
Defensive Database
Programming with
SQL Server
Alex Kuznetsov

High Performance SQL Server

ISBN: 978-1-906434-44-1

Defensive Database
Programming with
SQL Server

By Alex Kuznetsov

Technical Review by Hugo Kornelis

First published by Simple Talk Publishing 2010

Copyright Alex Kuznetsov 2010

ISBN 978-1-906434-44-1

The right of Alex Kuznetsov to be identified as the author of this work has been asserted by him in accordance

with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored or introduced into a retrieval system,

or transmitted, in any form, or by any means (electronic, mechanical, photocopying, recording or otherwise)

without the prior written consent of the publisher. Any person who does any unauthorized act in relation to this

publication may be liable to criminal prosecution and civil claims for damages.

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired

out, or otherwise circulated without the publisher's prior consent in any form other than that in which it is

published and without a similar condition including this condition being imposed on the subsequent publisher.

Technical Review by Hugo Kornelis

Technical edit by Tony Davis

Cover Photography by Paul Vlaar & Photodynamic

Typeset & Designed by Matthew Tye & Gower Associates

Table of Contents
Introduction.. 11

What this book covers ..12

What this book does not cover..17

Code examples ...17

Chapter 1: Basic Defensive Database Programming Techniques19

Programming Defensively to Reduce Code Vulnerability ... 20

Define your assumptions ..20

Rigorous testing ...21

Defending Against Cases of Unintended Use ..22

Defending Against Changes in SQL Server Settings .. 29

How SET ROWCOUNT can break a trigger ... 30

How SET LANGUAGE can break a query .. 38

Defensive Data Modification ..43

Updating more rows than intended .. 43

The problem of ambiguous updates.. 45

How to avoid ambiguous updates ...49

Summary .. 55

Chapter 2: Code Vulnerabilities due to SQL Server Misconceptions57

Conditions in a WHERE clause can evaluate in any order ..57

SET, SELECT, and the dreaded infinite loop ...64

Specify ORDER BY if you need ordered data .. 72

Summary ..74

Chapter 3: Surviving Changes to Database Objects ...77

Surviving Changes to the Definition of a Primary or Unique Key 78

Using unit tests to document and test assumptions .. 82

Using @@ROWCOUNT to verify assumptions .. 85

Using SET instead of SELECT when assigning variables ..86

Surviving Changes to the Signature of a Stored Procedure .. 88

Surviving Changes to Columns ..91

Qualifying column names ..91

Handling changes in nullability: NOT IN versus NOT EXISTS 95

Handling changes to data types and sizes .. 100

Summary .. 103

Chapter 4: When Upgrading Breaks Code ..105

Understanding Snapshot Isolation ... 106

When Snapshot Isolation Breaks Code ... 110

Trigger behavior in normal READ COMMITTED mode ..113

Trigger behavior in SNAPSHOT mode ... 118

Building more robust triggers? ..122

Understanding MERGE ... 123

Issues When Triggers Using @@ROWCOUNT Are Fired by MERGE 125

Summary .. 130

Chapter 5: Reusing T-SQL Code ..131

The Dangers of Copy-and-Paste ... 132

How Reusing Code Improves its Robustness ... 137

Wrapping SELECTs in Views .. 141

Reusing Parameterized Queries: Stored Procedures versus Inline UDFs 141

Scalar UDFs and Performance ..147

Multi-statement Table-valued UDFs ..151

Reusing Business Logic: Stored Procedure, Trigger, Constraint or Index? 152

Use constraints where possible ... 152

Turn to triggers when constraints are not practical ..154

Unique filtered indexes (SQL Server 2008 only) ... 160

Summary ... 160

Chapter 6: Common Problems with Data Integrity .. 163

Enforcing Data Integrity in the Application Layer ... 163

Enforcing Data Integrity in Constraints ...166

Handling nulls in CHECK constraints ... 168

Foreign key constraints and NULLs ... 171

Understanding disabled, enabled, and trusted constraints .. 173

Problems with UDFs wrapped in CHECK constraints .. 180

Enforcing Data Integrity Using Triggers ...192

Summary ... 207

Chapter 7: Advanced Use of Constraints.. 209

The Ticket-Tracking System ...210

Enforcing business rules using constraints only .. 211

Removing the performance hit of ON UPDATE CASCADE221

Constraints and Rock Solid Inventory Systems ...227

Adding new rows to the end of the inventory trail..237

Updating existing rows .. 245

Adding rows out of date order ...249

Summary ..254

Chapter 8: Defensive Error Handling.. 255

Prepare for Unanticipated Failure .. 255

Using Transactions for Data Modifications ..257

Using Transactions and XACT_ABORT to Handle Errors ... 262

Using TRY…CATCH blocks to Handle Errors .. 266

A TRY…CATCH example: retrying after deadlocks ... 267

TRY…CATCH Gotchas ..273

Re-throwing errors ..273

TRY…CATCH blocks cannot catch all errors .. 278

Client-side Error Handling ...285

Conclusion ..290

The paid versions of this book contain two additional chapters: Chapter 9, Surviving
Concurrent Queries and Chapter 10, Surviving Concurrent Modifications. See the
Introduction for further details.

ix

About the Author

Alex Kuznetsov has been working with object-oriented languages and databases for
more than a decade. He has worked with Sybase, SQL Server, Oracle and DB2.

