Correlation Set) Given a location ρ and a set of constraints C, we define the
correlation set of ρ in C as

S(C, ρ) = {` | C ` ρB `}

Here we write C ` ρB ` to say that ρB ` can be proven from the constraints in C.

Definition 2 (Consistent Correlation) A set of constraints C is consistently correlated if

∀ρ. |S(C, ρ)| ≤ 1

Thus, a constraint set C is consistently correlated if all abstract locations ρ are either correlated
with one lock, or are never accessed and so are correlated with no locks.

The right side of Figure 3 shows a graph of the constraints that our analysis generates for this
example code. Each label in the program forms a node in the graph, and labeled, directed edges
indicate data flow. Location flow edges corresponding to a function call are labeled with (i for the
parameters at call site i, and any return values (not shown) are labeled with )i. Locks are modeled
with unification in our system, and we label such edges simply with the call site, with the direction
of the arrow into the type that was instantiated. For example, both L1 and x are passed in at call
site 1, so they connect to the parameters using edges labeled with (1. Undirected edges represent
correlation. In this case, the body of munge requires that l and p are correlated.

After generating constraints we perform constraint resolution to propagate correlation con-
straints context-sensitively through the call graph. In this example, we copy munge’s correlation
constraint out to each of the call sites, resulting in the three correlation constraints shown with
dashed edges:

xB L1 y B L2 z B L2

It is easy to see that these constraints are consistently correlated according to Definition 2.

2.2 Type System

We use a type and effect system for generating constraints C to check for consistent correlation.
Our type system proves judgments of the form C; Γ ` e : τ ; ε, which means that expression e has
type τ and effect ε under type assumptions Γ and constraint set C.

Figure 4 gives the type language and constraints used by our analysis. Types include integers,
pairs, function types annotated with an effect ε, lock types with a label `, and reference types with
a label ρ. Effects are used to enforce linearity for locks (see below), and consist of the empty effect
∅, a singleton effect {`}, effect variables χ which are solved for during resolution, and both disjoint
and non-disjoint unions of effects ε ] ε′ and ε ∪ ε′, respectively. λB models context-sensitivity
over labels using polytypes σ, introduced by let and fix. In our type language, polytype (∀.τ,~l)
represents a universally quantified type, where τ is the base type and ~l is the set of non-quantified
labels [26, 44]. Finally, C is a set of atomic constraints c. Within the type rules, the judgment
C ` c indicates that c can be proven by the constraint set C; in our algorithm, such judgments
cause us to “generate” constraint c and add it C.
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types τ ::= int | τ × τ | τ →ε τ ′ | lock ` | ref ρ τ
labels l ::= ` | ρ
effects ε ::= ∅ | {`} | χ | ε ] ε′ | ε ∪ ε′

polytypes σ ::= (∀.τ,~l)
constr. sets C ::= ∅ | {c} | C ∪ C
constraints c ::= τ ≤ τ ′ (subtyping)

| ` = `′ (lock unification)
| ρ ≤ ρ′ (location flow)
| ρB ` (correlation)
| ε ≤ χ (effect flow)
| ε ≤~l χ (effect filtering)
| effect(τ) = ∅ (effect emptiness)
| τ �ip τ ′ (type instantiation)
| ` �i `′ (lock instantiation)
| ρ �ip ρ′ (location inst.)
| ε �i χ (effect inst.)

Figure 4: Types and Constraints

Effects Effects ε form an important part of λB’s type system by enforcing linearity for lock labels.
Roughly speaking, a lock label ` is linear if it never represents two different run-time locks that could
reside in the same storage or are simultaneously live. To understand why this is important, consider
the following code, where hypothetical types and generated constraints are marked in comments,
eliding the constraints for the references to locks. We use e1; e2 as the standard abbreviation for
(λx.e2) e1 where x 6∈ fv(e2).

let l = ref newlock in // l : ref ρ
′
(lock `)

let x = ref 0 in // x : ref ρ int
x :=! l 1; // ρB `
l := newlock ;
x :=! l 2 // ρB `

This code violates consistent correlation because x is correlated with two different run-time locks
due to the assignment. However, to give l a consistent type, ` is used to model both locks, violating
linearity. As a result, the constraints mistakenly suggest the program is safe, because ρ is only ever
correlated with `.

We now turn to the monomorphic type rules for λB, shown in Figure 5. The [Newlock] rule
in this system requires that when we create a lock labeled ` we generate an effect {`}. The other
rules, like [Pair], join the effects of their subexpressions with disjoint union ], thus requiring that
chosen lock labels not conflict. For example, with the given labeling, the above code has the effect
{`}]{`}. We implicitly require that disjoint unions are truly disjoint—during constraint resolution,
we will check that this holds—and thus we would forbid L1 and L2 from being given the same label.
On the other hand, location labels ρ, introduced in the rule [Ref] for typing memory allocation, do
not add to the effect as memory locations need not be linear.
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[Id]
C; Γ, x : τ ` x : τ ; ∅

[Int]
C; Γ ` n : int ; ∅

[Lam]

C; Γ, x : τ ` e : τ ′; ε
C ` ε ≤ χ χ fresh
C; Γ ` λx.e : τ →χ τ ′; ∅

[App]

C; Γ ` e1 : τ →ε τ ′; ε1
C; Γ ` e2 : τ ; ε2

C; Γ ` e1 e2 : τ ′; ε1 ] ε2 ] ε

[Pair]
C; Γ ` e1 : τ1; ε1 C; Γ ` e2 : τ2; ε2
C; Γ ` (e1, e2) : τ1 × τ2; ε1 ] ε2

[Proj]
C; Γ ` e : τ1 × τ2; ε j = 1, 2

C; Γ ` e.j : τj ; ε

[Sub]
C; Γ ` e : τ1; ε C ` τ1 ≤ τ2

C; Γ ` e : τ2; ε
[Cond]

C; Γ ` e0 : int ; ε0
C; Γ ` e1 : τ ; ε1 C; Γ ` e2 : τ ; ε2

C; Γ ` if0 e0 then e1 else e2 : τ ; ε0 ] (ε1 ∪ ε2)

[Newlock]
` fresh

C; Γ ` newlock : lock `; {`}
[Ref]

C; Γ ` e : τ ; ε ρ fresh
C; Γ ` ref e : ref ρ τ ; ε

[Deref]

C; Γ ` e1 : ref ρ τ ; ε1
C; Γ ` e2 : lock `; ε2

C ` ρB `

C; Γ ` !e2 e1 : τ ; ε1 ] ε2
[Assign]

C; Γ ` e1 : ref ρ τ ; ε1 C; Γ ` e2 : τ ; ε2
C; Γ ` e3 : lock `; ε3 C ` ρB `

C; Γ ` e1 :=e3 e2 : τ ; ε1 ] ε2 ] ε3

Figure 5: λB Monomorphic Rules

Some other type-based systems for race detection [14, 24] and related systems for modeling
dynamic memory allocation [50] avoid the need for this kind of effect by forcing newly-allocated
locks (and/or locations) to be valid only within a lexical scope. That is, newlock is replaced with
a construct newlock x in e, which at run time generates a new lock and substitutes it for x within
e. When typing this construct, x’s label ` is only valid in the expression e, ensuring the allocated
lock cannot escape. Therefore subsequent invocations of the same newlock x in e (e.g., within
a recursive function) cannot be confused. We can achieve the same effect using the [Down] rule,
described below, and our approach matches the usage of newlock as it occurs in practice.

Typing Rules Turning to the remaining rules in Figure 5, [Id], [Int], and [Proj] are standard.
[Lam] types a function definition, and the effect on the function arrow is the effect of the body.
Notice that we always place effect variables χ on function arrows; this ensures constraints involving
effects always have a variable on their right-hand side, simplifying constraint resolution. In [App]
we apply a function e1 to argument e2, and the effect includes the effect of evaluating e1, the effect
of evaluating e2, and the effect of the function body.

The [Sub] rule and subtyping rules, shown in Figure 7(a), are also standard. Note that in rule
[Sub-Lock], we require ` and `′ to be equal. Thus we have no subtyping on lock labels, which makes
it easier to enforce linearity by forcing lock labels that “flow” together to be unified. The rules in
Figure 7(a) can be seen as judgments for reducing subtyping on types to constraints on labels, and
during constraint resolution we assume that all subtyping constraints have been reduced in this
way and thus eliminated.

[Cond] is mostly standard, except we use a non-disjoint union to join the effects of the two
branches, since only one of e1 or e2 will be executed at run time. [Deref] accesses a location e1
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[Let]

C; Γ ` v1 : τ1; ∅ ~l = fl(Γ)
C; Γ, f : (∀.τ1,~l) ` e2 : τ2; ε
C; Γ ` let f = v1 in e2 : τ2; ε

[Inst]
C ` τ �i

+ τ ′ C ` ~l �i
±
~l

C; Γ, f : (∀.τ,~l) ` f i : τ ′; ∅

[Fix]

C; Γ, f : (∀.τ,~l) ` v : τ ′; ∅ ~l = fl(Γ)
C ` τ ′ ≤ τ C ` τ �i

+ τ ′′

C ` ~l �i
±
~l C ` effect(τ) = ∅

C; Γ ` fix f.v : τ ′′; ∅
[Down]

C; Γ ` e : τ ; ε ~l = fl(Γ) ∪ fl(τ)
C ` ε ≤~l χ χ fresh

C; Γ ` e : τ ;χ

Figure 6: λB Polymorphic Rules (plus [Down])

while holding lock e2, and generates a correlation constraint between the lock and location label,
as does [Assign].

Polymorphism Figure 6 gives the rules for polymorphism. [Let] introduces polytypes. As is
standard we only generalize the types of values. In [Let] the name f is bound to a quantified type
where ~l is the set of free labels of Γ, i.e., the labels that cannot be generalized.

In [Inst], we use instantiation constraints to model a type instantiation. The constraint τ �i+ τ ′

means that there exists some substitution φi such that φi(τ) = τ ′, i.e., that at the use of f labeled
by index i in the program, τ is instantiated to τ ′. We also generate the constraint ~l �i± ~l, which
requires that all of the variables we could not quantify are renamed to themselves by φi, i.e., they
are not instantiated.

The subscript +’s and −’s in an instantiation constraint are polarities, which represent the
direction of subtyping through a constraint, either covariant (+) or contravariant (−). Instantiation
constraints correspond to the edges labeled with parentheses in Figure 3. A constraint ρ �i+ ρ′

corresponds to an output (i.e., a return value), and in constraint graphs we draw it as a directed
edge ρ →)i ρ′. A constraint ρ �i− ρ′ corresponds to an input (i.e., a parameter), and we draw it
with a directed edge ρ′ →(i ρ. We draw a constraint ` �i `′ as an edge `′ →i `, where there is
no direction of flow since lock labels are unified but the arrow indicates the reverse direction of
instantiation.

Instantiation constraints on types can be reduced to instantiation constraints on labels, as shown
in Figure 7(b). In these rules we use p to stand for an arbitrary polarity, and in [Inst-Fun] we flip
the direction of polarity for the function domain with the notation p̄. For example, to generate the
graph in Figure 3, we generated three instantiation constraints

(l× p) → int �1
+ (L1× x) → int

(l× p) → int �2
+ (L2× y) → int

(l× p) → int �3
+ (L2× z) → int

corresponding to the three instantiations and calls of munge. For full details on polarities, see Rehof
et al [44].

Hiding Effects [Fix] introduces polymorphic recursion, which is decidable for label flow [36, 44].
However, in our system we instantiate effects, which because they contain disjoint unions may
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[Sub-Int]
C ` int ≤ int

[Sub-Pair]
C ` τ1 ≤ τ ′1 C ` τ2 ≤ τ ′2
C ` τ1 × τ2 ≤ τ ′1 × τ ′2

[Sub-Lock]
C ` ` = `′

C ` lock ` ≤ lock `′
[Sub-Ref]

C ` ρ ≤ ρ′ C ` τ ≤ τ ′ C ` τ ′ ≤ τ

C ` ref ρ τ ≤ ref ρ′
τ ′

[Sub-Fun]
C ` τ2 ≤ τ1 C ` τ ′1 ≤ τ ′2 C ` ε1 ≤ ε2

C ` τ1 →ε1 τ ′1 ≤ τ2 →ε2 τ ′2

(a) Subtyping

[Inst-Int]
C ` int �i int

[Inst-Pair]
C ` τ1 �i

p τ
′
1 C ` τ2 �i

p τ
′
2

C ` τ1 × τ2 �i
p τ

′
1 × τ ′2

[Inst-Lock]
C ` ` �i `′

C ` lock ` �i
p lock `′

[Inst-Ref]
C ` ρ �i

p ρ
′ C ` τ �i

± τ ′

C ` ref ρ τ �i
p ref ρ′

τ ′

[Inst-Fun]
C ` τ1 �i

p̄ τ2 C ` τ ′1 �i
p τ

′
2 C ` ε1 �i ε2

C ` τ1 →ε1 τ ′1 �i
p τ2 →ε2 τ ′2

(b) Instantiation

Figure 7: Subtyping and Instantiation Constraints

grow without bound if a recursive function allocates a lock. Thus in [Fix], we require that recursive
functions have an empty effect on their top-most arrow with the constraint effect(τ) = ∅.

This is a strong restriction, and we would like to be able infer correlations for recursive functions
that allocate locks. For example, consider the following two code snippets:

fix f.λx.
let l = newlock in
let y = ref 0 in

y :=l 42;
. . . f 0 . . .

let y = ref 0 in
fix f.λx.
let l = newlock in

y :=l 42;
. . . f 0 . . .

Here f is a recursive function that creates a lock l and accesses a location y. In both cases
the lock does not escape the function, and therefore the linear labels corresponding to the locks
in different iterations of the function cannot interfere. However, in the second case the location
y is allocated outside the function, meaning that with each iteration it will be accessed with a
different lock held, violating consistent correlation. We want to allow the first case while rejecting
the second.

Thus we add a final rule [Down] to our type system to hide effects on lock labels that are purely
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local to a block of code [22]. In [Down], we generate a “filtering” constraint ε ≤~l χ, which means
that χ should contain labels in ε that escape through ~l, but not necessarily any other label. We
determine escaping during constraint resolution. Formally, C ` escapes(l,~l), where l is either a ρ
or `, if

l ∈ ~l ∨ ∃c, l′.
(
C ` c ∧ l, l′ ∈ c ∧ C ` escapes(l′,~l)

)
In other words, l escapes through ~l if it is in ~l or if it appears in a constraint in C with an l′ that
escapes in ~l. For example, if ρ B ` and ρ escapes, then ` escapes. This prevents l from being
hidden in our second example above, while in the first example we can apply [Down] to hide the
allocation effect successfully. Although [Down] is not a syntax-directed rule, it is only useful to
apply it to terms whose effect may be duplicated in the type system. Hence we can make the system
syntax-directed by assuming that [Down] is always applied once to e in rule [Lam], so that the effect
on the function arrow has as much hidden as possible. Also note that we can easily encode the
lexically-scoped lock allocation primitive newlock x in e as (λx.e) newlock and applying [Down]
to the application.

Uses of [Down] are rare in C programs in our experience, which tend to use global locks. Some
C programs also store locks in data structures, and in this case [Down] allows us to hide locks
that are created and then packed inside of an existential type (Section 3.3) that contains the only
reference to them.

2.3 Constraint Resolution

After we have applied the rules in Figures 5, 6, and 7 to a λB program, we are left with a set of
constraints C. To check that a program is consistently correlated, we first reduce the constraints
C into a solved form, from which we can easily extract correlations between locks and locations.

Figure 8 gives a series of left-to-right rewrite rules that we apply exhaustively to the constraints
to compute their solution. Figure 8(a) gives rules to compute the “flow” of locations and locks;
part (b) gives the rules for propagating correlations; and part (c) propagates effects so that we can
check that disjoint unions are truly disjoint. The rules in part (a) are mostly standard, while parts
(b) and (c) are new. Here, C ∪ ⇒ C ′ means C ⇒ C ∪ C ′.

The first rule of part (a) resolves equality constraints on lock labels and the second transitively
closes subtyping constraints on location labels. The next rule is the standard semi-unification
rule [26]: If a lock label `0 is instantiated at site i to two different lock labels `1 and `2, then
`1 and `2 must be equal (because the substitution at site i has to substitute for `0 consistently).
The final rule is for “matched flow.” Recall the [Inst] rule from Figure 6: if f has polytype
(∀. ref ρ1 τ1 →∅ ref ρ2 τ1, ∅), then instantiating this polytype at site i to the type ref ρ0 τ1 →∅ ref ρ3 τ1
requires that C contain instantiation constraints ρ1 �i− ρ0 and ρ2 �i+ ρ3 (according to [Inst-Fun]
and [Inst-Ref]). The negative constraint corresponds to context-sensitive flow from the caller’s
argument to the function’s parameter while the positive constraint corresponds to the returned
value. Say that f is the identity function; then C would contain the constraint ρ1 ≤ ρ2, indicating
the function’s parameter flows to its returned value. Thus the argument at site i should flow to the
value returned at site i, and so the matched flow rule permits the addition of a flow edge ρ0 ≤ ρ3.
For a full discussion of this rule, see Rehof et al [44].

In the correlation propagation rules in part (b), the first rule says that if location ρ flows to
a location ρ′ that is correlated with `, then ρ is correlated with ` also. Notice that there is no
similar rule for flow on the right-hand side of a correlation, because we unify lock labels. The next

10



C ∪ {` = `′} ⇒ C[` 7→ `′]
C ∪ {ρ0 ≤ ρ1} ∪ {ρ1 ≤ ρ2} ∪ ⇒ {ρ0 ≤ ρ2}
C ∪ {`0 �i `1} ∪ {`0 �i `2} ⇒ C[`2 7→ `1] ∪ {`0 �i `1}
C ∪ {ρ1 �i

− ρ0} ∪ {ρ1 ≤ ρ2} ∪ {ρ2 �i
+ ρ3} ∪ ⇒ {ρ0 ≤ ρ3}

(a) Flow of lock and location labels

C ∪ {ρ ≤ ρ′} ∪ {ρ′ B `} ∪ ⇒ {ρB `}
C ∪ {ρ �i

p ρ
′} ∪ {ρB `} ∪ {` �i `′} ∪ ⇒ {ρ′ B `′}

(b) Correlation propagation

C ∪ {∅ ≤ χ} ⇒ C
C ∪ {ε ∪ ε′ ≤ χ} ⇒ C ∪ {ε ≤ χ} ∪ {ε′ ≤ χ}

C ∪ {ε ≤ χ} ∪ {χ ≤ χ′} ∪ ⇒ {ε ≤ χ′}
C ∪ {ε ≤ χ} ∪ {χ ≤~l χ

′} ∪ ⇒ {ε ≤~l χ
′}

C ∪ {ε ≤ χ} ∪ {χ �i χ′} ∪ ⇒ {ε �i χ′}
—————

C ∪ {∅ �i χ} ⇒ C
C ∪ {{`} �i χ} ⇒ C ∪ {` �i `′} ∪ {{`′} ≤ χ}

`′ fresh
C ∪ {ε ] ε′ �i χ0} ⇒ C ∪ {ε �i χ} ∪ {ε′ �i χ′}

∪ {χ ] χ′ ≤ χ0}
χ, χ′ fresh

C ∪ {ε ∪ ε′ �i χ} ⇒ C ∪ {ε �i χ} ∪ {ε′ �i χ}
C ∪ {χ �i χ′} ∪ {χ �i χ′′} ⇒ C[χ′ 7→ χ′′] ∪ {χ �i χ′′}

—————
C ∪ {∅ ≤~l χ} ⇒ C

C ∪ {{`} ≤~l χ} ⇒ C ∪ {{`} ≤ χ}
if C ` escapes(`,~l)

C ∪ {ε ] ε′ ≤~l χ0} ⇒ C ∪ {ε ≤~l χ} ∪ {ε
′ ≤~l χ

′}
∪ {χ ] χ′ ≤ χ0}

C ∪ {ε ∪ ε′ ≤~l χ} ⇒ C ∪ {ε ≤~l χ} ∪ {ε
′ ≤~l χ}

(c) Effect propagation

Figure 8: Constraint Resolution
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rule propagates correlations at instantiation sites. Similarly to location propagation, if we have a
correlation constraint ρB ` on the labels in a polymorphic function, and we instantiate ` to `′ and
ρ to ρ′ at some site i, then we propagate the correlation to `′ and ρ′. For example, Figure 3 depicts
the following three constraints, among others (recall an edge l′ →(i l in the figure corresponds to a
constraint l �i− l′):

l �1
− L1 p �1

− x p B l

Using our resolution rule yields the constraint x B L1, shown in Figure 3 with a dashed line. Note
that the polarity of the instantiation constraint on ρ is irrelevant for this propagation step, because
locks can correlate with both inputs (parameters) and output (returns).

