
MICGen: MICCAI Workshop on Imaging Genetics 

Overview 

MICGen: MICCAI Workshop on Imaging Genetics (http://micgen.mit.edu) is held on 
September 14th, 2014, in conjunction with the Medical Image Computing and Computer 
Assisted Intervention (MICCAI) conference, at the Massachusetts Institute of 
Technology, Cambridge, MA, USA. It brings together researchers and clinicians from 
various fields including medical genetics, computational biology and medical imaging, 
presenting a forum for both fundamental concepts as well as state-of-the-art methods and 
applications. 

Being the first MICCAI workshop in imaging genetics, MICGen includes tutorial sessions 
introducing the fundamental concepts and challenges of imaging genetics, as well as oral 
presentations and posters of accepted abstracts presenting novel methods or new 
applications.  

Motivation 

Imaging genetics studies the relationships between genetic variation and measurements 
from anatomical or functional imaging data, often in the context of a disorder. While tra-
ditional genetic analyses are successful for deciphering simple genetic traits, imaging ge-
netics can aid in understanding the underlying complex genetic mechanisms of multifac-
eted phenotypes. Specifically, imaging-based biomarkers are used as an intermediate or 
alternative phenotype that provides a rich quantitative characterization of disease. As large 
imaging genetics datasets are becoming available, their analysis poses unprecedented meth-
odological challenges. MICCAI offers an ideal and timely opportunity to bring together 
people with different expertise and shared interests in this rapidly evolving field. This mo-
tivation led to the creation of MICGen, the first MICCAI workshop on imaging genetics. 
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MICGen 2014 Program 

The program is maintained at http://micgen.mit.edu. Please check there for the latest updates. 

Morning Session 1 - Genetics Tutorial 

The first morning session will introduce concepts from human genetics, genome wide association 
studies, epigenomics, system genomics and beyond through talks by Mark Daly and Manolis Kellis. 
It will serve as the genetic background for the imaging genetics accepted abstracts presented in the 
afternoon. 

 
8:15 - 8:30  Welcome Remarks 

Adrian Dalca 
EECS, Massachusetts Institute of Technology 

8:30 - 9:10 Progress in Human Genetics: GWAS and Beyond 
Mark Daly 
Massachusetts General Hospital, Harvard Medical School 

9:15 - 9:55 Regulatory Genomics and Epigenomics of Complex Traits  
and Human Disease 
Manolis Kellis 
EECS, Massachusetts Institute of Technology 

Coffee Break 10:00 – 10:30 

Morning Session 2 - Imaging Tutorial 

The second morning session will begin with a clinical discussion at the intersection of imaging and 
genetics by Jordan Smoller. Then, Li Shen and Mert Sabuncu will then introduce concepts in imaging 
genetics, including computation of imaging phenotypes and current imaging genetics models and 
directions. 

 
10:30 - 11:00  Imaging Genetics: Decoding Psychopathology 

Jordan Smoller 
Center for Human Genetic Research, Massachusetts General Hospital 

11:05 - 11:35 Bioinformatics Strategies for Multidimensional Brain Imaging Genetics 
Li Shen 
Radiology and Imaging Sciences, Indiana University School of Medicine 

11:40 - 12:00 Probing Multivariate Associations Between Structural Neuroimaging  
Phenotypes and Genetic Markers 
Mert Sabuncu 
A.A Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 
Harvard Medical School



Lunch 12:00 – 13:00 

Afternoon Session 1 - Accepted Talks and Posters - Group 1 

Authors from accepted submissions will give short talks in a roughly 50 minute session, followed by 
respective posters. This format was chosen to encourage as much useful interaction as possible 
among participants. 

 
13:00 - 13:50  5-Minutes Talks 

Group 1 (see below) 

14:00 - 15:00 Posters  
Group 1 (see below) 
 

Coffee Break 15:00 – 15:30 – All posters (Groups 1 and 2) 

Afternoon Session 2 - Accepted Talks and Posters - Group 2 

Authors from accepted submissions will give short talks in a roughly 40 minute session, followed by 
respective posters. This format was chosen to encourage as much useful interaction as possible 
among participants. 

 
15:30 - 16:10 5-Minutes Talks 

Group 2 (see below) 

16:10 - 17:00 Posters  
Group 2 (see below) 
 

 

 

 

  



Talks/Posters 

Group 1 

 Correlation and integration of fMRI imaging and SNP data with sparse models  
Yu-Ping Wang 

 Detection of genes associated with multiple correlated imaging phenotypes by a sparse group-
ridge low-rank regression model  
Dongdong Lin, Hong-Wen Deng, Vince Calhoun and Yu-Ping Wang 

 Probabilistic Approach to Joint Modeling of Imaging and Genetics  
Kayhan Batmanghelich, Adrian Dalca, Mert Sabuncu and Polina Golland 

 Detecting Gene-Environment Interactions via a Kernel Machine Method  
Tian Ge, Thomas Nichols, Debashis Ghosh, Elizabeth Mormino, Jordan Smoller and Mert 
Sabuncu 

 Fast Heritability Analysis Using Genome-Wide Data via Kernel Machines  
Tian Ge, Thomas Nichols, Avram Holmes, Phil Lee, Joshua Roffman, Randy Buckner, Mert 
Sabuncu and Jordan Smoller 

 Longitudinal 3D MR Spectroscopic Imaging of 2-Hydroxyglutarate in patients with mutant 
IDH1 glioma  
Ovidiu Andronesi, Franziska Loebel, Wolfgang Bogner, Malgorzata Marjanska, Elizabeth 
Gerstner, Andrew Chi, Tracy Batchelor, Daniel Cahill and Bruce Rosen 

 Hierarchical clustering of whole genome sequence data for forecasting age of Alzheimer’s di-
agnosis  
Rachel Yotter, Xiao Da, Bilwaj Gaonkar, Roman Filipovych and Christos Davatzikos 

 Genetic Determinants of Acute Cerebral Infact Volume: Results from a Preliminary Genome-
Wide Associaton Study 
Lisa Cloonan, Kelsey Shideler, Cathy R Zhang, Adriana Perilla, Allison Kanakis, Kaitlin Fitz-
patrick and Natalia S Rost 

 Differential Effect of 17q25 Locus on White Matter Hyperintensity Volume in Patients with 
Ischemic Stroke  
Cathy R Zhang, Lisa Cloonan, Adrian Dalca, Ramesh Sridharan, Kaitlin Fitzpatrick, Allison 
Kanakis, Alison M Ayres, Jonathan Rosand, Ona Wu, Polina Goland and Natalia S Rost 

  



Group 2 

 Feature Selection and Imaging-Genetics Predictions Using a Sparse, Extremely Randomized 
Forest Regressor  
Albert Montillo, Shantanu Sharma and Marcel Prastawa 

 Predictive Imaging-Genetics Models with Feature Selection and Dimension Reduction Using 
Sparse Partial Least Squares  
Rui Li, Xiaojie Huang, Shantanu Sharma and Marcel Prastawa 

 Investigation of biological pathways involved in brain development in preterm neonates using 
a multivariate phenotype and sparse regression  
Michelle Krishnan, James Boardman, Matt Silver, Gareth Ball, Serena Counsell, Andrew Wal-
ley, A David Edwards and Giovanni Montana 

 A Novel Atlas-based Approach to the Detection of Mouse Embryo Ventricular Septal De-
fects  
Xi Liang, Zhongliu Xie, Asanobu Kitamoto, Masaru Tamura, Toshihiko Shiroishi and Rama-
mohanarao Kotagiri 

 Dopamine-Related Genetic Influences on Cognitive Flexibility 
Hans Melo, Daniel Mueller, Adam Anderson and William Cunningham 

 Imaging Genomic Mapping of Tumor Volume MRI Phenotype in Glioblastoma and Correla-
tion with the Survival and Treatment Response  
Ginu A. Thomas, Sanjay Singh, Islam Hassan, Pascal O. Zinn and Rivka R. Colen 

 Imaging Genomic Biomarker Signature for MGMT Promoter Methylation Identification  
Ginu A. Thomas, Pascal O. Zinn and Rivka R. Colen 

 Introduction to Imaging Genomics in Glioblastoma  
Rivka R. Colen, Ginu A.Thomas and Pascal O. Zinn 

 



Correlation and integration of fMRI imaging and SNP data 
with sparse models 

 Yu-Ping Wang* 

Department of Biomedical Engineering, Tulane University, New Orleans, LA,70118, 
USA 

*corresponding author. wyp@tulane.edu 

Aims. We review our recent efforts in developing sparse models for the corre-
lation and integration of brain imaging (e.g., fMRI) and genomics (e.g., SNPs) 
data. Despite much of work on the integration of imaging and genomic data, 
there remains a lack of efficient and effective approaches to combine this 
complementary information (see our review [1]). Current integrative methods 
have not fully taken advantage of the special characteristics of imaging ge-
nomic data (e.g., inter-correlations, small sample size, group structures) and 
have not incorporated prior knowledge into the model design. To this end, we 
proposed two novel sparse model based approaches [2-4] for the correlation 
and integration of fMRI imaging and SNP data, resulting in better detection of 
risk genes and improved diagnosis of mental illnesses such as schizophrenia 
(SZ).    