He currently works with DRW Trading Group in Chicago, where he leads a team of
developers, practicing agile development, defensive programming, and database unit
testing every day.

Alex contributes regularly to the SQL Server community. He blogs regularly on sqlblog.
com, has written numerous articles on simple-talk.com and devx.com, contributed a
chapter to the "MVP Deep Dives" book, and speaks at various community events, such as
SQL Saturday.

In his leisure time, Alex prepares for, and runs, ultra-marathons.

Author Acknowledgements

First of all, let me thank Tony Davis, the editor of this book, who patiently helped me
transform what was essentially a loose collection of blog posts into a coherent book.
Tony, I greatly appreciate the time and experience you devoted to this book, your
abundant helpful advice, and your patience.

Many thanks also to Hugo Kornelis, who agreed to review the book, and went very much
beyond just reviewing. Hugo, you have come up with many highly useful suggestions
which were incorporated in this book, and they made quite a difference! I hope you will
agree to be a co-author in the next edition, and enrich the book with your contributions.

Finally, I would like to thank Aaron Bertrand, Adam Machanic, and Plamen Ratchev for
interesting discussions and encouragement.

x

About the Technical Reviewer

Hugo Kornelis is co-founder and R&D lead of perFact BV, a Dutch company that strives
to improve analysis methods, and to develop computer-aided tools that will generate
completely functional applications from the analysis deliverable. The chosen platform
for this development is SQL Server.

In his spare time, Hugo likes to share and enhance his knowledge of SQL Server
by frequenting newsgroups and forums, reading and writing books and blogs, and
attending and speaking at conferences.

11

Introduction
Resilient T-SQL code is code that is designed to last, and to be safely reused by others.
The goal of defensive database programming, and of this book, is to help you to produce
resilient T-SQL code that robustly and gracefully handles cases of unintended use, and is
resilient to common changes to the database environment.

Too often, as developers, we stop work as soon as our code passes a few basic tests to
confirm that it produces the "right result" in a given use case. We do not stop to consider
the other possible ways in which the code might be used in the future, or how our code
will respond to common changes to the database environment, such as a change in the
database language setting, or a change to the nullability of a table column, and so on.

In the short-term, this approach is attractive; we get things done faster. However, if our
code is designed to be used for more than just a few months, then it is very likely that
such changes can and will occur, and the inevitable result is broken code or, even worse,
code that silently starts to behave differently, or produce different results. When this
happens, the integrity of our data is threatened, as is the validity of the reports on which
critical business decisions are often based. At this point, months or years later, and long
after the original developer has left, begins the painstaking process of troubleshooting
and fixing the problem.

Would it not be easier to prevent all this troubleshooting from happening? Would it
not be better to spend a little more time and effort during original development, to save
considerably more time on troubleshooting, bug fixing, retesting, and redeploying? After
all, many of the problems that cause our code to break are very common; they repeat
over and over again in different teams and on different projects.

This is what defensive programming is all about: we learn what can go wrong with
our code, and we proactively apply this knowledge during development. This book
is filled with practical, realistic examples of the sorts of problems that beset database
programs, including:

• changes in database objects, such as tables, constraints, columns, and stored
procedures

• changes to concurrency and isolation levels

Introduction

12

• upgrades to new versions of SQL Server

• changes in requirements

• code reuse

• problems causing loss of data integrity

• problems with error handling in T-SQL.

In each case, the book demonstrates approaches that will help you to understand and
enforce (or eliminate) the assumptions on which your solution is based, and to improve
its robustness.

What this book covers

This book describes a lot of specific problems, and typical approaches that will lead to
more robust code, However, my main goal is more general: it is to demonstrate how to
think defensively, and how to proactively identify and eliminate potential vulnerabilities
in T-SQL code during development rather than after the event when the problems have
already occurred.

The book breaks down into ten chapters, as described below. Eight of these chapters are
available in this free eBook version; the final two chapters are included in paid versions
only.

Ch. 01: Basic Defensive Database Programming Techniques

A high level view of the key elements of defensive database programming, illustrated via
some simple examples of common T-SQL code vulnerabilities:

• unreliable search patterns

• reliance on specific SQL Server environment settings

• mistakes and ambiguity during data modifications.

Introduction

13

Ch. 02: Code Vulnerabilities due to SQL Server Misconceptions

Certain vulnerabilities occur due to a basic misunderstanding of how the SQL
Server engine, or the SQL language, work. This chapter considers three common
misconceptions:

• the WHERE clause conditions will always be evaluated in the same order; a common
cause of intermittent query failure

• SET and SELECT always change the values of variables; a false assumption can lead
to the dreaded infinite loop

• data will be returned in some "natural order" – another common cause of
intermittent query failure.

Ch. 03: Surviving Changes to Database Objects

Perfectly-functioning SQL code can sometimes be broken by a simple change to the
underlying database schema, or to other objects that are used in the code. This chapter
examines several examples of how changes to database objects can cause unpredictable
behavior in code that accesses them, and discusses how to develop code that will not
break or behave unpredictably as a result of such changes. Specific examples include how
to survive:

• changes to the primary or unique keys, and how to test and validate assumptions
regarding the "uniqueness" of column data

• changes to stored procedure signatures, and the importance of using explicitly
named parameters

• changes to columns, such as adding columns as well as modifying an existing
column's nullability, size or data type.