Part (c), presented as three blocks of rules, propagates effect constraints. The first block
of rules discards useless effect subtyping, replaces standard unions by two separate constraints,
and computes transitivity of subtyping on effects. The next block of rules handles instantiation
constraints. The constraint ∅ �i χ can be discarded, because it places no constraint on χ. (It is
not even the case that χ must be empty, because it may have subtyping constraints on it from
other effects.) In the next rule we model instantiation of a function with a single effect {`}. In
our system, each time we call a function that invokes newlock we wish to treat the locks from
different calls differently. Thus we create a fresh lock label `′ that flows to χ and require that `
is instantiated to `′. The remaining rules copy disjoint unions across an instantiation site, expand
non-disjoint unions, and require that effect variables are instantiated consistently.

The last block of rules propagates effects across filtering constraints. The only interesting rule
is the second one, which propagates an effect {`} to χ only if ` escapes in the set ~l; this corresponds
to “hiding” effects χ that are only used within a lexical scope.

After applying the rewrite rules, there are three conditions we need to check. First, we need
to ensure that all disjoint unions formed during type inference and constraint resolution are truly
disjoint. We define occurs(`, ε) to be the number of times label ` occurs disjointly in ε:

occurs(`, ∅) = 0
occurs(`, χ) = maxε≤χ occurs(`, ε)

occurs(`, {`}) = 1
occurs(`, {`′}) = 0 ` 6= `′

occurs(`, ε ] ε′) = occurs(`, ε) + occurs(`, ε′)
occurs(`, ε ∪ ε′) = max(occurs(`, ε), occurs(`, ε′))

We require for every effect ε created during type inference (including constraint resolution), and
for all `, that occurs(`, ε) ≤ 1. We enforce the constraint effect(τ) = ∅ by extracting the effect ε
from the function type τ and ensuring that occurs(`, ε) = 0 for all `.

Finally, we ensure that locations are consistently correlated with locks. We compute S(C, ρ)
for all locations ρ and check that it has size ≤ 1. This computation is easy with the constraints
in solved form; we simply walk through all the correlation constraints generated in Figure 8(b) to
count how many different lock labels appear correlated with each location ρ.

We now analyze the running time of our algorithm for each part of constraint resolution. Let n
be the number of constraints generated by walking over the source code of the program. Then the
rules in Figure 8(a) take time O(n3) [44], as do the rules in Figure 8(b), since given n constraints
there can be only O(n2) correlations among locations and locks mentioned in the constraints.
Constraint resolution rules like those given in parts (a) and (b) have been shown to be efficient in
practice [10].
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There exist constraint sets C for which the rules in Figure 8(c) will not terminate. This is
because a cycle in the instantiation constraints might result in a single effect being repeatedly
copied and renamed. We believe that this cannot occur in our type system, however, because
we forbid recursive functions from having effects. Even so, effect propagation can still be O(2n),
because a single effect might be copied through a chain of instantiations that double the effect each
time.

2.4 Soundness

We have proven that a version of our type system λcp
B based on polymorphically constrained

types [36] is sound, and that the system presented here reduces to that system. We define a
call-by-value operational semantics as a series of rewriting rules, using evaluation contexts E to
define evaluation order, as is standard. The evaluation rule for newlock generates a fresh lock
constant L, and ref v generates a fresh location constant R. We extend labels l to include L and
R and define typing rules for them. We also introduce allocation constraints L ≤1 ` to indicate
that lock variable ` has been allocated as constant L. We then refine S(C, ρ) to Sg(C, ρ), which
only refers to concrete lock labels:

Sg(C, ρ) = {L | C ` ρB ` ∧ C ` L ≤1 `}

Thus Sg(C, ρ) is the set of concrete locks correlated with ρ in C.
Next we define valid evaluation steps, which are those such that if a location R is accessed with

lock L, then L ∈ Sg(C,R).

Definition 3 (Valid Evaluation) We write C ` e −→ e′ iff e ≡ E[![L] vR] or e ≡ E[v′R :=[L] v]
implies Sg(C,R) = {L}.

Notice that definition enforces consistent correlation: a concrete R must be associated only with
a single concrete lock L by Sg. We define an auxiliary judgment ε `ok C, which holds if in C all
locations are consistently correlated and no lock labels in ε have been allocated.

We write `cp for the type judgment in λcp
B . We then show preservation, which implies soundness.

Lemma 4 (Preservation) If C; Γ `cp e : τ ; ε where ε `ok C and e −→ e′, then there exists
some C ′, ε′, such that (ε′ − ε) ∩ fl(C) = ∅; and C ′ ⊇ C; and C ′ ` e −→ e′; and ε′ `ok C

′; and
C ′; Γ `cp e′ : τ ; ε′.

(The proof is by induction on C; Γ `cp e : τ ; ε.) This lemma shows that if we begin with a
consistently correlated constraint system and take a step for an expression e whose effect is ε, then
the evaluation is valid. Moreover, there is some consistently correlated C ′ that entails C, where C ′

may contain additional constraints if the evaluation step allocated any locks or locations. Notice
that since C ′ ⊇ C (and thus C ′ ` C), any correlations that hold in C also hold in C ′. Since at each
evaluation step we preserve existing correlations and maintain consistent correlation, a well-typed
program is always consistently correlated—each location R to a single lock L—during evaluation.

Finally, we can prove that we can reduce judgments in λB to λcp
B . This reduction-based proof

technique follows Fähndrich et al [13].

Lemma 5 (Reduction) Given a derivation of C; Γ ` e : τ ; ε, then C∗; Γ∗ `cp e : τ ; ε∗.
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where C∗ is the set of constraints closed according to the rules in Figure 8(a) and (b), ε∗ is the
set of locks in ε according to the rules in Figure 8(c), and Γ∗ is a translation from λB to λcp

B type
assumptions.

Full proofs can be found in the Appendix.

3 Locksmith: Race Detection for C

Locksmith applies the ideas of Section 2 to the full C programming language. We implemented
Locksmith using CIL [38] as a C front-end and using BANSHEE [32] to encode portions of the
constraint graph and to apply the resolution rules in Figure 8(a). We use our own constraint solver
for the rest of the analysis.

Locksmith is structured as a set of modules implementing different phases of the analysis. The
first phase traverses source code and generates constraints akin to λB constraints. However, while
λB programs specify a correlation between a lock and a location explicitly, in C such correlations
must be inferred. Using some additional constraint forms, Locksmith infers which locks are held
at each program point, and generates correlations accordingly to detect potential races. As an
optimization, Locksmith includes a middle phase to compute which locations are always thread-
local and therefore can be ignored for purposes of checking correlation. Locksmith also includes
two additional features to improve precision for C. We support existential types, to model locks
stored in data structures, and we try to model pointers to void precisely and structures efficiently.

3.1 Flow-Sensitive Race Detection

Locksmith extends λB type judgments to include state variables ψ [22] to model the flow-sensitive
events needed to infer correlations. Judgments include both an input and an output state variable,
representing the point just before and just after, respectively, execution of the expression. Function
types also have an input and output ψ, to represent the initial and final states of the function.
Control flow from state ψ to state ψ′ is indicated by a control flow constraint ψ ≤ ψ′, and we also
include instantiation on states, written ψ �ip ψ′. Each state is assigned a kind that describes how
that state differs from preceding states.

As an example, the typing rule for acquiring a lock is

[Acquire]

ψ;C; Γ ` e : lock `;ψ′; ε ψ′′ fresh
C ` ψ′ ≤ ψ′′ C ` ψ′′ : Acquire(`)
ψ;C; Γ ` acquire e : int ;ψ′′; ε

This rule says that to infer a type for acquire e beginning in state ψ, we infer a labeled lock type
for e, whose evaluation produces the state ψ′. We create a new state ψ′′ that immediately follows
ψ′ and in which ` is acquired. A similar rule for release e annotates states with kind Release(`),
and a rule for dereferences and assignments annotates states with kind Deref(ρ) for reads of writes
to location ρ. An example of control-flow constraints is shown below in Section 3.3.

Computing Held Locks Given a control-flow constraint graph, Locksmith computes the locks
held at each program point represented by a state ψ. Assume for the moment that all locks are
linear. Then at a node ψ such that C ` ψ : Acquire(`), the lock ` is clearly held. We iteratively
propagate this fact forward through constraints ψ ≤ ψ′ (and likewise for instantiation constraints)
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stopping propagation at any node ψ for which C ` ψ : Release(`). At joins we intersect the sets
of acquired locks. This continues until we reach a fixed point.

In essence this analysis computes the set of locks that must be acquired at each program point.
Notice that because the analysis is necessarily conservative, we may decide at a program point
that lock ` is not held even if it is at run time. This is safe because if our analysis inaccurately
determines that a lock is released, at worst it will report a data race where no race is possible.

At function calls, denoted by another kind of ψ variable, we “split” the set of locks. At a split,
we propagate the state of ` to the function’s input state only if that function actually changes
the state of (acquires or releases) `, since otherwise the function must be polymorphic in `’s state.
(Which locks are (transitively) mentioned by a function is determined by a standard, context-
sensitive effect analysis.) The state of other locks is added to the output state of the function upon
return. This is similar to Merge nodes in CQual [22]. Crucially, this optimization ensures we do
not conflate lock states at calls to library functions such as printf. At instantiation sites ψ �ip ψ′,
we use the renaming defined by �i+ to copy the states of any locks in the domain of the substitution
corresponding to i from ψ to ψ′, and vice-versa for �i− constraints.

Inferring Correlations and Finding Races Now, for each state variable ψ of kind Deref(ρ),
we generate a correlation constraint ρ B {`1, . . . , `n}, where the `i are the set of locks held at ψ.
(We have extended correlation constraints to include a set of locks rather than a single lock.)

Given the correlation constraints, we could apply the rules in Figure 8(b) to infer all correlations.
However, because we “split” lock states at function calls, this would result in many false alarms,
since a correlation constraint ρB {`1, . . . , `n} generated inside a function really means that locks `i
are held in addition to any locks held at the function’s callers. Thus in Locksmith, rather than
inserting each correlation constraint into a global set C, we define a family of constraint sets Cψ,
one per ψ, and propagate them backwards along the control-flow constraint graph. When we reach
a split node in the constraint graph, we add to each correlation constraint any held locks that were
split off previously.

When we are done propagating, we check for consistent correlation among the correlation con-
straints Cmain

ψ which correspond to the initial state ψ of main(). As correlation constraints now
refer to lock sets, we define

S(C, ρ) = {{`1, . . . , `n} | C ` ρB {`1, . . . , `n}}

A location labeled ρ is consistently correlated if

|
⋂
S(C, ρ)| ≥ 1

i.e., if there is at least one lock held every time ρ is accessed.
In the discussion thus far we have assumed that all locks are linear, but as per discussion in

Section 2 this could be unsound. Rather than forbid non-linear locks, in Locksmith we treat
them as always released. Therefore non-linear locks are never included in correlation constraints,
and so they do not prevent races from being reported. Our implementation currently allows most
linearity checking to be optionally disabled, as we have found it is not very helpful in practice and
can have a steep performance penalty. Our implementation also omits the right disjunct of the
escapes(`,~l) check used for [Down] because it is not supported by BANSHEE. While possible, it is
highly improbable that this omission will result in missed races.
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int x;

void *f(...) {
int *p = (int *) malloc(...);
*p = x;

}

int main(void) {
x = 42;
pthread_create(..., f, ...);
pthread_create(..., f, ...);

}

Figure 9: Example of Sharing Analysis

3.2 Shared Locations

As an optimization, Locksmith generates correlation constraints at states Deref(ρ) only when
ρ may be thread-shared. Thus thread-local data need not be consistently correlated, which in
practice substantially improves the precision and efficiency of Locksmith.

We use several techniques to infer sharing. Our core technique is based on continuation effects.
In the standard approach, the effect of an expression e denotes those locations read and written by
e. In our approach, each expression has both input and output effects, εi and εo, where εo denotes
the locations read and written in the program executed after e (including forked threads), while
εi contains εo and those locations read and written in e itself. We compute continuation effects
context-sensitively using BANSHEE.

When a new thread is created, we determine the locations it might share with its parent (or
other threads the parent forks) as follows. Let εt be the input effect of the child thread, and let
ε∗ be the input closure of a continuation effect ε, defined as all those locations ρ′ that could flow
to locations ρ ∈ ε. Then S = ε∗t ∩ ε∗o is the possibly-shared locations due to the fork, where εo is
the output effect of the parent. We prune S further to only mention ρ if it is written in either ε∗t
or ε∗o (so that read-only access is not a race). For each Deref(ρ) state, we generate a correlation
constraint for ρ if

ρ∗ ∩
⋃
all S

S 6= ∅

We make two improvements to this basic technique. First, rather than intersect ρ∗ with all
S, we consider only those S due to the forking of the current thread, its ancestors, or any child
threads created by the current thread prior to the dereference of ρ; all dereferences in main prior
to forking the first thread are considered unshared. This allows data to be accessed thread locally
without protection, and only once it becomes shared must it be consistently correlated. Second,
we apply a Down-Fork rule to further filter from S locations that do not escape a forked thread,
and thus cannot be shared with its parent. In particular, suppose we spawn a thread t that may
access location ρ. Then we observe that if ρ∗ ∩ fl(Γ)∗ = ∅, where fl(Γ) is the set of free labels in
the types of variables visible at the point of the fork, then ρ is not visible outside the child thread
and thus cannot be shared.
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let m = newlock`1 in
let x = refρ1 1 in
let p =
if0 b then
pack1 (m, x)

else
pack2 (newlock`2 , refρ2 2)

in
unpack (l, r) = p in
acquire l;
r := 3;
release l

Acquire

Release

ℓ1

ℓ2
ℓ

1

2

Deref
ρ1

ρ2

ρ

(1

(2

Ψ

Pack Pack

(1 (2

(a) Source code (b) Constraint graph

Figure 10: Existential Quantification

To see the benefit of these techniques, consider the code in Figure 9. This program initializes
a global variable x and then forks two threads (using pthread create) that invoke the function f,
which reads x and writes it to freshly-allocated storage. Sharing analysis determines that x is never
written after it becomes shared, and hence does not require consistent correlation. Also notice
that both copies of f allocate a location at the same syntactic position in the program. Thus our
analysis assigns both allocations the same location ρ. A naive analysis would determine that ρ is
shared because it is accessed by both child threads. Using Down-Fork, however, we observe that ρ
does not escape the body of f and hence is thread-local.

Finally, our implementation also includes a uniqueness analysis. We perform a very basic,
intraprocedural, flow-sensitive alias analysis to determine when local variables definitely point to
thread-local memory. For example, consider the following code:

int* x = (int *) malloc(sizeof(int));
*x = 2;
lock(l);
shared = x; /* becomes shared */

Here x points to newly-allocated memory that is subsequently initialized. Then x is assigned to
shared—a variable visible to another thread—after acquiring lock l. The assignment causes *x to
be an alias of shared; if this code occurs in a routine run by multiple threads, our earlier sharing
analysis will think that x is always thread-shared. But our local uniqueness analysis observes that
at the write to *x, the variable x has not yet escaped, and hence the write is ignored for purposes
of correlation.

3.3 Existential Quantification for Data Structures

In applying our system to C programs, we found several examples where locks are stored in heap
data structures along with the data they protect. Standard context-sensitive analyses typically
merge all elements of the same data structure into an indistinguishable “blob,” which would cause
us to lose track of the identities of locations and the linearities of locks in data structures. In this
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subsection we briefly sketch an approach to solving this problem that has proven effective for one
of our benchmarks.

As an example, consider the program in Figure 10(a). This program first binds m to a new lock
labeled `1, and then binds x to a new reference labeled ρ1 (here for convenience we mark labels
in the source code directly). The program then sets p to be one of two pairs. The pack operation
alerts our analysis that the pairs should be treated abstractly so that we can conflate them without
losing correlations. Next the program unpacks p and acquires the pair’s lock before dereferencing
its pointer.

Notice that although r may be either ρ1 or ρ2 at runtime, and l may be either `1 or `2, in
either case the correct lock will be acquired. Because we used pack before the data structure was
conflated, our analysis gives p the type

∃`, ρ[ρB {`}]. lock `× ref ρ int

meaning that p contains some lock ` and some location ρ where ` and ρ are correlated.
One key novelty of Locksmith is that, given a program with pack and unpack annotations, we

perform inference on existential types using constraint resolution rules similar to those in Figure 8.
Figure 10(b) shows the constraint graph for our example. Rather than give resolution rules ex-
plicitly, we discuss the algorithm informally on this example. Existential inference using this basic
technique is sound for the related problem of label flow [42].

In this figure, we represent data flow from labels `i and ρi to the packed labels ` and ρ with
directed edges annotated with the pack site. It is no coincidence that this is the same notation used
for universal quantification in Figure 3—it is the duality of universal and existential quantification
that lets us use similar techniques for both. The remaining edges show the states at the various
program points. Initially we are in some state ψ. Then we pack one of the two pairs, represented
by a split labeled with (i for pack site i. Within the unpack (shown in the box), we acquire lock
l, dereference r, and then release l. At the dereference site, lock l is held, and so we generate a
constraint rB{l} (not shown in the graph). We propagate this correlation constraint using matched
flow as in Figure 8(b) and generate two constraints, ρ1 B {`1} and ρ2 B {`2}. Had we not used
existential quantification here, we would not have been able to track correlation precisely, because
`1 and `2 would have been non-linear, and there would have been no way to tell which goes with
ρ1 and which goes with ρ2.

Locksmith supports existential types for structs. To use existentials, the programmer anno-
tates aggregates that can be packed to indicate which fields should have bound types after packing.
We extend C with a special pack(x) statement that makes x’s type existentially quantified. For
unpacking, the programmer inserts start unpack(x) and end unpack(x) statements, which begin
and end the scope of the unpack, possibly non-lexically. In Section 4, we show that existential
quantification is useful for one of our benchmarks. We needed to add a total of 29 pack, unpack,
and field annotations to the program that could benefit, and 3 of the 12 start unpack operations
are not lexically scoped.

3.4 Analysis of void* and Aggregates

We aim to be sound, and so we use a number of techniques to conservatively model the unsafe
aspects of C without losing too much precision. At type casts of dissimilar types we conflate
locations in the actual and cast-to type. However, for void* pointers, we instead maintain a set of
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Benchmark Size Time Warn. Unguarded Races
(KLOC)

aget 1.6 0.8s 15 15 15
ctrace 1.8 0.9s 8 8 2
pfscan 1.7 0.7s 5 0 0
engine 1.5 1.2s 7 0 0
smtprc 6.1 6.0s 46 1 1

knot 1.7 1.5s 12 8 8

Table 1: Summary of Experimental Results: POSIX Apps

non-void* types that are cast to or from them [31]. Any type cast to or from that void* at the
same type is unified with the matching type stored in the void*. This technique enables us to model
the common case when void* is used for polymorphism, which is important because the POSIX
pthread create routine takes a void* argument that is passed into the function called when the
new thread starts. However, using this model of void* is unsound, because it does not handle up-
or downcasts of struct types and assumes programmers use void* safely. Nevertheless, we have
found it effective in practice, and it makes the output of Locksmith much easier to interpret by
reducing conflation.

Some struct types in C programs may have many fields (we have seen cases of 100 or more),
many of which themselves have struct types containing many fields. For precision, we wish to
assign fresh labels to fields of different instances of the same struct type. However, if we model
these types naively by representing all fields of all instances of aggregates, then the analysis becomes
very inefficient. Instead, we represent structure fields lazily [31], so that we only model those fields
that are actually used. This optimization does not affect precision, but can provide a significant
speedup.