Methods. For the correlation of two imaging and genomic data sets X1 and X2 
with dimensions 𝑛 ∗ 𝑝 and 𝑛 ∗ 𝑞, the CCA model (see Fig.1(a)) identifies a 
pair of vectors 𝑤1 and 𝑤2  such that  𝑤1∗,𝑤2∗ = arg  𝑚𝑎𝑥  𝑐𝑜𝑟𝑟(𝑋1𝑤1, 𝑋2𝑤2), 
where 𝑐𝑜𝑟𝑟(𝑋1𝑤1, 𝑋2𝑤2) = 𝑤1𝑇𝑋1𝑇𝑋2𝑤2 measures the correlation of 𝑋1𝑤1and 
𝑋2𝑤2. It is very common that the number of features is greatly larger than the 
number of observed samples (i.e., 𝑝, 𝑞 ≫ 𝑛) in an imaging or genomic study, 
making the CCA impractical for use. To overcome such a difficulty, we have 
proposed a sparse CCA (sCCA) approach [5]to yield w1 and w2 sparse. The 
sCCA is obtained by imposing penalty term on the CCA model as follows: 
 𝑃1(𝑤1) ≪ 𝑐1, 𝑃2(𝑤2) ≪ 𝑐2, where P1 and P2 are usually taken to be penalty 
functions such as the l1 norm (Lasso) or a combination of  l1  and l2 nom (elas-
tic net).  In addition, we consider group structures [2, 5](e.g., SNPs in a gene) 
in the data, resulting in a sparse group CCA (sgCCA) model.  

For the integration of two data sets, we propose the following integra-

tive model[3, 4]: 𝑌 = [𝛼1𝐴1, 𝛼2𝐴2] �𝑋1𝑋2
� + 𝜀 = 𝐴𝑋 + 𝜀, where 𝑌 ∈ 𝑅𝑚×1  is 

the observation vector (phenotypes of the subjects); 𝐴1 ∈ 𝑅𝑚×𝑛1  and 𝐴2 ∈
𝑅𝑚×𝑛2  are the measurements of two different data types (e.g., fMRI and 
SNPs); 𝐴 = [𝛼1𝐴1, 𝛼2𝐴2]  ∈ 𝑅𝑚×𝑛 ; 𝛼1 + 𝛼2 = 1 , and  𝛼1, 𝛼2 > 0  are the 
weight factors for the two types of data. 𝜀 ∈ 𝑅𝑚×1 is the measurement error. 
In order to overcome the difficulty of small sample problem, we find the ap-
proximate solution by introducing the sparsity in X, e.g., 𝑚𝑖𝑛 ∑ ‖𝑋𝑖‖𝑝2

𝑖=1 , re-



sulting in a sparse model based variable selection (SRVS). We use the model 
for biomarker selection, as illustrated in Fig. 2.  

Results. We have tested the sgCCA model on 208 subjects containing both 
fMRI voxels and SNPs[2] (see Fig.1(b)). We detected novel genes susceptible 
to schizophrenia (SZ). In addition, we identified several brain regions suscep-
tible to SZ such as superior, middle, inferior and medial frontal gyrus, inferior 
parietal lobule, superior and middle temporal gyrus, thalamus, parahippocam-
pal gyrus, cingulate gyrus. The effects of these brain regions on SZ have been 
reported by other neuroimaging studies [6], providing additional confidence 
that these disease relevant brain regions may be affected by those correlated 
genomic variations. 

We also applied the integrative model to the same 208 subjects (92 
cases and 116 controls) for the selection of both fMRI imaging and SNPs bi-
omarkers [3, 4], resulting better diagnosis of SZ. Fig.3(a) shows the results of 
identified brain regions with SRVS method in comparison with Li et al.'s 
sparse regression method [7] (Fig.3 (b)); our method tends to find regions 
with voxels clustered together. In addition, the models all give much higher 
classification ratios than that of Li et al.'s method [7] and the model with L1/2 
norm generates the highest classification ratio (Fig.3 (c)).  

Conclusion. Our results indicate that sparse representation based models pro-
vide a powerful and flexible way for the analysis of imaging genomic data, 
with the following advantages: 1) they can incorporate specific features of 
imaging genomic data (e.g., group structures); 2) they can overcome the diffi-
culty of analyzing imaging genomic data with small sample but larger number 
of features, which is often the case in practice.   

Acknowledgement: This is a joint work with Dongdong Lin (Tulane), 
Honabao Cao (NIH), Vince Calhoun (Mind Research Network). The research 
has been supported by the NIH.   

References:  

[1] Y. P. Wang, "Multiscale Genomic Imaging Informatics," Ieee Signal 
Processing Magazine, vol. 26, pp. 169-+, Nov 2009. 

[2] D. Lin, V. Calhoun, and Y. P. Wang, "Correspondence between  
fMRI and SNP data by group sparse canonical correlation analysis," 
Medical Image Analysis, Nov. 4, in press, 2013. 

[3] H. B. Cao, J. B. Duan, D. D. Lin, V. Calhoun, and Y. P. Wang, 
"Integrating fMRI and SNP data for biomarker identification for 
schizophrenia with a sparse representation based variable selection 
method," BMC Med Genomics, vol. 6, Nov 11 2013. 

[4] H. Cao, J. Duan, D. Lin, Y. Y. Shugart, V. Calhoun, and Y. P. Wang, 
"Sparse representation-based biomarker selection for schizophrenia 



with integrated analysis of fMRI and SNPs," Neuroimage, Feb 12 
2014. 

[5] D. Lin, J. Zhang, J. Li, V. D. Calhoun, H. W. Deng, and Y. P. Wang, 
"Group sparse canonical correlation analysis for genomic data 
integration," BMC Bioinformatics, vol. 14, p. 245, 2013. 

[6] M. E. Shenton, C. C. Dickey, M. Frumin, and R. W. McCarley, "A 
review of MRI findings in schizophrenia," Schizophrenia Research, 
vol. 49, pp. 1-52, Apr 15 2001. 

[7] Y. Li, P. Namburi, Z. Yu, C. Guan, J. Feng, and Z. Gu, "Voxel 
selection in FMRI data analysis based on sparse representation," 
IEEE Trans Biomed Eng, vol. 56, pp. 2439-51, Oct 2009. 

 

 
 

       

(a)                                               (b) 
 

Fig. 1 Identifying correspondence of two datasets X1 and X2 
using CCA (a), which is used to identify abnormal brain regions 
associated with genes (GRIN2B) and SNPs (rs2284425, 
rs16909386) (b). 
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Fig. 2 Integration of two data sets A1 
and A2. The sparse model (bottom) 
can better capture joint information 
than joint model (top), where the 
correlative information is represented 
simultaneously by non-zero entries in 
a sparse vector.  

 

 

 

 

Fig.3 Our sparse model based varia-
ble selection (SRVS) method can 
better identify abnormal brain region 
(a) than Li et al.’s method (b) (i.e., 
yielding more clustered regions that 
have been validated before), and give 
better accuracy of classifying SZ from 
healthy controls ( c). 
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Detection of Genes associated with multiple correlated imag-
ing phenotypes by a sparse group-ridge low-rank regression 

model 
Dongdong Lin1,2, Hong-Wen Deng2,3, Vince D. Calhoun4,5, Yu-Ping 

Wang1,2,3,* 
1Department of Biomedical Engineering, Tulane University, New Orleans, LA,70118, 
USA 
2Center of Genomics and Bioinformatics, Tulane University, New Orleans, LA,70112, 
USA 
3Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, LA, 
70118, USA 
4The Mind Research Network, Albuquerque, NM, 87131, USA 
5Department of Electrical and Computer Engineering, University of New Mexico, 
Albuquerque, NM, 87131, USA 

*corresponding author. wyp@tulane.edu 

Aims. Recently, more evidences on polygenicity and pleiotropy have been 
found in genome-wide association study of complex psychiatric diseases (e.g., 
schizophrenia), where multiple interacting genetic variants may affect multi-
ple phenotypic traits simultaneously. More heritability of complex diseases is 
expected to be explained by these factors but few studies have been performed 
in imaging genetics. It is significant to identify those genetic variants (e.g., 
SNPs, gene) having pleiotropic effects on multiple imaging-derived quantita-
tive traits (i.e, endophenotype). The high dimensionality of imaging and ge-
netic datasets, however, presents a challenge for statistical analysis. Most sta-
tistical methods for pleiotropy currently focus on single loci, which may ig-
nore group effect of genetic variants, leading to the loss of power. Several 
sparse regularization based models have been recently proposed to reduce the 
number of features in the model with an optimal feature selection criterion. 
However, most of them did not provide a significance test for each selected 
feature. In this work, we propose a new sparse group-ridge low-rank regres-
sion model (SGRLR) for exploring the pleiotropic effects of a group of genet-
ic variants on multiple correlated endophenotypes derived from fMRI. In the 
method, we enforce sparse regularization to reduce the number of features and 
then construct an effective permutation-based statistic test to evaluate the sig-
nificance of selected features (e.g., gene or gene set). 