Ch. 04: When Upgrading Breaks Code

Some potential changes cannot be foreseen and so we cannot "weatherproof" our code
against them; we cannot know in advance, for example, how the use of a new feature
might impact our existing code when we do not know what these new features are and
how they behave. What a defensive programmer can and must do, however, is analyze

Introduction

14

fully how new features work with existing code, before using these new features in
production. Specific examples demonstrate that:

• code that works perfectly when using READ COMMITTED isolation level, may fail to
correctly enforce business rules under SNAPSHOT or READ_COMMITTED_SNAPSHOT
isolation

• code that uses @@ROWCOUNT may behave incorrectly when used after a
MERGE statement.

Ch. 05: Reusing T-SQL Code

A copy-and-paste approach to code reuse will lead to multiple, inconsistent versions
of the same logic being scattered throughout your code base, and a maintenance
nightmare. This chapter demonstrates how common logic can be refactored into a
single reusable code unit, in the form of a constraint, stored procedure, trigger, UDF, or
index. This careful reuse of code will reduce the possibility of bugs and greatly improve
the robustness of our code. Specific examples covered include the following defensive
programming techniques:

• using views to encapsulate simple queries

• using UDFs to encapsulate parameterized queries, and why UDFs may sometimes be
preferable to stored procedures for this requirement

• how to avoid potential performance issues with UDFs

• using constraints, triggers and filtered indexes to implement business logic in
one place.

Ch. 06: Common Problems with Data Integrity

Data integrity logic in the application layer is too easily bypassed, so SQL Server
constraints and triggers are valuable weapons for the defensive programmer in the fight
to safeguard the integrity of data. The only completely robust way to ensure data
integrity is to use a trusted constraint. UDFs and triggers are dramatically more
flexible than constraints, but we need to be very careful when we use them, as the
latter, especially, are difficult to code correctly and, unless great care is taken, are
vulnerable to failure during multi-row modifications, or to being bypassed altogether.

Introduction

15

Specific examples demonstrate the following defensive programming lessons:

• when testing CHECK constraints, always include rows with NULLs in your test cases

• don't make assumptions about the data, based on the presence of FOREIGN KEY or
CHECK constraints, unless they are all trusted

• UDFs wrapped in CHECK constraints are sometimes unreliable as a means to enforce
data integrity rules; filtered indexes or indexed views are safer alternatives

• triggers require exceptional care and testing during development, and may still fail in
certain cases (for example, when using Snapshot isolation).

Ch. 07: Advanced Use of Constraints

Received wisdom suggests that constraints can enforce only a very limited set of simple
rules. In fact, in many cases, developers give up on constraints much too easily; they
allow us to solve far more complex problems than many people realize. This chapter
takes two common business systems, a ticket tracking system and an inventory system,
and demonstrates how constraints can be used, exclusively, to guarantee the integrity of
the data in these systems.

Constraint-only solutions, as you will see, are pretty complex too, but they have
the advantage that, if you get them right, they will be completely robust under
all conditions.

Ch. 08: Defensive Error Handling

The ability to handle errors is essential in any programming language and, naturally, we
have to implement safe error handling in our T-SQL if we want to build solid SQL Server
code. However, the TRY…CATCH error handling in SQL Server has certain limitations
and inconsistencies that will trap the unwary developer, used to the more robust error
handling of client-side languages such as C# and Java. The chapter includes specific
advice to the defensive programmer in how best to handle errors, including:

• if you already use a modern language such as C# in your system, then it makes sense
to utilize it to do complex handling of errors related to the database

Introduction

16

• if handling errors on SQL Server, keep it simple where possible; set XACT_ABORT to
ON and use transactions in order to roll back and raise an error

• if you wish to use TRY…CATCH, learn it thoroughly, and watch out for problems such
as errors that cannot be caught, doomed transactions, the need to change the error
number when raising errors, and so on.

Ch. 09: Surviving Concurrent Queries (Paid editions only)

A query that works splendidly in isolation can often fail miserably when put to work in
a live OLTP system, with real life concurrency. To make a bad situation worse, in many
cases such errors are subtle and intermittent, and therefore very difficult to reproduce
and understand. This chapter considers the case of reporting queries running against
tables that are being simultaneously modified, demonstrates how inconsistent results
can be returned, assesses the impact of various isolation levels, and considers how best
the defensive programmer can defend data integrity, while minimizing deadlocks.

Ch. 10: Surviving Concurrent Modifications (Paid editions only)

Just like queries, modifications that work perfectly well in the isolated world of the
test database, can suddenly start misbehaving intermittently when run in a production
environment under conditions of concurrent access. The chapter covers some of the
problems that might occur when "competing" connections try to simultaneously update
the same data, and how to avoid them:

• lost modifications, a.k.a. lost updates – such problems occur when modifications
performed by one connection are overwritten by another; they typically occur
silently, and no errors are raised.