4 Experiments

We evaluated Locksmith on a modest set of benchmarks, including several small applications
and medium-sized Linux kernel drivers. We conducted our experiments on a dual Xeon@2.8GHz
PC with 3.5GB of RAM, running RedHat Enterprise Linux, kernel version 2.4.21. Locksmith
was compiled using OCaml 3.08.1, with all C code (BANSHEE and the OCaml runtime system)
compiled with gcc 3.2.3-53 at optimization level -O2. Reported elapsed times are the median of 7
runs.

4.1 POSIX Threads Applications

We selected several multi-threaded programs largely gathered from sourceforge.net. Aget is an
FTP client in which multiple threads download chunks of a file. Ctrace is a library for tracing
the execution of multi-threaded programs; we analyzed a sample application that came with its
distribution. Pfscan is a multithreaded file scanner that combines the functionality of find, xargs,
and fgrep. Engine issues requests to several search engines in parallel and collates the responses.
Smtprc is an open mail relay scanner that looks for potential configuration problems. Finally, knot
is a multi-threaded webserver distributed with the Capriccio user-level threads package [53].

In our experiments we measured the number of warnings reported by Locksmith and how
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many of those warnings correspond to races. Here is a somewhat simplified warning taken from
aget:

Possible data race on
&bwritten(aget_comb.c:943)

References:
dereference at aget_comb.c:1079
locks acquired at dereference:
&bwritten_mutex(aget_comb.c:996)

in: FORK at aget_comb.c:468 ->
http_get aget_comb.c:468

dereference at aget_comb.c:984
locks acquired at dereference:
(none)

in: FORK at aget_comb.c:193 ->
signal_waiter(aget_comb.c:193) ->
sigalrm_handler(aget_comb.c:957)

The first part indicates where the data that might be accessed in race is allocated, in this case
the global variable bwritten defined at line 943. The second part lists where that location may
be dereferenced, along with the locks held at that point and the context-sensitive control-flow
path that led to the dereference. Above we show two (out of many) accesses. The first is in a
thread running the function http get with the mutex &bwritten mutex held. The second access
is in another thread running signal waiter, which has called the function sigalrm handler; this
takes place with no lock held, violating consistent correlation. In practice this situation could arise
when the user terminates aget abruptly with a signal, which causes it to save its current state to
disk. The race on bwritten could cause it to be confused when the program restarts.

Table 1 shows the experimental results for these application programs. We merge multi-file
programs into a single C file using the CIL merger, which eliminates duplicate and unused decla-
rations. The table lists the size of the merged program in lines of preprocessed code. Since the
application programs use the standard C library, we constructed a stub file containing function
definitions that model the data flow and effects of libc routines used in our benchmarks, totaling
roughly 400 LOC (not counted in the table).

The third column shows the total number of warnings of potential races issued by Locksmith.
The “Unguarded” column lists the number of warnings that constitute true violations of consistent
correlation. Some of these may not be races because a shared location is protected using other
techniques. The last column lists the number of true races, in which data could be accessed
simultaneously by two threads and one of the accesses is a write.

For aget, most of the races are similar to the example above. For knot, all the races seem
to be benign; most are due to unprotected accesses to global variables used to gather statistics.
Ctrace uses semaphores to communicate among threads, so while 6 guarded-by violations reported
are legitimate, the data is not subject to races. The two real races are on global variables; one is
benign, but the other is used to communicate information between threads, and a race could cause
messages to be lost. Finally, smtprc has one race that occurs when a reaper thread sets a global
counter that is also set and read by the main thread, which could cause unpredictable behavior.

Locksmith also reported a number of false alarms, mostly arising from two coding idioms that
Locksmith does not handle. One is when a parent thread accesses previously shared data after its
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Benchmark Size Time Warn. Unguarded Races
(KLOC)

plip 19.1 24.9s 11 2 1
eql 16.5 3.2s 3 0 0

3c501 17.4 240.1s 24 2 2
sundance 19.9 98.2s 3 1 0

sis900 20.4 61.0s1 8 2 1
slip 22.7 16.5s1 19 1 0

hp100 20.3 31.8s1 23 2 0

Table 2: Summary of Experimental Results: Linux Drivers

child threads have died (3 for engine, 1 for pfscan), as determined by pthread mutex join or other
signaling mechanisms. Another is when a global data structure points to thread-local data, indexed
by thread identifier (4 in engine, 44 in smtprc). The remaining false alarms could be handled with
some improvements to the local sharing analysis (3 for knot), and to allowable idioms of existential
initialization (3 for pfscan).

We also tried to run Locksmith on several larger programs, but were ultimately unsuccessful
due to resource exhaustion. We do not believe these problems are fundamental, and plan to continue
to investigate how Locksmith can be applied to larger programs.

4.2 Device Drivers

In addition to application code, we applied Locksmith to a set of Linux device drivers. We found
that determining synchronization assumptions for device drivers is challenging because the internal
Linux API is complex and sparsely documented. Complicating matters, earlier versions of the
kernel used a single spin lock (“the big kernel lock” or BKL) to prevent parallel access within
the kernel, and remnants of this discipline remain. For example, as far as we can tell, character
driver operations are always called with the BKL held, removing the need for multi-processor
synchronization.

Therefore, we chose to apply Locksmith to network device drivers, which must use internal
locking and are relatively well-documented. We focused on seven drivers from the 2.6.12 ker-
nel: plip (parallel-line IP), slip (serial line IP), eql (network traffic equalizer), and sis900, 3c501,
hp100 and sundance (ethernet card drivers). We constructed stub files with a special main rou-
tine that simulates the kernel’s concurrent interaction with the driver via interrupts, timeouts,
and user process-induced calls. Locksmith models kernel spin locks in the same way it models
POSIX mutexes. We ran Locksmith with some linearity checking disabled, because currently our
semi-unification algorithm does not terminate for some drivers. We believe this can be fixed by
implementing an extended occurs check [26].

Table 2 lists our results. We found a total of 4 races. The races in plip and sis900 are both
benign races on counters. One race in 3c501 is a presumably benign race on a debugging flag. The
other race in 3c501 occurs on a flag that tracks whether the driver is transmitting. We believe a
race on this flag could cause errors if it occurs in the middle of a send operation. The guarded-by
violations that were not races were due to the use of atomic operations which are always thread
safe. These are implemented with inline assembly code that Locksmith processes conservatively.

1Did not perform linearity checking
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The main source of false alarms in drivers is due to conflation and other conservatism due to
type casts. This causes Locksmith mistakenly to think locations could be shared when they are
not. Several of the false alarms could be addressed using existentials, in principle, to model a lock
stored in a data structure, but we currently cannot check the initialization pattern. Finally, in
many cases synchronization is context dependent, employing state variables and other non-lock-
based forms. It was difficult to tell in these cases whether a race existed or not, since we are not
kernel experts, so we considered them to be non-races in the table.

4.3 Per-feature Effectiveness

We examined the various features described in Section 3 for improving the precision of the analysis.
Table 3 shows the number of warnings issued by the tool depending on which techniques are
enabled, along with the corresponding running time. In particular, we measured the cumulative
effectiveness of four techniques: (1) our technique for modeling a void* cast to/from a single type
precisely (Void), as compared to conflating all locations at all levels of a type cast to void*; (2) the
use of Down-Fork to reduce false sharing (DownF); (3) flow-sensitive uniqueness analysis of local
variables (Uniq); and (4) using existential quantification to model locks local to data structures
(Exist), which only affects the knot benchmark. All but the last feature are fully automatic, while
existentials require manual insertion of packs and unpacks; we used 29 annotations for knot.

For a more visual comparison, we show the normalized effect of each technique on precision
in Figure 11. The non-black portion of each bar is the scaled improvement due to the addition
of that particular feature. For example, we can see that for aget, 60% (26 of 43) warnings were
eliminated due to precise handling of void* while an additional 4.5% (2 of 43) were removed due to
Down-Fork. Void and DownF are clearly the most useful overall. In contrast to Void and DownF,
Exists and Uniq are useful only in a few cases, and may increase running time.

5 Related Work

A number of systems have been developed for detecting data races and other concurrency errors in
multi-threaded programs, including dynamic analysis, static analysis, and hybrid systems.

Dynamic systems such as Eraser [48] instrument a program to find data races at run time and
require no annotations. The efficiency and precision of dynamic systems can be improved with
static analysis [8, 39, 1]. Dynamic systems are fast and easy to use, but cannot prove the absence
of races, and require comprehensive test suites.

Researchers have developed type checking systems against races [14] for several languages,
including Java [15], Java variants [6], and Cyclone [24]. In general, systems based on type checking
perform very well, but require a significant number of programmer annotations, which can be time
consuming when checking large code bases [11, 16]. Static race detection in ESC/Java [20],which
employs a theorem prover, similarly requires many annotations.

Some researchers have developed tools to automatically infer the annotations needed by the
Java-based type checking systems just mentioned. Most target Java 1.4, which simplifies the
problem by permitting only lexically-acquired locks via synchronized statements, whereas C (and
Java 1.5) programs may acquire and release locks at any program point. Houdini [16] can infer types
for the original race-free Java system [15], but lacks context-sensitivity. More recently Agarwal and
Stoller [2] and Rose et al [47] have developed algorithms that infer types based on dynamic traces,
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Benchmark All off +Void +DownF +Uniq +Exist
aget 43 17 15 15 15

1.5s 0.9s 0.8s 0.8s 0.8s
ctrace 9 8 8 8 8

1.1s 0.9s 0.9s 0.9s 0.9s
pfscan 6 6 5 5 5

0.7s 0.7s 0.7s 0.7s 0.7s
engine 11 11 7 7 7

1.0s 1.0s 1.0s 1.2s 1.2s
smtprc 73 73 46 46 46

5.6s 5.8s 5.0s 6.0s 6.0s
knot 30 29 20 14 12

1.2s 1.1s 1.0s 0.9s 1.5s
plip 25 11 11 11 11

27.5s 23.8s 24.0s 24.9s 24.9s
eql 22 3 3 3 3

2.9s 3.1s 3.1s 3.2s 3.2s
3c501 24 24 24 24 24

233.4s 238.3s 238.7s 240.1s 240.1s
sundance 52 3 3 3 3

53.4s 98.5s 99.6s 98.2s 98.2s
sis900 57 8 8 8 8

40.5s 59.6s 60.5s 61.0s 61.0s
slip 25 19 19 19 19

7.7s 16.2s 16.4s 16.5s 16.5s
hp100 28 24 23 23 23

18.2s 31.1s 31.6s 31.8s 31.8s

Table 3: Summary of per-feature effects

but these require sizeable test suites to avoid excessive false alarms. Flanagan and Freund [18]
have proposed a system for inference which is formulated to support parameterized classes and
dependent types. Though the problem is NP-complete, their SAT-based approach can analyze 30K
lines of Java code in 46 minutes. Von Praun and Gross’s dataflow-based system also requires no
annotations and performs well, checking 2000-line programs in a few seconds.

Naik, Aiken, and Whaley present a race detection system for Java [37]. Their system scales well
to large Java programs and has found a number of races. They use a cloning-based alias analysis,
and hence their approach does not suffer the summarization problem mentioned in Section 2.1
for other context-sensitive analyses. Analyzing Java 1.4 avoids some problems we encountered
analyzing C code, such as flow sensitive locking, low-level pointer operations, and unsafe type casts.
They also omit linearity checking, which we include in λB but occasionally disable in Locksmith.

Several completely automatic static analyses have been developed for finding races in C code.
Polyspace [29] is a proprietary tool that uses abstract interpretation to find data races (and other
problems). The Blast model checker has been used to find data races in programs written in NesC,
a variant of C [28]. Race checking is not limited to checking for consistent correlation and can be
state dependent, but is limited to checking global variables and can be quite expensive. Seidl et
al [49] propose a framework for analyzing multi-threaded programs that interact through global
variables. Using their framework they develop a race detection system for C and apply it to a small
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Figure 11: Per-feature precision improvements.

set of benchmarks, finding a number of data races. It is unclear whether their analysis supports
context sensitivity and how it models data structures. RacerX [11] does not soundly model some
features of C for better scalability and to reduce false alarms, but may miss races as a result.
KISS [43] builds on model checking techniques, and has been shown to find many races, but ignores
possible thread interleavings, possibly missing the most subtle bugs.

Work that detects violations of atomicity, either dynamically [17] or statically [21, 19] typically
requires a program to be free of races.

Our analysis is based on ideas initially explored by Reps et al [45] and Rehof and Fähndrich [44],
who showed how to encode context-sensitive analysis as a context-free language reachability prob-
lem. Our support for existential types is related to restrict or focus for alias analysis [3, 12].
Our flow-sensitive analysis is a significant extension of our previous work on flow-sensitive type
qualifiers [22], which used a similar flow-sensitive constraint graph. Both systems can be seen as
inference for a variant of the calculus of capabilities [9].

Correlation between locks and locations is similar to correlation between regions and pointers,
and several researchers have looked at the problem of region inference, including the Tofte and
Birkedal system for the ML Kit [52]. Henglein et al [27] use a control-flow-sensitive and context-
sensitive type system to check that regions with non-lexical allocation and deallocation are used
correctly. Our treatment of lock allocation is similar to Henglein et al’s treatment of region allo-
cation, but our formal system supports higher-order functions, and we present a constraint-based
inference algorithm.

6 Conclusion

We have developed a tool, Locksmith, that aims to prove the absence of data races in a C
program. The core component of Locksmith is a context-sensitive correlation analysis that deter-
mines whether there exists a lock that is held consistently each time a memory location is accessed.
This paper formalizes correlation analysis as a constraint-based type and effect system for a simple
language λB which we have proven sound. A novel feature of our formalism is its use of effects
to ensure that dynamically-allocated locks can be accurately tracked, with a means to safely hide
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effects to better support recursive functions. Locksmith uses a series of techniques to scale cor-
relation analysis to the full C language, including flow-sensitive state tracking, existential types,
sharing analysis, and heuristics to model type casts to and from void*. When applied to a set of
benchmarks, Locksmith discovered a number of real data races with a modest rate of false alarms.
We are continuing to explore how to scale Locksmith to large code bases.
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A λcp
B : Correlation with Polymorphically-Constrained Types

In this appendix we prove the soundness of λB in two steps. First, we present a type checking
system for λB based on polymorphically-constrained types [36]; we refer to the new type system as
λcp

B . We prove that λcp
B is sound using the standard syntactic technique based on subject reduction

(a.k.a. preservation) [55]. That is, programs that are type-correct under λcp
B exhibit consistent

correlation. The key technical challenge in λcp
B is typing the newlock operation in a way that

supports polymorphism and allows locks to be hidden with [Down], which we discuss below.
Second, we prove that λB is sound by showing that any correct typing derivation in λB reduces

to a correct λcp
B typing derivation. This second step closely follows Rehof et al [44]. We do not

show completeness (that every correct λcp
B derivation has a correct λB analogue); indeed, we believe

completeness fails due to restrictions on recursive functions. We have not seen this as a limitation
in practice with Locksmith.

The remainder of this section introduces λcp
B and proves it sound. The reduction is presented

in Appendix B.

A.1 Operational Semantics

We begin by formalizing the operational semantics for our source language (which can be found
in Figure 2). The operational semantics is defined using a single-step reduction relation between
expressions, as shown in Figure 12. We use evaluation contexts E along with the (Context) rule to
encode the (call-by-value) evaluation strategy, as is standard. The rules (β), (δ-if), (δ-pair), (δ-let),
(δ-fix) are also standard. Rule (δ-newlock) allocates a new lock [L] that is fresh, meaning that it is
allocated once per evaluation derivation.

The semantics for references is non-standard. Typically, references are modeled using a heap
H, which is a map from run-time locations R to values v, and allocation ref v creates a fresh
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(β) (λx.e) v −→ e[x 7→ v]
(δ-if) if0 0 then e1 else e2 −→ e1

if0 n then e1 else e2 −→ e2 n 6= 0
(δ-pair) (v1, v2) .j −→ vj j ∈ {1, 2}
(δ-let) let f = v in e −→ e[f 7→ v]
(δ-fix) fix f.v −→ v[f 7→ fix f.v]
(δ-ref) ref v −→ vR R fresh
(δ-newlock) newlock −→ [L] L fresh
(δ-deref) ![L] vR −→ v

(δ-assign) v′R :=[L] v −→ v

(Context)
e1 −→ e2

E[e1] −→ E[e2]

E ::= [] | E e | e E | if0 E then e else e′ | (E, e) | (e,E) | E.j
| | ref E | !e E | !E e | E :=e2 e1 | e1 :=e2 E | e1 :=E e2

L ::= 〈constant lock labels〉
R ::= 〈constant location labels〉
v ::= . . . | [L] | vR

Figure 12: Operational Semantics and Target Language Syntax Extensions

location R 6∈ dom(H), updating H to map R to v. As the point of λB is merely to prove consistent
correlation, we omit modeling the heap. (δ-ref) creates a fresh location label R and annotates
the argument v with that location. When such annotated values are “dereferenced” according to
(δ-deref), the label R is merely stripped off. The “assignment” operation (δ-assign) behaves the
same as a dereference of the left-hand side, returning the right-hand side. Thus references are simply
functional “boxes” that are dynamically allocated, and there is no aliasing in this semantics. For the
purposes of correlation, we wish to prove that for any value vR, if program evaluation yields redexes
![L] vR and ![L

′] vR then L = L′, and similarly for redexes vR :=[L] v′, i.e., the “boxes” represented
by references are always accessed with the correct lock. We believe that it is straightforward to
add explicit heap modeling to this system.

A.2 Typing

Typing judgments in λcp
B have the form

C; Γ `cp e : τ ; ε

Here, C is a set of constraints; Γ is an environment mapping variables x to polytypes ∀~α[C].τ (we
write τ to denote polytype ∀[∅].τ); and ε is an effect that tracks lock allocations. This judgment
is read, “Given constraints C, in environment Γ expression e has type τ and when evaluated will
allocate locks ε.”

The type and constraint language for λcp
B is shown in Figure 13. Function types are annotated

with an effect, listing the locks allocated when the function is called. Lock labels ϑ include lock
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types τ ::= int | τ × τ | τ →ε τ ′ | lock ` | ref ρ τ
lock labels ϑ ::= ` | L
location labels ϕ ::= ρ | R
label variables α, β ::= ` | ρ
labels l ::= ϑ | ϕ
effects ε ::= ∅ | {`} | ε ] ε′ | ε ∪ ε′
polytypes σ ::= ∀~α[C].τ
constraint sets C ::= ∅ | {c} | C ∪ C
constraints c ::= ϕ ≤ ρ (location flow)

| ρB ` (correlation)
| L ≤1 ` (lock allocation)
| ν~α[C; ε] (encapsulated constraints)

Figure 13: λcp
B Types and Constructors

variables ` and lock constants L, while location labels ϕ include location variables ρ and constants R.
Variables ` and ρ can be quantified in polytypes (and are collectively referred to using metavariables
α, β). In our type rules, we use substitutions φ that map label variables to labels.

Definition 6 (Substitution) We define a substitution φ as a function from label variables ~α to
labels l. We write dom(φ) to denote those labels for which φ is not the identity, and similarly write
rng(φ) as the image of φ applied to dom(φ).

Intuitively, the type ∀~α[C].τ stands for any type φ(τ) where φ(C) is satisfied, for any substitution
φ with dom(φ) = ~α. Reference types and lock types are annotated with label variables describing
the run-time location or lock annotations of their respective values.

There are four kinds of constraints c that make up constraint sets C. The first two kinds of
constraints also appear in λB. Constraints ϕ ≤ ρ describe flow from ϕ to ρ; these are introduced
by subtyping and reference allocation. Constraints ϕ B ` indicate correlation: ϕ is correlated
with `, as indicated by a dereference or assignment. The last two kinds of constraints are new to
λcp

B . Constraints L ≤1 ` indicate that a newlock expression of type lock ` has been evaluated,
generating a fresh lock constant [L]. As such, these constraints are not necessary for type checking
source programs, but are rather needed for the preservation proof. Constraints ν~α[C; ε] describe
encapsulated constraints. These are used to handle recursion, and otherwise avoid clashes of lock
names. We describe these in greater detail below. Notice that in λcp

B , there are no instantiation
constraints, as λcp

B includes explicit constraint copying.