Methods. SGRLR is a sparse multivariate regression model, defined by the 
following formula 



𝑚𝑖𝑛𝑪 ‖𝒀 − 𝑿𝑪‖𝐹2 + 𝜆1��𝑪[𝑔]�𝑔𝑟𝑖𝑑𝑔𝑒

𝐺

𝑔=1

+ 𝜆2‖𝑪‖∗ 

where Y is an image-derived endophenotype matrix, X is a high dimensional 
genomic measurement matrix which can be divided into G groups (e.g., genes) 
and C  is a coefficient matrix with each row representing the weights of indi-
vidual SNPs across all endophenotypes.  �𝑪[𝑔]�𝑔𝑟𝑖𝑑𝑔𝑒 = �∑ ‖𝑪𝑖‖2𝑖∈𝑔 �2  is a 
composite group ridge penalty on the i-th submatrix of C, denoted by 𝑪𝑖. [g] 
indicates the set of row indices (i.e. SNPs) of 𝑪𝑖 to form the g-th gene. This 
group ridge penalty uses a lasso penalty to perform SNPs selection within 
each gene and ridge penalty to identify causal genes simultaneously. Both the 
enforcement of sparsity at SNP level and the smoothness constraint at group 
(e.g., gene) level can remove irrelevant SNPs within genes while consider the 
correlation among genes in the model. ‖𝑪‖∗ is a low rank penalty based on 
nuclear-norm to account for the correlation among multiple endophenotypes 
by reducing the rank of C. Based on the estimation of the model, a statistical  
test is proposed to perform significance test at both gene and gene set level. 
An empirical p-value for each gene or gene set can be obtained, which follows 
a uniform distribution due to the smoothness of ridge regression at gene level. 
We conducted a simulation to evaluate the performance of SGRLR in terms of 
the power of detecting causal genes. Then, we compared our method with 
other sparse multivariate models such as sparse multi-task learning methods 
with lasso, group lasso, and group lasso combined with low rank penalties. 

Results. Fig.1 shows the comparison results using ROC curve based on the 
average of 50 replications where the curve of SGRLR is drawn by varying 
significant levels from 0 to 1. At each replication, 20 genes with 5 as casual 
genes were simulated. Each gene contains 10~100 SNPs generated from 
PLINK and the number of causal SNP in each causal gene (Tr) ranges from 
1,2,4,6, as shown in Fig.1. SGRLR shows better performance than other 
sparse methods, especially when Tr=6, i.e., more causal SNPs are included in 
each causal gene. Group lasso combined with low rank penalty will increase 
the performance compared to that of using group lasso penalty only. However, 
group lasso based methods perform worse than SGRLR and lasso model, 
which may be due to the existence of many non-causal SNPs into causal 
genes. Evaluation on real data is currently ongoing. 

Conclusion. Our proposed SGRLR model outperforms other multivariate 
sparse models in terms of ROC. SGRLR can consider correlative structure in 
both genetic variants and imaging traits, showing superior performance for 
detecting genes in imaging genetic study. 

 



 

Fig. 1. ROC curves comparing SGRLR with other sparse models: sparse multi-task learning 
with lasso, group lasso and group lasso combined with low rank penalties. 



Probabilistic Approach to Joint Modeling of
Imaging and Genetics

Nematollah K. Batmanghelich1, Adrian V. Dalca1 Mert R. Sabuncu2, and
Polina Golland1

1 Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA,
2 Martinos Center for Biomedical Imaging, Charlestown, MA

{kayhan,adalca,msabuncu,polina}@csail.mit.edu

Aims

We propose a unified Bayesian framework for detecting genetic variants asso-
ciated with disease while exploiting image-based features as an intermediate
phenotype. Using imaging data for examining genetic associations is a growing
new field, but currently the most widely used methods make sub-optimal use
of those three types of measurements (i.e., clinical, imaging and genotype) by
performing the association test between them separately [4, 5]. In contrast, we
propose a probabilistic framework to exploit the connection among all these data
modalities simultaneously. Our method ultimately assigns probabilistic measures
of clinical relevance to both genetic and imaging biomarkers. We derive an ef-
ficient approximate inference algorithm that handles the high dimensionality of
imaging and genetic data. We also illustrate the application of the method on
Alzheimer’s Disease Neuroimaging Initiative (ADNI) data.

Methods

We assume that a study contains N individuals, each with three measurements:
1) genotype, gn ∈ RS , 2) clinical outcome yn ∈ {0, 1}, and 3) imaging mea-
surements, xn ∈ RM . The genotype gn is the allele count from S locations on
the genome. The clinical status yn indicates Normal vs Alzheimer’s. The brain
imaging measurements xn are volume or thickness of M brain structures, and
are usually referred to as the “intermediate phenotype.”

The objective is to choose a subset of the intermediate phenotypes (i.e.,
imaging regions) which are simultaneously relevant to the clinical measurements
and the genotype.

The model comprises of two regressions (see Fig.1b): one that selects a subset
of imaging regions to predict the clinical phenotype y and the second regression
that explains the variations of the selected imaging measurements via a sparse
set of genotypes. Therefore, there are two possibilities for each brain region:
selected or not (1 or 0). We employ the spike and slab model [1] to model the
selected imaging regions. It assigns a binary latent variables to indicate relevance
of the genotypes to a phenotype via a regression. If a brain region is not selected,
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(a) (b)

Fig. 1. (a) Graphical model of conditional independence between variables. Open cir-
cles are the random variables (gray: observed, white: latent) and filled circles are the
hyper-parameters. (b) Schematic of modeling in the x-node (imaging phenotype). If a
region m is irrelevant to clinical phenotype y (i.e., bm = 0), the normal distribution
explains the variation (Null). Otherwise, a regression with a latent mask am from the
genotype explains the variation of imaging features inside of the region.

we assume that it has a normal distribution with zero mean and unit variance.
The graphical model is illustrated in Fig.1a. Finally, our method produces two
quantities that can be used to interpret the importance of the brain regions and
SNPs: 1) P(bm|D), the posterior probability that brain region m is relevant, and
2) P(am|D), the posterior relevance of the SNPs in explaining variability in the
brain region m.

Results

We apply the method to a subset of samples from the ADNI3 dataset. For each
hemisphere of the brain, cortical thickness of 34 regions spanning the whole
cortex was computed in addition to volumes of 26 sub-cortical brain structures.
Here, we focus on subset of previously studied SNPs [3].

Fig.2 reports posterior probability of brain regions identified as relevant to
Alzheimer disease and the genotype. Fig.3b shows the relevance of SNPs aver-
aged over 1000 draws from the posterior distribution of the brain regions. Fig.3d
shows the posterior probability of the relevant SNPs for explaining variability
in the entorhinal cortex, which is one the top areas of the brain to be affected
in Alzheimer’s Disease [2]. Fig.3a and Fig.3c respectively show the log p-value
of the GLM when the clinical phenotype y and the average thickness of the
entorhinal cortex are used as dependent variables.

3 Alzheimer’s Disease Neuroimaging Initiative



Running table 3

(a) (b)

Fig. 2. (a) Posterior probability of inclusion for the brain regions on the left hemisphere
in the lateral and medial views. Similarly for right hemisphere (b)

Conclusions

We propose a probabilistic approach that jointly models the clinical measure-
ments, the intermediate phenotype and the genotype. Flexibility of the model
allows to define endophenotypes other than imaging features but here we focus
on the imaging measurements, namely the cortical thickness and the volume of
the sub-cortical regions. The framework exploits the rich information in the im-
age and finds the SNPs that are implicitly relevant to the disease. We derived
an efficient inference algorithm that can infer relevant SNPs and answer many
other interesting questions about the data.
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Fig. 3. (a) Negative log p-value of the GLM when the diagnosis y is used as the de-
pendent variable. (b) Posterior relevance of SNPs averaged over 1000 draws from the
posterior distribution of the brain regions. Horizontal lines are 0.05 after Bonferroni
corrections (left figures) and 0.5 for the posterior probabilities (right figures). On av-
erage the results of (a) and (b) are very similar and only APOE passes the significant
levels. However, our probabilistic model provides the posterior relevance P(bm|D) cor-
responding for each region as well. We can then conduct a post-hoc analysis by com-
puting the posterior probability of SNPs for the relevant regions (i.e., for regions with
P(bm|D) > 0.5). The posterior probability of SNPs P(am|D) for region m quantifies the
relevance of each SNP to that region. For example, (d) shows the posterior probability
of each SNP for the left entorhinal cortex which has P(bm|D) > 0.5; many SNPs exhibit
a posterior higher than 0.5 which makes them implicitly relevant to the disease. (c),
negative log p-value of GLM using average thickness of the entorhinal cortex as the
dependent variable; no SNPs passes the significant threshold of 0.05 after Bonferroni
correction.
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1 Aims

To date, imaging genetics studies have mostly focused on discovering isolated
gene effects, typically ignoring potential interactions with environmental vari-
ables. However, identifying significant gene-environment (G×E) interactions is
critical in revealing the true relationships among genetic, environmental, and
phenotypic variables, and shedding light on disease mechanisms. Here we present
a powerful and flexible method for detecting G×E interactions.

2 Methods

We propose a semiparametric kernel machine based approach to detect G×E
interactions. The kernel machine framework has been widely used in association
studies between a collection of single nucleotide polymorphisms (SNPs), and
complex diseases or imaging phenotypes [1–5]. To jointly model the genetic and

? Data used in preparation of this article were obtained from the Alzheimers Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the inves-
tigators within the ADNI contributed to the design and implementation of ADNI
and/or provided data but did not participate in analysis or writing of this report. A
complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-
content/uploads/how to apply/ADNI Acknowledgement List.pdf.



environmental variables, and their interactions, we extend the classical kernel
machine model [2], and include three appropriately selected kernels in the model;
one for genetic variants, one for environmental factors, and a third one, which is
the Hadamard product of the genetic and environmental kernels, for the inter-
action effect. An identical-by-state (IBS) genetic kernel provides a biologically-
informed way to capture epistasis in a set of SNPs, and model their joint effect on
the phenotype. Examining collective contribution of SNPs can provide improved
reproducibility, better biological interpretability, and increased power relative to
univariate methods. A linear environmental kernel allows for jointly modeling
the effect of multiple environmental variables. By using a connection to linear
mixed effects models, the interaction effect can be efficiently tested by a variance
component score test [2, 6].

