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ABSTRACT 

 

I derive a generalized version of the fundamental law of active management under 

some weak conditions. I show that the original fundamental law of Grinold and 

various extensions are all special cases of the generalized fundamental law 

presented in this paper. I also show that cross-sectional ICs are usually different 

from time series ICs even if the time series ICs are all the same across securities.  

The fundamental law derived in this paper is quite robust to forecast model 

specification. Our results show that the variation in IC (IC volatility over time) 

has a much bigger impact to portfolio IR than the breadth N for a typical 

investment universe. I extend the fundamental law to models with multiple factors 

and study the impact of missing one or more return or risk factors to portfolio IR. 

Our results also show that the transfer coefficient as originally defined by Clarke 

et al. (2002) is not able to capture the impact of constraints to portfolio IR in the 

presence of IC variation.  I redefine the concept of transfer coefficient using the 

cross-sectional correlation between the total conditional covariance adjusted 

active weights and alphas so that the resulting transfer coefficient has the desired 

property. 

 

 

Since the publication of "The fundamental law of active management" by Grinold (1989) 

two decades ago, it has been widely used in the quantitative investment community as a 

tool to assess a portfolio manager's ability to add value. According to Grinold (1989), the 

fundamental law relates three variables: your skill in forecasting exceptional returns (IC), 

the breadth of your strategy (N), and the value added of your investment strategy (IR). 

Grinold (1989) claims that "based on assumptions that are not quite true and simplified 

with some reasonable approximations" the three variables have the following 

relationship: 

 NICIR = ,         (1) 

where IR is the information ratio, IC is the information coefficient, and N is the breadth. 

Even though Grinold (1989) did not give a precise definition of breadth N, portfolio 
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managers or analysts usually use the number of stocks in the investment universe as 

breadth. The derivation of the fundamental law is closely related to another Grinold paper 

(Grinold (1994)) that shows "Alpha is Volatility Times IC Times Score", i.e., 

 1IC −= itrit z
i

σα ,        (2) 

where
ir

σ is the residual return (will be defined below) volatility and 1−itz is the 

standardized forecast signal (score) that is known at the end of time t-1. The theoretical 

and empirical development on this line of the fundamental law culminated in the book by 

Grinold and Kahn (2000) titled "Active Portfolio Management." Based on the 

fundamental law, Grinold and Kahn (2000) conclude that "you (portfolio managers) must 

play often and play well to win at the investment management game. It takes only a 

modest amount of skill to win as long as that skill is deployed frequently and across a 

large number of stocks." 

 

Unfortunately, the theoretically calculated IR number from Grinold's fundamental law 

seems to always overestimate the IR a portfolio manager can reach. For example, given a 

forecast signal with a monthly average IC of 0.03 and a selection universe of 1000 stocks, 

the expected annualized IR from Grinold's formula is 3.29 which is beyond even the most 

optimistic portfolio manager's dreams. Portfolio managers are left wondering why 

realized information ratios are only a fraction of their predicted value. Clarke et al. (2002, 

p50) point out "a common rule of thumb in practice is that the theoretical information 

ratio suggested by the fundamental law should be cut in half."  However, for the above 

mentioned example, the IR estimate will still be too high even if cut by half (IR=1.64). 

As noted by Grinold (1989, p32) himself "an observed information ratio above 1.5 is rare 

indeed." Of course, it can be the case that the N used in our calculation, which is the 

number of stocks available in the investment universe, is not what meant to be the right 

measure of breadth by Grinold. Grinold (1989) provides a detailed discussion on this 

subject and emphasized the importance of counting only independent bets as breadth. 

Grinold (2007) provides some further discussion on this topic. Unfortunately, it is still 

not a straightforward exercise to determine what breadth should be used in practice.  

 

Clarke et al. (2002) attribute the reduction in performance to the constraints in the 

portfolio construction process and proposed the concept of  "the transfer coefficient" to 

account for the leaking of IR from Grinold's original formula. They show that constraints 

in portfolio construction (constraints such as country or sector exposures, long only, etc.), 

leads to suboptimal portfolio weights in terms of alpha generation, thus reducing the 

maximum achievable IR. They developed a framework for measuring the deviation of the 

optimal constrained weights from optimal non-constrained weights and proposed a 

generalized fundamental law as follows: 

 NICTCIR = ,        (3) 

where TC is the transfer coefficient, defined as the cross-sectional correlation coefficient 

between risk-adjusted expected residual returns and risk-adjusted active weights. 

According to their simulation study, the typical transfer coefficient is in the range of 0.3 

to 0.8. So the original IR calculated from Grinold's formula should be about halved. Even 

so, as discussed above, the TC adjusted IR still appears to be too high.  

 



 3 

In order to understand why that happens, we need to examine the assumptions made by 

Grinold in deriving his fundamental law. The original form of the fundamental law by 

Grinold is based on the very unrealistic assumption that time series ICs between an 

individual stock's residual return and its forecast signal are the same across all securities 

and are a constant over time. Grinold (1989, 1994) and Grinold and Kahn (2000) then 

used the time series IC and cross-sectional IC interchangeably. In practice, many 

quantitative managers run a Fama-Mcbeth type cross-sectional regression to get realized 

ICs at different time periods. The ICs calculated this way are far from constant and often 

fluctuate around an average IC. As will be shown later in this paper, the cross-sectional 

IC can be quite different from the time series IC even if all the securities have a same 

time series IC. Qian and Hua (2004) show that a more appropriate IR to use is average IC 

divided by the standard deviation of IC 

 
IC

IC
IR

σ
= ,         (4) 

where ICσ  is the standard deviation of IC that Qian and Hua (2004) call "the strategy 

risk." In statistics, the quantity 2

IC/1 σ  is a measure of how close (precise) the realized 

information coefficient at time t, tIC , is to the mean IC. In this sense, the Qian and Hua 

formula states that "Information Ratio equals Skill times Precision."  

 

In a more recent paper, Ye (2008) goes one step further to bridge the gap between the 

original Grinold (1989) formula and the Qian and Hua (2004) formula. Based on her 

assumptions, she establishes that 

 
2

IC/1

IC
IR

σ+
=

N
.        (5) 

It is obvious that Equation (1) and Equation (4) are special cases of Equation (5) when 

0IC =σ (as assumed by Grinold (1989)) or ∞→N .  

 

With all these different versions of fundamental laws, it can be confusing for practitioners 

to decide which one to use. It is crucial to have a full grasp of the different underlying 

assumptions and the resulting conclusions from these fundamental laws. In this paper, I 

try to set up a coherent econometric modeling structure and show that all the different 

forms of fundamental laws discussed above can be special cases of an even more general 

form of fundamental law based on much weaker assumptions. I will show that time series 

ICs are usually different from cross-sectional ICs even if time series ICs are the same 

across all individual securities. They will be the same only under some strong conditions. 

I will also show that different forms of fundamental laws are a result of either unrealistic 

assumptions (Grinold (1989)) or mis-specified residual return covariance matrices for the 

expected residual return used (Grinold (1989), Qian and Hua (2004), and Ye(2008)). 

When the more relevant conditional residual return covariance matrices are used, we will 

arrive at the more general form of the fundamental law presented in this paper. 

 

The form of the generalized fundamental law derived in this paper is quite robust to 

model specification. If one uses the risk adjusted residual returns in the analysis instead 

of the raw residual returns, one will get the fundamental law in a similar form. Finally I 
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extend the fundamental law to models with more than one factor, and discuss the impact 

of missing one or more return or risk factors to the portfolio IR. I also show that the 

transfer coefficient as defined by Clarke et al. (2002) will not have the desired property 

of measuring the impact of constraints to the portfolio IR in the presence of IC variation. 

