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Abstract 

This paper documents a systematic investigation on the predictability of short-term trends of crude oil 

prices on the daily basis. In a stark contrast with longer-term predictions of crude oil prices, short-term 

prediction with time horizons of 1-3 days posits an important problem which is quite different from what 

has been studied in the literature. The problem of such short-term predicability is tackled through two 

aspects. The first is to examine the existence of linear or nonlinear dynamic processes in the crude oil 

prices. This subproblem is addressed with statistical analysis involving Brock-Dechert-Scheinkman test for 

nonlinearity. The second aspect is to test the capability of artificial neural networks (ANN) for modeling 

the implicit nonlinearity for prediction. Four experimental models are designed and tested with historical 

data: (1) using only the lagged returns of filtered crude oil prices as input to predict the returns of the next 

days, this is used as the benchmark; (2) using only the information set of filtered crude oil futures price as 

input, (3) combining the inputs from the benchmark and second models, (4) combing the inputs from the 

benchmark model and the intermarket information. In order to filter out the noise in the original price data, 

moving averages of prices are used for all the experiments. The results provided sufficient evidence to the 

predictability of crude oil prices using ANN with an out-of-sample hit rate of 80%, 70%, 61% for each of 

the next three days trends. 

Key words: Crude oil prediction, short-term trend, crude oil futures, heating oil, neural 

networks, intermarket analysis 

1. Introduction: 

Crude oil is the premier strategic commodity for the modern engine-driven economies all around the globe. 

As the total oil resource on the planet is limited, oil demand continues to surge ahead and production 

continues to decline, it is believed that oil prices will continue to rise to unprecedented levels. 

Unfortunately, crude oil has proven to be one of the most volatile markets in the world. In addition to daily 

price fluctuations, oil prices have risen substantially in last few years. As a reference, in 1999, the price of 

crude oil hovered around $16 a barrel; but in 2004, the crude oil price was averaging $41 per barrel. By 

2008, it had crossed the $100 a barrel mark, and fluctuated between $147.96 and $69 (during June-October 

2008). The unprecedented increase and the wide swings in crude oil prices have significant impacts on the 
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well-being of the economies of both developed and developing countries. Crude oil price fluctuations and 

shocks have played a major source of adverse macroeconomic impacts, bringing abour economic instability 

in both oil exporting and oil consuming countries as well as leading to economic crises. Oil price prediction, 

therefore, is vital to economic agents and policy makers. Consequently there have been many efforts in 

developing models to predict oil prices in spot and exchange traded markets.  

In a stark contrast with many published researches on long-term predictions of crude oil prices, this paper 

investigates the possibility of predicting short-term prices and trends of crude oil using any sensible 

information extracted from the historical and current price time series of the crude oil spot markets, futures 

markets, as well as markets which are considered to lead the spot markets. This third category of markets 

are called ‘lead markets’ to the spot markets. In our terms, the so-called ‘short-term’ refers to 1-5 days into 

the future. Practically, in this study, we limit our scope of study to 1-3 days.  

Theoretically, the predictability of crude oil prices and trends on the short terms is a scientific problem with 

two essential aspects – two sub-problems. The first aspect is on the properties of the market prices 

themselves, i.e. whether the prices are solely random walks or exhibit any linear or nonlinear dynamics. 

The second aspect is whether there are any computational models which can capture such linear or 

nonlinear dynamics if existent. To address the first sub-problem, we use statistical analysis, in particular, 

involving using statistical tests to check whether there are nonlinear dynamics in the price time series. To 

tackle the second sub-problem, we use artificial neural networks (ANN) as computational models for 

prediction. In particular, we concentrate on using multilayer feedforward neural networks (MFNN), also 

called multilayer perceptrons, as general approximator to any nonlinear mapping from information 

extracted from historical and current price time series to the prices of the immediate futures – the next three 

days. The short-term trends of the prices are denoted by the short-term moving averages (MA) of the prices. 

In this study, we shall limit to 3-day moving average (3-MA). In this setup, we aim to predict the returns of 

the filtered spot prices for each of the next three days, which is what mean by prediction of short-term 

trends. As a historical background, this study is a further development of a methodology for financial 

market prediction which has been successfully applied in stock index prediction (Pan 2004; Pan et al 2005; 

Pan 2006). More  general information is provided by (Pan et al 2006; Pan 2008).  

The rest of the paper is organized as follows: Section 2 provides a brief literature review on the related 

studies for crude oil market analysis and prediction. Section 3 defines the problem of short-term prediction 

of crude oil prices precisely and presents our methodology for this investigation. Section 4 describes the 

data sources and their statistical properties as evidence for inherent predictability. Sections 5-8 detail four 

prediction models separately, of which the differences are on the information sources used for inputs, i.e. (1) 

the spot prices only, (2) the futures prices only, (3) the spot and futures prices, (4) the spot and lead market 

prices. Section 9 shows the results on multi-step prediction. Section 10 concludes the paper. 
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2. Crude Oil Market Analysis and Prediction in the Literature 

The importance of crude oil to the economy is reflected by the number of studies in this vast area. There is 

a large and rich literature related to every aspect of crude oil. In particular, there are many published works 

dedicated to develop fundamental or econometrical models for explaining changes in crude oil prices and 

for predicting them correctly and accurately in spot and futures markets.  

A major characteristic of crude oil market is significant price fluctuations. This volatility of oil prices could 

be attributed to three main factors: 1) Increase in demand and supply shortages possibly caused by 

economic growth or behaviours of oil producing countries; 2) Exogenous events such as wars, natural 

disasters, etc; 3) Endogenous factors such as speculations in the markets. Moreover, the fact that a 

significant amount of crude oil comes from the unstable Middle East has contributed to the oil price swings 

and shocks. However, the fundamental causality analysis of crude oil price fluctuations and shocks are 

beyond the scope of this paper. We shall limit our discussions to econometrical and computational 

modeling and prediction of crude oil price changes and trends. 

Early and recent studies in the literature on crude oil market analysis and prediction can be grouped roughly 

into three clusters: 1) futures as predictors to spot prices, 2) econometrical models for explanation and 

prediction, 3) computational intelligence models for prediction. 

2.1 Futures as Predictor to Spot Prices 

Crude oil futures contract was introduced to NYMEX in 1983, however, trading in these particular 

contracts were relatively shallow until 1985, whereas, crude oil futures contracts are considered as an 

important financial instruments in the energy market (Haubrich et al 2004). The relation between futures 

prices and spot price has been a focus of attention for a number of scholars, and the literature is rich with 

many studies covering a range of aspects with respect to this relationship. Lead-lag, efficiency, prediction 

amongst other factors, are the most studied areas in the futures-spot literature.  