We apply the method to data from the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI), to detect the interaction effect between 20 candidate late-onset
Alzheimer’s disease (AD) risk genes, as identified by a recent meta-analysis of
genome-wide association studies (GWAS) with 74,046 individuals [7], and cere-
bral amyloid beta (Aβ) deposition, as measured by the global standardized up-
take value ratio (SUVR) index value in florbetapir F18 (AV45) positron emission
tomography (PET) images, on an AD probability score derived from structural
brain Magnetic Resonance Imaging (sMRI) scans using the Relevance Voxel
Machine (RVoxM) algorithm [8]. The AD score quantifies the likelihood of AD-
associated atrophy based on the pattern of cortical thinning, and is correlated
with the disease stage.

3 Results

Gene BIN1 (p = 0.0005) was identified to have significant interaction with the
Aβ levels (Table 1), after controlling for age, gender, education, and diagnosis
(healthy control, mild cognitive impairment, AD).

4 Conclusions

We have presented a kernel machine based approach for detecting G×E interac-
tions, which offers a flexible framework to model epistatic effects, accommodate
multiple environmental factors, and test for interactions between the two sets
of variables, producing more interpretable and powerful results compared to
classical univariate approaches. The gene BIN1 we identified was thought to
be a strong genetic determinant of AD susceptibility. The expression of BIN1
was found to increase AD risk by modulating tau pathology [9, 10], indicating
possible mechanisms of the progression of late-onset AD in the context of Aβ
accumulation.
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Table 1. The 20 candidate risk genes for late-onset Alzheimer’s disease identified by
[7], the final number of SNPs located on them, and the p-value for the interaction
effect between the candidate genes and the Aβ level on logit transformed AD probabil-
ity scores, using the proposed kernel machine method. p-values that survive multiple
testing corrections are highlighted in bold.

Gene Chr # of SNPs p-value Gene Chr # of SNPs p-value

ABCA7 19 78 0.7508 EPHA1 7 38 0.9800
APOE 19 4 0.1868 FERMT2 14 156 0.2127
BIN1 2 203 0.0005 INPP5D 2 463 0.3705
CASS4 20 77 0.9992 MEF2C 5 194 0.9868
CD2AP 6 297 0.5681 MS4A6A 11 13 0.6262
CD33 19 14 0.1031 PICALM 11 266 0.9682
CELF1 11 73 0.9857 PTK2B 8 318 0.7043
CLU 8 27 0.4456 SLC24A4 14 638 0.9966
CR1 1 147 1.0000 SORL1 11 206 0.9604
DSG2 18 51 0.6429 ZCWPW1 7 34 0.9941
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1 Aims

Reliable and rapid tools to estimate the heritability of imaging measurements are
necessary for prioritizing brain phenotypes for genetic association analyses [1].
Classical estimates of heritability require twin or pedigree data, which are costly
and difficult to acquire. Genome-wide Complex Trait Analysis (GCTA) [2] can
provide heritability estimates without twin data, but is computationally demand-
ing and thus can only be applied to a handful of a priori selected measurements
or regions of interest (ROIs). Here we present a flexible and computationally
efficient method for high-dimensional heritability analysis, using whole-genome
single nucleotide polymorphism (SNP) data from unrelated individuals.

2 Methods

We propose an efficient method for quantifying the statistical significance of her-
itability using genome-wide data. The approach relies on a variance component
score test for linear mixed effects models [3, 4], and has a strong connection to
the nonparametric kernel machine methods for SNP-set based association stud-
ies [5–7]. Each entry of the kernel matrix, also known as the genetic relationship
matrix (GRM) in GCTA, is a measure of the genetic similarity between pairs
of individuals computed from all SNPs over the genome to match the definition



of narrow-sense heritability. The fast non-iterative score test makes computa-
tionally demanding analyses, such as a voxel-/vertex-wise test for significant
heritability or permutation test, possible.

We apply our approach to the structural images and whole-genome SNP data
from 1,464 unrelated young healthy adults (18-35 years old) with non-Hispanic
Caucasians of European ancestry, as part of the Harvard/MGH Brain Genomics
Superstruct Project (GSP) [8].

3 Results

An ROI heritability analysis of the average thickness and surface area measure-
ments within cortical regions defined by the Desikan-Killiany atlas [9] shows
that the score test produces almost identical p-values as GCTA (Fig. 1), but is
thousands of times faster (10 mins versus 30 ms), making high-dimensional her-
itability mapping and permutation inferences possible. The vertex-wise p-value
map of the heritability of cortical thickness shows similar pattens with previous
observations in twin studies (Fig. 2, upper panel) [10–13]. In our analyses, sur-
face area measurements are less heritable than cortical thickness in general, and
show distinct spatial profiles (Fig. 2, lower panel). Surface-based clustering of
vertices on the cortical thickness map using a cluster-forming threshold p = 0.001
identifies four clusters with FWE-corrected significance using permutation-based
cluster-size inferences (Fig. 3). Posthoc heritability analyses on average cortical
thickness measurements within theses significant clusters show high heritability
of these cortical regions (Table 1).

4 Conclusions

We have proposed a fast and accurate statistical test for significant heritability
using genome-wide SNP data from unrelated individuals, and an accompanying
permutation procedure that can produce accurate and flexible permutation infer-
ences for arbitrary statistics of interest. Our proposed approach has the potential
for large-scale heritability screening, three-dimensional heritability profiles con-
struction, and optimally choosing brain phenotypes under genetic control.
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Fig. 1. The excellent concordance between the score test and GCTA.
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Fig. 2. Vertex-wise p-value maps of the heritability of cortical thickness and cortical
surface area, constructed by the score test.
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Fig. 3. Clusters identified on the spatial heritability map of cortical thickness with a
cluster-forming threshold p = 0.001. Four clusters are identified as family-wise error
corrected (FWEc) significant in size.



Table 1. Statistics of significant clusters identified on the spatial heritability map
of cortical thickness with a cluster-forming threshold p = 0.001. The number of ver-
tices, family-wise error corrected (FWEc) p-value of the cluster size, and the posthoc
heritability estimate of the average cortical thickness within each cluster are shown.

Cluster ID # Vertices FWEc cluster-size p-val GCTA ĥ2 GCTA SE GCTA p-val

Cluster 1 603 0.048 0.982 0.245 3.42× 10−5

Cluster 2 796 0.016 0.905 0.236 4.03× 10−5

Cluster 3 1841 0.002 1.000 0.249 2.19× 10−6

Cluster 4 2656 0.001 1.000 0.240 1.18× 10−7
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Purpose 
The hallmark metabolic alteration of mutant IDH gliomas is the production of 2-

hydroxyglutarate (2HG) [1], and high levels of this metabolite may play a central role 
in downstream effects of gene mutation [2]. Hence, 2HG may be an ideal biomarker 
for both diagnosing IDH mutations and monitoring response to treatment. 2HG can be 
measured in-vivo by magnetic resonance spectroscopy [3-6] and there is significant 
interest in developing methodology that performs reliably in patients. Here we present 
results obtained with a new 3D MR spectroscopic imaging (MRSI) sequence that 
maps reliably 2HG over the entire volume of the tumor during treatment. 

 
METHOD AND MATERIALS  
A robust and efficient 3D MRSI sequence for 2HG imaging was newly developed 

by integrating three highly optimized modules: i) J-difference spectral editing 
MEGA-LASER [5], ii) spiral spectroscopic imaging, and iii) real-time motion and 
shim correction. J-difference spectral editing can disambiguate the detection of brain 
metabolites such as GABA, glutamate and glutamine (Glx), and 2HG by removing 
overlapping signals. However, difference methods are susceptible to subtraction er-
rors caused by subject movement and scanner instability. Using a double-echo EPI 
volume navigator we performed real-time correction of motion, update dynamically 
the shims and scanner frequency, and reacquire the excitations that are corrupted [7]. 
3D brain coverage was obtained with a weighted stack of spirals. The acquisition 
parameters of the 3D MRSI sequence were: TR=1.6s, TE=68ms, FOV=200x200x200 
mm3, 20mm isotropic voxels, acquisition matrix 10x10x10 zero-filled to 16x16x16, 
NA=20, acquisition time TA=9:55 min:s. Spectra were fitted with LCModel software 



[9] and metabolic maps were obtained from the fitted signal. All experiments were 
performed on a whole-body 3T MR scanner. 3D MRSI was performed in 9 patients 
with mutant IDH1 gliomas (WHO grades II-IV) who were consented with an ap-
proved IRB protocol. In all patients a baseline scan was done before starting adjuvant 
treatment. Adjuvant treatment included radiotherapy and/or chemotherapy. The post-
treatment scan was done within 1-3 months after end of radio/chemotherapy.  

   
RESULTS 
Detectable levels of 2HG were measured in all patients that did not have gross total 

resection of tumor. 3D metabolic maps were obtained for 2HG and several other im-
portant metabolites for assessing brain tumors, such as total choline (Cho), N-acetyl-
aspartate (NAA), glutamate and glutamine (Glx), and lactate (Lac). Four patients had 
marked decrease (30-50%) in the levels of 2HG and the remainder showed 10-20% 
reduction of 2HG (Figure 1).  

 
CONCLUSION  
We demonstrate for the first time that 3D imaging of 2HG is clinically feasible in 

patients with IDH1 mutated gliomas. Quantification of 2HG levels in a cohort of mu-
tant IDH glioma patients shows measurable changes during treatment. 3D mapping of 
2HG and other metabolites is important to capture tumor heterogeneity and reduce 
variability in longitudinal studies. 2HG imaging could be used to differentiate true-
/pseudo-response and true-/pseudo-progression in mutant IDH glioma patients. 