I redefine the transfer coefficient as the correlation coefficient between total risk adjusted 

expected residual returns and total risk adjusted active weights (instead of just the 

diagonal portion of the covariance matrix). With this modified definition of the transfer 

coefficient, the resulting constrained portfolio IR is always the product of TC and the 

unconstrained optimal portfolio IR. 

 

Framework and Notation 
 
I will follow the framework and notation in Clarke, de Silva, and Thorley (2002) and Ye 

(2008). A variable with subscript i ( N1 ,,L=i ) and t ( T,,1 L=t ) represents the variable 

value for security i at the end of time t. A variable in bold represents a vector or matrix. 

 

Given a benchmark portfolio, the total excess return (i.e., return in excess of the risk-free 

rate) on any stock i can be decomposed into a systematic portion that is correlated with 

the benchmark excess return and a residual return that is not by 

 ,, ittBit

Total

it rRr += β         (6) 

where 

 itβ     = beta of security i with respect to the benchmark 

 tBR ,    = benchmark excess return  

 itr    = realized residual return 

The benchmark and the actively managed portfolios are defined by the weights, 

itBw , and itPw , , assigned to each of the N stocks in the investable universe respectively. It 

is shown in Clarke et al. (2002) that the portfolio active return, which is defined as the 

managed portfolio total excess return minus the benchmark total excess return, adjusted 

for the managed portfolio's beta with respect to the benchmark, can be written as  

 ,
11

,,,,, ∑∑
==

∆==−=
N

i

itit

N

i

ititPtBtPtPtA rwrwRRR β     (7) 

where itw∆  is the active weight defined as the difference between the managed portfolio 

weight and the benchmark weight at the beginning of time period t. 
1
  Note that the active 

weights, itw∆ , sum to 0 because they are differences in two sets of weights that each sum 

to 1. Also note that the stock returns, itr , in (7) are residual, not total, excess returns. As 

pointed out in Clarke, et al. (2002), residuals are the relevant component of security 

returns when performance is measured against a benchmark on a beta-adjusted basis.  

 

We assume that residual returns follow a conditional normal distribution, and define ex 

ante alpha of security i ( N1 ,,L=i ) in period t as the expected residual return 

conditional on information available at the end of time period 1I:1 −− tt  

 )I|( 1−= ttt E rα ,        (8) 
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and we define risk related to the alpha expectation as the conditional covariance of the 

forecast errors 

 ]I|)')([( 1−−−= tttttt E αrαrΩ ,      (9) 

where tα  and tr  are 1×N vectors with itα and itr as their elements respectively. The 

assumption of asset return normality is one of the fundamental assumptions under 

Markowitz's mean-variance portfolio choice theory, and the mean and covariance matrix 

fully determine a multivariate normal distribution. Under the residual return normality 

assumption,  the covariance of the forecast errors is the relevant measure of risk. There is 

risk because there is uncertainty, and risk is associated to the part of return that we are not 

able to predict. If we know the future returns perfectly then there is no uncertainty, hence 

no risk. The conditional risk associated with our alpha estimate should be smaller than 

the total risk around the unconditional alpha expectation. If this is not the case, then the 

forecast provides no additional information and the lagged information set, 1I −t , is 

useless. This is the major difference between the risk model used in this paper and the 

risk models used in Grinold (1989, 1994), Grinold and Kahn (2000), Clarke et al. (2002), 

Qian and Hua (2004), and Ye (2008). Of course, the assumption of stock return normality 

may not be valid in practice, and the return and risk models one uses are very likely mis-

specified, which may cause theoretically derived results not to reflect what one gets in 

reality. I will give some discussion later on the impact of missing alpha or risk factors in 

conditional mean and covariance modeling.  

 

After having specified the conditional mean and covariance matrix, we will then use the 

mean-variance analysis tool for portfolio construction based on the theory of utility 

maximization. In each period t, the optimal market-neutral portfolio, tP , is selected to 

maximize the mean-variance utility function: 

 

0'..

'
2

1
'

2

1 2

=∆

∆∆−∆=−=
∆

1w

wΩwαw
w

t

tttttPtPtt

ts

UMax
t

λλσα
,   (10) 

where 

 =Ptα expected active return on the portfolio 

 =2

Ptσ active risk of the portfolio based on the portfolio holdings 

 =λ a risk-aversion parameter 

 =1 1×N  vector of 1s  

The solution for this optimization problem is  

 )(
1 11

1ΩαΩw
−− −=∆ tttt κ

λ
,       (11) 

where 
1Ω1

1Ωα

1

1

'

'
−

−

=
t

ttκ  is a scalar. 

A certain value of λ corresponds to a certain value of Ptσ since 

 2' Ptttt σ=∆∆ wΩw .        (12) 

Substituting (11) into (12) and by some straightforward algebra we have  
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 ttttt

Pt

αΩ1αΩα
11 ''

1 −− −= κ
σ

λ .      (13) 

The optimal portfolio active weight is then 

 ,
)('

)(

1

1

1αΩα

1αΩ
w

κ

κ
σ

−

−
=∆

−

−

ttt

tt
Ptt       (14) 

and the expected portfolio return 

 
.)('

'

1
1αΩα

αw

κσ

α

−=

∆=

−
tttPt

ttPt

       (15) 

If we assume that the target tracking error remains a constant ( PPt σσ = ) at each 

rebalance of the portfolio, a typical practice for many quantitative portfolio managers, 

then the ex ante expected information ratio of the portfolio is 

 

( ).)('

)('
1

1
IR

1

1

1

1

1αΩα

1αΩα

κ

κ

σ

α

σ

α

−=

−=

==

−

=

−

=

∑

∑

ttt

T

t

ttt

T

t P

Pt

P

Pt

E

T

T

       (16) 

This is a very general result that should hold as long as the residual return has a 

conditional normal distribution with mean tα and covariance matrix tΩ .  

 

From the above discussion, it is clear that the key is how to forecast the alpha and the 

corresponding covariance matrix. As Kahn (1997) points out "active management is 

forecasting." Different forecasts will give us different ex ante expected information 

ratios. In the literature, two different approaches are used to forecast alpha. One uses time 

series models and the other uses a Fama-McBeth type cross-sectional regression 

approach. As for covariance matrix, many people use a risk model that does not have a 

direct relationship with the alpha estimation, such as the commercial risk models by 

BARRA or Northfield. Strictly speaking, a risk model that is detached from the alpha 

model will be a mis-specified risk model for the reasons discussed above. This mis-

specification usually results in the underestimation of risk when one runs an actual 

portfolio because the very important "strategy risk" is being left out (see Qian and Hua 

(2004), Qian, Hua, and Sorensen (2007)).  

 

Time Series Dynamics 
 
In the original papers about the fundamental law, Grinold (1989, 1994) concluded that 

"alpha is volatility times IC times score" without providing the explicit model 

assumptions and technical derivations of his result. In the endnote of his first paper 

(1989) he did mention that technical details are available upon request. Detailed 

discussions were given instead in Chapters 10 and 11 of the book by Grinold and Kahn 

(2000). Unfortunately, even though their Equation (10.1) is assumed to be for a cross 

section of N assets, the result in (10.16) is derived through a time series model for each of 

the N individual assets. They then use the time series IC and cross-sectional IC 
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interchangeably. The discussion below will show that the result from time series 

modeling assumptions cannot be applied to cross-sectional modeling structures without 

some further assumptions.  