It is important to note, however, that some economists believe that futures prices are not a predictor for spot 

prices. For example, Haubrich et al (2004) argued that crude oil futures prices is not a suitable vehicle to 

predict spot price, implying that futures prices do not hold any new information, not even in the short term. 

However, the idea of using commodity futures prices to predict spot prices is based on the assumption that 

the futures prices react faster to the new information entering the market than spot prices. Trading in the 

futures market has many advantages, such as low transaction cost, high liquidity, and low cash in up-front, 

amongst others. This makes it much more attractive for investors to react for new information, than taking 

position in the spot market. This argument applies for most of the commodities listed in the financial 

markets; however, it is more relevant to the energy markets. The reason for this is, when new information 

related to the oil market is introduced, investors have two options, either to take a position (buy or sell) in 

spot or in futures markets. In most of the cases, taking a position in the spot market is not the best way for 
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reacting to the new information. Because it requires high transaction costs, storage costs, and delivery costs 

etc. Especially, if investors are not interested in the commodity itself rather they are hedging for another 

commodity, or simply just investing in the market in hope of arbitrage opportunity, i.e. speculation. In this 

context, the futures market is much more attractive a place for an investor to react to new information. 

An early study by Bopp and Sitzer (1987) tested whether futures prices are good predictors for cash prices 

in the heating oil market, in attempt to answer if futures prices have the additional information to improve 

the predictability of econometrical models. The results showed that only futures contracts of 1 and 2 

months to maturity are statistically significant for cash price prediction, in other words containing new 

information.   

Silvapulle and Moosa (1999) examined the lead-lag relationship between crude oil futures and spot prices. 

Their goal was to find whether the change in crude oil futures prices causes the change in crude oil spot 

prices, i.e. causality, using linear and nonlinear tests. The data set was composed of daily spot prices, as 

well as futures contracts of 1, 3, 6 months to maturity, from 1985 to 1996. Their results showed that both 

futures and spot prices react to new information at the same time. Moreover, the authors also concluded 

that, there is some evidence in support of feedback between futures and spot prices. However, this feedback 

runs in one direction only; from futures to spot, and not vice versa. Finally, their results showed that the 

lead-lag patterns are not constant and changeable over time.  

Coppola (2007) studied the relationship between crude oil spot price and futures price using the cost of 

carry model. The aim was to predict the out-of-sample and price movements in the futures. The author used 

Vector Error Correction Model (VECM) for the prediction, comparing the results to random walk model. 

Evidence of co-integration was recorded between spot and futures weekly prices. The author also found 

that futures contracts are able to reflect the information, however, these results stands only for in-sample 

prediction. For out-of-sample prediction the author claimed that VECM outperform random walk model in 

both accuracy of prediction and timing the market. 

The activities of investors and hedgers and their effects on the market were also studied widely. Milunovich 

and Ripple (2006) presented a model to estimate the magnitude of hedging activity on crude oil futures 

volatility, using a combination of dynamic conditional coloration and augmented EGARCH. They found 

that hedging activity has a significant influence on the conditional volatility of crude oil futures returns. 

Although the body of oil literature is substantial, there is still a great deal of inconsistency in the findings. 

This is particularly the case in the relation between spot and futures prices. While most of studies agree that 

futures play a important role in financial markets, however, there is no such agreement on futures as 

predictor of spot. Furthermore, the vast majority of the literature is based on econometrical models. A 

major shortfall of econometrical model is making strong assumption about the problem (Refenes 1995). 

This means if the assumptions are not correct; the model could generate misleading results. In these 

contexts artificial neural networks (ANN) are viewed as nonparametric, nonlinear, assumption-free model 
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(Azoff 1994). This means it does not make any assumption about the problem; rather it attempts to find the 

appropriate function from the data itself (Refenes 1995).  Furthermore, ANN is considered as general 

approximator to any nonlinear mapping (Hornik et al 1989), and has been around for about two decades 

and successfully used in many applications, including crude oil price prediction. 

Although, some study of crude oil prediction has used ANN models, nonetheless, to our best knowledge, 

not much study of futures prices as spot predictor is based on ANN modeling. Finally, reader should bear in 

mind that we are not testing for causality, whether futures prices cause spot prices or other variables affect 

the relationship. We are simply testing if futures aggregate useful information on spot price future 

directions. This aggregation of information could be a result of the activity of market participants, who 

often take a position in futures markets not only based on expectation of price raise or fall, but also to 

hedge from the conscience of unexpected events (Bopp and Sitzer 1987). 

2.2  Econometrical Models for Crude Oil Markets 

For crude oil markets, several econometrical models were developed since 1970’s. The early models aimed 

to explain the crude oil market dynamics and the interactions amongst oil fundamental variables such as 

supply-demand inventory. However, these models failed to provide accurate prediction for crude oil prices 

(Pindyck 1999). Labonte (2004) surveyed analytical models for crude oil shock, and concluded that one of 

the most common cavities of econometrical models is omitted variables. This occurs when some of the 

variables affecting the price time series are not included in the models. This could be due to two reasons: 

either the economists did not know that these variable exist or the number of variables is too large to be 

fitted in one model. In addition to this, some models suffer structural misspecification which means a 

statistical or mathematical relationship does not necessarily mean that a causal relationship really exists 

(Labonte 2004).  Time series analysis models such as linear and nonlinear regression have been around for 

some time and been used for a large number of studies of the econometrical modeling problems. 

Nevertheless, two milestones can be recorded for time series models: the Box-Jenkin’s Auto Regression 

Intergraded Moving Average (ARIMA) in the 1970’s, and the ARCH models for volatility modeling by 

Robert Angle, and the GARCH by Time Borslave in the 1980’s. ARIMA has been applied in a large 

number of studies for crude oil price prediction and generated much better results than structural 

econometrical models and regression (Moshiri & Foroutan, 2005). However, ARIMA is a linear model, and 

therefore, it would be disadvantageous if the time series is nonlinear.  

2.3 Computational Intelligence Models for Crude Oil Price Prediction 

With the exponential lifting of computing power, computational intelligence models such as  Artificial 

Neural Networks (ANN), Support Vector Machine (SVM), Genetic Algorithms (GA), and Case–based 

Reasoning (CR) have been exploited for  financial prediction. These techniques were also applied to the 

crude oil predicting problem, however, not as intensive as time series models. As a clarification, ANN in 

general includes Multilayer Feedforward Neural Networks (MFNN), Recurrent Neural Networks (RNN), 
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SVM and several other architectures. However, in this paper, whenever ANN is mentioned, it refers to 

MFNN, if not specified otherwise. 