 
Fig. 1. 2HG metabolic maps 

obtained longitudinally during 
treatment in a mutant IDH glioma 
patient with a navigated adiabatic spiral 
3D MRSI sequence. 3D maps of 2HG 
provide selectivity and specificity for 
the spatial extent of tumor. Marked 
decrease (40%) of 2HG levels are found 
post-treatment compared to pre-
treatment levels in this patient. Maps 
are scaled to the same intensity levels. 

Spectra are shown in the right most figures with the 2HG signal indicated at 4ppm. 
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1 Aims 

We sought to forecast the age of Alzheimer’s disease (AD) diagnosis using a polygen-
ic score from whole genome sequence (WGS) data. We first validated a clustering 
algorithm to reduce data dimensionality by ~60-fold, using the highly predictive 
APOE gene. We then identified additional genes that were predictive of AD onset. 
These genes were then combined in a polygenic model to forecast AD onset. In non-
AD subjects, we sought to identify structural, lifestyle, and neuropsychological differ-
ences in subjects that delayed genetically predetermined AD onset by at least three 
years. 

2 Methods 

443 Caucasian WGS participants were selected from the ADNI database [1]. Of these 
subjects, 101 had obtained a clinical diagnosis of AD (Table 1). Data included geno-
typing data, demographic and neuropsychological data, APOE genotype, diagnosis 
information, a measure of AD-like atrophy (SPARE-AD) [2], and voxel-wise approx-
imations of atrophy from MRI. 

WGS data for 39 genes were extracted [3-4]. We clustered WGS data for each 
gene by first performing hierarchical clustering using Manhattan distance, then 
formed clusters using the default parameters in the dynamic tree cut package [5]. To 
validate the clustering approach, we compared it to forecasts made from the APOE 
allele status or raw WGS data. All forecasts used 10-fold cross-validation and the 
same subgroups. We then identified other genes by predicting residual error after 
forecasting with the APOE gene. 

We used our polygenic model to forecast age of AD diagnosis in non-AD subjects. 
Subjects who had delayed AD by three or more years were compared to an age-
matched non-delayed group. 

3 Results 

Using clustered WGS data with support vector regression, we achieved a much higher 
correlation than that achieved from APOE allele status (Table 2; Figure 1). We then 



identified the ABCG5 gene to be independently predictive of age of AD diagnosis 
(Table 3). The final polygenic model had a typical error of 6.89 years. 

Delayed non-AD individuals exhibited many AD-like features (Table 4). However, 
they have significantly lower BMI that is difficult to explain from pre-AD weight loss 
alone [6] (Figure 2). The delayed group had significantly more atrophy bilaterally in 
the cingulate cortices and temporal gyri, as well as in the uncus, insula, and precentral 
gyrus in the right hemisphere. 

4 Conclusions 

We have developed a new approach to cluster WGS data, and have successfully 
achieved a low error in forecasting the age of AD diagnosis. Non-AD subjects who 
had delayed AD onset exhibited significantly different characteristics than an age-
matched non-delayed group. This result suggests that a lower BMI may be protective. 

Table 1. Group demographics (mean ±  standard deviation [range]) 

 All (N=443) AD (N=101) non-AD (N=342) 
Age (years) 73.19 ± 7.16 [55 – 91] 74.56 ± 7.79 [55 – 90] * 72.78 ± 6.96 [55 – 91] * 

Sex 246 males, 197 females 65 males, 36 females 181 males, 161 females 
Education (years) 16.3 ± 2.6 [9 – 20] 16.0 ± 2.8 [9 – 20] 16.4 ± 2.6 [9 – 20] 

APOE ε4 196 positive (44%) 67 positive (66%) ** 129 positive (38%) ** 
 MMSE 27.68 ± 2.34 [19 – 30] 25.44 ± 2.64 [20 – 30] ** 28.34 ± 1.77 [19 – 30] ** 

Modified ADAS-Cog 11.02 ± 6.96 [1 – 38] 19.89 ± 6.05 [9 – 38] ** 8.39 ± 4.68 [1 – 26] ** 
SPARE-AD -0.48 ± 1.11 

[-2.14 – 1.96] 
0.82 ± 0.71 

[-1.5 – 1.96] ** 
-0.87 ± 0.88 

[-2.14 – 1.79] ** 
BMI (kg/m2) 26.95 ± 4.75 [15 – 51] 25.65 ± 4.09 [15 – 43] ** 27.34 ± 4.87 [19 – 51] ** 

Systolic Blood Pressure 
(mm Hg) 

135.5 ± 16.8 
[83 – 190] 

134.6 ± 16.2 
[100 – 179] 

135.8 ± 17.0 
[83 – 190] 

Diastolic Blood Pressure 
(mm Hg) 

74.3 ± 9.9 
[49 – 100] 

73.3 ± 9.8 
[49 – 98] 

74.6 ± 9.9 
[50 – 100] 

* p < 0.05 ** p < 0.01for AD and non-AD groups 

Table 2. Forecasting age at which clinical diagnosis of AD is received (n=101). 

Data Method Correlation p-value 
APOE e4 positive (binary) Linear regression 0.165 0.09 

APOE e4 count Linear regression 0.254 0.01 
APOE e3/e4 counts Linear regression 0.339 0.0005 

WGS data Linear regression 0.380 8.9e-05 
WGS data Support vector machine 0.392 5.1e-05 

Clustered WGS data Linear regression 0.423 1.1e-05 
Clustered WGS data Support vector machine 0.485 2.8e-05 

Clustered APOE + ABCG5 Support vector machine 0.538 6.3e-09 



 

Table 3. Group demographics (mean ±  standard deviation [range]). The delayed group was 
at least three years older than their forecasted age of AD diagnosis, still without a diagnosis. 

The non-delayed group was matched for age and gender to the delayed group. 

 Delayed (N=69) Not delayed (N=71) 
Age (years) 80.04 ± 4.9 [70 – 91] 78.65 ± 2.73 [75 – 86] 

Sex 46 males, 23 females 37 males, 34 females 
Education (years) 16.2 ± 2.9 [9 – 20] 16.3 ± 2.4 [11 – 20] 

APOE ε4 47 positive (68%) ** 10 positive (14%) ** 
Forecasted AD onset (years) 72.3 ± 4.5 [64.7 – 83.7] **,‡ 80.9 ± 4.6 [73.7 – 100.2] **,‡ 

 MMSE 27.49 ± 2.35 [19 – 30] * 28.41 ± 1.74 [21 – 30] * 
Modified ADAS-Cog 11.33 ± 5.02 [2 – 25] **,† 7.97 ± 4.27 [1 – 23] **,† 

SPARE-AD -0.29 ± 0.99 [-2.1 – 1.5] * -0.64 ± 0.84 [-1.9 – 1.8] * 
BMI (kg/m2) 25.44 ± 3.14 [19 – 34] **,† 27.45 ± 3.84 [19 – 40] **,† 

Systolic Blood Pressure (mm Hg) 137.0 ± 19.1 [83 – 187] 140.1 ± 16.8 [102 – 178] 
Diastolic Blood Pressure (mm Hg) 75.2 ± 9.1 [51 – 90] *,† 71.8 ± 10.5 [57 – 98] *,† 

unadjusted:* p < 0.05; ** p < 0.01;  adjusted for APOE: † p < 0.05; ‡ p < 0.01 

 
Fig. 1. Clustered WGS data from the ABCG5 is significantly predictive of the residual error 
after forecasting by APOE. A forecast using a combination of APOE and ABCG5 clustered 

data provides the most accurate forecast. 



 
Fig. 2. Non-AD subjects who reached 3 years or longer after their genetically predicted age of 

AD diagnosis without obtaining a diagnosis had significantly lower BMI than an age- and 
gender-matched non-AD group. This relationship held even after correcting for APOE e4 allele 

counts. 
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Abstract. Introduction: Ischemic stroke is the leading cause of adult disability in the United 

States and the second cause of mortality worldwide.  Severity of stroke is closely linked to the 

size of cerebral infarction, which also contributes to poor post-stroke outcomes.  

 

Aim: We sought to determine the common genetic variants associated with acute cerebral 

infarct volume detected on diffusion weighted imaging  (DWI)  in a prospectively collected, 

hospital-based acute ischemic stroke (AIS) cohort.  

 

Methods:  AIS patients >18 years of age admitted to Massachusetts General Hospital 

Emergency Department, with an admission brain MRI scan and blood sample donated for 

genetic analysis, were included in this analysis.   

 

Neuroimaging Analysis  

Natural log-transformed DWI infarct volumes were measured using a validated semi-automated 

method. The hyperintense signal of an acute infarct on DWI was cross-referenced with the 

hypointensity on the apparent diffusion coefficient (ADC) sequence. An intersection between 

the region of interest (ROI) corresponding to the infarct outline on DWI and the intensity 

threshold ROI matching the DWI hyperintensity was manually corrected by an expert operator 

to generate a DWI volume (DWIV) in a final step of the analysis (Figure 1).  

 

Genetic Analysis  

We conducted a genome wide association study (GWAS) on 593 subjects  with AIS and availa-

ble DWIV. Standard per single nucleotide polymorphism (SNP) and per subject genotyping QC 

measures were implemented and unobserved SNPs were imputed. An association analysis of 

ln(DWIV) was adjusted for age, sex and principal components (PC) 1 and 2. GWAS threshold 

for significance was set at a nominal p-value <5x10-5, given the pilot nature of this analysis. 