Definition 7 (Bound and Free Labels) We write fl(·) to denote those labels that are not bound
in some structure ·, where · could be C, Γ, τ , ε, or σ. Figure 14 gives a formal definition. We
write strip(c) to “strip off” the binders of encapsulated constraints; i.e., strip(ν~α[C; ε]) = C, but
strip(c) = c for other kinds of constraints c. The transitive closure of this operation is written
strip∗. Using this, we define the bound labels of a constraint set C as bl(C) = fl(strip∗(C)) \ fl(C).

The typing rules are shown in Figures 15 (monomorphic rules) and Figure 16 (polymorphic
rules). Most of the monomorphic rules are standard. The [Newlock] and [Ref] rules construct
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fl(int) = ∅
fl(τ1 × τ2) = fl(τ1) ∪ fl(τ2)

fl(τ1 →ε τ2) = ε ∪ fl(τ1) ∪ fl(τ2)
fl(lock `) = {`}
fl(ref ρ τ) = {ρ} ∪ fl(τ)

fl(Γ, f : ∀~α[C].τ) = fl(Γ) ∪ ((fl(τ) ∪ fl(C)) \ ~α)
fl(Γ, x : τ) = fl(Γ) ∪ fl(τ)
fl(C ∪ {c}) = fl(C) ∪ fl(c)
fl(ρ ≤ ρ′) = {ρ, ρ′}
fl(ρB `) = {ρ, `}

fl(L ≤1 `) = {`}
fl(ν~α[C; ε]) = fl(C) \ ~α

Figure 14: Free Labels

values of types lock ` and ref ρ τ , respectively; operationally these values have the form [L] and vR.
For [Newlock] the lock label must be linear. Roughly speaking, a lock label ` is linear if it never
represents two different run-time locks that could reside in the same storage or are simultaneously
live. Therefore we require ` to be a fresh variable in the derivation, which is achieved by putting `
in an effect ε that must be disjoint with effects in subderivations. For example, in the [App], [Pair],
and [Assign] rules, the overall effects are the disjoint union of their constituent parts. The [Cond]
rule is similar, except that we use non-disjoint union to combine the effects of the two branches,
since only one branch is evaluated at run-time (we could also have required the effects of both
branches to be the same, and then added a rule to allow arbitrary expansion of an effect). We do
not use effects for locations because they need not be linear.

Also noteworthy are [Deref] and [Assign], each of which have the premise C ` ρB ` to indicate
that constraints C can prove the lock expression is correlated with the reference being accessed.
Finally, the [Lock] and [Loc] rules are for typing allocated locks and locations, respectively (and
thus do not apply to source programs but only programs during evaluation). In both cases, a lock’s
type (respectively, a location’s type) always refers to a lock variable ` (respectively, a location
variable ρ); we relate the lock constant to the variable by requiring C ` L ≤1 ` (respectively,
C ` R ≤ ρ).

Turning to the polymorphic rules in Figure 16, we see that universal polymorphism is introduced
in [Let] and [Fix]. As is standard, we allow generalization only of label variables that are not free
in the type environment Γ. Notice that in both these rules, the constraints C ′ that we use to type
check v1 (or v) become the bound constraints in the polymorphic type. Whenever a variable with
a universally quantified type is used in the program text, its type is instantiated. The [Inst] rule
can only be applied if the instantiation φ(C ′) of the polymorphic type’s constraints can be proven
by the constraints C at that point.

[Down] is based on the observation that constraints and effects on labels that are no longer in
use—neither part of the result computed by an expression, nor accessible through the environment—
can be removed from consideration [23, 34, 7]. In region and effect systems, these labels are removed
from the effect set, but in our system they are also encapsulated into a separate constraint set
ν~α[C; ε] which we term encapsulated constraints. As shown below, encapsulated constraints do not
permit directly proving flow or correlation judgments, but rather permit reasoning about the entire
constraint set independent of a particular point in a typing derivation. Roughly speaking, this
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[Id]
C; Γ, x : τ `cp x : τ ; ∅

[Int]
C; Γ `cp n : int ; ∅

[Lam]
C; Γ, x : τ `cp e : τ ′; ε

C; Γ `cp λx.e : τ →ε τ ′; ∅

[App]
C; Γ `cp e1 : τ →ε τ ′; ε1 C; Γ `cp e2 : τ ; ε2

C; Γ `cp e1 e2 : τ ′; ε ] ε1 ] ε2

[Pair]
C; Γ `cp e1 : τ1; ε1 C; Γ `cp e2 : τ2; ε2

C; Γ `cp (e1, e2) : τ1 × τ2; ε1 ] ε2

[Proj]
C; Γ `cp e : τ1 × τ2; ε j = 1, 2

C; Γ `cp e.j : τj ; ε
[Sub]

C; Γ `cp e : τ1; ε
C ` τ1 ≤ τ2

C; Γ `cp e : τ2; ε

[Cond]

C; Γ `cp e1 : int ; ε1
C; Γ `cp e2 : τ ; ε2 C; Γ `cp e3 : τ ; ε3

C; Γ `cp if0 e1 then e2 else e3 : τ ; ε1 ] (ε2 ∪ ε3)

[Ref]
C; Γ `cp e : τ ; ε

C; Γ `cp ref e : ref ρ τ ; ε
[Newlock]

C; Γ `cp newlock : lock `; {`}

[Deref]
C; Γ `cp e1 : ref ρ τ ; ε1 C; Γ `cp e2 : lock `; ε2 C ` ρB `

C; Γ `cp !e2 e1 : τ ; ε1 ] ε2

[Assign]

C; Γ `cp e1 : ref ρ τ ; ε1 C; Γ `cp e2 : τ ; ε2
C; Γ `cp e3 : lock `; ε3 C ` ρB `

C; Γ `cp e1 :=e3 e2 : τ ; ε1 ] ε2 ] ε3

[Lock]
C ` L ≤1 `

C; Γ `cp [L] : lock `; ∅
[Loc]

C; Γ `cp v : τ ; ∅ C ` R ≤ ρ

C; Γ `cp vR : ref ρ τ ; ∅

Figure 15: λcp
B Monomorphic Typing Rules
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[Let]

C ′; Γ `cp v1 : τ1; ∅ C; Γ, f : ∀~α[C ′].τ1 `cp e2 : τ2; ε2
~α ⊆ (fl(τ1) ∪ fl(C ′)) \ fl(Γ)

C; Γ `cp let f = v1 in e2 : τ2; ε2

[Fix]

C ′; Γ, f : ∀~α[C ′].τ `cp v : τ ; ∅
~α ⊆ (fl(τ) ∪ fl(C ′)) \ fl(Γ) C ` φ(C ′) dom(φ) = ~α

C; Γ `cp fix f.v : φ(τ); ∅

[Inst]
C ` φ(C ′) dom(φ) = ~α

C; Γ, f : ∀~α[C ′].τ `cp f i : φ(τ); ∅

[Down]

C ∪ {ν~α[C ′; ε′]} ∪ strip(α~l′(ν~α[C ′; ε′])); Γ `cp e : τ ; ε ] φ~l′α(ε′)
φ
~l′
α(~α) ∩ (fl(Γ) ∪ fl(τ)) = ∅

ε′ ⊆ ~α ~l′ ⊇ fl(strip∗(C) ∪ strip∗(ν~α[C ′; ε′])) ∪ ε
C ∪ {ν~α[C ′; ε′]}; Γ `cp e : τ ; ε

Figure 16: λcp
B Polymorphic Typing Rules and [Down]

constraint is read: “there exist fresh labels ~α such that the constraints C hold, where locks labeled
ε are allocated by the program.” (We use the quantifier ν rather than ∃ to emphasize that these
labels must be fresh, as in alias types [54]).

With this rule, we introduce the idea of an alpha-converting substitution. This is a technical
device for establishing the freshness of bound variables in encapsulated constraints, and is im-
portant for later proving that constraint sets are well-formed even if encapsulated constraints are
“instantiated” many times.

Definition 8 (Alpha-converting Substitutions) We write α~l(C) denote the alpha-conversion
of binders in the encapsulated constraints in C to labels not in ~l. Thus we have dom(α~l) = bl(C) and
rng(α~l)∩ (~l∪ dom(α~l)∪fl(C)) = ∅ and |dom(α~l)| = |rng(α~l)|. We write φ~lα as the normal, capture-
avoiding version of α~l, where strip∗(α~l(C)) = φ

~l
α(strip∗(C)) while φ~lα(C) = C (since dom(φ~lα) only

contains binders in C).

Given this definition, we can now understand rule [Down]. In the first premise, given a constraint
set with some encapsulated constraints ν~α[C ′; ε′], we type e by stripping the binders off of the
constraints after first alpha-converting them (where ~l′ is defined in the last premise to avoid conflicts
with existing labels). This alpha-conversion is necessary for ensuring the constraint set is well-
formed, as described later. However, we can prune these stripped constraints from the conclusion
because the alpha-converted binders (φ~l′α(~α)) do not appear in the environment or the final type
(second premise). We can similarly remove the effect of any allocations that appear in neither the
environment nor the type (as established by the second and third premises), but we note the effect
of the allocation in the encapsulated constraints.

Finally, rule [Sub] in Figure 15 uses the subtyping rules in Figure 17. These rules are standard.
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[Sub-Int]
C ` int ≤ int

[Sub-Pair]
C ` τ1 ≤ τ2 C ` τ ′1 ≤ τ ′2
C ` τ1 × τ ′1 ≤ τ2 × τ ′2

[Sub-Fun]
C ` τ2 ≤ τ1 C ` τ ′1 ≤ τ ′2 ε1 ⊆ ε2

C ` τ1 →ε1 τ ′1 ≤ τ2 →ε2 τ ′2

[Sub-Lock]
C ` `1 ≤ `2

C ` lock `1 ≤ lock `2

[Sub-Ref]
C ` ρ1 ≤ ρ2 C ` τ1 ≤ τ2 C ` τ2 ≤ τ1

C ` ref ρ1 τ1 ≤ ref ρ2 τ2

Figure 17: λcp
B Subtyping

[Loc-Flow]
ϕ ≤ ρ ∈ C
C ` ϕ ≤ ρ

[Lab-Refl]
C ` l ≤ l

[Loc-Trans]
C ` ϕ ≤ ρ′ C ` ρ′ ≤ ρ

C ` ϕ ≤ ρ
[Lock-Flow]

L ≤1 ` ∈ C
C ` L ≤1 `

[Encap-Flow]
ν~α[C0; ε] ∈ C C0 ` C ′

C ` ν~α[C ′; ε]
[Correlate]

C ` ϕ ≤ ρ ρB ` ∈ C
C ` ϕB `

Figure 18: λcp
B Constraint Logic

A.3 Consistent Correlation

The goal of λcp
B is to prove that well-typed programs are consistently correlated, meaning that a

given location R is always accessed with the same lock L. We establish this from the constraints
C needed to type the program. In particular, we use the constraints C to establish correlation sets
so that we can prove consistent correlation. We repeat Definitions 1 and 2 for clarity:

Definition 9 (Correlation Set) Given a location ρ and a set of constraints C, we define the
correlation set of ρ in C as

S(C, ρ) = {` | C ` ρB `}

Here we write C ` ρB ` to say that ρB ` can be proven from the constraints in C.

Definition 10 (Consistent Correlation) A set of constraints C is consistently correlated iff
∀ϕ. |S(C,ϕ)| ≤ 1.

Thus, a constraint set C is consistently correlated if all locations ϕ are either correlated with one
lock, or are never accessed and so are correlated with no locks. We refine S(C,ϕ) to refer to only
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[Con-Union]

ε `ok C1 ↪→ C ′
1; ~α ε `ok C2 ↪→ C ′

2; ~β
fl(C ′

1) ∩ ~β = ∅ fl(C ′
2) ∩ ~α = ∅

for all ϕ. |S(C ′
1 ∪ C ′

2, ϕ)| ≤ 1
C ′

1 ` L1 ≤1 ` ∧ C ′
2 ` L2 ≤1 ` ⇒ L1 = L2

ε `ok C1 ∪ C2 ↪→ C ′
1 ∪ C ′

2; ~α ] ~β

[Con-Encap]

ε′ ⊆ ~α ε ] ε′ `ok C ↪→ C ′; ~β
for all c ∈ C ′. c 6= (L ≤1 `)

for all ` ∈ ~α. (C ` ϕB `) ⇒ ϕ ∈ ~α
ε `ok {ν~α[C; ε′]} ↪→ C ′; ~α ] ~β

[Con-Other]
C = ∅ ∨ C = {ρB `} ∨ C = {ϕ ≤ ρ}

ε `ok C ↪→ C; ∅

[Con-Lock]
` 6∈ ε

ε `ok {L ≤1 `} ↪→ {L ≤1 `}; ∅

Figure 19: λcp
B Constraint Set Well-Formedness

concrete lock labels in its range:

Sg(C,ϕ) = {L | C ` ϕB ` ∧ C ` L ≤1 `}

We prove the facts C ` c in these definitions (and in typing and subtyping rules presented
earlier) according to the rules in Figure 18. The [Loc-Flow], [Lab-Refl], and [Loc-Trans] rules
establish flow between locations as the reflexive, transitive closure of atomic flow constraints in
C. The only flow permitted between locks is due to [Lab-Refl], which effectively means that each
lock name in the program identifies a distinct lock, enforcing linearity. The [Correlate] rule defines
correlation as transitive with respect to flow. Finally, observe that encapsulated constraints cannot
be used to prove flows or correlations directly, as [Encap-Flow] can only be used to prove weaker
encapsulated constraints. Instead, we “unwrap” encapsulated constraints as part of [Down], and
we will show below that for well-formed constraint sets, encapsulated constraints can be duplicated
arbitrarily many times while preserving consistent correlation.

Figure 19 defines a well-formedness judgment ε `ok C ↪→ C ′; ~α on constraints, whose “inputs”
are ε and C. Ignoring the “outputs” we introduce the short form of well-formedness as follows:

Definition 11 We define ε `ok C if there exist C ′, ~α such that ε `ok C ↪→ C ′; ~α.

The well-formedness rules establish several properties. First, bound variables appearing in encap-
sulated constraints within C are disjoint. Notice that [Con-Encap] includes the bound variables ~α
in the output, and that they must be disjoint from binders ~β within constraints C ′, as we have ~α]~β.
[Con-Encap] also strips the encapsulated constraints before checking them for well-formedness (the
second premise), so that the output constraint set contains no encapsulated constraints, but keeps
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the names of the variables intact. The second line of premises in [Con-Union] then ensures that
these variables are disjoint with any binders in “adjacent” constraints. The requirement for dis-
joint binder variables is the reason for the explicit alpha-conversion when stripping encapsulated
constraints in the [Down] rule.

Second, the rules ensure that a given lock variable ` is only allocated once. The last premise of
[Con-Union] ensures this fact directly, and [Con-Lock] ensures that if ε `ok C that ε is disjoint from
those ` for which constraint ` ≤1 ` appears in C, and is likewise disjoint from any ε′ appearing in
an encapsulated constraint. We also require no lock allocation constraints appear in encapsulated
constraints, as enforced by the third premise of [Con-Encap]. This places no limit on expressive
power as such constraints are not useful for source programs (which should have no occurrences
of the [Lock] rule), but it establishes a useful invariant that permits duplicating encapsulated
constraints as part of the preservation proof.

Finally, the third premise of [Con-Union] enforces consistent correlation of the stripped con-
straints, and we can prove as much for the original constraints without much trouble, as we show
below. First, we can prove some useful properties.

Lemma 12 (Well-formed Constraint Properties) If ε `ok C ↪→ C ′; ~α then

1. C ′ = strip∗(C) and ~α = bl(C).

2. ε `ok α
~l′(C) ↪→ φ

~l′
α(C ′);φ~l′α(~α) where ~l′ ⊇ ε.

3. ` ∈ ε implies C 6` L ≤1 ` and C ′ 6` L ≤1 ` for all L.

4. C ′′ ⊆ C implies ε `ok C
′′.

5. ε′ ⊆ ε implies ε′ `ok C ↪→ C ′; ~α.

Proof: By easy induction on ε `ok C ↪→ C ′; ~α. �

We can show well-formed constraints are consistently correlated.

Lemma 13 (Consistent Correlation) If ε `ok C ↪→ C ′; ~α then

1. for all ϕ, |S(C,ϕ)| ≤ 1 and |S(C ′, ϕ)| ≤ 1.

2. C ` L1 ≤1 ` ∧ C ` L2 ≤1 `⇒ L1 = L2 and C ′ ` L1 ≤1 ` ∧ C ′ ` L2 ≤1 `⇒ L1 = L2

Proof: Proof by induction on ε `ok C ↪→ C ′; ~α. To prove the properties mentioning C (rather
than C ′), observe by the rules in Figure 18 that encapsulated constraints cannot contribute to
correlation sets. That is, let C ′′ be C with all encapsulated constraints removed; then C ` ρ B `
implies C ′′ ` ρB `. It is clear that for ε `ok C

′′ ↪→ C ′′′; ~β (by Lemma 12(1)) that C ′′ = C ′′′ and so
the result on C ′′′ implies the result for C ′′ which implies the result for C. �

Finally, we wish to prove that encapsulated constraints can be freely duplicated while still preserving
well-formedness, as mentioned above. To do this, we first establish some useful properties on (well-
formed) encapsulated constraints.

Lemma 14 (Encapsulated Constraint Properties) If ε `ok C∪{ν~α[C1; ε1]} ↪→ C ′∪C ′
1; ~β] ~β′

where α~l′ is an alpha-converting substitution on ν~α[C1; ε1] with ~l′ ⊇ ε ∪ fl(C ′) then
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1. for all ` ∈ bl(C1) ∪ ~α. (C ′
1 ` ϕB `) ⇒ ϕ ∈ bl(C1) ] ~α

2. if C ′ ∪ C ′
1 ∪ φ

~l′
α(C ′

1) ` ϕ ≤ ρ then

• if ϕ ∈ fl(C ′ ∪ C ′
1) then

(1) ρ ∈ fl(C ′ ∪ C ′
1) implies C ′ ∪ C ′

1 ` ϕ ≤ ρ and
(2) ρ ∈ fl(C ′ ∪ φ~l′α(C ′

1)) implies C ′ ∪ C ′
1 ` ϕ ≤ ρ′ where φ~l′α(ρ′) = ρ

• if ϕ ∈ fl(C ′ ∪ φ~l′α(C ′
1)) then

(3) ρ ∈ fl(C ′ ∪ φ~l′α(C ′
1)) implies C ′ ∪ φ~l′α(C ′

1) ` ϕ ≤ ρ and
(4) ρ ∈ fl(C ′ ∪ C ′

1) implies C ′ ∪ φ~l′α(C ′
1) ` ϕ ≤ ρ′ where φ~l′α(ρ) = ρ′

Proof: The first is proved by easy induction on ε `ok C ∪ {ν~α[C1; ε1]} ↪→ C ′ ∪ C ′
1; ~β ] ~β′. The

last is proved by induction on the derivation C ′ ∪ C ′
1 ∪ φ

~l′
α(C ′

1) ` ϕ ≤ ρ.
Case [Lab-Refl]. We have

[Lab-Refl]

C ′ ∪ C ′
1 ∪ φ

~l′
α(C ′

1) ` ϕ ≤ ϕ

and thus ρ = ϕ.

• Assume ϕ ∈ fl(C ′ ∪ C ′
1):

(1) We have C ′ ∪ C ′
1 ` ϕ ≤ ϕ by [Lab-Refl].

(2) Assume ϕ ∈ fl(C ′ ∪ φ
~l′
α(C ′

1)). We can show that ϕ 6∈ dom(φ~l′α) which implies that
φ
~l′
α(ϕ) = ϕ and thus C ′∪C ′

1 ` ϕ ≤ ϕ by [Lab-Refl], and the result follows by taking ρ′ =
ϕ. We prove ϕ 6∈ dom(φ~l′α) by contradiction. Suppose ϕ ∈ dom(φ~l′α), and thus ϕ ∈ C ′

1.
Since the dom(φ~l′α) and rng(φ~l′α) must be disjoint, the fact that ϕ ∈ fl(C ′ ∪ φ~l′α(C ′

1)) and
ϕ ∈ fl(C ′∪C ′

1) implies it must be in the part in which the two constraint sets agree. But
that implies that ϕ appears at least twice in the constraints: bound in ν~α[C1; ε1] and
elsewhere in the C ∪ ν~α[C1; ε1], either bound separately or free. But this is impossible
since ε `ok C ∪ {ν~α[C1; ε1]} forbids such duplication.