• resource contention errors – such as deadlocks and lock timeouts

• primary key and unique constraint violations – such problems occur when
different modifications attempt to insert one and the same row.

Introduction

17

What this book does not cover

Throughout the book I stress the importance of creating testable and fully-tested code
modules. However, the focus of this book is on writing resilient T-SQL code, not on the
implementation of unit tests. In some cases, I will describe which unit tests are required,
and which checks must be wrapped as unit tests and must run automatically. However, I
will not provide any specific details about writing unit tests.

When many people think of defensive programming, they tend to think in terms
of vulnerabilities that can leave their code susceptible to "attack." A classic example
is the SQL Injection attack, and the coding techniques that reduce the likelihood
of a successful SQL Injection attack are excellent examples of defensive database
programming. However, there already are lots of very useful articles on this subject,
most notably an excellent article by Erland Sommerskog, The Curse and Blessings of

Dynamic SQL. The focus of this book is on very common, though much less publicized
vulnerabilities that can affect the resilience and reliability of your code.

Due to the firm focus on defensive coding techniques, there is also no coverage in this
book of what might be termed the "documentation" aspects of defensive programming,
which would include such topics as documenting requirements, establishing code
contracts, source control, versioning, and so on.

Finally, in this book I stay focused on practical examples. While some background
material is occasionally required, I've strenuously tried to avoid rehashing MSDN.
If you are not familiar with the syntax of some command that is used in the book, or you
are unfamiliar with some terminology, MSDN is the source to which you should refer.

Code examples

Throughout this book are code examples demonstrating various defensive programming
techniques. All examples should run on all versions of SQL Server from SQL Server 2005
upwards, unless specified otherwise. To download all the code samples presented in this
book, visit the following URL:
http://www.simple-talk.com/RedGateBooks/AlexKuznetsov/Defensive_Code.zip

http://www.sommarskog.se/dynamic_sql.html
http://www.sommarskog.se/dynamic_sql.html
http://www.simple-talk.com/RedGateBooks/AlexKuznetsov/Defensive_Code.zip

19

Chapter 1: Basic Defensive
Database Programming
Techniques
The goal of defensive database programming is to produce resilient database code; in
other words, code that does not contain bugs and is not susceptible to being broken by
unexpected use cases, small modifications to the underlying database schema, changes
in SQL Server settings, and so on.

If you fail to program defensively, then code that runs as expected on a given
standalone server, with a specific configuration, may run very differently in a
different environment, under different SQL Server settings, against different data, or
under conditions of concurrent access. When this happens, you will be susceptible to
erratic behavior in your applications, performance problems, data integrity issues, and
unhappy users.

The process of reducing the number of vulnerabilities in your code, and so increasing
its resilience, is one of constantly questioning the assumptions on which your
implementation depends, ensuring they are always enforced if they are valid, and
removing them if not. It is a process of constantly testing your code, breaking it, and
then refining it based on what you have learned.

The best way to get a feel for this process, and for how to expose vulnerabilities in your
code and fix them using defensive programming techniques, is to take a look at a few
common areas where I see that code is routinely broken by unintended use cases or
erroneous assumptions:

• unreliable search patterns

• reliance on specific SQL Server environment settings

• mistakes and ambiguity during data modifications.

In each case, we'll identify the assumptions that lead to code vulnerability, and show
how to fix them. All the examples in this chapter are as simple as possible, in that there
is no concurrency, and the underlying database schema is fixed.

Chapter 1: Basic Defensive Database Programming Techniques

20

In subsequent chapters, we'll introduce the additional dangers that can arise when
exposing the code to changes in the database schema and running it under high
concurrency.

Programming Defensively to Reduce Code
Vulnerability

There are four key elements to defensive database programming that, when applied, will
allow you to eliminate bugs and make your code less vulnerable to be being subsequently
broken by cases of unintended use.

1. Define and understand your assumptions.

2. Test as many use cases as possible.

3. Lay out your code in short, fully testable, and fully tested modules.

4. Reuse your code whenever feasible, although we must be very careful when we reuse
T-SQL code, as described in Chapter 5.

As noted in the introduction to this book, while I will occasionally discuss the sort of
checks and tests that ought to be included in your unit tests (Steps 2 and 3), this book
is focused on defensive programming, and so, on the rigorous application of the first
two principles.

Define your assumptions

One of the most damaging mistakes made during the development of SQL and any
other code, is a failure to explicitly define the assumptions that have been made
regarding how the code should operate, and how it should respond to various inputs.
Specifically, we must:

• explicitly list the assumptions that have been made

• ensure that the these assumptions always hold

• systematically remove assumptions that are not essential, or are incorrect.

Chapter 1: Basic Defensive Database Programming Techniques

21

When identifying these assumptions, there can be one of three possible outcomes.
Firstly, if an assumption is deemed essential, it must be documented, and then tested
rigorously to ensure it always holds; I prefer to use unit tests to document such
assumptions (more on this in Chapter 3). Failure to do so will mean that when the code
makes it into production it will inevitably be broken as a result of usage that conflicts
with the assumption.

Secondly, if the assumption is deemed non-essential, it should, if possible, be removed.
Finally, in the worst case, the code may contain assumptions that are simply wrong, and
can threaten the integrity of any data that the code modifies. Such assumptions must be
eliminated from the code.