 

If we assume that the true forecasting relationship between the lagged information set, 

1I −t , and the residual returns, itr , is a linear one factor model as follows 

 ititiit zgr ε+= −1           (17) 

for security i over time t = 1, 2, 3, ..., T.  In the equation, ig  is the time series factor 

return ( ig  is just a regression coefficient and is different from the usual definition of  

factor return from a cross-sectional regression) for security i, 1−itz is the factor exposure 

that becomes known at the end of time t-1 that has both time series and cross-sectional 

mean 0 and standard deviation 1 (as assumed by Grinold and Kahn (2000), p268), 

),(~
20

i
Nit εσε is the idiosyncratic noise that cannot be predicted. We further assume  

 T1) 01 =− )( ititzE ε  for all i and t,  

and 

 T2) 0=)( jtitE εε  for ji ≠ . 

T1) is a very general assumption for linear regression models stating that the explanatory 

variable and the residual are not correlated, and T2) assumes that the forecast errors are 

not correlated across stocks so that the idiosyncratic covariance matrix is diagonal. This 

is also a common assumption for idiosyncratic noise. 

 

For ease of exposition, we will focus our attention on population quantity and ignore the 

sample estimation error of the parameters. Basic regression of Equation (17) gives us, 

 

ii zrits

i

i

ii

ii

iiii

z

r

rz

rz

rzzg

σσ /IC

)Var(

)Var(

)Var()Var(

),Cov(

),Cov()(Var

,

1

=

=

= −

,      (18) 

where its ,IC  is the time series correlation between residual return itr and forecast 

signal 1−itz , 
ir

σ is the standard deviation (volatility) of residual return itr , and
izσ is the 

standard deviation (volatility) of 1−itz which is 1 by assumption. The time series prediction 

for alpha from this model is 

 11 IC −− == itritstitit zIrE
i

σα ,)|( ,       (19) 

and the conditional volatility, or forecast error volatility, is 

 22

,1

2 )IC1()|Var(
ii ritstit Ir σσ ε −== − .      (20) 

It should be noted here that 
iir εσσ ≠ when 0IC ≠its , . As we discussed above for 

Equation (9), when the forecast signal 1−itz  contains useful information for predicting 

residual return itr , then the resulting error variance ( 2

iεσ ) should be smaller than the 

original unconditional residual return variance ( 2

ir
σ ). This is the major difference 
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between the risk estimate here and the risk estimate provided by any commercial risk 

model which has no connection with alpha estimation.  

 

Substituting the alpha and volatility prediction into Equation (16) we have the ex ante 

expected information ratio as 
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    (21) 

If we assume that the cross-sectional distribution of its ,IC and 1−itz are independent, then as 

N becomes large, we have 
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  (22) 

where csE stands for the cross-sectional expectation operator. In deriving Equation (22) 

we used the assumption that the forecast signal, 1−itz , is cross-sectionally normalized to 

have mean 0 and standard deviation 1. When all the time series ICs are the same, i.e. 

tsits ICIC =, for all i, we have 

 NN ts

ts

ts IC
IC1

IC
IR

2
≈

−
= .       (23) 

The approximation holds when tsIC is small which is typically the case in empirical work. 

 

Equation (23) proved that the original fundamental law of Grinold (1989) holds 

approximately under the time series model assumption when ICs are the same across all 

the assets and is small. The reason that the original formula of Grinold (1989) needs to be 

adjusted by 2IC1 ts− is that we used the conditional volatility of the residual return 

instead of the unconditional one. Some interesting observations can be made from 

Equations (22) and (23). When one has the skill to predict some residual returns perfectly 

(some 1IC =its , ) then the IR shall go to infinity no matter what the breadth is. This makes 

intuitive sense because if one can predict some residual returns perfectly then she/he can 

make a sure bet on these stocks against the rest of the universe to achieve the desired 

excess return. The IR will be infinity since the optimization is set in such a way that one 

can take a leveraged bet. This is not a feature in the original Grinold formula which states 

that the IR will increase with the square root of N even if 1IC =ts . 
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If,  instead of running a time series regression, we run a "mis-specified" cross-sectional 

regression for the model in Equation (17), 

 itittit zfr ξ+= −1           (24) 

for cross-sectional security i = 1, 2 ,..., N at time t. A simple cross-sectional regression 

gives us 
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     (25) 

where tcsE ,  stands for the cross-sectional expectation operator at time t, tcs ,IC  is the 

cross-sectional correlation between residual return itr and forecast signal 1−itz , )( 1−td z  is 

the cross-sectional standard deviation (dispersion) 
2
 of 1−itz , which is 1 by assumption, 

and )( td r  is the cross-sectional residual return dispersion at time t. 

 

The expected value of tf is 
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    (26) 

On the other hand, if we assume tcs ,IC and )( td r  are independent over t, then from 

Equation (25) we have 

 

,IC

))(()IC(

))(IC(

)(

,

,

δcs

ttcs

ttcs

t

dEE

dE

fEf

=

=

=

=

r

r
        (27) 

where ))(( tdE r=δ is the expected cross-sectional residual return dispersion.  

Substituting (26) into (27) we have 

 ∑
=

=
N

i

ritscs iN 1

, /IC
1

IC δσ ,       (28)  

i.e., the expected cross-sectional IC, csIC , is a weighted average of time series ICs and 

they are usually not the same. If the time series ICs are the same across all securities,  

i.e., tsits ICIC =,  for all i then 
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 δσδσ /~IC/
1

ICIC
1

rts

N

i

rtscs iN
== ∑

=

,      (29) 

where ∑
=

=
N

i

rr iN 1

1
σσ~ is the cross-sectional average of the residual return standard 

deviation. So as long as δσ ≠r
~ , we have the seemly surprising result that the cross-

sectional csIC will be different from the time series tsIC even if the time series ICs are the 

same across all securities.  

 

In the extreme case that all residual return standard deviations are the same, i.e. rri
σσ =  

for all i, we have δσσ == rr
~ and tscs ICIC = .

3
  So the discussion here shows that the 

cross-sectional IC is usually different from the time series IC for an identical set of return 

and factor exposures. They will only be the same under the very strong assumption that 

the residual return volatilities are the same across all securities. 

 

Given the "mis-specified" cross-sectional model prediction for each individual security, 

 itrtsitcsit zz σδα ~ICIC == ,        (30) 

we have the forecast error term as  

 ititrrtsititcsitrtsit zzz
ii

εσσεδσξ +−=+−= )~(ICICIC ,   (31) 

which is different from itε . The conditional covariance matrix has the following elements: 
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E

ii rtsrrts

jtitij
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2222 σσσ

ξξω

    (32) 

Substituting (32) into (16) we have 
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σσσ

σκσ
    (33) 

If we assume that the cross-sectional distribution of
ir

σ and itz are independent, then as N 

becomes large, we have 

 .
)~/)(()~/(

∑
= −+−

=
N

i rrtsrrts

ts

ii
1

2222 IC11IC

1
ICIR

σσσσ
   (34) 

When all the residual return volatilities are the same we have  

 NN ts

ts

ts IC
IC1

IC
IR

2
≈

−
= ,      (35) 

which is consistent with the result from time series model. When the individual residual 

return standard deviation varies across securities, the IR we get from the mis-specified 

cross-sectional model will be different from the IR we get from the time series model. 

 

The discussion above shows that the original fundamental law of Grinold (1989, 1994) 

only holds under the assumption that the time series ICs are the same across all the 

securities and the common IC is small. The cross-sectional IC is only the same as the 
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time series IC if an additional assumption is imposed that all residual return standard 

deviations are the same (Ye (2008) made this assumption).  

 

In practice, the above two assumptions (time series ICs and residual return volatilities are 

the same across all securities) are overly restrictive and we can almost surely say they do 

not hold. As an example, I calculated monthly means and standard deviations for time 

series and cross-sectional ICs for book/price ratio (B/P) and Momentum factors for US 

stocks in Table 1. The top panels in Figures 1 and 2 show the time series IC distributions 

for both factors. It can be seen that the time series ICs have a normal-like distribution 

with high dispersion.  The bottom panels in Figures 1 and 2 show the cross-sectional IC 

distributions for both factors. It can be seen that the cross-sectional ICs are more highly 

concentrated and are positively skewed.  