• Assume ϕ ∈ fl(C ′ ∪ φ~l′α(C ′
1)); proofs of (3) and (4) mirror (1) and (2), above.

Case [Loc-Flow]. We have

[Loc-Flow]
ϕ ≤ ρ ∈ C ′ ∪ C ′

1 ∪ φ
~l′
α(C ′

1)

C ′ ∪ C ′
1 ∪ φ

~l′
α(C ′

1) ` ϕ ≤ ρ

From the premise at least one of the following is true: (1) ϕ ≤ ρ ∈ C ′; (2) ϕ ≤ ρ ∈ C ′
1; and/or (3)

ϕ ≤ ρ ∈ φ~l′α(C ′
1). We prove the desired conditions by cases:

1. Assume ϕ ≤ ρ ∈ C ′, which implies that ρ, ϕ 6∈ dom(φ~l′α) since by ε `ok C ∪ {ν~α[C1; ε1]}
binders cannot be duplicated. As a result, we easily have C ′ ` ϕ ≤ ρ and C ′ ` ϕ ≤ φ

~l′
α(ρ) by

[Loc-Flow], and results (1)–(4) easily follow by weakening.
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2. Assume ϕ ≤ ρ ∈ C ′
1.

(1) C ′ ∪ C ′
1 ` ϕ ≤ ρ by [Loc-Flow]

(2) If ρ ∈ fl(C ′ ∪ φ~lα(C ′
1)), then we can prove that ρ 6∈ dom(φ~l′α), so φ

~l′
α(ρ) = ρ and thus

C ′
1 ` ϕ ≤ φ

~l′
α(ρ′) where ρ′ = ρ by [Loc-Flow]; the result follows by weakening. To prove

ρ 6∈ dom(φ~l′α), there are two cases. If ρ ∈ fl(C ′) then ε `ok C ∪ {ν~α[C1; ε1]} prevents a
binder in C1 from being duplicated. If ρ ∈ fl(φ~l′α(C ′

1)) then we follow the argument from
(2) of the [Lab-Refl] case, above.

(3) Assume ϕ, ρ ∈ fl(C ′ ∪ φ~l′α(C ′
1)); we want to show that φ~l′α(C ′

1) ` ϕ ≤ ρ so the result
follows by weakening. By the argument for (2), above, we know that ρ, ϕ 6∈ dom(φ~l′α)
and thus ϕ ≤ ρ ∈ C ′

1 implies ϕ ≤ ρ ∈ φ~l′α(C ′
1).

(4) Assume ϕ ∈ fl(C ′ ∪ φ~l′α(C ′
1)) and ρ ∈ fl(C ′ ∪ C ′

1); we want to show that φ~l′α(C ′
1) ` ϕ ≤

φ
~l′
α(ρ). The fact that ϕ ≤ ρ ∈ C ′

1 implies φ~l′α(ϕ) ≤ φ
~l′
α(ρ) ∈ φ~l′α(C ′

1). Since ϕ ∈ fl(C ′
1) and

ϕ ∈ fl(C ′ ∪ φ~l′α(C ′
1)), we know that ϕ 6∈ dom(φ~l′α) following the argument for (2), above.

Therefore, ϕ ≤ φ
~l′
α(ρ) ∈ φ~l′α(C ′

1) which gives us the desired result by [Loc-Flow].

3. Assume ϕ ≤ ρ ∈ φ
~l′
α(C ′

1). The arguments for (1),(2) mirror case 2’s arguments for (3),(4),
above; likewise (3),(4) mirror (1),(2).

Case [Loc-Trans]. We have

[Loc-Trans]
C ′ ∪ C ′

1 ∪ φ
~l′
α(C ′

1) ` ϕ ≤ ρ′ C ′ ∪ C ′
1 ∪ φ

~l′
α(C ′

1) ` ρ′ ≤ ρ

C ′ ∪ C ′
1 ∪ φ

~l′
α(C ′

1) ` ϕ ≤ ρ

To prove (1)–(4), we consider two cases: (1) when ρ′ ∈ fl(C ′∪C ′
1) and (2) when ρ′ ∈ fl(C ′∪φ~lα(C ′

1).
Consider the former case:

(1) Assume ϕ ∈ fl(C ′ ∪C ′
1) and ρ ∈ fl(C ′ ∪C ′

1). We have C ′ ∪C ′
1 ` ϕ ≤ ρ′ and C ′ ∪C ′

1 ` ρ′ ≤ ρ
by induction, and the result follows by [Loc-Trans].

(2) Assume ϕ ∈ fl(C ′ ∪C ′
1) and ρ ∈ fl(C ′ ∪ φ~l′α(C ′

1)). By induction we have C ′ ∪C ′
1 ` ϕ ≤ ρ′ and

C ′ ∪ C ′
1 ` ρ′ ≤ ρ′′ where φ~l′α(ρ′′) = ρ, and the result follows by [Loc-Trans].

(3) Assume ϕ ∈ fl(C ′∪φ~l′α(C ′
1)) and ρ ∈ fl(C ′∪φ~l′α(C ′

1)) so we must prove C ′∪φ~l′α(C ′
1) ` ϕ ≤ ρ. By

induction we have C ′ ∪ φ~l′α(C ′
1) ` ϕ ≤ φ

~l′
α(ρ′) and C ′ ∪C ′

1 ` ρ′ ≤ ρ′′ where φ~l′α(ρ′′) = ρ. To get
the desired result by [Loc-Trans], we need to show C ′∪φ~l′α(C ′

1) ` φ
~l′
α(ρ′) ≤ φ

~l′
α(ρ′′). This follows

from C ′∪C ′
1 ` ρ′ ≤ ρ′′ which implies φ~l′α(C ′)∪φ~l′α(C ′

1) ` φ
~l′
α(ρ′) ≤ φ

~l′
α(ρ′′), and from φ

~l′
α(C ′) = C ′

since the binders in ν~α[C1; ε1] must be disjoint with fl(C) by ε `ok C ∪ {ν~α[C1; ε1]}.

(4) ϕ ∈ fl(C ′ ∪ φ~l′α(C ′
1)) and ρ ∈ fl(C ′ ∪ C ′

1) so we must prove C ′ ∪ φ~l′α(C ′
1) ` ϕ ≤ φ

~l′
α(ρ). By

induction we have C ′ ∪ φ~l′α(C ′
1) ` ϕ ≤ φ

~l′
α(ρ′) and C ′ ∪ C ′

1 ` ρ′ ≤ ρ. To get the desired result
by [Loc-Trans] we need to show C ′ ∪ φ~l′α(C ′

1) ` φ
~l′
α(ρ′) ≤ φ

~l′
α(ρ), but this follows by the same

reasoning as case (3), above.
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When assuming ρ′ ∈ fl(C ′ ∪ φ~l′α(C ′
1)), the reasoning mirrors the cases above �

Finally, we prove that encapsulated constraints can be duplicated and “stripped” while still pre-
serving well-formedness.

Lemma 15 (Duplicated Encapsulated Constraint)
If

ε `ok C ∪ {ν~α[C1; ε1]} ↪→ C ′ ∪ C ′
1; ~α ] ~β

then

ε ] φ~l′α(ε1) `ok C ∪ {ν~α[C1; ε1]} ∪ strip(α
~l′(ν~α[C1; ε1])) ↪→ C ′ ∪ C ′

1 ∪ φ
~l′
α(C ′

1); ~α ] ~β ] φ
~l′
α(~β)

where ~l′ ⊇ fl(C ′
1) ∪ fl(C ′) ∪ ε.

Proof: By inversion, we have

[Con-Union]

ε `ok C ↪→ C ′; ~α ε `ok ν~α[C1; ε1] ↪→ C ′
1; ~β

fl(C ′) ∩ ~β = ∅ fl(C ′
1) ∩ ~α = ∅

for all ϕ. |S(C ′ ∪ C ′
1, ϕ)| ≤ 1

C ′ ` L1 ≤1 ` ∧ C ′
1 ` L2 ≤1 ` ⇒ L1 = L2

ε `ok C ∪ {ν~α[C1; ε1]} ↪→ C ′ ∪ C ′
1; ~α ] ~β

We want to prove

[Con-Union]

ε ] φ~l′α(ε1) `ok C ∪ {ν~α[C1; ε1]} ↪→ C ′ ∪ C ′
1; ~α ] ~β

(1)

ε ] φ~l′α(ε1) `ok strip(α~l′(ν~α[C1; ε1])) ↪→ φ
~l′
α(C ′

1);φ
~l′
α(~β)

(2)

fl(C ′ ∪ C ′
1) ∩ φ

~l′
α(~β) = ∅

(3)
fl(φ~l′α(C ′

1)) ∩ (~α ] ~β) = ∅
(4)

for all ϕ. |S(C ′ ∪ C ′
1 ∪ φ

~l′
α(C ′

1), ϕ)| ≤ 1
(5)

C ′ ∪ C ′
1 ` L1 ≤1 ` ∧ φ

~l′
α(C ′

1) ` L2 ≤1 ` ⇒ L1 = L2

(6)

ε ] φ~l′α(ε1) `ok C ∪ {ν~α[C1; ε1]} ∪ strip(α~l′(ν~α[C1; ε1])) ↪→
C ′ ∪ C ′

1 ∪ φ
~l′
α(C ′

1); ~α ] ~β ] φ
~l′
α(~β)

(7)

We prove each of the seven labeled statements (6 premises and well-formedness of ] in the conclu-
sion) to get the desired result:

(1) ε ] φ~l′α(ε1) `ok C ∪ {ν~α[C1; ε1]} ↪→ C ′ ∪ C ′
1; ~α ] ~β.

Proof by easy induction on ε `ok C ∪ {ν~α[C1; ε1]} ↪→ C ′ ∪ C ′
1; ~α ] ~β. The key is that adding

φ
~l′
α(ε1) to the input effect cannot cause applications of [Con-Lock] to fail because ε1 ⊆ dom(φ~l′α)

and rng(φ~l′α) ∩ fl(strip∗(C ∪ {ν~α[C1; ε1]})) = ∅ by the definition of ~l′.

(2) ε ] φ~l′α(ε1) `ok strip(α~l′(ν~α[C1; ε1])) ↪→ φ
~l′
α(C ′

1);φ
~l′
α(~β).

We have by assumption that ε `ok ν~α[C1; ε1] ↪→ C ′
1; ~β and so ε `ok α

~l′(ν~α[C1; ε1]) ↪→ φ
~l′
α(C ′

1);φ
~l′
α(~β)

by Lemma 12(2). The final rule of this derivation must be [Con-Encap], so by inversion we have
ε ] φ~l′α(ε1) `ok strip(α~l′(ν~α[C1; ε1])) ↪→ φ

~l′
α(C ′

1);φ
~l′
α(~β) which is the desired result.

39



(3) fl(C ′ ∪ C ′
1) ∩ φ

~l′
α(~β) = ∅.

Follows since ~β = dom(φ~l′α) by Lemma 12(1), and rng(φ~l′α) ∩ fl(strip∗(C ∪ {ν~α[C1; ε1]})) = ∅ by
the definition of ~l′, and strip∗(C ∪ {ν~α[C1; ε1]}) = C ∪ C ′

1 by Lemma 12(1).

(4) fl(φ~l′α(C ′
1)) ∩ (~α ] ~β) = ∅.

We know bl(C) = ~α (thus ~α ⊆ fl(C ′)) and bl(ν~α[C1; ε1]) = dom(φ~l′α) = ~β (thus ~β ⊆ fl(C ′
1)) by

Lemma 12(1). Consider some α ∈ fl(C ′
1). If α ∈ dom(φ~l′α) then φ~l′α(α) 6∈ (~α] ~β) because by the fact

that φ~l′α derives from an alpha-converting substitution we have that rng(φ~l′α) ∩ (~l′ ∪ dom(φ~l′α)) = ∅
where ~l′ ⊇ (fl(C ′)∪fl(C ′

1)) ⊇ (~α] ~β). If α 6∈ dom(φ~l′α) then φ~l′α(α) = α and α 6∈ ~β. Moreover, α 6∈ ~α
by our assumption ε `ok C ∪ {ν~α[C1; ε1]} ↪→ C ′ ∪ C ′

1; ~α ] ~β whose last rule must be [Con-Union]
by inversion, which contains the premise fl(C ′

1) ∩ ~α = ∅.

(5) for all ϕ′. |S(C ′ ∪ C ′
1 ∪ φ

~l′
α(C ′

1), ϕ
′)| ≤ 1.

The proof proceeds by contradiction: assume that there exists some ϕ, `1 and `2 where C ′ ∪
C ′

1 ∪ φ
~l′
α(C ′

1) ` ϕB `1 and C ′ ∪ C ′
1 ∪ φ

~l′
α(C ′

1) ` ϕB `2. Thus we must have

[Correlate]
C ′ ∪ C ′

1 ∪ φ
~l′
α(C ′

1) ` ϕ ≤ ρ ρB `1 ∈ C ′ ∪ C ′
1 ∪ φ

~l′
α(C ′

1)

C ′ ∪ C ′
1 ∪ φ

~l′
α(C ′

1) ` ϕB `1

and

[Correlate]
C ′ ∪ C ′

1 ∪ φ
~l′
α(C ′

1) ` ϕ ≤ ρ′ ρ′ B `2 ∈ C ′ ∪ C ′
1 ∪ φ

~l′
α(C ′

1)

C ′ ∪ C ′
1 ∪ φ

~l′
α(C ′

1) ` ϕB `2

We prove one of these derivations is impossible by showing that it would contradict that |S(C ′∪
C ′

1, ϕ)| ≤ 1 or |S(C ′ ∪ φ
~l′
α(C ′

1), ϕ)| ≤ 1. We know the former is true by the fact that ε `ok

C ∪ {ν~α[C1; ε1]} ↪→ C ′ ∪C ′
1; ~α] ~β (assumption) and Lemma 13. The latter is true by the fact that

ε `ok C ∪ {α~l′(ν~α[C1; ε1])} ↪→ C ′ ∪ φ~l′α(C ′
1); ~α ] φ

~l′
α(~β) (by Lemma 12(2)) and Lemma 13.

The proof proceeds by cases. Consider how we might prove the premises of C ′ ∪C ′
1 ∪ φ

~l′
α(C ′

1) `
ϕB `1:

1. C ′ ∪ C ′
1 ` ϕ ≤ ρ and ρB `1 ∈ C ′ ∪ C ′

1. From this, we know that ϕ ∈ fl(C ′ ∪ C ′
1), since either

ϕ = ρ and ρ ∈ fl(C ′∪C ′
1) (since ρB`1 ∈ C ′∪C ′

1), or else ϕ 6= ρ and so C ′∪C ′
1 ` ϕ ≤ ρ implies

that ϕ ∈ fl(C ′ ∪ C ′
1) by inspection of the rules in Figure 18. Now consider the premises of

C ′ ∪ C ′
1 ∪ φ

~l′
α(C ′

1) ` ϕB `2:

(a) C ′∪C ′
1∪φ

~l′
α(C ′

1) ` ϕ ≤ ρ′ and ρ′B`2 ∈ C ′∪C ′
1. Since ϕ ∈ fl(C ′∪C ′

1) and ρ′ ∈ fl(C ′∪C ′
1)

(since ρ′ B `2 ∈ C ′ ∪ C ′
1), by Lemma 14(2)(1) we must have that C ′ ∪ C ′

1 ` ϕ ≤ ρ′. But
then this implies that C ′ ∪ C ′

1 ` ϕB `2 which contradicts that |S(C ′ ∪ C ′
1, ϕ)| ≤ 1.

(b) C ′ ∪ C ′
1 ∪ φ

~l′
α(C ′

1) ` ϕ ≤ ρ′ and ρ′ B `2 ∈ C ′ ∪ φ~l′α(C ′
1). Since ϕ ∈ fl(C ′ ∪ C ′

1) and
ρ′ ∈ C ′ ∪ φ

~l′
α(C ′

1), by Lemma 14(2)(2) we must have that C ′ ∪ C ′
1 ` ϕ ≤ ρ′′ where

φ
~l′
α(ρ′′) = ρ′. Also ρ′′ B `′2 ∈ C ′ ∪ C ′

1 where φ~l′α(`′2) = `2 since ρ′ B `2 ∈ C ′ ∪ φ~l′α(C ′
1) by

assumption. By Lemma 14(1) φ~l′α(`′2) = `2 and thus ρ′′ B `2 ∈ C ′ ∪ C ′
1. But then this

implies that C ′ ∪ C ′
1 ` ϕB `2 which contradicts that |S(C ′ ∪ C ′

1, ϕ)| ≤ 1.

40



2. C ′ ∪ C ′
1 ` ϕ ≤ ρ and ρ B `1 ∈ C ′ ∪ φ

~l′
α(C ′

1). If ϕ 6= ρ then ρ ∈ fl(C ′ ∪ C ′
1) and since

ρ ∈ fl(C ′ ∪ φ~l′α(C ′
1)), it must be that ρ 6∈ bl(C1) ∪ ~α. But then by Lemma 14(1) we must also

have that ρB `1 ∈ C ′ ∪ C ′
1, so the above case applies. If ϕ = ρ then C ′ ∪ φ~l′α(C ′

1) ` ϕ ≤ ρ as
well, so the case below applies.

3. C ′ ∪ φ~l′α(C ′
1) ` ϕ ≤ ρ and ρB `1 ∈ C ′ ∪ φ~l′α(C ′

1). Mirroring the argument of case 1, above, we
know ϕ ∈ fl(C1 ∪ φ

~l′
α(C ′

1)). Now consider the premises of C ′ ∪ C ′
1 ∪ φ

~l′
α(C ′

1) ` ϕB `2:

(a) C ′∪C ′
1∪φ

~l′
α(C ′

1) ` ϕ ≤ ρ′ and ρ′B`2 ∈ C ′∪φ~l′α(C ′
1). Mirroring the argument from case 1(a)

above, we can show C ′∪φ~l′α(C ′
1) ` ϕ ≤ ρ′. But then this implies that C ′∪φ~l′α(C ′

1) ` ϕB`2
which contradicts that |S(C ′ ∪φ~l′α(C ′

1), ϕ)| ≤ 1 since we already have that C ′ ∪φ~l′α(C ′
1) `

ϕB `1.

(b) C ′∪C ′
1∪φ

~l′
α(C ′

1) ` ϕ ≤ ρ′ and ρ′B`2 ∈ C ′∪C ′
1. Since ϕ ∈ fl(C ′∪φ~l′α(C ′

1)) and ρ′ ∈ C ′∪C ′
1,

by Lemma 14(2)(4) we must have that C ′∪φ~l′α(C ′
1) ` ϕ ≤ φ

~l′
α(ρ′). Since ρ′B `2 ∈ C ′∪C ′

1

we have φ~l′α(ρ′)Bφ
~l′
α(`2) ∈ C ′∪φ~l′α(C ′

1), and thus C ′∪φ~l′α(C ′
1) ` ϕBφ

~l′
α(`2). We can show

that φ~l′α(`2) 6= `1, but then this contradicts |S(C ′ ∪ φ~l′α(C ′
1), ϕ)| ≤ 1.

Given that C ′ ∪ φ~l′α(C ′
1) ` ϕ ≤ φ

~l′
α(ρ′) and φ

~l′
α(ρ′) B φ

~l′
α(`2) ∈ C ′ ∪ φ~l′α(C ′

1), if C ′ ∪ C ′
1 ∪

φ
~l′
α(C ′

1) ` ϕ B `1 where `2 6= `1, we want to show that φ~l′α(`2) 6= `1. Two cases. First,
if `2 6∈ dom(φ~l′α) then φ

~l′
α(`2) = `2 and the result follows since `2 6= `1 by assumption.

Otherwise, `2 ∈ bl(C1) ∪ ~α and so by Lemma 14(1) we have ϕ ∈ bl(C1) ∪ ~α and thus
ϕ ∈ dom(φ~l′α). Now consider two sub-cases. First, if `1 ∈ fl(C ′ ∪ C ′

1) then φ
~l′
α(`2) 6= `1

since ~l′ ⊇ fl(C ′ ∪ C ′
1). Otherwise, if `1 ∈ rng(φ~l′α) then ϕ ∈ rng(φ~l′α) by Lemma 14(1).