Rigorous testing

As we develop code, we must use all our imagination to come up with cases of
unintended use, trying to break our modules. We should incorporate these cases
into our testing suites.

As we test, we will find out how different changes affect code execution and learn how to
develop code that does not break when "something," for example, a language setting or
the value of ROWCOUNT, changes

Having identified a setting that breaks one of our code modules, we should fix it and
then identify and fix all other similar problems in our code. We should not stop at
that. The defensive programmer must investigate all other database settings that may
affect the way the code runs, and then review and amend the code again and again,
fixing potential problems before they occur. This process usually takes a lot of
iterations, but we end up with better, more robust code every time, and we will save
a lot of potential wasted time in troubleshooting problems, as well as expensive
retesting and redeployment, when the code is deployed to production.

Throughout the rest of this chapter, we'll discuss how this basic defensive coding
philosophy is applied in practice, by way of some simple practical examples.

Chapter 1: Basic Defensive Database Programming Techniques

22

Defending Against Cases of Unintended Use

All too often, we consider our code to be finished as soon as it passes a few simple tests.
We do not take enough time to identify and test all possible, reasonable use cases for our
code. When the inevitable happens, and our code is used in a way we failed to consider,
it does not work as expected.

To demonstrate these points, we'll consider an example that shows how (and how not)
to use string patterns in searching. We'll analyze a seemingly working stored procedure
that searches a Messages table, construct cases of unintended use, and identify an
implicit assumption on which the implementation of this procedure relies. We will then
need to decide whether to eliminate the assumption or to guarantee that it always holds.
Either way, we will end up with a more robust procedure.

Listing 1-1 contains the code needed to create a sample Messages table, which holds
the subject and body of various text messages, and load it with two sample messages. It
then creates the stored procedure, SelectMessagesBySubjectBeginning, which
will search the messages, using a search pattern based on the LIKE keyword. The stored
procedure takes one parameter, SubjectBeginning, and is supposed to return every
message whose subject starts with the specified text.

CREATE TABLE dbo.Messages
 (
 MessageID INT IDENTITY(1,1) NOT NULL
 PRIMARY KEY,
 Subject VARCHAR(30) NOT NULL ,
 Body VARCHAR(100) NOT NULL
) ;
GO

INSERT INTO dbo.Messages
 (Subject ,
 Body
)
 SELECT 'Next release delayed' ,
 'Still fixing bugs'
 UNION ALL

Chapter 1: Basic Defensive Database Programming Techniques

23

 SELECT 'New printer arrived' ,
 'By the kitchen area' ;
GO

CREATE PROCEDURE dbo.SelectMessagesBySubjectBeginning
 @SubjectBeginning VARCHAR(30)
AS
 SET NOCOUNT ON ;
 SELECT Subject ,
 Body
 FROM dbo.Messages
 WHERE Subject LIKE @SubjectBeginning + '%' ;

Listing 1-1: Creating and populating the Messages table along with the stored
procedure to search the messages.

Some preliminary testing against this small set of test data, as shown in Listing 1-2, does
not reveal any problems.

-- must return one row
EXEC dbo.SelectMessagesBySubjectBeginning
 @SubjectBeginning='Next';

Subject Body
------------------------------ -------------------
Next release delayed Still fixing bugs

-- must return one row
EXEC dbo.SelectMessagesBySubjectBeginning
 @SubjectBeginning='New';

Subject Body
------------------------------ -------------------
New printer arrived By the kitchen area

-- must return two rows
EXEC dbo.SelectMessagesBySubjectBeginning

Chapter 1: Basic Defensive Database Programming Techniques

24

 @SubjectBeginning='Ne';

Subject Body
------------------------------ -------------------
Next release delayed Still fixing bugs
New printer arrived By the kitchen area

-- must return nothing
EXEC dbo.SelectMessagesBySubjectBeginning
 @SubjectBeginning='No Such Subject';

Subject Body
------------------------------ -------------------

Listing 1-2: A few simple tests against the provided test data demonstrate that
results match expectations.

Handling special characters in searching

In defensive database programming, it is essential to construct cases of unintended use
with which to break our code. The test data in Listing 1-1 and the stored procedure calls
in Listing 1-2 demonstrate the cases of intended use, and clearly the procedure works,
when it is used as intended.

However, have we considered all the possible cases? Will the procedure continue to work
as expected in cases of unintended use? Can we find any hidden bugs in this procedure?
In fact, it is embarrassingly easy to break this stored procedure, simply by adding a few
"off-topic" messages to our table, as shown in Listing 1-3.

INSERT INTO dbo.Messages
 (Subject ,
 Body
)
 SELECT '[OT] Great vacation in Norway!' ,
 'Pictures already uploaded'
 UNION ALL
 SELECT '[OT] Great new camera' ,

Chapter 1: Basic Defensive Database Programming Techniques

25

 'Used it on my vacation' ;
GO
-- must return two rows
EXEC dbo.SelectMessagesBySubjectBeginning
 @SubjectBeginning = '[OT]' ;

Subject Body
------------------------------ -------------------

Listing 1-3: Our procedure fails to return "off-topic" messages.