An early study by Kaboudan (2001) compared the ability of genetic programming and ANN to trivial 

predictors for predicting crude oil prices on a monthly basis. In his study Kaboudan (2001) tested different 

set of variables as input to the model, including lagged values of crude oil price, the world crude oil 

production, OECD countries consumptions, and US oil inventory amongst others.  An important conclusion 

was reached that only the lagged values of crude oil price were useful in providing acceptable prediction. 

More specifically, 9 lags of crude oil monthly price provide the best inputs for one-month prediction. The 

author found that genetic programming was superior to ANN. However, the size of data used for this study 

was very small, only 60 data points were used to train both models which could significantly affect the 

ANN performance.  

Moshiri and Foroutan (2005) began their study by testing for chaos and nonlinearity in crude oil futures 

prices. Performing several statistical and econometrical tests led them to conclude that futures prices time 

series is stochastic and non-linear. Moreover, the authors compared linear and non-linear models for 

predicting crude oil futures prices, including ARIMA and GARCH, to ANN, and found that ANN is 

superior and produces statistically significant prediction. However, in our opinion the results obtained using 

ANN could be limited by the use of the entire data set for training (1983 to 2000). Generally, when dealing 

with ANN the more data points are used, the better the network will generalize. Nonetheless this is not 

necessarily the case when dealing with financial or economical time series. As economic conditions change 

over time, non-current (old information) could affect prediction results negatively. Because training the 

network with irrelevant information to the current conditions could result in a poor model generalization. 

Xie et al (2006) proposed a SVM model for monthly crude oil price prediction, reporting that SVM  

outperformed ANN (MLFF) and ARIMA for out-of-sample test. However, their results were not consistent, 

as ANN outperformed SVM for two of the four sub-periods tested. Nonetheless, both ANN and SVM 

outperformed ARIMA in all the four periods of their test. Liu et al (2007) presented a hybrid model based 

on neuro-fuzzy technique to predict Brent crude oil prices. Three prediction models were used, including a 

radial basis function network, a Markov chain-based semi-parametric model and a wavelet analysis-based 

model. The output of the three models was used as input to a fuzzy neural network while the target was the 

actual Brent crude oil price. The authors concluded that the nonlinear combination outperformed any single 

model in terms of  root mean square errors (RMSE) as performance measure.  In a related study, Yu et al 

(2007) proposed a decomposition method for extracting multi-scale features from price time series as input 

to ANN models.  They applied Empirical Mode Decomposition (EMD), which was originally developed by 

Huang et al (1998), on daily crude oil spot prices to decompose the original price time series into a number 

of intrinsic mode components. Only six of these signals were selected as input to an ANN. The authors 

concluded that such decomposition-based ANN outperformed ANN using the original prices solely as input.   
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A recent research has emerged concentrating on the predicting financial markets using text embedded 

either in the web or directly through news provider like Reuters.  This method is based on machine learning 

techniques, more precisely information retrieval, text classification, and categorization.   

Wang et al (2005) proposed a methodology, called TEI@I,  to predict crude oil prices. This methodology 

integrates three different techniques - text mining, econometrical modeling with ARIMA and intelligent 

computation (ANN). Of the crude oil price time series, the linear components are modeled with ARIMA, 

the nonlinear components are modeled with ANN, and the irregular event impacts are modeled using web-

based text mining and rule-based expert systems. Their simulations concluded that the integrated 

methodology is significantly superior than individual models for monthly prediction of crude oil prices. Yu 

et al (2005) refined the TEI@I methodology with rough set technique. Two comments can be made 

regarding this methodology. First, the oil price data used for ANN training is monthly data, which limits 

the training and testing data significantly, as only 49 data point was reserved for out-of-sample test. Second, 

in  the text mining model, the rule base system depends on the knowledge base which is developed by 

human experts; however, unlike other well-defined problem domains, expert opinions on the crude oil 

markets can vary wildly.  

However, a survey by Mittermayer and Knolmayer (2006) compared several text mining prototypes for 

financial prediction, concluding that most of these prototypes have failed to produce significant results 

especially in terms of profitability. This could imply that even varying predictability can be achieved, the 

crude oil market is still highly efficient because professional traders have also developed their own 

capability of prediction, either by judgement or by instinct. In general, one of the disadvantage of text 

mining for financial prediction is that it assumes that information reaches web sites before it reaches 

provincial investors or at least at the same time. This assumption is not necessarily true. First and foremost 

the Internet is not the only medium for news and it is not the fastest one as well. Second, most professional 

traders (market makers) keep a track on any event via real-time news providers such as Routers. Although 

some of these prototypes have relied on Reuters news provider to gather the data, nonetheless, in this case, 

they are getting the news at the same time as professional traders but they are lagging in reaction until the 

system finish analysing the data and a conclusion is reached for trading decisions. Finally, the major 

disadvantage of these methods is the classification techniques which depend on bag of the words in other 

words, the content of the news is dealt with in term of frequency of occurring in the page, while human 

expert will deal with the meaning and possible impact (action-reaction). Furthermore, in most cases the 

classifiers depend on hand-crafted dictionary made by so called domain expert. This means the room of 

misclassification could be there. 

In addition, most of the studies above have used monthly crude oil prices. This reduces the level of noise in 

the data but at the same time restricts the prediction horizon to monthly intervals, and limits the training 

and testing data significantly. Moreover, most of these studies are univariate models based on the historical 

prices of the crude oil while the interrelation amongst crude oil prices and other intermarket prices were 
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ignored. In addition, when comparing a model to ANN no clear justification was provided if the ANN 

model used for comparison is optimal or not.  

3. A Methodology and Design of Experiments for Predicting Short-Term Trends of 

Crude Oil Prices 

From here on we shall present a specific methodology for predicting short-term trends of crude oil prices. It 

includes a statistical analysis of the data set and four experiments designed to find the optimal input-output 

mapping for the prediction. We start with a precise definition of this particular prediction problem. 

Let be the crude oil price at time , in general we assume the availability of a historical price data set 

containing the price time series from a starting point in time 

)(tV t

10 +−= Ntt to the current time , 0tt >

},,2,1),({),,( tNtNtttVtNVD L+−+−==      (1) 

Note that in its original definition, the crude oil price prediction can be simply defined as predicting one or 

more future price values using all the sensible information extracted from this data set, i.e. 