But this is impossible since that means ϕ ∈ dom(φ~l′α) and ϕ ∈ rng(φ~l′α) but the domain
and range of φ~l′α must be disjoint.

4. C ′ ∪ φ~l′α(C ′
1) ` ϕ ≤ ρ and ρB `1 ∈ C ′ ∪ C ′

1. Mirrors the second case, above.

5. C ′ ∪ C ′
1 ∪ φ

~l′
α(C ′

1) ` ϕ ≤ ρ and ρB `1 ∈ C ′ ∪ C ′
1. If ϕ ∈ fl(C ′ ∪ C ′

1) then by Lemma 14(2)(1)
we have C ′ ∪ C ′

1 ` ϕ ≤ ρ. Since ρ B `1 ∈ C ′ ∪ C ′
1 the reasoning for the first case applies. If

ϕ ∈ fl(C ′∪φ~l′α(C ′
1)) then by Lemma 14(2)(4) we have C ′∪φ~l′α(C ′

1) ` ϕ ≤ ρ′ where φ~l′α(ρ) = ρ′.
We have φ~l′α(ρ) B φ

~l′
α(`1) ∈ C ′ ∪ φ~l′α(C ′

1) by the fact that ρ B `1 ∈ C ′ ∪ C ′
1 and we can show

φ
~l′
α(`1) 6= `2 as we did in 3(b), above. So the reasoning from case 3 applies, where we have
C ′ ∪ φ~l′α(C ′

1) ` ϕ ≤ φ
~l′
α(ρ) and φ

~l′
α(ρ) B φ

~l′
α(`1) ∈ C ′ ∪ φ~l′α(C ′

1) from the first derivation and
C ′ ∪ C ′

1 ∪ φ
~l′
α(C ′

1) ` ϕ ≤ `2 as the second.

6. C ′ ∪C ′
1 ∪ φ

~l′
α(C ′

1) ` ϕ ≤ ρ and ρB `1 ∈ C ′ ∪ φ~l′α(C ′
1). Mirrors the argument in the above case.

(6) C ′ ∪ C ′
1 ` L1 ≤1 ` ∧ φ~l′α(C ′

1) ` L2 ≤1 `⇒ L1 = L2.
We must have that ` 6∈ bl(C1) ∪ ~α since it appears in both C ′ ∪ C ′

1 and φ
~l′
α(C1)′. But in this

case we have both C ′ ∪ C ′
1 ` L1 ≤1 ` and C ′ ∪ C ′

1 ` L2 ≤1 ` and C ′ ∪ φ~l′α(C ′
1) ` L1 ≤1 ` and

C ′ ∪ φ~l′α(C ′
1) ` L2 ≤1 ` which by Lemma 13 implies that L1 = L2.
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(7) ~α ] ~β ] φ~l′α(~β) and ε ] φ~l′α(ε1) are well-defined.
For the first we can conclude that (~α ] ~β) ∩ φ~l′α(~β) = ∅ by fl(C ′ ∪ C ′

1) ∩ φ
~l′
α(~β) = ∅ from case

(3) above, since fl(C ′ ∪ C ′
1) ⊇ ~α ] ~β. The second follows from the fact that ~l′ ⊇ ε and thus

rng(φ~l′α) ∩ ε = ∅. �

A.4 Soundness

Proving soundness involves proving the standard substitution lemmas and preservation (a.k.a. sub-
ject reduction). We present some weakening lemmas first, then the substitution lemmas, and finally
the proof of preservation.

A.4.1 Weakening Lemmas

Definition 16 (Constraint Entailment) C ′ ` C iff ∀c ∈ C. C ′ ` c.

Lemma 17 (Entailment Implication)

1. If C ′ ⊇ C then C ′ ` C.

2. If C ′ ` C then C ` c implies C ′ ` c.

Proof: Proof by induction on C ` c. �

Lemma 18 (Constraint weakening in subtyping) If C ` τ ≤ τ ′ then for any C ′ such that
C ′ ` C it holds that C ′ ` τ ≤ τ ′.

Proof: By induction on C ` τ ≤ τ ′. �

Lemma 19 (Constraint weakening in typing) If C; Γ ` e : τ ; ε and C ′ ` C then C ′; Γ ` e :
τ ; ε.

Proof: By induction on C; Γ ` e : τ ; ε. Most cases follow either trivially (e.g., [Int],[Unit], and
[Id]) or by applying induction on the subderivations along with Lemma 17 to prove C ′ ` L ≤1 ` or
C ′ ` ϕ ≤ ρ or C ′ ` ρ B `, as appropriate. For [Sub] we appeal to Lemma 18. Here are the more
interesting polymorphic cases.
Case [Let]. We have

[Let]

C ′′; Γ `cp v1 : τ1; ∅ C; Γ, f : ∀~α[C ′′].τ1 `cp e2 : τ2; ε2
~α ⊆ (fl(τ1) ∪ fl(C ′′)) \ fl(Γ)

C; Γ `cp let f = v1 in e2 : τ2; ε2

By induction, C ′; Γ, f : ∀~α[C ′′].τ1 `cp e2 : τ2; ε2. Thus we can apply [Let] to show C ′; Γ `cp let f =
e1 in e2 : τ2; ε2.

Case [Fix]. We have

[Fix]

C ′′; Γ, f : ∀~α[C ′′].τ `cp v : τ ; ∅
~α ⊆ (fl(τ) ∪ fl(C ′′)) \ fl(Γ) C ` φ(C ′′) dom(φ) = ~α

C; Γ `cp fix f.v : φ(τ); ∅
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Then since C ′ ` C and C ` φ(C ′′), we have C ′ ` φ(C ′′) by Lemma 17. Thus we can apply [Fix] to
yield C ′; Γ `cp fix f.v : φ(τ1); ε.

Case [Inst]. Similar to [Fix].

Case [Down]. We have

[Down]

C ∪ {ν~α[C1; ε1]} ∪ strip(α~l′(ν~α[C1; ε1])); Γ `cp e : τ ; ε ] φ~l′α(ε1)
φ
~l′
α(~α) ∩ (fl(Γ) ∪ fl(τ)) = ∅

ε1 ⊆ ~α ~l′ ⊇ fl(strip∗(C) ∪ strip∗(ν~α[C1; ε1])) ∪ ε
C ∪ {ν~α[C1; ε1]}; Γ `cp e : τ ; ε

Since C ′ ` C ∪ {ν~α[C1; ε1]}, we must have

[Encap-Flow]
ν~α[C0; ε1] ∈ C ′ C0 ` C1

C ′ ` ν~α[C1; ε1]

And thus C ′ ≡ (C ′′ ∪ {ν~α[C0; ε1]}). It follows that α~l′(ν~α[C0; ε1]) ` α
~l′(ν~α[C1; ε1]), and thus

strip(α~l′(ν~α[C0; ε1])) ` strip(α~l′(ν~α[C1; ε1])) by inversion. With this we have C ′′ ∪ {ν~α[C0; ε1]} ∪
strip(α~l′(ν~α[C0; ε1])) ` C ∪ {ν~α[C1; ε1]} ∪ strip(α~l′(ν~α[C1; ε1])) and so by induction it follows that
C ′′ ∪ ν~α[C0; ε1] ∪ strip(α~l′(ν~α[C0; ε1])); Γ `cp e : τ ; ε ] φ~l′α(ε1).

We wish to apply [Down] to achieve the final result, where the above forms the first premise,
so now we must establish the rest. Assume without loss of generality that

~l′ ⊇ fl(strip∗(C ′′) ∪ strip∗(C) ∪ strip∗(ν~α[C1; ε1])) ∪ strip∗(ν~α[C0; ε1])) ∪ fl(Γ) ∪ fl(τ) ∪ ε

which satisfies our assumptions that

φ
~l′
α(~α) ∩ (fl(Γ) ∪ fl(τ)) = ∅ and

~l′ ⊇ fl(strip∗(C) ∪ strip∗(ν~α[C1; ε1])) ∪ ε

But then we also have that ~l′ ⊇ fl(strip∗(C) ∪ strip∗(ν~α[C0; ε1])) ∪ ε, and the other two premises
hold by assumption, so we can apply [Down] to achieve the final result. �

Lemma 20 (Polymorphic constraint weakening in typing) If C; Γ, f : ∀~α[C ′′].τ ` e : τ ; ε
then C; Γ, f : ∀~α[C ′′ ∪ C ′].τ ` e : τ ; ε where C ` C ′ and fl(C ′) ∩ ~α = ∅.

Proof: Proof by induction on C; Γ, f : ∀~α[C ′′].τ ` e : τ ; ε. Most cases are trivial or by induction;
the interesting cases are [Inst] and [Fix].
Case [Inst]. If f 6= g then we have

[Inst]
C ` φ(C ′′′) dom(φ) = ~β

C; Γ, f : ∀~α[C ′′].τ, g : ∀~β[C ′′′].τ `cp gi : φ(τ); ∅
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The result follows trivially. Otherwise, we have

[Inst]
C ` φ(C ′′) dom(φ) = ~α

C; Γ, f : ∀~α[C ′′].τ `cp f i : φ(τ); ∅
So awe must prove for some φ′ that C ` φ′(C ′′ ∪ C ′). Let φ′ = φ. By alpha-renaming we have
fl(C ′)∩ ~α = ∅, so φ′(C ′) = C ′. Thus C ` φ′(C ′′)∪C ′ since C ` φ′(C ′′) and C ` C ′ by assumption.

Case [Fix]. We can assume f 6= g by alpha-renaming, with

[Fix]

C ′; Γ, f : ∀~α[C ′′].τ, g : ∀~β[C ′′′].τ `cp v : τ ; ∅
~β ⊆ (fl(τ) ∪ fl(C ′′′)) \ fl(Γ) C ` φ(C ′′′) dom(φ) = ~β

C; Γ, f : ∀~α[C ′′].τ `cp fix g.v : φ(τ); ∅
The result follows trivially by induction. �

A.4.2 Substitution

Lemma 21 (Substitution lemma) If C; Γ, x : τ ′ `cp e : τ ; ε and C ` C ′ and C ′; Γ `cp e′ : τ ′; ∅,
then C; Γ `cp e[x 7→ e′] : τ ; ε.

Proof: Notice that we only allow substituting with expressions e′ that have no effect. The proof
proceeds by induction on C; Γ, x : τ ′ `cp e : τ ; ε.
Case [Id]. There are two cases. First, if e = x, we have

[Id]
C; Γ, x : τ ′ `cp x : τ ′; ∅

Then τ = τ ′, and since x[x 7→ e′] = e′, by our assumption C ′; Γ `cp e′ : τ ′; ∅ and Lemma 19 we have
C; Γ `cp e′ : τ ′; ∅ . Otherwise, we have

[Id]
C; Γ, x : τ `cp y : τ ; ∅

where y 6= x. Since y[x 7→ e′] = y, we have the result by assumption and a trivial strengthening of
Γ.

Case [Int]. Trivial.

Case [Lam]. We have

[Lam]
C; Γ, x : τ ′, y : τ1 `cp e2 : τ2; ε

C; Γ, x : τ ′ `cp λy.e2 : τ1 →ε τ2; ∅
Using alpha renaming we can assume y 6= x, and hence C; Γ, y : τ1, x : τ ′ `cp e2 : τ2; ε. Then by
induction we have C; Γ, y : τ1 `cp e2[x 7→ e′] : τ2; ε. Thus we can apply [Lam] to yield C; Γ `cp
(λy.e2)[x 7→ e′] : τ1 →ε τ2; ∅.

Case [App]. We have

[App]

C; Γ, x : τ ′ `cp e1 : τ2 →ε τ ; ε1
C; Γ, x : τ ′ `cp e2 : τ2; ε2

C; Γ, x : τ ′ `cp e1 e2 : τ ; ε1 ] ε2 ] ε
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Then by induction, we have C; Γ `cp e1[x 7→ e′] : τ2 →ε τ ; ε1 and C; Γ `cp e2[x 7→ e′] : τ2; ε2.
Therefore we can apply [App] to yield C; Γ `cp (e1 e2)[x 7→ e′] : τ ; ε1 ] ε2 ] ε.

Case [Pair], [Proj], [Cond], [Sub], [Ref], [Newlock], [Deref], [Assign], [Loc], [Lock]. By
induction (similar to [App]).

Case [Let]. We have

[Let]

C ′′; Γ, x : τ ′ `cp v1 : τ1; ∅
C; Γ, x : τ ′, f : ∀~α[C ′′].τ1 `cp e2 : τ2; ε2
~α ⊆ (fl(τ1) ∪ fl(C ′′)) \ fl(Γ, x : τ ′)

C; Γ, x : τ ′ `cp let f = v1 in e2 : τ2; ε2

By Lemma 19 and induction, we have C ′ ∪ C ′′; Γ `cp v1[x 7→ e′] : τ1; ∅. By Lemma 20 we have
C; Γ, x : τ ′, f : ∀~α[C ′′ ∪ C ′].τ1 `cp e2 : τ2; ε2, and by alpha-conversion (since f 6= x) and induction
we have C; Γ, f : ∀~α[C ′ ∪ C ′′].τ1 ` e2[x 7→ e′] : τ2; ε2. We have

~α ⊆ (fl(τ1) ∪ fl(C ′′)) \ (fl(Γ) ∪ fl(τ ′))
⊆ (fl(τ1) ∪ fl(C ′′)) \ fl(Γ)
⊆ (fl(τ1) ∪ fl(C ′′) ∪ fl(C ′)) \ fl(Γ)

So the result follows by [Let].

Case [Fix]. We have

[Fix]

C ′′; Γ, x : τ ′, f : ∀~α[C ′′].τ `cp v : τ ; ∅
~α ⊆ (fl(τ) ∪ fl(C ′′)) \ fl(Γ, x : τ ′)
C ` φ(C ′′) dom(φ) = ~α

C; Γ, x : τ ′ `cp fix f.v : φ(τ); ∅
By Lemma 19 and Lemma 20 we have C ′′ ∪ C ′; Γ, x : τ ′, f : ∀~α[C ′′ ∪ C ′].τ `cp v : τ ; ∅, so by alpha-
conversion (since f 6= x) and induction we have C ′′ ∪ C ′; Γ, f : ∀~α[C ′′ ∪ C ′].τ `cp v[x 7→ e′] : τ ; ∅.
As per the reasoning in [Let], ~α ⊆ (fl(τ1) ∪ fl(C ′′ ∪ C ′))\fl(Γ). By our alpha-renaming convention,
we have fl(C ′) ∩ ~α = ∅, so φ(C ′) = C ′ and thus C ` φ(C ′′ ∪ C ′) since C ` C ′ and C ` φ(C ′′). The
result follows from [Fix].

Case [Inst]. We have

[Inst]
C ` φ(C ′′) dom(φ) = ~α

C; Γ, x : τ ′, f : ∀~α[C ′′].τ `cp f i : φ(τ); ∅

Since fi[x 7→ e′] = fi (x and f are different syntactic forms) the result follows by assumption and
a trivial strengthening of Γ.

Case [Down]. We have

[Down]

C ∪ {ν~α[C1; ε1]} ∪ strip(α~l′(ν~α[C1; ε1])); Γ, x : τ ′ `cp e : τ ; ε ] φ~l′α(ε1)
φ
~l′
α(~α) ∩ (fl(Γ, x : τ ′) ∪ fl(τ)) = ∅

ε1 ⊆ ~α ~l′ ⊇ fl(strip∗(C) ∪ strip∗(ν~α[C1; ε1])) ∪ ε
C ∪ {ν~α[C1; ε1]}; Γ, x : τ ′ `cp e : τ ; ε

45



Since C∪{ν~α[C1; ε1]} ` C ′ by assumption, it follows that C∪{ν~α[C1; ε1]}∪ strip(α~l′(ν~α[C1; ε1])) `
C ′. By induction C ∪ {ν~α[C1; ε1]} ∪ strip(α~l′(ν~α[C1; ε1])); Γ `cp e[x 7→ e′] : τ ; ε ] φ~l′α(ε1).

We wish to show the result by [Down], where the first premise is the above, so we must establish
the remaining premises. Since φ~l′α(~α)∩ (fl(Γ, x : τ ′) ∪ fl(τ)) = ∅ we have φ~l′α(~α)∩ (fl(Γ) ∪ fl(τ)) = ∅,
and the remaining premises follow by assumption. �

Lemma 22 (Polymorphic substitution lemma) If C; Γ, f : ∀~α[C ′].τ ′ `cp e : τ ; ε and C ′; Γ `cp
e′ : τ ′; ∅ where ~α ∩ fl(Γ) = ∅ then C; Γ `cp e[f 7→ e′] : τ ; ε.

Proof: The proof proceeds by induction on C; Γ, f : ∀~α[C ′].τ ′ `cp e : τ ; ε.
Case [Id]. Trivial, since x[f 7→ e′] = x (f and x are different syntactic forms).

Case [Int]. Trivial.

Case [Lam]. We have

[Lam]
C; Γ, f : ∀~α[C ′].τ ′, x : τ1 `cp e : τ2; ε

C; Γ, f : ∀~α[C ′].τ ′ `cp λx.e : τ1 →ε τ2; ∅

By alpha conversion, we can assume ~α ∩ fl(τ1) = ∅ and C ′; Γ, x : τ1 `cp e′ : τ ′; ∅. Since x 6= f ,
by induction we have C; Γ, x : τ1 `cp e[f 7→ e′] : τ2; ε. Then applying [Lam] we have C; Γ `cp
(λx.e)[f 7→ e′] : τ1 →ε τ2; ∅.

Case [App]. We have

[App]

C; Γ, f : ∀~α[C ′].τ ′ `cp e1 : τ2 →ε τ1; ε1
C; Γ, f : ∀~α[C ′].τ ′ `cp e2 : τ2; ε2

C; Γ, f : ∀~α[C ′].τ ′ `cp e1 e2 : τ1; ε1 ] ε2 ] ε

By induction, we have C; Γ `cp e1[f 7→ e′] : τ2 →ε τ1; ε1 and C; Γ `cp e2[f 7→ e′] : τ2; ε2. Then
applying [App] yields C; Γ `cp (e1 e2)[f 7→ e′] : τ1; ε1 ] ε2 ] ε.

Case [Pair], [Proj], [Cond], [Sub], [Ref], [Newlock], [Loc], [Lock], [Deref], [Assign]. By
induction (similar to [App]).

Case [Let]. We have

[Let]

C ′′; Γ, f : ∀~α[C ′].τ ′ `cp v1 : τ1; ∅
C; Γ, f : ∀~α[C ′].τ ′, g : ∀~β[C ′′].τ1 `cp e2 : τ2; ε2
~β ⊆ (fl(τ1) ∪ fl(C ′′)) \ (fl(Γ) ∪ fl(∀~α[C ′].τ ′))
C; Γ, f : ∀~α[C ′].τ ′ `cp let g = v1 in e2 : τ2; ε2

By induction, C ′′; Γ `cp v1[f 7→ e′] : τ1; ∅. Assuming by alpha renaming that f 6= g, by induction
we also have C; Γ, g : ∀~β[C ′′].τ1 `cp e2[f 7→ e′] : τ2; ε2. Finally,

~β ⊆ (fl(τ1) ∪ fl(C ′′)) \ (fl(Γ) ∪ fl(∀~α[C ′].τ ′))
⊆ (fl(τ1) ∪ fl(C ′′)) \ fl(Γ)
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so we can apply [Let] to show C; Γ `cp (let g = v1 in e2)[f 7→ e′] : τ2; ε2.

Case [Fix]. Similar to [Let].

Case [Inst]. Thus e = g for some variable g. There are two cases. If g 6= f , then the conclusion
holds trivially, since g[f 7→ e′] = g. Otherwise, we have

[Inst]
C ` φ(C ′) dom(φ) = ~α

C; Γ, f : ∀~α[C ′].τ `cp f i : φ(τ); ∅

By assumption, C ′; Γ `cp e′ : τ ′; ∅ so we know φ(C ′);φ(Γ) `cp e′ : φ(τ); ∅. Since ~α ∩ fl(Γ) = ∅, we
then have φ(C ′); Γ `cp e′ : φ(τ); ∅. But C ` φ(C ′), and so by Lemma 19, C; Γ `cp e′ : φ(τ); ∅, and
so we have shown the conclusion, since f i[f 7→ e′] = e′.