 

It is also interesting to see that the average time series ICs for B/P are much higher than 

the average cross-sectional ICs, especially if the time series B/P is not standardized. The 

average time series ICs for momentum are negative whether you standardize them in one 

or both dimensions. The average momentum factor cross-sectional IC is positive only if 

one does not standardize the exposures in the time dimension. 

 

Further research shows that the basic form of the fundamental law under the time series 

model assumptions does not change even if I assume the time series ICs to be different 

across stocks and follow certain cross-sectional distributions (such as a Beta distribution 

in the range of -1 to 1). 

 

Table 1. Mean and Standard Deviation for Factor IC (Time Series and Cross-Section) 

Factors Time Series Cross-Section  

 mean std n mean std n t-test 

Original Signal 

B/P 0.088 0.176 15232 0.017 0.062 412 1.82 

MOM -0.028 0.152 15232 0.025 0.099 412 -1.58 

Both Dimension Normalized 

B/P 0.087 0.175 15232 0.050 0.072 412 0.94 

MOM -0.028 0.152 15232 -0.003 0.085 412 -0.74 
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Figure 1. Histogram for Time Series and Cross-Sectional Correlation  

 One dimension standardized 
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Figure 2. Histogram for Time Series and Cross-Sectional Correlation  

 Both dimensions standardized 
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Cross-Sectional Properties 
 
The above discussion shows the assumption that all time series ICs are the same is not 

realistic. I will show below it is also not necessary in deriving the (generalized) 

fundamental law. In empirical finance work, many people use a Fama-McBeth type 

cross-sectional regression in relating the explanatory variables with asset returns. 

Ibragimov and Müller (2009) find that as long as the cross-sectional coefficient 

estimators are approximately normal (or scale mixtures of normals) and independent, the 

Fama-MacBeth method results in valid inference even for a short panel that is 

heterogeneous over time. Due to the small sample conservativeness result, the approach 

allows for unknown and unmodelled heterogeneity. Peterson (2009) shows that when the 

residuals of a given time period are correlated across firms, the Fama-McBeth method 

produces more efficient estimates than OLS and the standard error will be correct. 

Another advantage is that the assumptions we have to make to achieve the kind of 

fundamental law are much weaker than the assumptions we have to make in the time 

series section. 

 

Assume the basic modeling structures are similar to Equation (17), only this time we 

have the relationship at time t for i = 1, 2, 3, ..., N assets,  

 itittit zfr ε+= −1         (36) 

where tf  is the cross-sectional factor return at time t, 1−itz is the factor exposure that 

becomes known at the end of time t-1 that has both time series and cross-sectional mean 

0 and standard deviation 1, ),(~
20

i
Nit εσε is the idiosyncratic noise that cannot be 

predicted. We will make the same assumptions as in time series model concerning 

1−itz and itε : 

 C1) 0)( 1 =− ititzE ε  for all i and t,  

and 

 C2) 0=)( jtitE εε  for ji ≠ . 

 

Under the above assumptions, we have, 

 )(IC ttt df r= ,         (37) 

where )( td r  is the cross-sectional residual return dispersion assumed to be a constant (δ ) 

over time,
4
  and tIC is the cross-sectional IC (all the ICs discussed in this section will be 

cross-sectional IC unless otherwise specified) between the residual returns and the 

forecast signals. In empirical work, one needs to get an ex ante estimate for the cross-

sectional correlation tIC before making an estimate for the alpha. The most common and 

simple method just uses historical average as an estimate. After the fact we can estimate 

the ex post realized tIC  using the actual itr  and 1−itz . As shown in the bottom panels of 

Figures 1 and 2, usually the cross-sectional factor IC spreads around a mean. For ease of 

exposition below, we will assume that the cross-sectional factor tIC  follows a normal 

distribution with mean IC and standard deviation ICσ . 
5
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When the alpha model has the linear one factor structure in Equation (36) and under the 

above assumptions, we have the conditional expectation (on known 1−tz ) of tr as 

 11t IC)I|( −− == ttt E zrα δ ,       (38) 

and the conditional covariance as 

 ttttttttt E ΣzzIαrαrΩ IC +=−−= −−− ')|)')((( 11

22

1 δσ ,    (39) 

where tΣ is the conditional covariance matrix of tε which should be diagonal according to 

assumption C2) above 
6
 

 ),,,( 222

21 n
diagt εεε σσσ L=Σ        (40) 

where .)IC( 22

IC

222 δσσσ ε +−=
ii r  

 

Given the above modeling assumptions and by some straightforward algebra, it is shown 

in Appendix A that the ex ante expected portfolio excess return at time t to be 

 ,
)/(1

IC

2

ICσφ
σα

+
=

N
PtPt        (41) 

where 1≥φ  is a constant that is defined in Appendix A.  

 

So the so-called fundamental law in the more general form should be 

 .
)/(1

IC
IR

2

ICσφσ

α

+
==

NPt

Pt        (42) 

The portfolio IR is positively related to the average cross-sectional IC (skill) and the 

square root of N (breadth), but inversely related to the cross-sectional IC standard 

deviation, ICσ  (Qian and Hua (2004) call this strategy risk). This result should not be 

surprising to any student of modern portfolio theory. Basically it states that for a portfolio 

built upon a sufficiently large universe (large N ), the main risk of the portfolio comes 

from the bet on the alpha factor that has an uncertain (but positive average) payoff stream 

(strategy risk). As the universe (N) becomes larger, the impact of the idiosyncratic risk 

( )/(1 Nφ  part in the formula) will diminish. Three interesting special cases emerge from 

Equation (42): 

 

1) if the cross-sectional tIC is a constant over time, i.e., 0IC =σ , and all the residual 

return standard deviations (
ir

σ ) are the same across assets (hence )/(
2IC11 −=φ ) 

then we have tsICIC = , and the adjusted Fundamental Law of Grinold (1989) we 

derived in the time series dynamics section: NN IC
IC1

IC
IR

2
≈

−
= . 

2) when the breadth goes to infinity, or )/(1 2

ICφσ>>N , then we have the IR formula 

of Qian and Hua (2004): IC/ICIR σ= . The formula by Qian and Hua (2004) is 

interesting in that they got the final result almost right even though they used a 

conditional covariance matrix that is inconsistent with their alpha forecast 

assumptions. They realized that there is a "strategy risk" which is a form of 

systematic risk for their bets. But they missed this risk in their ex ante risk model 
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because they used a third party risk model that is detached from their alpha 

model. This is common to all quantitative strategies that use a third party risk 

model. Lee and Stefek (2008) give a very good discussion on this topic. The ex 

post realized portfolio risk is mainly from the "strategy risk" that cannot be 

diversified away by the optimal portfolio. That is why their ex ante target tracking 

error is so different from the ex post tracking error they derived.  

3) if all the residual return standard deviations (
ir

σ )  are the same at time t but the IC 

volatility is not zero (hence )IC1/(1 2

IC

2 σφ −−= ), then we have approximately 

the IR formula of  Ye (2008) 
2

IC

2

IC

2

IC

2 /1

IC

/)IC1(

IC
IR

σσσ +
≈

+−−
=

NN
 

(empirically factor IC is in the range of 0.02 to 0.05 and IC standard deviation is 

around 0.1). The approximation results from Ye (2008) using the unconditional 

residual return standard deviation in her risk model instead of the conditional 

idiosyncratic error standard deviation that is consistent with the alpha model. In 

this formula we will also have the property that IR will go to infinity when IC=1 

and 0IC =σ  no matter what the breadth (N) is, while Ye's original formula does 

not have this feature. 