L,3,2,1),(),,( =+⇒⇒ λλtVANNtNVD      (2) 

Or more visually, if we use the N lagged prices to predict 3=λ future prices, we have 

])3()1()1([)]()1()1(( ++ +⇒⇒−+− tVtVtVANNtVNtV LL tV   (3) 

Virtually almost all the published studies on financial time series prediction belong to this definition of 

prediction. However, considering the existence of innumerous unexpected factors during any trading day in 

the market, the prices must contain noise, as a matter of fact. Therefore, precise prediction of the raw prices 

is not a well-defined scientific problem. To be more practical, we choose to predict the short-term trends of 

the market prices. In our terms, the short-term trends of the price are denoted by short-term Moving 

Averages (MA), defined as 

q

kV
tqVMA

t

qtk
∑

+−== 1
)(

),,(         (4) 

where q denotes the length of the time window for the moving average. 

Since the prediction models we are building actually belong to statistical pattern recognition where the 

patterns refer to the invariances in the price process, it makes not much sense to use the absolute values of 

the prices. This is also because the market ecosystems must have changed during the many years in the data 
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set period. Therefore, it is a common choice to use the relative returns of the prices. But in our case, we 

choose to use the relative returns of the short-term moving averages, 

),,(
),,(),,(),,,(

τ
ττ

−
−−

=
tqVMA

tqVMAtqVMAtqVX       (5) 

where parameter τ expresses the scale of time, reflecting the time resolution of the input or the time 

horizon of the output. Note when ),,,( tnVX τ is very small, it is close to the logarithm of the two MA’s 

ratio, i.e. 

),,(
),,(log),,,(
τ

τ
−

≈
tqVMA

tqVMAtqVX        (6) 

When the variable V is clearly given, and parameters τ,n are specified, we may simply use for )(tX

),,,( tqVX τ . In financial econometrics literature, such ),,,( tqVX τ  or is called ‘relative return’ of 

the price . In other financial informatics literature, it is also called ‘momentum’. Neuneier & 

Zimmermann (1998) and Gorthmann (2005) also suggested the use of the ‘force’ for input-output mapping, 

)(tX

)(tV
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Their use of the force is on the original prices, but for our case, we define the force on the moving averages, 

 
),,(

)2,,(),,(2),,(),,,(
τ

τττ
−
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The financial meaning of the ‘force’ is the direction and the strength of the short-term trend change – either 

trend acceleration or trend reversal.  

For defining the input-output mapping in this study, there are three types of data sources:  

（1） Spot prices of crude oil, denoted by ‘spot’ in the following formulas; 

（2） Futures prices of crude oil, with different contracts with different term structures – number of 

months to maturity, denoted by ‘futures’. 

（3）  Prices of lead markets, denoted by ‘lead’. We will specify these intermarkets later. 

With these definitions and notation given above, we now can define our problem of predicting the short-

term trends of crude oil price precisely as follows 
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where L,3,2,1=λ , and parameters τ,,, qMN with different subscripts imply that we may use different 

time resolution, time span, or time horizons for different sources of information. 

Using ANN as the type of nonlinear models, finding the optimal input-output mapping is an exploration 

process. We actually have designed four experiments each investigating a subtype of the general model: 

Model I: from spot prices to spot prices 
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Model II: from futures prices to spot prices 
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Model III: from spot and futures prices to spot prices 
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Model IV: from spot and lead market prices to spot prices 
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Note that although these four models cannot cover all the subtypes of input-output mapping, nonethless 

through the sequence of our data-based experiments, these models represent the essential different 

combinations. This will become clear after reading through following presentations. 
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Although theoretically and practically, both the momentums X and forces Y can be included in the 

general model of (9) and in each of the special models of (10)-(13), and although we have done a number 

of numerical experiments on these more general information sets, the focus of this paper is solely targeted 

at the prediction of the relative returns – momentums X . Therefore, in all the following descriptions, we 

shall only report the results on using the relative returns of the filtered prices in the input and output of all 

the specific models to be described throughout all the following sections. 

For the actual structure of ANN as the prediction model, we use multilayer feedforward neural network 

(MFNN) , theoretically one hidden layer with sufficient hidden neurons of nonlinear transfer function is 

powerful enough to approximate any nonlinear continuous mapping from  an input space 

 to an output space ( Hornik et al 1989). Let 

denote the h hidden neurons. We have the explicit representation of an ANN of 

the MFNN type as  

n
n Rxxx ∈= ),,( 21 Lx m

m Rzzz ∈= ),,( 21 Lz

h
h Ryyy ∈= ),,( 21 Ly

hjbxwxxxfy
n

i
jiijnj ,,2,1          ,)(),,,(

1
21 LL =+== ∑

=

φ     (14) 

mkdyuyyygz
n

i
kjjkhk ,,2,1       ,)(),,,(

1
21 LL =+== ∑

=

ϕ     (15) 

Generally, the transfer function φ  for the hidden layer should be a nonlinear function. Two most 

commonly used transfer functions are  

Sigmoid function:  

xe
x −+
=

1
1)(φ           (16) 

Hyperbolic tangent function: 

 x

x

e
ex −

−

+
−

=
1
1)(ϕ           (17) 

The sigmoid of (16) and the hyperbolic tangent of (17) are commonly used for the neurons of the hidden 

layer(s) as it produces a value between [0, 1], while linear function is generally used for the neurons of the 

output layers as it produces a real value such as between [-1, 1].. 

The three performance measures are used  for these experiments: for an observed output )(tx , if a 

prediction of it is )(ty , and suppose there are n time points for prediction test: 
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(1) Hit Rate is the success ratio for market direction prediction 

]0)()([1
1

>= ∑
=

k

n

k
k tytx

n
HR          (18) 

where inside [] is logical expression which returns 1 for true, 0 otherwise. 

(2) Root Mean Square Errors (RMES): 

n

tytx
RMSE

n

k
kk∑

=

−
= 1

2))()((
        (19) 

(3) R-square )( 2R  is used as goodness of fit measure, with R defined by 
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In addition, Mean Square Error (MSE), Mean Absolute Error (MAE), and Sum of Square Errors (SSE) are 

also calculated.   