Our procedure fails to return the expected messages. In fact, by loading one more mes-
sage, as shown in Listing 1-4, we can demonstrate that this procedure can also return
incorrect data.

INSERT INTO dbo.Messages
 (Subject ,
 Body
)
 SELECT 'Ordered new water cooler' ,
 'Ordered new water cooler' ;
EXEC dbo.SelectMessagesBySubjectBeginning
 @SubjectBeginning = '[OT]' ;

Subject Body
------------------------------ -------------------
Ordered new water cooler Ordered new water cooler

Listing 1-4: Our procedure returns the wrong messages when the search pattern
contains [OT].

When using the LIKE keyword, square brackets ("[" and "]"), are treated as wildcard
characters, denoting a single character within a given range or set. As a result, while the
search was intended to be one for off-topic posts, it in fact searched for "any messages
whose subject starts with O or T." Therefore Listing 1-3 returns no rows, since no such
messages existed at that point, whereas Listing 1-4 "unexpectedly" returns the message
starting with "O," rather than the off-topic messages.

Chapter 1: Basic Defensive Database Programming Techniques

26

In a similar vein, we can also prove that the procedure fails for messages with the % sign
in subject lines, as shown in Listing 1-5.

INSERT INTO dbo.Messages
 (Subject ,
 Body
)
 SELECT '50% bugs fixed for V2' ,
 'Congrats to the developers!'
 UNION ALL
 SELECT '500 new customers in Q1' ,
 'Congrats to all sales!' ;
GO

EXEC dbo.SelectMessagesBySubjectBeginning
 @SubjectBeginning = '50%' ;

Subject Body
------------------------------ ----------------
50% bugs fixed for V2 Congrats to the developers!
500 new customers in Q1 Congrats to all sales!

Listing 1-5: Our stored procedure returns the wrong messages, along with the
correct ones, if the pattern contains %.

The problem is basically the same: the % sign is a wildcard character denoting "any string
of zero or more characters." Therefore, the search returns the "500 new customers…" row
in addition to the desired "50% bugs fixed…" row.

Our testing has revealed an implicit assumption that underpins the implementation
of the SelectMessagesBySubjectBeginning stored procedure: the author of this
stored procedure did not anticipate or expect that message subject lines could contain
special characters, such as square brackets and percent signs. As a result, the search only
works if the specified SubjectBeginning does not contain special characters.

Having identified this assumption, we have a choice: we can either change our stored
procedure so that it does not rely on this assumption, or we can enforce it.

Chapter 1: Basic Defensive Database Programming Techniques

27

Enforcing or eliminating the special characters assumption

Our first option is to fix our data by enforcing the assumption that messages will not
contain special characters in their subject line. We can delete all the rows with special
characters in their subject line, and then add a CHECK constraint that forbids their
future use, as shown in Listing 1-6. The patterns used in the DELETE command and
in the CHECK constraint are advanced, and need some explanation. The first pattern,
%[[]%, means the following:

• both percent signs denote "any string of zero or more characters"

• [[] in this case denotes "opening square bracket, ["

• the whole pattern means "any string of zero or more characters, followed by an
opening square bracket, followed by another string of zero or more characters,"
which is equivalent to "any string containing at least one opening square bracket."

Similarly, the second pattern, %[%]%, means "any string containing at least one
percent sign."

BEGIN TRAN ;
DELETE FROM dbo.Messages
WHERE Subject LIKE '%[[]%'
 OR Subject LIKE '%[%]%' ;

ALTER TABLE dbo.Messages
ADD CONSTRAINT Messages_NoSpecialsInSubject
 CHECK(Subject NOT LIKE '%[[]%'
 AND Subject NOT LIKE '%[%]%') ;

ROLLBACK TRAN ;

Listing 1-6: Enforcing the "no special characters" assumption.

Although enforcing the assumption is easy, does it make practical sense? It depends.
I would say that, under most circumstances, special characters in subject lines should
be allowed, so let's consider a second, better option – eliminating the assumption.
Note that Listing 1-6 rolls back the transaction, so that our changes are not persisted
in the database.

Chapter 1: Basic Defensive Database Programming Techniques

28

Listing 1-7 shows how to alter the stored procedure so that it can handle special
characters. To better demonstrate how the procedure escapes special characters, I
included some debugging output. Always remember to remove such debugging code
before handing over the code for QA and deployment!

ALTER PROCEDURE dbo.SelectMessagesBySubjectBeginning
 @SubjectBeginning VARCHAR(50)
AS
 SET NOCOUNT ON ;
 DECLARE @ModifiedSubjectBeginning VARCHAR(150) ;
 SET @ModifiedSubjectBeginning =
 REPLACE(REPLACE(@SubjectBeginning,
 '[',
 '[[]'),
 '%',
 '[%]') ;
 SELECT @SubjectBeginning AS [@SubjectBeginning] ,
 @ModifiedSubjectBeginning AS
 [@ModifiedSubjectBeginning] ;
 SELECT Subject ,
 Body
 FROM dbo.Messages
 WHERE Subject LIKE @ModifiedSubjectBeginning + '%' ;
GO

Listing 1-7: Eliminating the "no special characters" assumption.

Listing 1-8 demonstrates that our stored procedure now correctly handles special
characters. Of course, in a real world situation, all previous test cases have to be rerun,
to check that we didn't break them in the process of fixing the bug.