 

It should be noted that the ex ante and ex post IR calculation should be very close if the 

return and risk models are correctly specified (which is a strong assumption!). The 

difference between the ex ante and ex post IR should be a result of standard error in 

parameter estimation. As the sample size gets bigger, the difference should get smaller. If 

this is not the case, then we can be quite sure that the ex ante model specification is 

incorrect. Since we ignored the sample estimation error in this paper, we should expect 

the ex ante and ex post IR to be the same when the model is correctly specified.  

 

As an example, let us look at the realized portfolio excess returns from the above model 

and calculate the ex post IR based on the realized alphas. For ease of exposition, I will 

assume )IC1/(1 2

IC

2 σφ −−= t  (as will be shown in next section, this is true if we use risk-

adjusted residual returns in analysis). The realized one period portfolio alpha from the 

return and risk model is (based on Equation 41)  

 
2

IC

2

IC

2 /)IC1(

IC

σσ
σα

+−−
=

Nt

t
PtPt ,      (43) 

where Ptσ  is the ex ante portfolio tracking error target set as a constant ( PPt σσ = ). For a 

specific time period, tIC  can be positive or negative which will result in positive or 

negative excess return for the portfolio. The portfolio average excess return over time is 

then 
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and the standard deviation of the portfolio average excess return is 

 

.

large is n        whe/)IC(

/)IC1(

IC
)(

IC

2

IC

2

IC

2

P

tP

t

t
PPt

NStd

N
StdStd

σ

σσ

σσ
σα

=

≈















+−−
=

    (45) 

The ex post realized portfolio IR is then 

 

.
IC

)(
IR

ICσ

α

α

≈

=
Pt

Pt

Std
         (46) 

The approximation holds when N is large.  Equation (46) is the same as the ex post IR 

formula derived by Qian and Hua (2004). 

 

The interesting extreme case comes when 0IC =σ , i.e., the true tIC  is a constant over 

time as assumed by Grinold (1989) and Clarke et al (2002). Then the differences among 

the ex post estimated tIC  are purely a result of sample estimation error. As N gets larger 

and larger, one gets a more and more precise estimate for IC and the investment risk 

becomes smaller and smaller. The strategy ultimately becomes a money machine when N 

is large enough. As discussed in Qian, Hua and Sorensen (2007, p96), the quantity 

N/)IC1( 2−  is the standard error of the sample correlation coefficient with a sample of 

size N.  So Equations (44) and (45) become  

 

IC

1
2

1
2

ˆ

IC

/)IC1(

IC1

/)IC1(

IC1

σ
σ

σ

σα

P

T

t

t
P

T

t
t

t
PPt
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NT

=

−
≈

−
=

∑

∑

=

=

       (47) 

and  
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−
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      (48) 

So the portfolio excess return mean and standard deviation estimates here still give  

 

.
ˆ

IC

)(
IR

ICσ

α

α

=

≈
Pt

Pt

Std
         (49) 

I used IC , ICσ̂ to distinguish the sample mean and standard deviation from the population 

values for this special case. The results here show that the ex post portfolio excess return 

is proportional to targeted portfolio tracking error, Pσ , i.e., the more risk one takes, the 

more return one gets. This is consistent with the fundamentals of financial economics. 

The ex post portfolio excess return is also positively related to one’s skill that is 

represented by the average IC one can achieve, and inversely related to the volatility of 

the skill, ICσ , i.e., the more volatile the skill, the less excess return one can get. The 

result also shows that when the risk model, which is represented by the conditional 

covariance matrix of the forecasting errors, is correctly specified, then the ex post 

realized portfolio tracking error should be very close to the ex ante target tracking error 

one sets.  

 

Figure 3 plots the relationship between portfolio IR and breadth N for various forms of 

the fundamental law discussed above. The parameters are assumed to be IC=0.03, 

1.0IC =σ  and 2=φ . The portfolio IR based on the Grinold fundamental law increases at 

the rate of the square root of breadth N. As the breadth increases, the portfolio IR will 

increase without a limit. According to our analysis above, this is true if the manager can 

pick stocks consistently at certain skill level (so that the cross-sectional IC is a constant 

over time). In reality, this is hardly the case. A forecast signal's IC changes constantly 

over time, and 0IC ≠σ . Under this more realistic situation, the fundamental law by Qian 

and Hua (2004) sets a "Chinese Wall" as the limit one can achieve. According to Qian 

and Hua, as long as IC/IC σ  does not improve, one will not be able to improve the 

performance even if the breadth increases. 

 

The fundamental law by Ye (2008) bridges the gap between Grinold's original formula 

and Qian and Hua's limit formula. At the limit as ∞→N , it collapses to Qian and Hua's 

formula. The ex ante IR we derived in Equation (42) is more realistic than Ye's 

calculation in that it allows the residual returns to have different standard deviations. It 

can be seen that our IR calculation is higher than Ye's but lower than Qian and Hua's. 

 

Figure 3. Various Forms of the Fundamental Law 
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Our discussion above shows that the marginal contribution of breadth (N) on portfolio IR 

diminishes as N increases. Here we are using the number of stocks in the selection 

universe as breadth, which may not be the same as what Grinold uses for breadth in his 

original paper. Grinold (1989) gives a quite lengthy discussion on the importance of 

independent bets when determining what N is. For example, one should not count two 

dependent bets as different bets. In practice, it is quite difficult to quantify dependent bets 

and to make appropriate adjustments. The formula in (42) shows that even if N increases, 

the portfolio IR will not improve much for a typical investment universe of 1000 or 2000 

stocks as long as the average IC and volatility of IC stay the same. The important thing is 

to play often (try to increase N) when N is small but to play precisely (low ICσ ) and to 

play well (high IC) when N is already large.  

 

In Figure 3, we assumed φ  to be a constant over time. In reality, it is well known that 

stock returns exhibit heteroskedasticity soφ  will be time varying too. Figure 4 shows the 

estimatedφ values for Russell 1000, 2000 and 3000 universe from 1978:12 to 2009:08 

assuming an IC of 0.03 and ICσ  of 0.1. We can observe the following: 

1) φ is time varying, 

2) usually the bigger the sample size, the larger theφ is, 

3) the minimum value ofφ is around 1.5, and during most timesφ is within the range 

of (1.5, 2), 

4) there was a dramatic bubble-burst period forφ during the tech bubble time of 1999 

to 2002. 

 

Figure 4. φ  Values for Different Universes over Time 
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Table 2 shows the average number of stocks ( N ), average φ  (φ ), φN , and φN/1 for 

Russell universes of stocks. It will be seen later that for most quantitative factors people 

use, φN/1  is much smaller than the factor IC standard deviation, which suggests that 

for the most commonly used investment universes the Grinold factor ( N/1 ) has a much 

smaller impact than the Qian and Hua factor ( ICσ ). This is also obvious from Figure 3.  