4.  Historical Data and Statistical Properties as Evidence for Inherent Predictability 

Five time series are used in this study, West Texas Intermediate (WTI) light sweet crude oil spot prices and 

futures contracts traded at NYMEX. Futures data include four contracts respectively of 1, 2, 3, 4 months to 

maturity. The data frequency is daily closing price; from Jan 1996 to Aug 2007, so the data set includes 

2912 data points for each time series.  All the data were obtained from the  US Department of Energy’s 

Energy Information Administration. The data set was divided into the training and test sets, 90% of the data 

for training and 10% for out-of-sample test. The relative return time series for each original price time 

series (spot or futures) is normalized to fit between -1 and 1 as preprocessing before subsequent steps in all 

the experiments. 

Figure 1 shows a plot of crude oil spot raw prices (WTI) in the upper section and spot price relative returns 

in the lower section. The plot of raw price shows that the behaviour of the crude oil time series has started 

to change from 2002. As the level of price has increased significantly from 2002 to 2007 compared to 1996 

to 2001 level.  Moreover, the plot of the returns reveals that crude oil has high volatility on daily basis with 

some outliers. Furthermore, it also shows evidence of volatility clustering i.e. large changes are followed by 

large changes and small changes are more often followed by small changes.   
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In order to detect whether there may be any stochastic dynamics in the spot prices, we investigated the 

statistical properties of the data using two tests: 1) Ljung-Box Q-test for autocorrelation, 2) Brock-Dechert-

Scheinkman (BDS) test for nonlinearity. 

Ljung-Box Q-test was done for autocorrelation of the input data 

∑
= −

+=
n

i

k

im
mmLQ

1

2ˆ
)2( ρ

          (21) 

where is the sample size, n is the number of lags tested for autocorrelation, m kρ̂  is the sample 

autocorrelation at lag . Under this model the null hypothes is there is no significant correlation. k

Table 1 shows the results of the Ljung-Box Q-test for the relative returns of the spot prices. Clearly, 

significant correlations are detected for all the lags tested (5, 10, 15, and 20) at 5% significant level. Thus, 

there is strong evidence that the present and past information could be useful to predict the futures direction.  

Table 1: Ljung-Box Q-test for the relative returns of spot prices 

Lag P-Value LQ Critical 

value 

5 0.0241 12.9276 11.0705

10 0.0090 23.5131 18.3070

15 0.0051 32.7394 24.9958

20 0.0042 40.6091 31.4104

 

The Brock, Dechert and Scheinkman (BDS) test for nonlinearity is by far the most used test for 

nonlinearity in the data. We apply the test on crude oil spot price relative returns. Linear regression was 

applied on the original returns to remove the linearity from the data and the BDS test was applied on the 

residuals.  The test was used for the embedded dimension of 20,,3,2 L=N , and three different values of 

 were selected 1, and 1.5 of the standard deviation of the data. For e 1=e  and apart from  the test 

rejected the null hypothesis that the data are independently identically distributed,  which indicates the 

existence of nonlinear structure in the data.  The same conclusion can be obtained for  and for all 

values of  tested. Moreover, the results show that the evidence of nonlinearity in the data increased with 

higher dimensions as the W

2=N

5.1=e

N

(N)e increased with larger values of N and e. In light of these results, nonlinear 

models such as ANN could be used for modeling with this data.  
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Table 2 BDS test for crude oil spot data 

N e  P-value W(N)e e P-value W(N)e

2 1.5 0 4.7963 1 0 3.2218

3 1.5 0 6.2515 1 0 4.1548

4 1.5 0 6.9357 1 0 4.8923

5 1.5 0 7.2325 1 0 5.1992

6 1.5 0 7.7066 1 0 5.8902

7 1.5 0 8.2214 1 0 6.6529

8 1.5 0 8.5258 1 0 7.2729

9 1.5 0 8.8533 1 0 7.9657

10 1.5 0 9.0754 1 0 8.7041

11 1.5 0 9.2945 1 0 9.556

12 1.5 0 9.4367 1 0 10.296

13 1.5 0 9.6892 1 0 11.357

14 1.5 0 9.9989 1 0 12.492

15 1.5 0 10.382 1 0 13.799

16 1.5 0 10.802 1 0 15.478

17 1.5 0 11.180 1 0 17.290

18 1.5 0 11.632 1 0 19.331

19 1.5 0 12.160 1 0 21.659

20 1.5 0 12.757 1 0 24.526
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Figure 1   A plot of crude oil prices(upper) and their relative returns (lower) 
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5. Model I – from Spot Prices to Spot Prices 

As defined by equation (10), Model I is limited to only using information extracted from spot prices to 

predict the momentum and/or force at the next days. This model is used as the benchmark for other 

variations.  

A number of detailed experiments were carried out for virtually exhaustive search for the optimal input-

output mapping and the optimal architecture of the ANN. As our focus is on predicting the relative returns 

of the filtered spot prices,  a specific form of Model I for one-step prediction can be expressed as 

)1,1,3,(),),1,3,(( +⇒⇒ tspotXANNtmspotXD       (22) 

where refers to the embedding dimension, i.e. the number of lagged values used in the input. 

Furthermore, the architecture of ANN is a MFNN with 1 hidden layer consisting of 8 hidden neurons in 

addition to the input and output layers. The training algorithm is Levenberg-Marquardt. Table 2 shows the 

performance with different embedding dimensions (different lags). 

m

Table 2: Performance of Model I with different lags 

Hit Rate (%) RMSE Lag 
In  

sample 

Out of 

sample 

In  

sample 

Out of 

sample 

1 72.77 73.75 0.0108 0.0079 

2 72.88 74.01 0.0107 0.0080 

3 73.74 74.54 0.0104 0.0077 

4 75.42 76.37 0.0099 0.0073 

5 76.02 76.90 0.0096 0.0074 

6 76.16 77.16 0.0095 0.0072 

7 77.25 77.11 0.0085 0.0077 

8 78.01 75.59 0.0091 0.0070 

9 78.23 76.77 0.0088 0.0070 

10 77.78 78.08 0.0089 0.0069 

11 78.03 76.37 0.0086 0.0071 

12 77.97 77.95 0.0087 0.0070 

13 79.45 79.79 0.0083 0.0068 

14 79.39 77.42 0.0083 0.0072 

15 79.75 79.11 0.0078 0.0073 

16 79.77 79 0.0081 0.0071 

17 79.45 78.34 0.0080 0.0069 

18 80.40 78.87 0.0076 0.0133 

19 80.95 77.16 0.0076 0.0075 

20 81.38 77.55 0.0074 0.0074 

The result in Table 2 is also illustrated in Fig. 2  and 3. 