 

Results:  The mean age of the cohort was 65 years (±15) and 66% were men and 90% were 

white. The mean ln (DWIV) was 0.97 (±1.8). The QQ plot demonstrated genomic inflation rate 

< 10% (Figure 2). There were 71 SNPs associated with DWIV at p<5 x10-6 (Figure 3).   

 

Conclusions: The preliminary genome-wide analysis of  acute cerebral infarct volume, 

measured on clinical MRI of patients with AIS as DWIV, demonstrated 71 common SNPs that 

were associated with DWIV at a nominal genome-wide significance threshold.  Future studies 

are warranted to replicate and validate these genetic loci. 

 



 

Fig. 1. DWI cerebral infarct semi-automated analysis process 

 
 

 

 

 

 

Fig. 2. QQ plot for natural log transformed DWI cerebral infarct volumes 

 

 

A. DWI sequence B. Infarct Outline          C. Intensity Threshold       D. Manually Correct Infarct 

 



 

Fig. 3.   Manhattan plot for the association results of DWI infarct volume 
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Abstract. Introduction: White matter hyperintensity (WMH) as seen on T2 fluid attenuated 

inversion recovery (FLAIR) MRI is a rarefaction of white matter that is an established risk 

factor for stroke, independent of traditional vascular risk factors. Age is highly correlated with 

WMH volume (WMHV), but much variation in WMHV among ischemic stroke (IS) patients of 

similar ages remains unexplained. The 17q25 locus has been reported to be associated with 

WMHV in IS subjects, though heterogeneity within the IS population may limit the detected 

effect size.  

 

Aims: To compare the effect size of the 17q25 locus between subgroups of IS subjects, 

identified using a regression mixture model. 

 

Methods: Clinical characteristics as well as laboratory and radiographic data were ascertained 

on admission for IS in all consecutive patients ≥ 18 years. WMHV was measured using a 

previously validated, semi-automated method (Figure 1), normalized for head size, and natural 

log-transformed for genome-wide association analyses. Subjects were classified into groups 

with different rates of WMHV progression using the regression mixture model of age against 

normalized WMHV (nWMHV). Standard genotyping quality control procedures for 

quantitative trait analysis were applied; unobserved genotypes were imputed and subjected to 

standard post-imputation quality control filters. Association analysis of nWMHV for the 17q25 

SNPs within each group was adjusted for age, sex, and principal components 1 and 2. 

 

Results: Regression mixture modelling of age versus nWMHV identified 5 clusters (Figure 2). 

Association analysis of the 17q25 SNPs showed increasing effect sizes with increasing rate of 

progression of WMHV of the IS subgroup (Table 1).  

 

Conclusions: The effect size of the 17q25 locus increased from the group with the slowest rate 

of progression of WMHV to the group with the fastest rate of WMHV progression. Because the 

slowest WMHV progressors may share a similar rate of progression with the stroke-free adults, 

the increasing effect size with WMHV progression demonstrates that reducing heterogeneity in 

the IS cohort may increase detectable effect size of SNPs associated with WMHV. 



 

 

 

Fig. 1. Magnetic resonance imaging-based volumetric analysis of white matter hyperintensity 

volume using MRIcro software. An axial T2-FLAIR sequence with WMH is presented in panel 

(A). In panel (B), a region-of-interest map has been drawn over the WMH on the right side. In 

panel (C), the hyperintensities on the scan have been automatically highlighted using signal 

intensity thresholding. Taking the intersection of the region-of-interest and the hyperintensities 

and then manually editing as necessary produces the final scan with the highlighted and quanti-

fied WMHV in panel (D). 

 

 

 

 

Fig. 2. Regression mixture modelling of age versus nWMHV identifies five subgroups. 



 

 

Table 1. Effect sizes of the 17q25 locus SNPS on nWMHV within each IS subgroup. 

   SNP    

Group rs3744028 rs9894383 rs11869977 rs936393 rs3744017 rs1055129 

A -0.068 -0.078 -0.093 -0.088 -0.073 0.085 

B 0.170 0.266 0.222 0.350 0.325 0.017 

C 0.239 0.496 0.389 0.366 0.187 0.151 

D 0.812 0.765 1.087 0.568 0.264 1.055 

E 1.847 3.315 3.342 3.377 3.274 3.115 

 



Feature Selection and Imaging-Genetics
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Aims: We propose a sparse extension of the extremely randomized for-
est (ERF) [2] nonlinear regressor by embedding it in a model reduction
framework providing it with sparsity to reduce model complexity and re-
duced variance. The method enjoys few tunable parameters and is readily
scalable to large data through parallelization. We demonstrate the util-
ity of the method on two cases entailing joint modeling of genetic and
image features with cognitive scores in Alzheimer’s disease. In the first
case (∼ 103) genetic SNP features are combined with the trimmed mean
summary statistic of voxel shrinkage in 38 cortical and subcortical struc-
tures upon nonlinear registration to a reference brain. In the second case
the SNP features are combined with quartile summary statistics of the
shrinkage in a subset of 17 structures. In both the method identifies clini-
cally relevant features by assigning feature importance scores and the final
model using only relevant features achieves high prediction accuracy.

Method: We construct a model reduction framework consisting of a hi-
erarchical cross-validation in which each fold of an outer k-fold cross-
validation contains a complete q-fold inner cross-validation. The outer
divides the data into train and test sets allowing for model evaluation,
while the inner divides each outer train set into new q-fold train and
validation sets. Similar to recursive feature elimination [3], only features
whose importance is greater than the mean importance is retained for the
next iteration until the validation error no longer diminishes. However for
the ERF, OOB predictions [1] are unavailable therefore we use mean de-
crease in node impurity to compute features importance. Additionally,
each run of the inner and outer cross-validation folds are repeated n=10
and m=4 times respectively with random training data shuffling to reduce
variance. In the inner cross-validation feature importances are averaged
across repetitions, while the outer computes optimal feature set size from
votes cast by the inner cross-validation.



Results and Conclusions: We applied the proposed approach to a
subset of the ADNI [5] imaging genetics data containing 30 normal and
18 AD subjects. For genomic features we normalized the < R, θ > tu-
ples from 427 SNPs associated with AD (i.e. whose p-value ≤ 10−3) [4]
that are contained in the ADNI2 GWAS panel and have resolved R and
θ values. To form image features we computed the log Jacobian of the
mapping between the subject’s T1 MRI and a reference template. Our
first imaging-genetic dataset combining our genomic features with imag-
ing features computed as the trimmed mean (10%) of the voxel Jacobians
in 38 cortical and subcortical regions defined as part of the Freesurfer
atlas. Our second dataset combines the genomic features with summary
quartile (Q1, Q2, Q3) measures of the Jacobian distribution of a subset
of 17 structures.

We applied our method to predict AVLT 1 for both datasets. Simi-
lar RMSE prediction errors were are achieved (Fig. 1), though the best
anatomical region identification occurred using quartile measures. The
anatomical regions assigned high importance are shown in Fig. 2 and
Fig. 3. Importances for the individual SNP R and Θ components are
shown in Fig. 4a and Fig. 4b. The results from our approach show promis-
ing capabilities for sparse feature selection and prediction, We look for-
ward to applying it to additional datatsets and extending its capabilities.
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Features Trimmed mean Quartiles

Imaging-Genetics 4.86 4.47
Imaging 4.49 4.46
Genetics 4.56 4.53

Fig. 1: Regression performance measured as RMS error using 4-fold cross-validation. In
terms of RMSE, both trimmed mean and quartiles give similarly good performance.

a b c

Fig. 2: Automatically assigned region importances in green for AVLT prediction on
ICBM template using quartile Jacobian measures. (a) Sagittal highlights hippocampus
in center, while axial, coronal views (b,c) highlight hippocampus, inferior and superior
temporal regions. (asymmetry from training on different structures per hemisphere.)
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Fig. 3: Importances for the imaging regions. Using trimmed mean of log Jacobian (a)
yields only temporal region with high importance while using quartile measures (b)
assigns high importance to hippocampus and temporal regions.
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Fig. 4: SNP importances for (a) genomic R measure and (b) genomic Θ measure.
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Aims: We propose an extension to the sparse Partial Least Squares (PLS) regres-
sion framework using image regularization terms for sparsity and smoothness.
Our method leverages the wealth of information present in the disease pheno-
type at the voxel level, and is extendable and scalable to more comprehensive
imaging genetics data. We use this method on the joint modeling of image fea-
tures and genetics variants that associate with cognitive scores in Alzheimer’s
disease. The proposed method enables the parsimonious modeling of the image
and genetics feature which are high dimensional (∼ 105) as it reduces the feature
dimensionality. Furthermore, discovery of clinically relevant features is enabled
via importance weighting of individual features.

Method: We extend the sparse PLS regression framework [1], predicting cognitive
scores Y from imaging-genetic features X by solving the optimization problem:

min
w,c
−κwTMw+(1−κ)(c−w)TM(c−w)+λ1|c|1+λ2|c|2+λ3

∫
z∈Ω
|∇cI(z)| dz s.t. wTw = 1

where w and c are the original and surrogate direction vectors andM = XTY Y TX.
Here, κ ∈ (0, 0.5] controls the concavity of the objective function and the close-
ness of w and c. The L1 regularization term |c|1 promotes sparsity on w governed
by penalty weights λ1 that can be set differently for imaging and genetic fea-
tures. The L2 penalty |c|2 deals with potential singularity of M . The penalty
|∇cI | encourages smoothness on the weights of the voxel image features.