-- must return two rows
EXEC dbo.SelectMessagesBySubjectBeginning
 @SubjectBeginning = '[OT]' ;

Chapter 1: Basic Defensive Database Programming Techniques

29

@SubjectBeginning @ModifiedSubjectBeginning
--
[OT] [[]OT]

Subject Body
------------------------------ ----------------------------
[OT] Great vacation in Norway! Pictures already uploaded
[OT] Great new camera Used it on my vacation

-- must return one row
EXEC dbo.SelectMessagesBySubjectBeginning
 @SubjectBeginning='50%';

@SubjectBeginning @ModifiedSubjectBeginning

50% 50[%]

Subject Body
------------------------------ ----------------------
50% bugs fixed for V2 Congrats to the developers!

Listing 1-8: Our search now correctly handles [] and %.

Whether we ultimately decide to enforce or eliminate the assumption, we have created a
more robust search procedure as a result.

Defending Against Changes in SQL Server
Settings

A common mistake made by developers is to develop SQL code on a given SQL Server,
with a defined set of properties and settings, and then fail to consider how their code
will respond when executed on instances with different settings, or when users change
settings at the session level.

Chapter 1: Basic Defensive Database Programming Techniques

30

For example, Chapters 4 and 9 of this book discuss transaction isolation levels, and
explain how code may run differently under different isolation levels, and how to
improve code so that it is resilient to changes in the isolation level.

However, in this chapter, let's examine a few simple cases of how hidden assumptions
with regard to server settings can result in vulnerable code.

How SET ROWCOUNT can break a trigger

Traditionally, developers have relied on the SET ROWCOUNT command to limit the
number of rows returned to a client for a given query, or to limit the number of rows
on which a data modification statement (UPDATE, DELETE, MERGE or INSERT) acts. In
either case, SET ROWCOUNT works by instructing SQL Server to stop processing after a
specified number of rows.

However, the use of SET ROWCOUNT can have some unexpected consequences for the
unwary developer. Consider a very simple table, Objects, which stores basic size and
weight information about objects, as shown in Listing 1-9.

CREATE TABLE dbo.Objects
 (
 ObjectID INT NOT NULL PRIMARY KEY ,
 SizeInInches FLOAT NOT NULL ,
 WeightInPounds FLOAT NOT NULL
) ;
GO
INSERT INTO dbo.Objects
 (ObjectID ,
 SizeInInches ,
 WeightInPounds
)
 SELECT 1 ,
 10 ,
 10
 UNION ALL
 SELECT 2 ,

Chapter 1: Basic Defensive Database Programming Techniques

31

 12 ,
 12
 UNION ALL
 SELECT 3 ,
 20 ,
 22 ;
GO

Listing 1-9: Creating and populating the Objects table.

We are required to start logging all updates of existing rows in this table, so we create
 a second table, ObjectsChangeLog, in which to record the changes made, and a
trigger that will fire whenever data in the Objects table is updated, record details
of the changes made, and insert them into ObjectsChangeLog.

CREATE TABLE dbo.ObjectsChangeLog
 (
 ObjectsChangeLogID INT NOT NULL
 IDENTITY ,
 ObjectID INT NOT NULL ,
 ChangedColumnName VARCHAR(20) NOT NULL ,
 ChangedAt DATETIME NOT NULL ,
 OldValue FLOAT NOT NULL ,
 CONSTRAINT PK_ObjectsChangeLog PRIMARY KEY
 (ObjectsChangeLogID)
) ;
 GO

CREATE TRIGGER Objects_UpdTrigger ON dbo.Objects
 FOR UPDATE
AS
 BEGIN;
 INSERT INTO dbo.ObjectsChangeLog
 (ObjectID ,
 ChangedColumnName ,
 ChangedAt ,
 OldValue

Chapter 1: Basic Defensive Database Programming Techniques

32

)
 SELECT i.ObjectID ,
 'SizeInInches' ,
 CURRENT_TIMESTAMP ,
 d.SizeInInches
 FROM inserted AS i
 INNER JOIN deleted AS d ON
 i.ObjectID = d.ObjectID
 WHERE i.SizeInInches <> d.SizeInInches
 UNION ALL
 SELECT i.ObjectID ,
 'WeightInPounds' ,
 CURRENT_TIMESTAMP ,
 d.WeightInPounds
 FROM inserted AS i
 INNER JOIN deleted AS d ON
 i.ObjectID = d.ObjectID
 WHERE i.WeightInPounds <> d.WeightInPounds ;
 END ;

Listing 1-10: Logging updates to the Objects table.

Please note that my approach to all examples in this book is to keep them as simple as
they can be, while still providing a realistic demonstration of the point, which here is the
effect of SET ROWCOUNT. So, in this case, I have omitted:

• a "real" key on the ObjectsChangeLog table, enforced by a UNIQUE constraint
(ObjectID, ChangedColumnName, ChangedAt), in addition to the surrogate key
on ObjectsChangeLogID

• the equivalent insert and delete triggers to log INSERT and DELETE modifications, as
well as UPDATEs.