It is important to choose the best performance with the least number of lags, and of hidden neurons to keep 

the model stable. 13 lags seem to produce reasonably high hit rate and the results for in- and out-of-sample 

are very close. Furthermore, the R2 is 0.67, meaning the model was able to explain 67% of the variation of 
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the data. Table 3 summarizes the performance of the benchmark with the optimal input-output mapping and 

ANN architecture of 6 hidden neurons.   Figure 4 is a plot of out-of-sample forecast produced by Model I 

compared to the actual values (the vertical axis is the momentum as defined by equation (7)). 
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Figure 2   Hit rate for Model I at different number of lags used as input 
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Figure 3  RMSE for Model I at different number of lags used as input 

Table 3: Summary of the benchmark performance (Model I) 
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Metric Hit Rate % RMSE R2 MSE MAE SSE 
In-sample 79.45 0.0083 0.6701 0.0001 0.0062 0.1486 

Out-of-sample 79.79 0.0068 0.5762 0.0000 0.0053 0.0119 

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

26
/0

7/
20

06

9/
08

/2
00

6

23
/0

8/
20

06

6/
09

/2
00

6

20
/0

9/
20

06

4/
10

/2
00

6

18
/1

0/
20

06

1/
11

/2
00

6

15
/1

1/
20

06

29
/1

1/
20

06

13
/1

2/
20

06

27
/1

2/
20

06

10
/0

1/
20

07

24
/0

1/
20

07

7/
02

/2
00

7

21
/0

2/
20

07

7/
03

/2
00

7

21
/0

3/
20

07

4/
04

/2
00

7

18
/0

4/
20

07

2/
05

/2
00

7

16
/0

5/
20

07

30
/0

5/
20

07

13
/0

6/
20

07

27
/0

6/
20

07

11
/0

7/
20

07

25
/0

7/
20

07

Time

re
tu

rn

Forecat Actual
 

Figure 4  A plot of the Model I forecast vs. the actual values for out-of-sample 

In addition to this the  (the information coefficient) ratio was calculated IC
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where x , are the actual and predicted values, respectively. This ratio provides an indication of the 

prediction compared to the trivial predictor based on the random walk (Refenes 1995).  Where 

indicate poor prediction, and 

y

1≥IC 1<IC  means the prediction is better than the random walk. For the 

benchmark Model I, the IC is 0.58 for in-sample and 0.69 for out-of-sample, which means the model is 

significantly outperforming the trivial predictor. 

6.  Model II – from Futures Prices to Spot Prices 

As defined in equation (11), Model II is limited to only using information extracted from one 

type of futures contracts for predicting the next day force of the spot prices. We use the same 

target variable for Model II in order to compare with the benchmark model. The four futures 
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contracts are called ‘futures k’, for k=1, 2, 3, 4, with 1, 2, 3, 4 months to maturity respectively. 

A specific form of Model II for one-step prediction is defined by 

)1,1,3,(),),1,3,(( +⇒⇒ tspotXANNtmfuturesXD      (24) 

The performance of the model ANN with each of the four futures contracts is shown in Tables 

4-7. 

Table 4: Performance of Model II with futures 1 at different lags 

Hit Rate (%) RMSE Lag 

In 

sample 

Out of 

 sample 

In 

sample 

Out of  

sample 

1 71.72 73.55 0.0112 0.0079 

2 71.92 73.80 0.0109 0.0081 

3 71.42 71.96 0.0108 0.0079 

4 73.65 75.15 0.0104 0.0075 

5 74.37 74.91 0.0094 0.0085 

6 74 76.51 0.0102 0.0074 

7 75.23 77.61 0.0099 0.0073 

8 74.99 75.26 0.0090 0.0081 

9 75.40 75.52 0.0096 0.0085 

10 75.64 77.49 0.0095 0.0072 

11 76 76.51 0.0095 0.0073 

12 75.82 77.24 0.0095 0.0070 

13 76.35 76.01 0.0093 0.0073 

14 76.91 75.89 0.0092 0.0074 

15 76.78 75.52 0.0092 0.0074 

16 76.84 78.11 0.0091 0.0072 

17 77.94 75.52 0.0088 0.0076 

18 78.09 76.63 0.0087 0.0079 

19 77.66 77.24 0.0087 0.0078 

20 78.87 76.14 0.0086 0.0078 

Table 5: Performance of Model II with futures2 at different lags 

Hit Rate (%) RMSE Lag 

In 

sample 

Out of  

sample 

In 

sample 

Out of  

sample 

1 70.98 72.45 0.0114 0.0082 

2 71.51 73.31 0.0111 0.0084 

3 71.53 74.05 0.0110 0.0081 

4 73.17 73.43 0.0106 0.0077 

5 73.24 73.58 0.0096 0.0088 

6 73.79 73.80 0.0104 0.0077 

7 75.10 75.03 0.0102 0.0075 
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8 75.43 72.69 0.0101 0.0077 

9 74.73 74.29 0.0099 0.0076 

10 75.27 75.28 0.0097 0.0083 

11 75.87 76.51 0.0098 0.0075 

12 76.72 73.80 0.0094 0.0079 

13 76.51 75.15 0.0094 0.0096 

14 76.96 75.40 0.0094 0.0077 

15 77.22 74.05 0.0094 0.0079 

16 77.54 73.68 0.0091 0.0103 

17 77.96 74.42 0.0090 0.0077 

18 77.08 74.17 0.0089 0.0080 

19 77.68 75.77 0.0088 0.0081 

20 77.67 72.82 0.0088 0.0085 

Table 6: Performance of Model II with futures 3 at different lags 

Hit Rate (%) RMSE Lag 

In 

sample 

Out of 

 sample 

In 

sample 

Out of 

 sample 

1 70.96 71.46 0.0115 0.0083 

2 70.80 72.32 0.0112 0.0086 

3 70.93 74.29 0.0111 0.0083 

4 72.87 74.54 0.0107 0.0080 

5 73.20 74.54 0.0106 0.0080 

6 73.13 74.54 0.0105 0.0079 

7 74.44 74.29 0.0103 0.0077 

8 75.22 74.17 0.0100 0.0078 

9 74.84 72.94 0.0101 0.0079 

10 75.12 75.52 0.0098 0.1078 

11 75.71 75.28 0.0097 0.0077 

12 76.21 76.75 0.0097 0.0181 

13 76.44 76.63 0.0094 0.0078 

14 76.64 75.65 0.0096 0.0083 

15 76.74 75.15 0.0094 0.0521 

16 76.74 74.78 0.0091 0.0086 

17 75.52 73.75 0.0109 0.0085 

18 77.64 74.29 0.0091 0.0082 

19 77.35 74.42 0.0089 0.0085 

20 77.28 73.43 0.0092 0.0084 

Table 7: Performance of Model II with futures 4  at different lags 

Hit Rate (%) RMSE Lag 

In 

sample 

Out of 

 sample 

In 

sample 

Out of  

sample 

1 70.11 72.32 0.0116 0.0084 

2 70.20 71.71 0.0113 0.0087 

3 70.57 72.94 0.0112 0.0083 
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4 72.42 74.05 0.0108 0.0081 