Results and Conclusions: We used the imaging genetics data from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) [3], using a subset of 30 normal controls
and 18 AD subjects. We applied the proposed method to voxel-wise image data
of the log Jacobian of the mappings between the subjects and a reference tem-
plate. We combined these imaging features with the set of 761 AD-associated
SNPs (p-value ≤ 10−3) from [2] pruned to 427 SNPs by removing sites missing
in ADNI2 GWAS panel (Illumina HumanOmniExpress BeadChip) and or with
unresolved R and θ values over the training set. The normalized < R, θ > tuples
from these 427 SNPs were used as the genomic features for each subject.

The proposed method provides predictions of cognitive scores (ADAS 1 and
AVLT 2) using imaging-genetics, with Fig. 1 showing the algorithm’s perfor-

1 Alzheimer’s Disease Assessment Scale
2 Auditory Verbal Learning Test



mance and behavior with increasing sparsity penalty. Fig. 2 shows the projec-
tion of the imaging genetics features X onto a 2D space formed by the first two
PLS components. Fig. 3 shows the feature relevance weights for the prediction
of cognitive scores. Preliminary results using our high dimensional data analysis
framework are promising. Our framework can be readily extended, for example
with explicit modeling of imaging-genetics interactions.

Fig. 1. Performance and behavior of our proposed algorithm with increasing sparsity
penalty. Left: error measures for the Alzheimer’s Disease Assessment Scale (ADAS)
and Auditory Verbal Learning Test (AVLT) cognitive scores. Middle: The number of
relevant voxel imaging features (i.e., having non-zero weights). Right: The number of
relevant genomic features. The number of selected imaging features decrease exponen-
tially, while the number of selected genomic features decrease linearly.

Fig. 2. Projection of imaging-genetics features onto the first two PLS components,
showing good separation between AD subjects (blue) and normal controls (red) .

Fig. 3. Imaging-genetics feature relevance for prediction. Left and middle: voxel rele-
vance weights (red) overlaid on the template provided by the International Consortium
on Brain Mapping. The coronal (left) and sagittal (middle) views show the hippocam-
pus being highlighted. Right: SNP relevance weights for the genomic R measure.
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1 Background and Aims 

The incidence of preterm birth is increasing steadily [1], with a high proportion of 

survivors experiencing adverse motor, cognitive and psychiatric sequelae [2].  Diffu-

sion tensor imaging (DTI) provides measures of white matter microstructure that are 

correlated with neurodevelopmental outcome [3] and highly heritable [4].  Joint mod-

eling of multivariate imaging and genetic data, leveraging prior biological knowledge 

of functional pathways, increases power to detect associations in complex disease 

[5,6].  We aim to identify biological pathways through which premature birth impacts 

the microstructure of white matter in neonates. 

2 Methods 

3-Tesla MR images and saliva were acquired for 72 preterm infants (mean gesta-

tional age (GA) 28
+4

 weeks, mean postmenstrual age (PMA) at scan 40
+3

 weeks). FA 

maps were constructed from 15-direction DTI, and Tract Based Spatial Statistics [7] 

was used to obtain a group white matter skeleton varying with degree of prematurity, 

adjusting for PMA at scan (Fig.1).  The phenotype was reduced to its three principal 

components, explaining 47% of the total variance. Salivary DNA was extracted and 

genotyped using Illumina HumanOmniExpress-12 arrays.  Pathways sparse reduced-

rank regression (PsRRR) [6] was used to jointly model the voxel-wise effects of ge-

nome-wide SNPs grouped into 186 KEGG pathways ( 0.99, 100 subsamples, 20 

iterations, 2000x10 and 4000x10 model fits).  The PsRRR method reduces bias due to 

pathway linkage disequilibrium and size by adjusting pathway weightings in the re-

gression model according to the empirical bias in pathway selection frequencies, ob-

tained by fitting the group LASSO model with a null response. 



3 Results 

High-ranking pathways associated with a brain endophenotype impacted by prema-

turity include a preponderance of mechanisms related to lipid metabolism and vesicu-

lar transport (13/30, Table 1). The highest ranked pathways have corresponding low 

selection probabilities in the null model (Fig. 2).  Two of the top three pathways (pe-

roxisome proliferator-activated receptor (PPAR) metabolism and alpha-linoleic acid 

metabolism) include the gene fatty acid desaturase (FADS2), which has been recently 

associated with changes in brain microstructure in a candidate study with this cohort 

[8]. Another pathway in the top three (glycine serine and threonine metabolism) is a 

suggested link between lipid and amino acid metabolism in various tissues including 

brain [9].  

4 Conclusions 

Biological pathways associated with a quantitative multivariate imaging endophe-

notype of prematurity suggest an important role for lipid metabolism. FADS2 might 

be driving pathway selection as it is a member of two highly ranked, relatively small 

pathways involving lipid metabolism.  Derivatives of alpha-linoleic acid protect cells 

from free-radical mediated oxidative stress, and promote differentiation of immature 

brain cells including oligodendrocytes and neuroblasts through PPAR-γ activation, 

thus conferring neuroprotection and enhancing myelination [10].  The effects of 

FADS2 variants may also be reflected in higher-level developmental measures, as 

they may impact childhood IQ by moderating dietary influences [11]. 

Figures and Tables 

Fig. 1. Group white matter DTI skeleton, showing (blue) voxels that vary due to gestational age 

at birth, adjusting for post-menstrual age at scan. Axial views superior to inferior, left to right.  

 



Table 1. Top 30 KEGG pathways, ranked by pathway selection frequency. 

 

 

Fig. 2. The highest ranked pathways have a low selection frequency in the null model. 
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The goal of International Mouse Phenotyping Consortium [1] is to study the
over 23,000 mouse genes by knocking them out one-by-one and raising the ge-
netically engineered mouse lines for comparative analysis against the wild-type,
with respect to morphology, metabolism and other biological traits (a.k.a. “phe-
notype”). Large amounts of knock-out mice have been raised, leading to a strong
demand for a high-throughput phenotyping technology. The traditional means
via time-consuming histological analysis is clearly unsuitable in this scenario.
Medical imaging technologies such as CT and MRI therefore have been used to
develop more efficient phenotyping approaches.

Existing work [2–5] primarily rests on volumetric analysis for phenotype de-
tection, which however generally fails when features are subtle, such as the ven-
tricular septal defects (VSD) in the heart. More sophisticated VSD detection ap-
proaches include measuring the cavities of cardiac and vascular structures [6], or
diameters of great arteries and semilunar valves [7], based on a semi-automated
segmentation and 3D reconstruction framework, however still unable to meet
the high-throughput requirement due to manual labor involved. This study pro-
poses, to the best of our knowledge, the first automated VSD detection system
for mouse embryos.

VSD indicates the presence of a hole in the ventricular septum, i.e. the wall
dividing the left and right ventricles of the heart, and is probably the most
common congenital cardiac anomaly. Our algorithm starts with the creation
of a normal average mouse atlas using all the wild-type images, followed by
registration of the target mutant images to the atlas whereby labels are back
propagated to perform heart segmentation accordingly. Then the left and right
ventricles are further segmented with the additional use of a region growing
technique, and VSD detection is completed by checking whether there is an
overlap between the two ventricle segmentations, as shown in Fig. 1.

Our approach was validated on a database of 15 mouse embryo images: 3 con-
trols and 12 mutants, where VSD is present in 3 mutant cases. All the data was
produced at Japan National Institute of Genetics based on the C57BL/10 mouse
line, imaged using µ-CT at 14.5 days postcoitum (dpc). The detection system
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Fig. 1. Overview of the detection algorithm

showed an overall accuracy of 91.7%, with a sensitivity of 66.7% and specificity
of 100% in the experiments, i.e. 2 out of the 3 VSD cases were successfully iden-
tified and none of the remaining 9 cases were misidentified with the presence
of VSD. This pilot study demonstrates the potential of our algorithm to estab-
lish an effective high-throughput phenotyping framework for VSD detection, and
may also be extended to other similar phenotype detection domains.

References

1. International Mouse Phenotyping Consortium (IMPC), www.mousephenotype.org
2. Zamyadi, M., Baghdadi, L., Lerch, J., Bhattacharya, S., Schneider, J., Henkelman,

R., Sled, J.: Mouse embryonic phenotyping by morphometric analysis of MR images.
Physiological Genomics, 42, 89-95 (2010)

3. Cleary, J., Modat, M., Norris, F., Price, A., Jayakody, S., Martinez-Barbera, J.,
Greene, N., Hawkes, D., Ordidge, R., Scambler, P., et al.: Magnetic resonance vir-
tual histology for embryos: 3D atlases for automated high-throughput phenotyping.
NeuroImage, 54, 769-778 (2011)

4. Wong, M., Dorr, A., Walls, J., Lerch, J., Henkelman, R.: A novel 3D mouse embryo
atlas based on micro-CT. Development, 139, 3248-3256 (2012)

5. Norris, F., Modat, M., Cleary, J., Price, A., McCue, K., Scambler, P., Ourselin,
S., Lythgoe, M.: Segmentation propagation using a 3D embryo atlas for high-
throughput MRI phenotyping: comparison and validation with manual segmenta-
tion. Magnetic Resonance in Medicine (2012)

6. Schneider, J., Bamforth, S., Farthing, C., Clarke, K., Neubauer, S., Bhattacharya,
S.: Rapid identification and 3D reconstruction of complex cardiac malformations
in transgenic mouse embryos using fast gradient echo sequence magnetic resonance
imaging. Journal of Molecular and Cellular Cardiology., 35, 217-222 (2003)

7. Weninger, W., Maurer, B., Zendron, B., Dorfmeister, K., Geyer, S.: Measurements
of the diameters of the great arteries and semi-lunar valves of chick and mouse
embryos. Journal of Microscopy, 234, 173-190 (2009)



Dopamine-Related Genetic Influences on Cognitive 
Flexibility 

 
Hans Melo,1* Daniel J Mueller,2,3 William A Cunningham,1,4 Adam Anderson.5  

 
1Psychology Department, University of Toronto; 4Rotman School of Management, University 
of Toronto; 5Department of Human Ecology, Cornell University; 3Department of Psychiatry, 

University of Toronto; 2Centre for Addiction and Mental Health. 
 