Case [Down]. We have

[Down]

C ∪ {ν~α[C ′′; ε′′]} ∪ strip(α~l′(ν~α[C ′′; ε′′])); Γ, f : ∀~α[C ′].τ ′ `cp e : τ ; ε ] φ~l′α(ε′)
φ
~l′
α(~α) ∩ (fl(Γ, f : ∀~α[C ′].τ ′) ∪ fl(τ)) = ∅

ε′ ⊆ ~α ~l′ ⊇ fl(strip∗(C) ∪ strip∗(ν~α[C ′′; ε′′])) ∪ ε
C ∪ {ν~α[C ′′; ε′′]}; Γ, f : ∀~α[C ′].τ ′ `cp e : τ ; ε

By induction C ∪ {ν~α[C ′′; ε′′]} ∪ strip(α~l′(ν~α[C ′′; ε′′])); Γ `cp e[f 7→ e′] : τ ; ε ] φ~l′α(ε′). Since
φ
~l′
α(~α)∩(fl(Γ, f : ∀~α[C ′].τ ′) ∪ fl(τ)) = ∅ we have φ~l′α(~α)∩(fl(Γ) ∪ fl(τ)) = ∅; with the other premises

by assumption, the result follows by [Down]. �

A.4.3 Preservation

The preservation lemma establishes that if a program is well typed using a constraint set that is
well-formed then its entire evaluation will exhibit consistent correlation. Note that the preservation
property establishes a new constraint set C ′ for each evaluation step, where C ′ ⊇ C (and thus
C ′ ` C by Lemma 17). This ensures that correlations are consistent—each R is correlated to a
single, unchanging lock L—across the entire evaluation derivation.

Definition 23 (Valid Evaluation) We write C ` e −→ e′ iff e ≡ E[![L] vR] or e ≡ E[v′R :=[L] v]
implies Sg(C,R) = {L}.

Lemma 24 (Preservation) If C; Γ `cp e : τ ; ε where ε `ok C and e −→ e′, then there exists some
C ′, ε′, s.t.

1. (ε′ − ε) ∩ fl(C) = ∅

2. C ′ ⊇ C

3. L ≤1 ` ∈ (C ′ − C) ⇒ ` ∈ (ε− ε′)

4. C ′ ` e −→ e′

5. ε′ `ok C
′

6. C ′; Γ `cp e′ : τ ; ε′.
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Proof: The proof is by induction on C; Γ `cp e : τ ; ε.
Case [Id], [Int], [Lam], [Lock], [Loc], [Inst]. These cases cannot happen, because we assume
e −→ e′.

Case [Ref]. In this case, the term is ref e, and there are two possible reductions. In the first
case, we have ref e −→ ref e′. By assumption, we have

[Ref]
C; Γ `cp e : τ ; ε

C; Γ `cp ref e : ref ρ τ ; ε

By induction, there exists Ci, εi s.t. Ci; Γ `cp e′ : τ ′; εi; and Ci ` e −→ e′; and εi `ok Ci. Let
C ′ = Ci and ε′ = εi. Then applying [Ref] yields C ′; Γ `cp ref e′ : ref ρ τ ; ε′, and we also have
C ′ ` ref e −→ ref e′ by applying the E[e] −→ E[e′] evaluation rule.

In the second case we have ref v −→ vR. Let ε′ = ε = ∅ and C ′ = C ∪ {R ≤ ρ}. Clearly
(ε′ − ε) ∩ fl(C) = ∅ and C ′ ⊇ C and L ≤1 ` ∈ (C ′ − C = {R ≤ ρ}) ⇒ ` ∈ (ε − ε′ = ∅).
And C ′ ` ref v −→ vR follows trivially since no constructors were consumed. We can prove
C ′; Γ `cp vR : ref ρ τ ; ∅ as follows:

[Loc]
C ′; Γ `cp v : τ ; ∅

[Loc-Flow]
R ≤ ρ ∈ C ′

C ′ ` R ≤ ρ

C ′; Γ `cp vR : ref ρ τ ; ∅

where C ′; Γ `cp v : τ ; ∅ follows by Lemma 19. Finally, we can prove ε′ `ok C
′ as follows:

[Con-Union]

ε′ `ok C ↪→ C ′′; ~α
[Con-Other]

ε′ `ok {R ≤ ρ} ↪→ {R ≤ ρ}; ∅
fl(C ′′) ∩ ∅ = ∅ fl({R ≤ ρ}) ∩ ~α = ∅

for all ϕ′. |S(C ′′ ∪ {R ≤ ρ}, ϕ′)| ≤ 1
C ′′ ` L1 ≤1 ` ∧ {R ≤ ρ} ` L2 ≤1 ` ⇒ L1 = L2

ε′ `ok C ∪ {R ≤ ρ} ↪→ C ′′ ∪ {R ≤ ρ}; ~α

Most of the premises follow trivially.
To prove fl({R ≤ ρ}) ∩ ~α = ∅, we observe that if ρ 6∈ fl(C) then there are no conditions on its

flow, so ~α (where ~α = bl(C)) can be safely alpha-converted. Otherwise (if ρ ∈ fl(C)) ρ must not
appear in ~α or it would violate the assumption ε `ok C.

Finally, we must show for all ϕ′. |S(C ′′ ∪ {R ≤ ρ}, ϕ′)| ≤ 1. We have S(C ′′, ϕ′) ≤ 1 by
Lemma 13. Since R 6∈ C ′′ (by the fact that it was fresh), we have for all ϕ 6= R that C ′′ ∪ {R ≤
ρ} ` ϕ B ` implies C ′′ ` ϕ B `, and thus |S(C ′′ ∪ {R ≤ ρ})| ≤ 1. Because C ′′ ∪ {R ≤ ρ} ` R ≤ ρ,
and |S(C ′′, ρ)| ≤ 1, then |S(C ′′ ∪ {R ≤ ρ}, R)| ≤ 1 follows easily.

Case [App]. In this case, the term is e1 e2, and there are three possible reductions. In the first
case, when e1 e2 −→ e′1 e2, we have

[App]

C; Γ `cp e1 : τ2 →ε τ1; ε1
C; Γ `cp e2 : τ2; ε2

C; Γ `cp e1 e2 : τ1; ε1 ] ε2 ] ε

Then by induction, there exists Ci, εi s.t. (εi − ε1) ∩ fl(C) = ∅; and Ci ⊇ C; and L ≤1 ` ∈
(Ci − C) ⇒ ` ∈ (ε− εi); and Ci ` e1 −→ e′1; and εi `ok Ci and Ci; Γ `cp e′1 : τ2 →ε τ1; εi.
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Let C ′ = Ci and ε′ = εi ] ε2 ] ε. We prove the latter is well-formed as follows. Consider some
` ∈ εi. If ` ∈ ε1 then ` 6∈ (ε2 ] ε) by assumption. If ` 6∈ ε1 then ` 6∈ fl(C) by induction. Thus, if
` ∈ (ε2 ] ε), we can safely alpha-convert ` in εi and Ci.

We must show that L ≤1 ` ∈ (Ci − C) ⇒ ` ∈ (ε1 ] ε2 ] ε)− (εi ] ε2 ] ε). But since (ε1 ] ε2 ]
ε)− (εi ] ε2 ] ε) = (ε1 − εi) we have this by induction.

We have (εi ] ε2 ] ε)− (ε1 ] ε2 ] ε) = (εi − ε1), and (εi − ε1) ∩ fl(C) = ∅ by induction. Since
C ′ ⊇ C by induction, by Lemmas 17 and 19 we have C ′; Γ `cp e2 : τ2; ε2. Thus, by [App] we have
C ′; Γ `cp e′1 e2 : τ1; ε′. Since C ′ ` e1 −→ e′1, we have C ′ ` e1 e2 −→ e′1 e2 by congruence.

Finally, we must show ε′ `ok C
′; that is, that εi] ε2] ε `ok Ci. If Ci = C then ε1] ε2] ε `ok C

by assumption and εi `ok C by induction, so we easily have (ε1 ∪ εi) ] ε2 ] ε `ok C and thus
εi ] ε2 ] ε `ok C by Lemma 12(5). Otherwise Ci = C ∪ C ′′ for some C ′′, so by induction and
inversion we have

[Con-Union]

εi `ok C ↪→ C ′′′; ~α εi `ok C
′′ ↪→ C ′′′′; ~β

fl(C ′′′) ∩ ~β = ∅ fl(C ′′′′) ∩ ~α = ∅
for all ϕ′. |S(C ′′′ ∪ C ′′′′, ϕ′)| ≤ 1

C ′′′ ` L1 ≤1 ` ∧ C ′′′′ ` L2 ≤1 ` ⇒ L1 = L2

εi `ok C ∪ C ′′ ↪→ C ′′′ ∪ C ′′′′; ~α ] ~β

As argued above, we can show εi ] ε2 ] ε `ok C ↪→ C ′′′; ~α, so we must show εi ] ε2 ] ε `ok C
′′ ↪→

C ′′′′; ~β and the rest follows by [Con-Union]. This follows because we have εi `ok C
′′ ↪→ C ′′; ~β by

assumption, and we know by induction that if L ≤1 ` ∈ C ′′ then ` ∈ (ε1 − εi). In other words
` 6∈ (ε2 ] ε), so we can safely strengthen the effect and get εi ] ε2 ] ε `ok C

′′ ↪→ C ′′′; ~β.
The second case, when e1 e2 −→ e1 e

′
2, is similar.

In the last case, we have (λx.e1) v −→ e1[x 7→ v]. In this case, we have

[Sub]

[Lam]
C; Γ, x : τ ′1 ` e1 : τ ′2; ε

′

C; Γ `cp λx.e1 : τ ′1 →ε′ τ ′2; ∅

C ` τ1 ≤ τ ′1
C ` τ ′2 ≤ τ2
ε′ ⊆ ε

C ` τ ′1 →ε′ τ ′2 ≤ τ1 →ε τ2

C; Γ `cp λx.e1 : τ1 →ε τ2; ∅ C; Γ `cp v : τ1; ∅
C; Γ ` (λx.e1) v : τ2; ε

Choose C ′ = C and ε′ = ε. By Lemma 21, C ′; Γ `cp e1[x 7→ v] : τ2; ε′. The remainder of the
postconditions follow by trivially or by assumption.

Case [Pair,Proj,Cond]. Follows [App].

Case [Deref]. In this case, the term is !e2 e1, and the reasoning follows that of [App] for the
inductive cases.
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For the case that ![L] vR −→ v, we have

[Deref]

[Sub]

[Loc]

C; Γ `cp v : τ ′; ∅
C ` R ≤ ρ′

C; Γ `cp vR : ref ρ
′
τ ′; ∅

C ` ρ′ ≤ ρ
C ` τ ′ ≤ τ
C ` τ ≤ τ ′

C ` ref ρ
′
τ ′ ≤ ref ρ τ

C; Γ `cp vR : ref ρ τ ; ∅
[Lock]

C ` L ≤1 `

C; Γ `cp [L] : lock `; ∅
C ` ρB `

C; Γ `cp ![L] vR : τ ; ∅

Let C ′ = C and ε′ = ε. Thus C ′; Γ `cp v : τ ; ∅ follows by assumption and [Sub], and ε′ `ok C
′

and C ′ ⊇ C and (ε′ − ε) ∩ fl(C) = ∅ and L ≤1 ` ∈ (C ∩ C ′) ⇒ ` ∈ (ε − ε′) follow trivially or by
assumption.

To prove C ′ ` e −→ e′ we must prove Sg(C ′, R) = {L}. Since ε′ `ok C
′ we have |S(C ′, ϕ)| ≤ 1

for all ϕ by Lemma 13(1). This implies S(C ′, R) = {`} since C ′ ` RB `:

[Correlate]
C ′ ` ρB ` C ′ ` R ≤ ρ

C ′ ` RB `

We have C ′ ` L ≤1 ` by assumption, and by Lemma 13(2), we know that if C ′ ` L′ ≤1 ` then
L = L′ and thus Sg(C ′, R) = {L}.

Case [Assign]. Similar to [Deref].

Case [Newlock]. In this case, e ≡ newlock and so newlock −→ [L] where L /∈ C since it’s fresh.
We have

[Newlock]
C; Γ `cp newlock : lock `; {`}

Let C ′ = C ∪ {L ≤1 `} and ε′ = ∅. Clearly C ′ ⊇ C and since ((ε′ = ∅) − (ε = {`})) = ∅
we have (ε′ − ε) ∩ fl(C) = ∅. Moreover, C ′ ∩ C = {L ≤ `} and ε − ε′ = {`} which proves
L ≤1 ` ∈ (C ′ − C) ⇒ ` ∈ (ε− ε′). We can prove

[Lock]
C ′ ` L ≤1 `

C ′; Γ `cp [L] : lock `; ε′

We have C ′ ` newlock −→ [L] trivially since no constructors are consumed. Finally, we prove
ε′ `ok C

′ by applying [Con-Union] as follows:

[Con-Union]

∅ `ok C ↪→ C ′′; ~α
[Con-Lock]

` 6∈ ∅
∅ `ok {L ≤1 `} ↪→ {L ≤1 `}; ∅

fl(C ′′) ∩ ∅ = ∅ fl({L ≤1 `}) ∩ ~α = ∅
for all ϕ′. |S(C ′′ ∪ {L ≤1 `}, ϕ′)| ≤ 1

C ′′ ` L1 ≤1 `′ ∧ {L ≤1 `} ` L2 ≤1 `′ ⇒ L1 = L2

∅ `ok C ∪ {L ≤1 `} ↪→ C ′′ ∪ {L ≤1 `}; ~α

We prove ∅ `ok C ↪→ C ′′; ~α by assumption and weakening (Lemma 12(5)). We prove fl({L ≤1

`}) ∩ ~α = ∅ following the argument in [Ref], above. The premise for consistent correlation follows
trivially, because the addition of constraints L ≤1 ` does not affect which correlations one can
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prove. Finally, since ε = {`}, by ε `ok C ↪→ C ′′; ~α and Lemma 12(3) we have C 6` L ≤1 ` for all L,
so the last premise follows by assumption for all `′ 6= ` and vacuously for `.

Case [Let]. In this case, let f = v1 in e2 −→ (e2[f 7→ v1]), and

[Let]

C ′′; Γ `cp v1 : τ1; ∅ C; Γ, f : ∀~α[C ′′].τ1 `cp e2 : τ2; ε
~α ⊆ (fl(τ1) ∪ fl(C ′′)) \ fl(Γ)
C; Γ `cp let f = e1 in e2 : τ2; ε

Let C ′ = C and ε′ = ε. Thus (ε′−ε)∩fl(C) = ∅ and C ′ ⊇ C and L ≤1 ` ∈ (C ′−C) ⇒ ` ∈ (ε−ε′)
and ε′ `ok C ′ and C ′ ` e −→ e′ follow trivially or by assumption. Since we can assume that
~α ∩ fl(Γ) = ∅ by alpha-renaming, by Lemma 22 we have C ′; Γ ` e2[f 7→ e1] : τ2; ε′.

Case [Fix]. In this case fix f.v −→ v[f 7→ fix f.v] and

[Fix]

C ′′; Γ, f : ∀~α[C ′′].τ `cp v : τ ; ∅
~α ⊆ (fl(τ) ∪ fl(C ′′)) \ fl(Γ) C ` φ(C ′′) dom(φ) = ~α

C; Γ `cp fix f.v : φ(τ); ∅

Let C ′ = C and ε′ = ε = ∅. Thus (ε′−ε)∩fl(C) = ∅ and C ′ ⊇ C and L ≤1 ` ∈ (C ′−C) ⇒ ` ∈ (ε−ε′)
and ε′ `ok C

′ and C ′ ` e −→ e′ follow trivially or by assumption. For the substitution φ that maps
all labels in ~α to themselves, we can apply [Fix] to show

[Fix]

C ′′; Γ, f : ∀~α[C ′′].τ `cp v : τ ; ∅
~α ⊆ (fl(τ) ∪ fl(C ′′)) \ fl(Γ) C ′′ ` C ′′

C ′′; Γ `cp fix f.v : τ ; ∅

Finally, from these facts, and since we can assume that ~α ∩ fl(Γ) = ∅ by alpha-renaming, by
Lemma 22 we have C ′; Γ ` v[f 7→ fix f.v] : τ ; ∅.

Case [Down]. In this case we have e −→ e′ and

[Down]

C ∪ {ν~α[C1; ε1]} ∪ strip(α~l′(ν~α[C1; ε1])); Γ `cp e : τ ; ε ] φ~l′α(ε1)
φ
~l′
α(~α) ∩ (fl(Γ) ∪ fl(τ)) = ∅

ε1 ⊆ ~α ~l′ ⊇ fl(strip∗(C) ∪ strip∗(ν~α[C1; ε1])) ∪ ε
C ∪ {ν~α[C1; ε1]}; Γ `cp e : τ ; ε

Since ε `ok C ∪ {ν~α[C1; ε1]} ↪→ C ′ ∪ C ′
1; ~α ] ~β by assumption (and inversion via [Con-Union] and

[Con-Encap]), we have ε]φ~l′α(ε1) `ok C∪{ν~α[C1; ε1]}∪strip(α~l′(ν~α[C1; ε1])) ↪→ C ′∪C ′
1∪φ

~l′
α(C ′

1); ~α]
~β ] φ~l′α(~β) by Lemma 15. Thus by induction there exists some Ci, εi s.t. Ci ⊇ C ∪ {ν~α[C1; ε1]} ∪
strip(α~l′(ν~α[C1; ε1])); and (εi − (ε ] φ~l′α(ε1))) ∩ fl(C ∪ {ν~α[C1; ε1]} ∪ strip(α~l′(ν~α[C1; ε1]))) = ∅ and
L ≤1 ` ∈ (Ci−(C∪{ν~α[C1; ε1]}∪strip(α~l′(ν~α[C1; ε1])))) ⇒ ` ∈ ((ε]φ~l′α(ε1))−εi) and Ci ` e −→ e′;
and εi `ok Ci; and Ci; Γ `cp e′ : τ ; εi.

Let C ′ = Ci and ε′ = εi, so that C ′ ⊇ C ∪ {ν~α[C1; ε1]} and ε′ `ok C
′ and C ′ ` e −→ e′ and

C ′; Γ `cp e′ : τ ; ε′ follow trivially.
We must show L ≤1 ` ∈ (Ci − (C ∪ {ν~α[C1; ε1]})) ⇒ ` ∈ εi. We have by induction that this

property holds for constraints (Ci− (C ∪{ν~α[C1; ε1]}∪ strip(α~l′(ν~α[C1; ε1])))) = C ′′. Since, by the
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fact that Ci ⊇ C ∪ {ν~α[C1; ε1]} ∪ strip(α~l′(ν~α[C1; ε1])) we have Ci − (C ∪ {ν~α[C1; ε1]}) = C ′′ ∪
strip(α~l′(ν~α[C1; ε1])), but we know that ν~α[C1; ε1] must not contain any lock allocation constraints
since it was deemed well-formed by assumption.

Finally, we must show that (εi − ε) ∩ fl(C ∪ {ν~α[C1; ε1]}) = ∅. For some ` ∈ (εi − ε) there are
two possibilities:

1. Assume ` ∈ (εi − (ε ] φ~l′α(ε1))). By induction (as stated above) ` ∩ fl(C ∪ {ν~α[C1; ε1]} ∪
strip(α~l′(ν~α[C1; ε1]))) = ∅, and thus `′ ∩ fl(C ∪ {ν~α[C1; ε1]}) = ∅ trivially.

2. Assume ` ∈ (φ~l′α(ε1) ∩ εi); i.e. there is some `′ ∈ ε1 s.t. φ
~l′
α(`′) = ` ∈ εi. But then we

have ` 6∈ fl(C ∪ {ν~α[C1; ε1]}) since (1) `′ ∈ dom(φ~l′α) by the fact that dom(φ~l′α) = ~α and
`′ ∈ ε1 ⊆ ~α; (2) ` 6∈ ~l′ by the fact that rng(φ~l′α) ∩ ~l′ = ∅ by the definition of φ~l′α; and (3) since
~l′ ⊇ (fl(strip∗(C)) ∪ fl(strip∗(ν~α[C1; ε1])) ∪ ε)) ⊇ fl(C ∪ {ν~α[C1; ε1]}).