5 73.05 74.29 0.0107 0.0082 

6 72.94 74.66 0.0106 0.0079 

7 74.42 75.65 0.0104 0.0079 

8 74.16 72.94 0.0103 0.0078 

9 74.21 73.68 0.0102 0.0137 

10 74.47 74.91 0.0100 0.0081 

11 75.72 76.26 0.0099 0.0432 

12 74.88 74.66 0.0100 0.0080 

13 75.42 74.29 0.0097 0.0154 

14 75.49 75.65 0.0098 0.0079 

15 75.61 74.17 0.0097 0.0126 

16 76.07 76.14 0.0097 0.0085 

17 76.43 72.69 0.0095 0.0082 

18 76.59 73.80 0.0093 0.0086 

19 76.90 74.91 0.0090 0.0398 

20 77.02 72.82 0.0092 0.0083 

Tables 4-7 show that none of the futures contracts alone as input is able to outperform the 

benchmark.  For contract 1, even with 20 lags, the prediction is less accurate than what we 

obtained from spot prices solely. Nonetheless, it is fair to say that the performance of futures 

as input is not poor either. These results remind us that the crude oil spot markets and futures 

markets are virtually equally efficient on the daily basis. However, this does not rule out the 

possibility that futures may lead the spot prices on the intraday basis.   

These results are also plotted in Fig. 5. 
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Figure 5  Out-of-sample performance of Model II at differeng number of lags 
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It is interesting to note that at 11 lags all the futures and spot information sets generated the same hit rate, 

which could indicate something in the crude oil market dynamics, worth for further study. 

7.  Model III – from Spot and Futures Prices to Spot Prices 

As defined by equation (12), Model III is an augmentation of the benchmark model by adding any of the 

futures contracts to the information set of the spot prices. A specific form of Model III for one-step 

prediction is given by 

( ) )1,1,3,(),1),1,3,((),,),1,3,(( +⇒⇒ tspotXANNtfuturesXDtmspotXD    (25) 

The performance of Model III with each of the four futures contracts is shown in Tables 8-11. The result 

with all the four futures contracts added to the benchmarket input is given in Table 12. 

Table 8:  In-sample Performance of Model III with futures 1-4 at different lags 

 Futures 1 Futures 2 Futures 3 Futures 4 All 

Hit Rate 79.18 79.25 78.84 79.16 79.0398 

RMSE 0.0084 0.0084 0.0084 0.0084 0.0083 

R2 0.652 0.6485 0.6461 0.6496 0.651 

IC 0.5883 0.5896 0.5897 0.5876 0.8068 

MSE 0.0001 0.0001 0.0001 0.0001 0.587 

MAE 0.0063 0.0064 0.0064 0.0063 0.0001 

SSE 0.1608 0.1624 0.1635 0.1619 0.0064 

Table 9:  Out-of-sample Performance of Model III with futures 1-4 at different lags 

 Futures 1 Futures 2 Futures 3 Futures 4 All 

Hit Rate 80.44 80 79.55 79.77 78.155 

RMSE 0.0059 0.006 0.0063 0.0063 0.007 

R2 0.6806 0.6702 0.6383 0.6346 0.5459 

IC 0.6358 0.6285 0.653 0.6539 0.7384 

MSE 0 0 0 0 0.7019 

MAE 0.0046 0.0047 0.0049 0.0049 0 

SSE 0.0096 0.0098 0.0107 0.0108 0.0055 

As can bee seen from Tables 8-9, adding futures to the benchmark do not outperform the benchmark in 

term of hit rate in-sample, while for out-of-sample futures 1 and futures 2 slightly outperform the 

benchmark. Further, there is no significant improvement for RMSE for in-sample, however, it does 

improve for out-of-sample for each of the futures compared to the benchmark, and futures 1 preforms the 

best. The R2 is noticeable better for out-of-sample futures 1 compared to the benchmark indicating a better 

fit, while for in-sample it is less than the benchmark. The information coefficient ratio IC  does not change 
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for in-sample for all of the futures contracts, however, it is improved for out-of-sample for all futures 

contracts especially futures 1 and 2.  Overall the performance is improved for out-of-sample and not much 

for in-sample.  Finally, adding all the futures contracts 1-4 together to the benchmark has disadvantaged the 

model. It is safe to conclude that futures contracts of 1 and 2 months to maturity have slightly improved the 

out-of-sample prediction, however, this improvement is not significant enough to make further conclusions.  

8. Model IV – from Spot Prices and Lead Markets to Spot Prices 

As defined by equation (13), Model IV tests whether adding information from a lead market to the crude oil 

price information as input would improve the performance of prediction. Here we only use the latest 

information from the lead market. Therefore, a specific form of Model IV is given as 

( ) )1,1,3,(),1),1,3,((),,),1,3,(( +⇒⇒ tspotXANNtleadXDtmspotXD    (26) 

We have tested four markets which may be leading the crude oil prices, including S&P 500, Dollar Index, 

Gold, and Heating Oil. The results of these experiements are shown in Tables 10-11. 

Table 10:  In-sample performance of Model IV with different lead markets 

 S&P 

500 

Dollar 

Index 

Gold Heating 

Oil 

All 

Hit Rate 79.18 79.20 79.14 79.37 78.96 

RMSE 0.0083 0.0083 0.0082 0.0083 0.0084 

R2 0.6468 0.6456 0.6494 0.6455 0.6337 

IC 0.7131 0.7142 0.7105 0.7144 0.7262 

MSE 0.0001 0.0001 0.0001 0.0001 0.0001 

MAE 0.0063 0.0063 0.0062 0.0063 0.0064 

SSE 0.1576 0.1581 0.1565 0.1582 0.1635 

Table 11:  Out-of-sample performance of Model IV with different lead markets 

 S&P 

500 

Dollar 

Index 

Gold Heating 

Oil 

All 

Hit Rate 78.22 78 77.48 79.11 77.25 

RMSE 0.0069 0.0068 0.0069 0.0069 0.0069 

R2 0.5631 0.5749 0.573 0.5752 0.5663 

IC 0.7953 0.784 0.7862 0.784 0.7922 

MSE 0.000 0.000 0.000 0.000 0.000 

MAE 0.00538 0.0054 0.0054 0.0054 0.0054 

SSE 0.0130 0.0126 0.0126 0.0126 0.0128 
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From Tables 10-11, it turns out that the Heating Oil is the most informative lead market for predicting 

crude oil prices. 