*Correspondence at hans.melo@mail.utoronto.ca 

Objective: Cognitive flexibility has been broadly defined as the ability to 
adapt one’s cognitive resources to engage in the immediate demands of the en-
vironment. For example, a change of environment might force an individual to 
reframe its problem-solving strategy. Failure to adapt may have negative conse-
quences for an individual and underpin a variety of mental disorders. Previous 
research suggests that cognitive flexibility relies on dopaminergic dynamics in-
volving the basal ganglia, anterior cingulate cortex, and prefrontal cortex. How-
ever, little is known with regards to how genes modulating dopaminergic func-
tion in these regions might affect cognitive flexibility. The aim of this study 
was to explore the influence of key genetic polymorphisms on the neural mech-
anisms underlying cognitive flexibility using functional magnetic resonance 
imaging (fMRI). 

 
Methods: 70 healthy individuals (34 male; mean age 20) performed an Em-
bedded Figured task while inside an fMRI scanner. The task asked participants 
to judge whether a simple shape was embedded in a more complex abstract fig-
ure. fMRI activity was collected using a 3T GE MRI scanner. T2*-weighted 
images were collected using a SPRL sequence (TR=2s, TE=30ms, 3x3x3 mm). 
Brain imaging analyses were performed using FSL (www.fmrib.ox.ac.uk/fsl) 
and implemented mixed-effect models in R. Activations were considered signif-
icant if exceeded P < .0001 (uncorrected). Saliva samples were collected from 
all participants for genomic DNA extraction and analyzed for a number of ge-
netic variants associated with dopamine function including DAT1(SLC6A3), 
DRD2(C957T), DRD4(exon III), DARP-32, COMT(Val158Met). Additionally, 
participants completed a number of self-report measures including the positive 
and negative affect survey (PANAS) a week prior to the experiment. Ongoing 
analyses focuses on gene-gene interactions. 
 
Results: The study revealed genotype-related differences in cognitive flexibil-
ity. A polymorphism in the DARPP-32 gene (rs907094), associated with striatal 
dopaminergic function, was predictive of overall performance in the embedded 



figures task. fMRI analyses revealed recruitment of several brain regions in-
cluding anterior cingulate cortex, lateral prefrontal cortex and insula. Critically, 
activation of the right insula was only present in trials requiring enhanced cog-
nitive flexibility.  
 
Conclusions: We provide evidence of dopamine-related genetic influences on 
cognitive flexibility. Our results point to the role of the DARPP-32 in sup-
porting the frontal dopaminergic mechanisms associated with cognitive flexibil-
ity. 
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1 Aims 

The search for an effective therapy for Glioblastoma(GBM)continues despite the 
recent discoveries of new molecular targets and pathways. MRI is a noninvasive 
diagnostic modality previously validated to be able to perform robust radio-genomic 
(imaging genomic) screens for uncovering potential novel targets.Thus,we seek to 
provide comprehensive image genomic analysis in GBM using quantitative MRI 
enhancing volume and large scale gene and micro-RNA expression profiles and 
correlating with survival. 

2 Materials & Methods 

We identified 99 treatment naive GBM patients from the The Cancer Genome Atlas 
(TCGA) who had MR imaging data available in the The Cancer Imaging Archive 
(TCIA). This data was randomized into training and validation sets. Gene expression 
profiles for these patients were correlated with tumor volumes derived from contrast 
enhancement volume in MRI to identify specific genes and gene networks associated 
with high contrast enhancement.Both sets were further characterized by Kaplan-Meier 
survival statistics and GBM molecular sub type-specific distribution. 

3 Results 

The top up-regulated and down-regulated gene in both the discovery and validation 
sets were identified in those patients with high CE volume.Patients with high CE 
volume demonstrated gene and miRNA signatures associated with angiogenesis. These 
patients also had poor survival. 

4 Conclusions 

Here,we present our imaging screening method for molecular cancer subtypes and 
genomic correlates of contrast enhancing volume.Our findings also have potential 
therapeutic significance since successful targeting of those genes,miRNA and pathways 
involved in the growth of high contrast enhancing tumor volumes will improve therapy 
and patient survival in GBM. 
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1 Aims 

To create an imaging biomarker signature in order to identify those Glioblastoma 
(GBM) patients with MGMT promoter methylation. 

2 Materials & Methods 

We identified 86 treatment-naïve patients from The Cancer Genome Atlas (TCGA) 
who had MGMT methylation status and pretreatment MRI from The Cancer Imaging 
Archive (TCIA). Qualitative VASARI imaging features for these 86 patients were 
assessed by 3 independent neuroradiologists and consensus was reached. Quantitative 
volumetric analysis was done in the 3D Slicer software 3.6(http://www.slicer.org) using 
segmentation module. Fluid Attenuated Inversion Recovery (FLAIR) was used for 
segmentation of the edema and post-contrast T1 weighted imaging (T1W1) for 
segmentation of enhancement (defined as tumor) and necrosis. Each qualitative and 
quantitative feature was correlated to MGMT methylation status both independently 
and as groups and subgroups. Multiple classification models were created via 
regression modeling and partition analysis using various combinations of variables. 

3 Results 

An imaging biomarker signature was created that predicted MGMT promoter 
methylation status. Multiple qualitative and quantitative MRI features correlated with 
MGMT methylation status. The logistic regression model with combinations of 
quantitative volumetric variables, clinical variables and the qualitative variable 
‘diffusion’ could predict MGMT methylation with an AUC of 0.847 with a sensitivity 
of 82% and a specificity of 83.8%. 

4 Conclusions 

MGMT methylation status plays an important role in patient predictive and 
prognostic stratification of patients with GBM. The identification of a non-invasive 
biomarker signature as a surrogate for MGMT methylation can help stratify patients in 
specific therapy and predict response versus non response to therapy. An imaging 
genomic signature can be expected to promote a more robust personalized approach to 
patient care and accelerate drug development and clinical trials. 
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1 Aims 

Imaging genomics (radio genomics) is a new field which links the imaging 
traits (radiophenotypes) with gene-expression profiles and the underlying ge-
nomic composition in tumors such as Glioblastoma (GBM). Large dataset anal-
ysis and interpretation for cancer requires a high cost, time and manpower. This 
new field can provide cost-effective biomarkers that can accurately reflect un-
derlying molecular cancer compositions. This is the first large-scale quantita-
tive imaging genomic mapping study in GBM.   

 

 

2 MATERIALS & METHODS 

In this retrospective study, we identified 78 treatment-naïve GBM patients from 
The Cancer Genome Atlas (TCGA) who had:  

Gene and microRNA expression profiles: Using Affymetrix level 1 mRNA and 
Agilent level 2 microRNA data, a total of 13,628 genes and 555 microRNAs 
(1,510 hybridization probes) were analyzed for each patient.  



Pretreatment MR-neuroimaging from TCIA: Using 3D Slicer software 3.6, 
FLAIR was used for segmentation of the edema, and post-contrast T1 weighted 
imaging (T1W1) for segmentation of enhancement (defined as tumor) and ne-
crosis (Figures 1 & 2). 

 

Genomic data was analyzed for significance and differential fold regulation and 
expression using Comparative Marker Selection (CMS) (Broad Institute, MIT) 
and Ingenuity Pathway Analysis (IPA) and then associated with the imaging 
characteristics. 

For the first part of the study, we categorized patients into high and low FLAIR 
volume groups for analysis and comparison. The Kaplan Meier method was 
used to calculate overall- and progression-free survival between the two groups. 
Mean gene and microRNA correlations were calculated using R square statis-
tics. 

3 RESULTS 

Gene expression analysis identified preferentially up-regulated genomic events 
in the high vs. low FLAIR volumes groups. A total of 53 mRNAs and 5 mi-
croRNAs were identified and were analyzed by IPA. The top upregulated gene 
was PERIOSTIN (POSTN), and the top downregulated miRNA was miR-219, 
which is predicted to bind to POSTN (Fig. 3a, b). They were concordant with 
the underlying biological processes of edema/invasion, necrosis, and enhancing 
tumor MRI phenotypes. Kaplan Meier analysis demonstrated that these resulted 
in significantly decreased survival (P=0.0008) and shorter time to disease pro-



gression (P=0.0009). In some cases, the gene expression was a stronger prog-
nostic variable than the molecular subtype (as defined by Verhaak and col-
leagues) (P=0.0001) (Figure 3.c). 

 

4 CONCLUSION 

Imaging genomics can provide relevant clinical decision making data by link-
ing imaging phenotypes to underlying genotypes in GBM patients and vice 
versa. MRI FLAIR volumes provide a screening method for molecular cancer 
subtypes and genomic correlates of cellular invasion. Imaging genomic map-
ping can be used to discover biologically meaningful genes and microRNA that 
can be used for development of therapeutic drugs, identifying candidates with 
target genes, and predicting prognosis and drug response. 
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