 

Table 2. Average Number of Companies and φ  for Russell Indices 

 (1978:12-2009:8) 

Index N  φ  φN  φN/1  

Russell 1000 949 1.74 1653 0.025 

Russell 1000 Growth 507 1.66 843 0.034 

Russell 1000 Value 578 1.57 908 0.033 

Russell 2000 1833 2.01 3685 0.016 

Russell 2000 Growth 1249 1.88 2347 0.021 

Russell 2000 Value 1300 1.90 2465 0.020 

Russell 3000 2782 2.12 5903 0.013 

Russell 3000 Growth 1756 1.95 3425 0.017 

Russell 3000 Value 1878 1.99 3729 0.016 

 

 
Robustness of the Fundamental Law to Model Specification 
 

In deriving the generalized fundamental law in Equation (42), we assumed the true 

relationship to be a linear one factor model between the residual return and the forecast 

signal. The residual returns are not risk-adjusted.  The cross-sectional heteroskedasticity 
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across residual returns resulted in theφ  parameter in Equation (42). In practice, people 

may use risk-adjusted residual return as dependent variable to correct for the cross-

sectional heteroskedasticity, i.e., 

 itittritit zfrr
it

εσ ~~
/~

1 +== − ,       (50) 

where itr~ is the risk-adjusted residual return, 
itrσ is the conditional volatility for residual 

return itr as of time t, tf
~

 is the cross-sectional factor return at time t (which will be 

different from the factor return in Equation (36)), 1−itz is the factor exposure that has both 

time series and cross-sectional mean 0 and standard deviation 1, )~,(~~ 20
i

Nit εσε  is the 

idiosyncratic noise that cannot be predicted. Under these assumptions, we will have the 

cross-sectional IC between risk-adjusted residual return itr~  and 1−itz to be the same as tf
~

, 

i.e., 

 tititt fzr
~

),~corr(C
~

I 1 == − ,       (51) 

and 

 2

IC

22 ~C
~

I1~ σσ ε −−=
i

,        (52) 

where C
~

I  and IC
~σ  are the mean and standard deviation of tC

~
I . By using the same 

algebra in the previous section, we can get 

 
2

IC

2

IC

2 ~/)~C
~

I1(

C
~

I
R
~

I
σσ +−−

=
N

.      (53) 

The formula is identical to Equation (42) when )IC1/(1 2

IC

2 σφ −−= , i.e., when the 

residual standard deviations are the same across all the securities. One thing we have to 

be aware of is CI
~

and 2

IC
~σ  in Equation (53) will be different from IC and 2

ICσ  in Equation 

(42).  

 

The above discussion shows that the form of the fundamental law is quite robust to the 

forecast model specification. In both cases, the most important impact to portfolio IR is 

the IC volatility over time. One insight from Equations (42) and (53) is that a quant 

manager should preprocess the residual returns and factor exposures in such a way so that 

the resulting cross-sectional IC will have a higher average and lower standard deviation. 

One disadvantage with the model specification in Equation (50) is that one has to 

estimate the conditional volatility 
itrσ which can involve estimation errors. A GARCH 

type model will be useful for this purpose. 

 
Multifactor Fundamental Law and the Impact of Missing Factors 
 
The fundamental law we discussed so far only concerns one factor. In practice, analysts 

or portfolio managers rarely use only one factor. Residual return forecast almost always 

involves multiple factors. It will be interesting to see the form of fundamental law with 

multiple factors and study the consequences of missing one or more factors in modeling. 

In deriving the fundamental laws presented in previous sections, we either made the 

assumption that the residual return dispersion is a constant over time or used the risk-
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adjusted residual return in analysis. But this is not necessary if we work on residual 

security returns and factor returns directly.   

 

If we assume residual returns follow a linear relationship with factor exposures 

 tttt εFZr += −1 ,        (54) 

where tr  is an 1×N vector of residual returns, 1−tZ  is an KN × matrix of factor 

exposures, tF  is a 1×K  vector of factor returns, and tε  is an 1×N  vector of 

idiosyncratic noise. It is shown in Appendix B under some weak regularity conditions 

that the ex ante expected portfolio IR has the following relationship with the expected 

factor return (F) and factor return covariance ( FΣ ) 

 
FΣF

FΣIF

1-

F

1

F

'

))/(1('IR

≈

+= −
Nτ

       (55) 

where )/1( 2

icsE εστ =  represents part of the risk related to idiosyncratic noise. As in the 

univariate case, this part of the risk will be diversified away as N gets larger, and the 

remaining dominant risk is the "strategy risk" represented by the factor return covariance 

that cannot be diversified away. When there is only one factor,  Equation (55) reduces to 
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=

−

      (56) 

So the expected portfolio IR is just the IR of the factor-mimicking portfolio.  

 

If, instead of using the raw residual return in Equation (54), we use the risk-adjusted 

residual returns, then the multi-factor fundamental law in Equation (55) becomes (see 

Appendix B) 

 
,'

)/('IR

1-

IC

1

IC

2

ICΣIC

ICΣIIC

≈

+= −Nεσ
      (57) 

where ∑
=

+−=
K

k

kk

1

22

,IC

2 ))IC(1( σσ ε is the variance for idiosyncratic noise, IC is the cross-

sectional correlation vector between factor exposures and risk-adjusted residual returns, 

and ICΣ is the factor IC covariance matrix. Equation (57) reduces to Equation (53) when 

there is only one factor.  

 

The above conclusion is based on the assumption that the model is correctly specified 

which is almost surely not the case in practice. A natural question to ask is what happens 

if the return or risk model is mis-specified. With the fundamental law in multi-factor 

format, we can easily study the impact of missing one or more return or risk factors. For 

ease of exposition, I will only present the analysis for a 2-factor system here. More 

detailed analysis with missing multiple factors can be found in Appendix B. In the 

analysis below, I will not purposely distinguish risk factors from alpha factors. 
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Statistically, the only difference should be that the expected IC (or factor return) for risk 

factor is zero while that for alpha factor is different from zero.  

 

For a 2-factor system, Equation (B15) reduces to 
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  (58) 

where 
21 IC,ICρ is the time series correlation of the two factor ICs. 

 

From Equation (58), it is clear that a mis-specified model, whether it is mis-specified in 

the return forecast part or the risk forecast part, will almost always hurt the performance. 

For a missing return factor, the adverse impact comes from both the missing return 

forecast, 2IC , and the resulting conditional covariance mis-specification, ( 2

IC,IC 21
1 ρ− ).  

For a missing risk factor, the adverse impact only comes from the resulting conditional 

covariance mis-specification ( 2

IC,IC 21
1 ρ− ).  This is not surprising indeed!  The only 

exception is when the missing factor is a risk factor and the risk factor IC is not time-

series correlated with the return factor IC (i.e.  when 0IC2 =  and 0
21 IC,IC =ρ ). When the 

risk factor is missing, the ex post realized portfolio tracking error will be larger than the 

ex ante targeted portfolio tracking error by a factor of  11/1 2

IC,IC 21
≥− ρ . So if  

21 IC,ICρ is 

small, then the impact of missing a risk factor is small.  

 

 
Fundamental Law with Transfer Coefficient 
 
Clarke et al. (2002) proposed the concept of "transfer coefficient" to incorporate the 

impact of additional constraints into the fundamental law. They define the transfer 

coefficient as the cross-sectional correlation coefficient between the residual return 

volatility adjusted active weights and alphas 

 
.

)/()~(

)/,~cov(

)/,~corr(TC

ii

ii

ii

ritrit

ritrit

ritrit

dwd

w

w

σασ

σασ

σασ

∆

∆
=

∆=

       (59) 

This definition has the desired property of measuring the impact of constraints on 

portfolio IR when the factor IC is a constant so that 0IC =σ  and the residual return 

covariance is a diagonal matrix. Under this assumption, the transfer coefficient is the 

ratio of the constrained portfolio IR and the unconstrained optimal portfolio IR 
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 IRTCR
~

I = ,         (60) 

so the transfer coefficient does represent the portion of optimal portfolio IR that can be 

transferred into the constrained portfolio. 

 

Ye (2008) extended the transfer coefficient into her version of fundamental law with time 

varying IC. Using her approach, she got the following relationship 

 
22 )TC/(1

IC 
R
~

I

ICσ+
=

N
.       (61) 

One surprising observation from Equation (61) is that the transfer coefficient as derived 

by Ye (2008) will have diminishing impact as breadth N increases. The constrained 

portfolio IR will approach the unconstrained optimal portfolio IR as N increases (both 

approach IC/IC σ  as ∞→N ) no matter what constraints one imposes on the portfolio.  