�

Thus, if C; Γ `cp e : τ ; ε and ε `ok C then there exists a (possibly infinite) list of pairs Ci, εi for
which Ci ⊇ Ci−1. If e −→ e1 −→ e2 . . . then C ` e −→ e1, and C1 ` e1 −→ e2, and C2 ` e2 −→ e3
and so on, which means that each dereference or assignment to R is valid in Ci, being correlated
with a single lock L in Sg. Moreover, by εi `ok Ci it follows from Lemma 13 that |Sg(Ci, R)| ≤ 1
for all R. Since Ci ⊇ Ci−1, we know Sg(Ci, R) = {L} implies Sg(Cj , R) = {L} for all j ≥ i, and
thus each R that is dereferenced is correlated with the same single lock for the entire evaluation of
e.
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[Loc-Trans]
C `cfl ρ0 ≤ ρl C `cfl ρ1 ≤ ρ2

C `cfl ρ0 ≤ ρ2

[Loc-Match]
C `cfl ρ1 �i

− ρ0 C `cfl ρ1 ≤ ρ2 C `cfl ρ2 �i
+ ρ3

C `cfl ρ0 ≤ ρ3

(a) Location and Lock Flow

[Corr-Trans]
C `cfl ρ ≤ ρ′ C `cfl ρ

′ B `

C `cfl ρB `

[Corr-Match]
C `cfl ρ �i

p ρ
′ C `cfl ρB ` C `cfl ` �i `′

C `cfl ρ
′ B `′

(b) Correlation Flow

Figure 20: Constraint Flow

B Reduction from λB to λcp
B

Next we prove the soundness of λB by showing that all λB derivations can be reduced to λcp
B

derivations. Recall that the type rules for λB are shown in Figures 5–7. To distinguish the two
systems, we will use `cfl to indciate derivations in λB and `cp to indicate derivations in λcp

B .
In order to reason about the lock and location resolution rules in Figure 8, we reformulate

them as inference rules, as shown in Figure 20. Recall that our constraint resolution rules use
C `cfl escapes(`,~l) (defined on page 10). In words, we have escapes(`,~l) if ` is connected in any
way to ~l, either via an instantiation constraint or via correlation with a location ρ that is connected
in some way to ~l.

Recall that after applying the inference rules, there are three conditions we need to check. First,
we need to ensure that all disjoint unions formed during type inference and constraint resolution
are truly disjoint. We define occurs(`, ε) to be the number of times label ` occurs disjointly in ε, as
defined on page 12. We require for every effect ε created during type inference (including constraint
resolution), and for all `, that occurs(`, ε) ≤ 1. We enforce the constraint effect(τ) = ∅ by extracting
the effect ε from the function type τ and ensuring that occurs(`, ε) = 0 for all `. Finally, we ensure
that locations are consistently correlated with locks. We compute S(C, ρ) (from Definition 1) for
all locations ρ and check that it has size ≤ 1. This computation is easy now that we have the
constraints in solved form; we simply walk through all the correlation constraints generated by the
flow rules to count how many different lock labels appear correlated with each location ρ.

Note that the definition of consistent correlation in λB is slightly stronger than the definition
from λcp

B . In particular, consider the program shown in Figure 21. In λB, this program will not
type check. The problem is that x is used once with l′ directly and once in the body of f , where
l′ is represented by the name l. Thus λB generates two correlation constraints for this example:
C `cfl xB l′ from the outer use, and C `cfl xB l from the use within f (because of [Corr-Match]
and the self-loop on x because it is global at the definition of f). Thus it appears that x is
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let l′ = newlock in
let x = ref 0 in
let f l = (x :=l 0) in
f l′;
x :=l′ 0

Figure 21: Program showing a difference between λcp
B and λB

inconsistently correlated by our definition. However, this program will type check in λcp
B , because

in [Let] in Figure 16 the constraint system C ′ containing l B x is abstracted and instantiated in
[Inst], hence the correlation with l never appears in the outermost constraint system.

The problem here was that l′ was passed as a parameter to f but x was used as a global. This
is an unusual program—typically either both l′ and x would be passed as arguments to f or neither
would be. It is possible to modify λB to allow the program in Figure 21 to type check. In particular,
we could extend λB to only check correlation with respect to concrete locks—in this case, we would
see that both l and l′ can only correspond to the call to newlock on the first line, and hence there
is consistent correlation. Locksmith implements this approach (taking care to model wrappers
around newlock precisely), but we omit it from λB for simplicity.

Now we prove that derivations in λB reduce to derivations in λcp
B . Our approach closely follows

Rehof et al [44], and we omit details where they are the same.

Definition 25 Every application of [Inst]

[Inst]
C `cfl τ �i+ τ ′ C `cfl ~l �i± ~l

C; Γ, f : (∀.τ,~l) `cfl f i : τ ′; ∅

defines an instantiation context 〈C,~l, τ, φ〉, where φ is the substitution given by instantiation i.
(Instantiation i is represented by the two constraints τ �i+ τ ′ and ~l �i± ~l.)

Definition 26 (Closure) Let C be a set of λB constraints. Then we define C∗ = {ρ ≤ ρ′ | C `cfl
ρ ≤ ρ′} ∪ {ρB ` | C `cfl ρB `}, i.e., C∗ is the closure of C with respect to the rules in Figure 20.
Note that we treat C∗ as a set of λcp

B constraints.

Note that we omit effects from the above definition; those are handled by the following definition:

Definition 27 (Effect Closure) Let C be a set of λB constraints. Then we define ε∗ to be the
solution of ε as computed by the rules in Figure 8 with respect to C:

∅∗ = ∅
{`}∗ = {`}
χ∗ =

⋃
ε≤χ ε

∗

(ε0 ] ε1)∗ = ε∗0 ] ε∗1 if ε∗0 ∩ ε∗1 = ∅
(ε0 ∪ ε1)∗ = ε∗0 ∪ ε∗1

Thus effects are just sets of locks, the same as in λcp
B .

54



Lemma 28 If C `cfl ε ≤ ε′, then ε∗ ⊆ ε′∗.

Lemma 29 If C `cfl ε ≤~l ε
′, then ε∗ ∩ {` | escapes(`,~l)} ⊆ ε′∗.

Lemma 30 If C `cfl ε �i ε′, then there is a substitution φi such that φi(ε) ⊆ ε′.

Proof: These three lemmas can be proven by observing that the rules in Figure 8 compute a
valid solution to the effect constraints. �

Next we prove a lemma that we can use during the reduction of [Inst] or [Fix] from λB to
λcp

B . This lemma shows that we can extend a substitution φ from an instantiation context into a
substitution φ̂ such that C∗ is closed with respect to φ̂. This substitution φ̂ is the substitution we
will ultimately choose for the λcp

B versions of [Inst] and [Fix]. We introduce a new kind of label
ρtρ′, which stands for the union of two labels; a detailed discussion can be found elsewhere [13, 42].

Lemma 31 Let 〈C,~l, τ, φ〉 be an instantiation context (i.e., an occurrence on [Inst] or [Fix]). Then
C∗ `cp φ̂(C∗), where

φ̂(ρ) =


φ(ρ) ρ ∈ fl(τ)−~l
ρ ρ ∈ ~l⊔
φ̂(

{
ρ′ ∈ (fl(τ) ∪~l) | C∗ `cp ρ′ ≤ ρ

}
) otherwise

and

φ̂(`) =


φ(`) ` ∈ fl(τ)−~l
` ` ∈ ~l
∅ otherwise

Here ∅ is a special lock indicating no correlation, i.e., constraints of the form ρB∅ place no constraint
on ρ, and C `cp ρB ∅ for any C, ρ.

Proof: The standard proof [13, 42] of this lemma holds. We show some of the cases for correlation
constraints. Suppose φ̂(C∗) `cp ρ′ B `′. Then let ρ, ` be such that C∗ `cp ρB `, i.e., φ̂(ρ) = ρ′ and
φ̂(`) = `′. We need to show that C∗ `cp ρ′ B `′. There are a total of nine cases, depending on ρ and
`.

1. Suppose ρ ∈ ~l. Then ρ′ = φ̂(ρ) = ρ.

(a) Suppose ` ∈ ~l. Then `′ = φ̂(`) = `. Thus by assumption C∗ `cp ρ′ B `′.

(b) Suppose ` ∈ fl(τ) − ~l. Then `′ = φ̂(`) = φ(`), and C `cfl ` �i `′. Then since ρ ∈ ~l, by
[Inst] we have C `cfl ρ �i± ρ and ρ = ρ′. Then by [Corr-Match] we have C∗ `cp ρ′ B `′.

(c) Otherwise, φ̂(`) = ∅, so there is nothing to show.

2. Suppose ρ ∈ fl(τ)−~l. Then ρ′ = φ(ρ) where C `cfl ρ �ip ρ′ for some p.

(a) Suppose ` ∈ ~l. Then `′ = φ̂(`) = ` and by [Inst] C `cfl ` �i `′. But then by [Corr-Match]
we have C∗ `cp ρ′ B `′.

(b) Suppose ` ∈ fl(τ)−~l. Then `′ = φ̂(`) = φ(`), and C `cfl ` �i `′. Then by [Corr-Match]
we have C∗ `cp ρ′ B `′.
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(c) Otherwise, φ̂(`) = ∅, so there is nothing to show.

3. The last cases follow by the reasoning similar to above plus the standard reasoning about
intermediate locations [42].

�

Definition 32 For a λB derivation D, let the ith occurrence of [Down] be

[Down]
C; Γi `cfl e : τi; εi ~li = fl(Γ) ∪ fl(τ) C `cfl εi ≤~li χi

C; Γi `cfl e : τi;χi

Let
~̀
i = ε∗i − χ∗i
~αi = {α | ¬(C∗ `cp escapes(α,fl(Γi) ∪ fl(τi)))}

Here ~αi are all the non-escaping locks and locations from [Down]. Notice that by definition of ≤~li
we have `i ⊆ αi. Then define Ci = ν~α[C ′; ε′] to be an alpha-renaming of ν ~αi[C∗| ~αi

; ~̀i] such that
~α is chosen to be distinct from all free and bound variables in C∗ and any other renaming for an
occurrence of [Down]. (Hence C ′ is an alpha-renaming of C∗| ~αi

, and ε′ is an alpha-renaming of ~̀i.)
Here C∗| ~αi

are the constraints in C∗ that only contain variables in ~αi. Notice that by construction
of escapes(), it must be the case that in C∗, there are no constraints between a variable in ~αi and
a variable not in ~αi.

Finally, define
C∗∗ = C∗ ∪

⋃
i

Ci

Lemma 33 Let 〈C,~l, τ, φ〉 be an instantiation context. Then C∗∗ `cp φ̂(C∗∗).

Proof: By Lemma 31 we have C∗ `cp φ̂(C∗), and all other constraint systems in C∗∗ contain no
free variables. �

Definition 34 Define (∀.τ,~l)∗ = ∀~α[C∗∗].τ where ~α = (fl(τ) ∪ fl(C∗∗)) − ~l, i.e., we generalize all
variables in τ and C∗∗ that we can. Define (Γ, x : σ)∗ to be Γ∗, x : σ∗ (and ·∗ = ·, where · is the
empty environment).

Lemma 35 If C `cfl ρ ≤ ρ′ then C∗ `cp ρ ≤ ρ′.

Lemma 36 If C `cfl ρB ` then C∗ `cp ρB `.

Lemma 37 If C `cfl τ ≤ τ ′ then C∗ `cp τ ≤ τ ′.

Proof: The proofs of all three statements are trivial. The proof of the last statement uses
Lemma 28 to show that the effect constraints from [Sub-Fun] in Figure 7 can be translated to
⊆ conditions for [Sub-Fun] in Figure 17. �

Lemma 38 Given a normal C; Γ `cfl e : τ ; ε that is consistently correlated, we have ε∗ `ok C
∗∗
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Proof: We show that the rules in Figure 19 apply. First, we can ignore [Con-Lock], the L ≤1 `
hypothesis of [Con-Ecnap], and the last hypothesis of [Con-Union], because constraints of the form
{L ≤1 `} never appear in C∗∗. Also, by [Con-Other] there is nothing to show for individual
constraints.

To show that the disjoint unions in [Con-Encap] and [Con-Union], and the free label restrictions
in [Con-Union] hold, observe that in Definition 32 we alpha-renamed all the bindings to be distinct
from all other bindings, and thus these hold by construction.

For [Con-Encap], we need to show that in encapsulated constraint systems we bind all ρ’s that
are correlated with bound `’s, but that holds again by construction in Definition 32. And we need
to show that ε′ ⊆ ~α, but that holds again by construction in Definition 32.

Thus in essence, the only thing to show is consistent correlation according to [Con-Union]. Since
all of the bindings are alpha renamed, we need to show consistent correlation of strip∗(C∗∗), i.e.,
that

for all ρ. |S(strip∗(C∗∗), ρ)| ≤ 1

But since we assumed C was consistently correlated, |S(C∗, ρ)| ≤ 1 for all ρ. Therefore for any i
we have |S(C∗| ~αi

)| ≤ 1 also. And since all variables in Ci are bound, there will be no overlapping
ρ when we apply strip∗ to C∗∗ from different Ci, and hence the union is consistently correlated. �

Lemma 39 (Reduction) If D is a normal derivation of C; Γ `cfl e : τ ; ε, then C∗∗; Γ∗ `cp e :
τ ; ε∗.

Proof: By induction on the structure of the derivation D. The cases for the monomorphic rules
follow by induction and Lemmas 35, 36, and 37.

Case [Let]. We have

[Let]
C; Γ `cfl v1 : τ1; ∅ ~l = fl(Γ) C; Γ, f : (∀.τ1,~l) `cfl e2 : τ2; ε

C; Γ `cfl let f = v1 in e2 : τ2; ε

By induction we have C∗∗; Γ∗ `cp v1 : τ1; ∅ and C∗∗; Γ∗, f : ∀~α[C∗∗].τ1 `cp e2 : τ2; ε∗, where by
construction ~α = (fl(τ1)∪fl(C∗∗))−~l. (Notice that fl(Γ) = fl(Γ∗) by construction of Γ∗.) But then
we can apply [Let] from λcp

B to yield

[Let]

C∗∗; Γ∗ `cp v1 : τ1; ∅ C∗∗; Γ∗, f : ∀~α[C∗∗].τ1 `cp e2 : τ2; ε∗

~α ⊆ (fl(τ1) ∪ fl(C∗∗)) \ fl(Γ∗)
C∗∗; Γ∗ `cp let f = v1 in e2 : τ2; ε∗

Case [Inst]. We have

[Inst]
I `cfl τ �i+ τ ′ I `cfl ~l �i± ~l

I;C; Γ, f : (∀.τ,~l) `cfl f i : τ ′; ∅
We want to show

[Inst]
C∗∗ `cp φ̂(C∗∗) dom(φ̂) = ~α

C∗∗; Γ∗, f : ∀~α[C∗∗].τ `cp f i : φ̂(τ); ∅
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We apply Lemma 33 to show that C∗∗ `cp φ̂(C∗∗), where φ is the substitution defined by this
instantiation. We have dom(φ̂) = ~α by construction of φ̂ and choice of ~α. And φ̂(τ) = φ(τ), by
definition of φ̂, so the type of f i is what we expect.

Case [Fix]. We have

[Fix]

C; Γ, f : (∀.τ,~l) `cfl v : τ ′; ∅ ~l = fl(Γ) C `cfl τ ′ ≤ τ C `cfl τ �i+ τ ′′

C `cfl ~l �i± ~l C `cfl effect(τ) = ∅
C; Γ `cfl fix f.v : τ ′′; ∅

By induction, we have C∗∗; Γ∗, f : ∀~α[C∗∗].τ `cp v : τ ′; ∅, where by construction ~α = (fl(τ) ∪
fl(C∗∗))−~l. (Note that we have fl(Γ) = fl(Γ∗) by construction of Γ∗.) Since C `cfl τ ′ ≤ τ , by [Sub]
and Lemma 37 we have C∗∗; Γ∗, f : ∀~α[C∗∗].τ `cp v : τ ; ∅. By Lemma 33 we have C∗∗ `cp φ̂(C∗∗),
where φ is the instantiation defined by this substitution. We have dom(φ̂) = ~α by construction of
φ̂ and choice of ~α. Putting this together, we get

[Fix]

C∗∗; Γ∗, f : f : ∀~α[C∗∗].τ `cp v : τ ; ∅
~α ⊆ (fl(τ) ∪ fl(C∗∗)) \ fl(Γ) C `cp φ(C ′) dom(φ̂) = ~α

C; Γ `cp fix f.v : φ̂(τ); ∅

And φ̂(τ) = φ(τ), by definition of φ̂.

Case [Down]. Let this be the ith occurrence of [Down]. Our derivation looks like the following:

[Down]
C; Γi `cfl e : τi; εi ~l = fl(Γi) ∪ fl(τi) C `cfl εi ≤~li χi

C; Γi `cfl e : τi;χi

By induction, we have

C∗∗; Γ∗i `cp e : τi; ε∗i

Let ~̀i, ~αi, and ν ~αi[C∗| ~αi
; ~̀i] be as in Definition 32. Let φ be the alpha-renaming such that

φ(~αi) = ~α, where ν~α[C ′; ε′] is the constraint in C∗∗.
First, by definition ε∗i = ~̀

i ] χ∗i . Also notice that since ~̀i ⊆ ~αi by construction, we have

ε′ = φ(~̀i) ⊆ φ(~αi) = ~α (1)

Also we claim that φ(Γi) = Γi and φ(τi) = τi, since any locks or locations in Γi or τi are not
in ~αi, by definition of escapes. Additionally, φ(χ∗i ) = χ∗i , since any lock in χ∗i escapes and hence is
not in ~αi. Then applying φ to the induction hypothesis, we get

φ(C∗∗); Γ∗i `cp e : τi;χ∗i ] φ(~̀i)

or
φ(C∗) ∪

⋃
i

Ci; Γi `cp e : τi;χ∗i ] ε′
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since all variables in the Ci are bound. And by definition of escapes, there are no constraints
between variables in ~αi and variables not in ~αi. Therefore we have

C∗|¬~αi
∪ φ(C∗| ~αi

) ∪
⋃
i

Ci; Γi `cp e : τi;χ∗i ] ε′

Then by Lemma 19 and the definition of C ′ (in Definition 32) we have

C∗ ∪ (
⋃
i

Ci) ∪ C ′; Γi `cp e : τi;χ∗i ] ε′

Next let ~l′ = fl(strip∗(C∗∗)) ∪ χ∗i , and let α~l′ and φ
~l′
α be alpha-conversions according to Defini-

tion 8. Also construct φ~l′α such that φ~l′α(~α)∩(fl(Γi) ∪ fl(τi)) = ∅. Applying φ~l′α to our alpha-renamed
inductive hypothesis yields

C∗ ∪ (
⋃
i

Ci) ∪ φ
~l′
α(C ′); Γi `cp e : τi;χ∗i ] φ

~l′
α(ε′)

since again φ
~l′
α only renames elements in φ(~α), which do not appear in Γi, τi, or χ∗i by choice of

the alpha renaming φ in Definition 32. By applying appropriate alpha conversions to the bound
constraint systems in C ′, we get

φ
~l′
α(C ′) = strip∗(α

~l′(ν~α[C ′; ε′]))

(Note that C ′ contains no nested ν constraints, by construction, and hence strip∗(C ′) = C ′.) Thus
we have

C∗∗ ∪ strip(α
~l′(ν~α[C ′; ε′])); Γi `cp e : τi;χ∗i ] φ

~l′
α(ε′) (2)

Then putting (2) together with (1), the construction of ~l′, and the construction of φ~l′α, we can
apply [Down] from λcp

B to yield:

[Down]

C∗∗ ∪ strip(α~l′(ν~α[C ′; ε′])); Γi `cp e : τi;χ∗ ] φ
~l′
α(ε′)

φ
~l′
α(~α) ∩ (fl(Γi) ∪ fl(τi)) = ∅

ε′ ⊆ ~α ~l′ ⊇ fl(C∗∗) ∪ χ∗i
C∗∗; Γi `cp e : τi;χ∗i

And nothing that C∗∗ includes Ci = ν~α[C ′; ε′], and hence has the right shape. Thus we have shown
the conclusion. �
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