9. Multi-Step Prediction by four Models 

Since moving average transformation is used, it is important to test the model capability to predict for the 

mid-point of the moving average (Refenes 1995). For example if the data transformed into 10 days moving 

average then it is important to test the model capability to predict 4 or 5 days in the future.  In this study the 

data was transformed by 3-day moving averaging, therefore, the capability of the model to produce 

significant results for time  is very important for evaluating the real performance of the model. From 

our first-hand many-years experience in trading futures markets (on an intraday basis), it makes tremendous 

difference if one can predict for time beyond 

2+t

2+t 1+t , simply because most professional futures traders 

do their predictions for anyway with their instinct, which has proved not less competent with 

advanced model-based prediction. Furthermore, to stretch the model even further,  t+3 was also included in 

our study. The input is still the same as the input for each of the four models presented in Sections 5-8, but 

now the output includes t+1, t+2, t+3. The ANN has the same structure of the benchmark model. Only six 

neurons in the hidden layer were used.  

1+t

Table 12:  Performance on multi-step predictions of Model I 

Hit Rate RMSE 
 t+1 t+2 t+3 t+1 t+2 t+3 

In-sample 78.37 67.97 54.57 0.0088 0.0117 0.0137 

Out-of-sample 79.46 67.15 52.89 0.0088 0.0117 0.0137 

Table 13:  Performance on multi-step predictions of Model II 

Hit Rate RMSE 
 t+1 t+2 t+3 t+1 t+2 t+3 

Futures1 78.78 67.99 56.69 0.0088 0.0116 0.0136 

Futures2 78.86 68.09 56.42 0.0088 0.0116 0.0135 

Futures3 78.99 68.17 55.80 0.0088 0.0116 0.0136 

Futures4 78.73 68.22 56.00 0.0088 0.0116 0.0136 

Table 14:  Performance on multi-step predictions of Model III 

Hit Rate RMSE 
 t+1 t+2 t+3 t+1 t+2 t+3 

Futures1 78.11 67.16 54.37 0.0088 0.0116 0.0136 

Futures2 78.47 67.90 52.77 0.0088 0.0116 0.0135 

Futures3 78.60 69.99 54.00 0.0088 0.0116 0.0136 

Futures4 78.35 68.76 54.61 0.0088 0.0116 0.0136 
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By comparing table 12 to 14,  it is clear that futures 1, 3, and 4 improve the out-of-sample prediction for 

time t+3 while futures 2 performs as good as the benchmark. 

Table 15:  In-sample performance on multi-step predictions of Model IV 

Hit Rate RMSE 
 t+1 t+2 t+3 t+1 t+2 t+3 

S&P 78.62 67.37 55.05 0.0088 0.0117 0.0136 

Dollar index 78.78 67.57 54.86 0.0089 0.0118 0.0137 

Gold 78.58 68.14 55.46 0.0089 0.0117 0.0137 

Heating Oil 78.39 67.72 58.75 0.0089 0.0116 0.0134 

Table 16:  Out-of-sample performance on multi-step predictions of Model IV 

Hit Rate RMSE 
 t+1 t+2 t+3 t+1 t+2 t+3 

S&P 78.47 66.54 50.80 0.0088 0.0117 0.0136 

Dollar index 78.47 66.54 51.91 0.0087 0.0072 0.0791 

Gold 78.11 65.93 53.14 0.0089 0.0117 0.0137 

Heating Oil 78.60 69.74 60.64 0.0089 0.0116 0.0134 

Azoff (1994) claimed that using multiple outputs in the output layer could affect the training of the ANN, 

as it could alter the weights update during the training session. Therefore, it is essential to insure that 

including more than one output did not affect the goodness of the results when compared to the network 

with only one output.   Table 12 shows that the hit rate for in- and out-of-sample for network with three 

outputs was comparable to what obtained from the network with one output. In addition, the network 

performance is significant in term of hit rate for up of 2 steps ahead. While on average the performance has 

declined sharply for the third step prediction especially for out-of-sample. However, it is fair to recognise 

that on average even for time t+3 the output of the network is still better than guessing.  

On the other hand, Model IV with a lead market has performed well for three-step prediction, as shown in 

Tables 15-16. The best result is achieved with the Heating Oil.  

10.  Conclusions 

In this paper we have reported on a systematic study for developing ANN-based models to predict the 

short-term trends of the crude oil prices using the current information set from the crude oil spot prices, 

futrues prices, and other lead market prices. The short-term trends are represented by the 3-day moving 

averages of the spot prices for the next 3 days. Momentums (relative first-order differences) and forces 

(relative second-order differences) of the price time series are calculated to form the information set as 

input and output. Four models are designed and tested: from spot to spot, from futures to spot, from spot 

and futures to spot, and from spot and lead market to spot. For prediction at t+1, the best out-of-sample hit 
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rate is 79.95% from the benchmark model. For t+2, and t+3, the best our-of-sample hit rates are 69.74%, 

and 60.64%, respectively, produced by the fourth model using the spot prices and the heating oil prices for 

input. The predictability of crude oil price trends for the next three steps at this level are nontrivially useful 

for economic agents and policy makers to make their informed decisions regarding crude oil risk 

management and trading. 

Several transformations on the original price data were tested, it was found that 3-day moving averaging to 

the original data as preprocessing leads to much higher hit rate of prediction. Attentions was also paid for 

finding the optimal ANN model structure, as well as discovering the optimal number of lags (embedding 

dimensions in chaos theory). Weak evidence was found in support that futures prices of crude oil WTI 

contain new information about oil spot prices on the daily basis, nonetheless, futures 1 and 2 are more 

informative than futures 3, 4. However, this does not rule out the possibility that futures may lead the spot 

markets of crude oil on the intraday basis. This paper is limited to daily prediction, while the intraday 

prediction of crude oil prices is certainly a radically different problem which is much more dependent on 

real-time news analysis. 
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