This conclusion is quite counter-intuitive to practitioners as it can lead one to believe that 

any portfolio can have the same IR.  

 

So why does this happen? When the cross-sectional IC is time varying as discussed in Ye 

(2008) and this paper, the total risk of the residual return is no longer a diagonal 

covariance matrix.  In fact the majority risk comes from the strategy risk which causes 

the off-diagonal elements of the conditional covariance matrix to be non-zero. The 

transfer coefficient will not have the desired property if we only use the diagonal portion 

of the conditional covariance matrix to adjust the weights and alphas in deriving the 

transfer coefficient. Under this more practical situation, the transfer coefficient needs to 

be redefined using the total risk adjusted active weights and alphas as follows: 
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where tw~∆ is the active weights of the constrained portfolio. Using this modified transfer 

coefficient definition, we get the constrained portfolio's expected excess return as, 
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where Ptσ is the targeted portfolio tracking error and IR is the information ratio for the 

unconstrained optimal portfolio. So the constrained portfolio information ratio ( R
~

I ) , the 

transfer coefficient (TC) and the optimal unconstrained portfolio information ratio (IR) 

have the following relationship 

 
. IR TC

/R
~

I

=

= PtPt σα
         (64) 

The impact of the constraints on portfolio IR will be the same as in Clarke et al.'s (2002) 

original definition. In this way, a transfer coefficient of 0.5 will reduce the portfolio IR by 

50% from the unconstrained optimal level.  
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Empirical Factor IR Comparison 
 
In order to compare the differences between the different forms of the fundamental law, I 

calculated the IR that can be achieved by various quantitative factors using different 

formulas. For each factor, I calculate the ex post realized cross-sectional correlation (IC) 

between lagged factor exposures and residual returns, and then calculate the mean and 

standard deviation of the time series IC. The results are then substituted into various 

formulas to generate Table 3. For all the factors considered here, ICσ  is much more 

important than φN/1 . I calculated φσ NIC  for each factor and they are in the range 

of 4 to 10 which means ICσ  is 4 to 10 times more important than φN/1 .  From the last 

four columns of the table, we can see that the expected IR from the Grinold formula is 

always much higher than the other three while the other three stay very close to each 

other. This is not surprising given the result in Figure 3 and the above discussion.  

 

Table 3. Factor IR Comparison (monthly, data ends 2009:8) 

 

Factor Index 
φN

1
 IC 

Mean  

IC Stdev 

ICσ  φ

σ

N

IC

/1
 IR 

GK 

IR 

QH 

IR 

YE 

IR 

DING 

R1000 0.024 0.014 0.139 5.67 0.44 0.10 0.10 0.10 

R2000 0.016 0.025 0.113 6.95 1.12 0.22 0.22 0.22 
Book to 

Price 
R3000 0.013 0.020 0.114 8.76 1.06 0.17 0.17 0.17 

R1000 0.024 0.039 0.119 4.88 1.21 0.33 0.32 0.32 

R2000 0.016 0.066 0.122 7.49 2.93 0.54 0.53 0.54 
Cash Flow 

to Price  
R3000 0.013 0.058 0.111 8.59 3.17 0.52 0.52 0.52 

R1000 0.024 0.031 0.140 5.70 0.95 0.22 0.21 0.22 

R2000 0.016 0.067 0.120 7.37 2.96 0.56 0.55 0.55 
Earnings to 

Price 
R3000 0.013 0.059 0.121 9.35 3.19 0.48 0.48 0.48 

R1000 0.024 0.019 0.129 5.26 0.58 0.15 0.14 0.14 

R2000 0.016 0.026 0.104 6.41 1.16 0.25 0.24 0.25 
Sales to 

Price 
R3000 0.013 0.023 0.107 8.22 1.25 0.22 0.21 0.21 

R1000 0.024 0.029 0.179 7.31 0.91 0.16 0.16 0.16 

R2000 0.016 0.055 0.128 7.86 2.46 0.43 0.43 0.43 
12-Month 

Momentum 
R3000 0.013 0.049 0.137 10.59 2.68 0.36 0.36 0.36 

R1000 0.024 0.015 0.089 3.63 0.46 0.17 0.16 0.16 

R2000 0.016 0.026 0.084 5.20 1.16 0.31 0.30 0.30 
Share 

Repurchase 
R3000 0.013 0.024 0.083 6.38 1.30 0.29 0.28 0.29 

R1000 0.024 0.022 0.118 4.81 0.67 0.18 0.18 0.18 

R2000 0.016 0.037 0.105 6.48 1.67 0.36 0.35 0.35 
Percent 

Short 
R3000 0.013 0.029 0.101 7.80 1.56 0.28 0.28 0.28 

 

 

Empirical findings here show that the theoretically calculated IR number from Grinold's 

fundamental law needs to be cut by much more than half to be realistic. For a typical 

investment universe of 1000 or 2000 stocks, the empirically calculated IR numbers  from 

formulas derived by Qian and Hua (2004), Ye (2008) and this paper give a more realistic 
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estimate of achievable IR. For investment universes less than 500, an IR using the 

formula derived in this paper will give a better estimate. The difference will become 

more significant for investment strategies with a much smaller selection universe, such as 

a global macro strategy, or a tactical asset allocation strategy. The idiosyncratic risk still 

plays a role when N is small. Table 4 shows theoretical examples when the investable 

universes have much less choices. 

 

Table 4. Theoretical IR Comparison when N is Small 

 
  GK QH  YE DING GK QH  YE DING 

IC ICσ  N=10 N=50 

0.10 0.32 1.00 0.30 0.41 0.32 1.00 0.58 0.71 

0.15 0.32 0.67 0.29 0.37 0.32 0.67 0.49 0.55 0.10 

0.20 0.32 0.50 0.27 0.33 0.32 0.50 0.41 0.45 

0.10 0.47 1.50 0.45 0.61 0.47 1.50 0.87 1.06 

0.15 0.47 1.00 0.43 0.56 0.47 1.00 0.73 0.83 0.15 

0.20 0.47 0.75 0.40 0.50 0.47 0.75 0.61 0.67 

  N=100 N=200 

0.10 0.50 0.50 0.35 0.41 0.50 0.50 0.41 0.45 

0.15 0.50 0.33 0.28 0.30 0.50 0.33 0.30 0.32 0.05 

0.20 0.50 0.25 0.22 0.24 0.50 0.25 0.24 0.24 

0.10 1.00 1.00 0.71 0.82 1.41 1.00 0.82 0.89 

0.15 1.00 0.67 0.55 0.60 1.41 0.67 0.60 0.63 0.10 

0.20 1.00 0.50 0.45 0.47 1.41 0.50 0.47 0.49 

 

 
Conclusion 
 

I have derived a generalized version of the fundamental law of active management under 

some weak assumptions. The original fundamental law of Grinold (1989), the generalized 

fundamental laws of Clarke et al. (2002), Qian and Hua (2004), and Ye (2008) are all 

special cases of the fundamental law derived in this paper. I show that cross-sectional ICs 

are usually different from time series ICs, and they will be the same only under the strong 

assumption that either the residual return volatilities are the same across all the securities 

or the ICs are calculated using risk-adjusted residual returns with the forecast signal.  

 

I also show that the form of the fundamental law derived in this paper is quite robust to 

forecast model specification. According to our generalized fundamental law, the variation 

in IC (IC volatility over time) has a much bigger impact to portfolio IR than the breadth 

N for a typical investment universe. The fundamental law by Qian and Hua (2004) sets a 

"Chinese Wall" as the upper limit for the portfolio IR a portfolio manager can reach when 

the cross-sectional IC varies over time. The fundamental law by Grinold (1989) is 

derived under some unrealistic assumptions and always overestimates by a large margin 

the IR a portfolio manager can actually reach. I extend the fundamental law to models 

with multiple factors and study the impact of missing one or more return or risk factors. It 

is shown that a mis-specified model, whether it is mis-specified in the return forecast part 

or risk forecast part, will almost always hurt performance. The exception occurs when a 
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missing risk factor (IC=0) has a zero time series IC correlation with all the other factors. 

For the commonly used quantitative return and risk factors, I found that the impact of a 

missing risk factor is usually small.  

 

Our results also show that the transfer coefficient as originally defined by Clarke et al. 

(2002) is not able to capture the impact of constraints to portfolio IR in the presence of IC 

variation. One will get the wrong conclusion that portfolio constraints do not have much 

impact on portfolio IR in the presence of IC variation when N is large. I redefine the 

concept of transfer coefficient using the cross-sectional correlation between the total 

conditional covariance adjusted weights and alphas.  The modified transfer coefficient 

captures the impact of portfolio constraints on portfolio IR as desired.  

 

One insight from this paper is that portfolio managers should try to play well (high IC) 

and play precisely (low ICσ ). Extra efforts should be made to process the information and 

to build models that can increase IC and reduce IC variation. 
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Appendix A 
 

Given the conditional forecasting error covariance matrix in Equation (39) and based on 

the Woodbury matrix identity,  we have the inverse matrix of tΩ as 

 1

11

111 ' −
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−−− −= tttttt ΣzzΣΣΩ ϕ ,        (A1) 
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Substituting (A1) into Equation (15) we have 
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When 
iεσ , 1−itz are cross-sectionally independent, then as N becomes large we have 
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where 
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The last line in (A5) is based on Jensen's inequality. In the derivation we used the fact 

that 0/
1

1

2

1 =∑
=

−

N

i

it i
z

N
εσ  when ∞→N since 1−itz and 

iεσ are cross-sectionally independent 

by assumption.  

 
Appendix B 
 

Assume residual security returns tr  and security factor exposures 1−tZ  are related through 

a linear factor model as follows 

 tttt εFZr += −1 ,        (B1)  

where tr  is an 1×N vector of residual returns, 1−tZ  is an KN × matrix of factor 

exposures that become known at the end of time t-1, tF  is a 1×K  vector of factor 

returns, and ),(~I| 1 εΣ0ε Ntt −  is an 1×N  vector of idiosyncratic noise with mean 0 

and covariance ),,,( 222

21 N
diag εεεε σσσ L=Σ .  The factor exposures are normalized to have 
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both time series and cross-sectional mean 0 and standard deviation 1,  and are cross-

sectionally orthogonal to each other so that IZZ =−− Ntt /' 11 , Other regularity 

assumptions like those in C1) and C2) also apply. We further assume that factor returns 

follow a multivariate normal distribution 

 ),(~I| F1 ΣFF Ntt − .        (B2)  

 

Based on the above assumptions, we have 

 ,1FZα −= tt          (B3) 

and 

 εΣ+= −− '1F1 ttt ZΣZΩ .        (B4) 

Applying Woodbury matrix identity, we get the inverse of the conditional covariance 

matrix as 
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Substituting Equations (B3) and (B5) into the two components of the IR formula in 

Equation (16) we get 
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and  
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where we assumed kiz  and 
iεσ to be cross-sectionally independent and used the facts that 

for Klk ,,2,1, L= , 
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and 
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So the ex ante expected portfolio IR is 
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For a one factor model, Equation (B10) simplifies to 
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i.e., the expected portfolio IR is just the IR of the factor-mimicking portfolio. When the 

cross-sectional residual return dispersion is a constant, i.e., ∑
=

==
N

i

rt iN
d

1

21
)( σδr , then 

Equation (B11) becomes 
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where φ  is the same as defined in (A5). The formula above is exactly the same as 

Equation (42) which is what should be expected. 

  

By applying the same assumptions for deriving Equation (B12) to Equation  (B10), 

we get the multifactor fundamental law in terms of IC as follows: 
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where δ/FIC = is the cross-section correlation vector between factor exposures and 

residual security returns, and 2

FIC /δΣΣ = is the factor IC covariance matrix. It  should 

be emphasized that the results in Equations (B12) and (B13) are only valid when the 

cross-sectional residual return dispersion is a constant. When this assumption is violated, 

then the IR calculated from Equations (B10) and (B11) will usually be smaller than that 

from (B12) and (B13). 

  

To avoid the problem of cross-sectional heteroskedasticity in cross-sectional regression, 

one can use the risk-adjusted residual security returns as the dependant variable, i.e., 

 tttttt εICZrΛr +== −
−

1

2/1~  

where ),,,( 222

21 Nrrrt diag σσσ L=Λ , and 2

ir
σ  is the residual return variance for security i. By 

using the same algebra one can get 
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where ∑
=

+−=
K

k

kk

1

22

,IC

2 )IC(1 σσ ε . It should be emphasized again that the ICs in Equation 

(B14) are the cross-sectional correlation between risk-adjusted residual security returns 

and factor exposures, while the ICs in Equation (B13) are the correlation between the raw 

residual security returns and factor exposures, hence they will usually be different. 

 

With the fundamental law in multifactor format, we can easily study the impact of 

missing one or more return or risk factors. In the analysis below, I will study the impact 

of missing factors based on factor ICs, the analysis based on factor returns is almost 

identical. I will not purposely distinguish risk factors from alpha factors. Statistically, the 
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only difference should be that the expected IC (or factor return) for risk factor is zero 

while that for alpha factor is different from zero.  I will separate the factors into two 

groups with iIC  and iiΣ  (i=1,2) as their factor IC and IC covariance respectively. I will 

also assume that the inter-group factor IC covariance to be 12Σ . Under these assumptions, 

we can write Equation (B13) as follows 
7
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where 12

1

111222 ' ΣΣΣΣE
−−=  .  

 

So 2IR  will be reduced by a amount of 
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when the second group of 2k  factors are missing. The impacts come from both alpha 

model mis-specification (when 0IC ≠2 ) and risk model mis-specification (when 

0IC =2  but 0)')'(' 1
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Alternatively the IR can be expressed as 
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where '12

1

221211 ΣΣΣΣD
−−= . When 0IC =2 , then the missing group is purely risk 

factors, 
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so the reduction in IR comes only from missed risk allocation. When 0Σ =12 , i.e., the 

alpha group factor ICs and risk group factor ICs are not correlated, then missing risk 

factors will not impact the final portfolio performance.  

 

 
                                                 

Notes 
 
1
 We used the fact that the benchmark residual return is zero in deriving Equation (7), i.e., 

  0
1

, =∑
=

N

i

ititB rw . 

This is true because 
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 We define the realized cross-sectional residual return dispersion at time t as 
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is the average cross-sectional residual return which we will assume to be 

zero in this article. The expected cross-sectional residual return dispersion is then  
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3
 We can decompose itr  as itrit er σ=  where )1,0(~ Neit . So 

 r

N

i

itr

N

i

itt e
N

Er
N

EdE σσδ =













=














== ∑∑

== 1

2

1

2 11
))(( r   

as ∞→N by law of large numbers. 

 
4
 When we assume the cross-sectional residual return dispersion is a constant, i.e., 
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On the other hand,  
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So we have 
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5
 The assumption of normality in the information coefficient is approximate because IC is 

bounded by 1± . 

 
6
 The unconditional covariance of tr is ΣΣrr ++= zttE

22

IC

2 )IC()'( δσ , where zΣ is the 

covariance matrix of 1−tz  with 1 in the diagonal. 

 
7
 The inverse of a partitioned matrix is repeatedly used in the derivation, see Magnus and 

Neudecker (2002, p11) . 
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