Likewise, there are several ways of logging changes, and the one I chose here may not be
the best approach; again, my goal was to keep the example focused and simple. Listing
1-11 shows the code that tests how our trigger logs changes against the Objects table.

Chapter 1: Basic Defensive Database Programming Techniques

33

BEGIN TRAN ;

-- TRUNCATE TABLE can also be used here
DELETE FROM dbo.ObjectsChangeLog ;

UPDATE dbo.Objects
SET SizeInInches = 12 ,
 WeightInPounds = 14
WHERE ObjectID = 1 ;

-- we are selecting just enough columns
-- to demonstrate that the trigger works

SELECT ObjectID ,
 ChangedColumnName ,
 OldValue
FROM dbo.ObjectsChangeLog ;

-- we do not want to change the data,
-- only to demonstrate how the trigger works
ROLLBACK ;
-- the data has not been modified by this script

ObjectID ChangedColumnName OldValue
----------- -------------------- ------
1 SizeInInches 10
1 WeightInPounds 10

Listing 1-11: Testing the trigger.

Apparently, our trigger works as expected! However, with a little further testing, we can
prove that the trigger will sometimes fail to log UPDATEs made to the Objects table,
due to an underlying assumption in the trigger code, of which the developer may not
even have been aware!

Chapter 1: Basic Defensive Database Programming Techniques

34

The ROWCOUNT assumption

Let's consider what might happen if, within a given session, a user changed the default
value for ROWCOUNT and then updated the Objects table, without resetting ROWCOUNT,
as shown in Listing 1-12.

DELETE FROM dbo.ObjectsChangeLog ;

SET ROWCOUNT 1 ;
-- do some other operation(s)
-- for which we needed to set rowcount to 1
-- do not restore ROWCOUNT setting
-- to its default value
BEGIN TRAN ;

UPDATE dbo.Objects
SET SizeInInches = 12 ,
 WeightInPounds = 14
WHERE ObjectID = 1 ;

-- make sure to restore ROWCOUNT setting
-- to its default value so that it does not affect the
-- following SELECT

SET ROWCOUNT 0 ;

SELECT ObjectID ,
 ChangedColumnName ,
 OldValue
FROM dbo.ObjectsChangeLog ;

ROLLBACK ;

Chapter 1: Basic Defensive Database Programming Techniques

35

ObjectID ChangedColumnName OldValue
----------- -------------------- ---------
1 SizeInInches 10

Listing 1-12: Breaking the trigger by changing the value of ROWCOUNT.

As a result of the change to the ROWCOUNT value, our trigger processes the query
that logs changes to the SizeInInches column, returns one row, and then ceases
processing. This means that it fails to log the change to the WeightInPounds
column. Of course, there is no guarantee that the trigger will log the change to the
SizeInInches column. On your server, the trigger may log only the change of
WeightInPounds but fail to log the change in SizeInInches. Which column will be
logged depends on the execution plan chosen by the optimizer, and we cannot assume
that the optimizer will always choose one and the same plan for a query.

Although the developer of the trigger may not have realized it, the implied assumption
regarding its implementation is that ROWCOUNT is set to its default value. Listing 1-12
proves that that, when this assumption is not true, the trigger will not work as expected.

Enforcing and eliminating the ROWCOUNT assumption

Once we understand the problem, we can fix the trigger very easily, by resetting
ROWCOUNT to its default value at the very beginning of the body of the trigger, as
shown in Listing 1-13.

ALTER TRIGGER dbo.Objects_UpdTrigger ON dbo.Objects
 FOR UPDATE
AS
 BEGIN;
-- the scope of this setting is the body of the trigger
 SET ROWCOUNT 0 ;
 INSERT INTO dbo.ObjectsChangeLog
 (ObjectID ,
 ChangedColumnName ,
 ChangedAt ,
 OldValue
)

Chapter 1: Basic Defensive Database Programming Techniques

36

 SELECT i.ObjectID ,
 'SizeInInches' ,
 CURRENT_TIMESTAMP ,
 d.SizeInInches
 FROM inserted AS i
 INNER JOIN deleted AS d ON
 i.ObjectID = d.ObjectID
 WHERE i.SizeInInches <> d.SizeInInches
 UNION ALL
 SELECT i.ObjectID ,
 'WeightInPounds' ,
 CURRENT_TIMESTAMP ,
 d.WeightInPounds
 FROM inserted AS i
 INNER JOIN deleted AS d ON
 i.ObjectID = d.ObjectID
 WHERE i.WeightInPounds <>
 d.WeightInPounds ;
 END ;
-- after the body of the trigger completes,
-- the original value of ROWCOUNT is restored
-- by the database engine

Listing 1-13: Resetting ROWCOUNT at the start of the trigger.

We can rerun the test from Listing 1-12, and this time the trigger will work as required,
logging both changes. Note that the scope of our SET ROWCOUNT is the trigger, so our
change will not affect the setting valid at the time when the trigger was fired.

SET ROWCOUNT is deprecated in SQL Server 2008…

…and eventually, in some future version, will have no effect on INSERT, UPDATE or
DELETE statements. Microsoft advises rewriting any such statements that rely on
ROWCOUNT to use TOP instead. As such, this example may be somewhat less
relevant for future versions of SQL Server; the trigger might be less vulnerable to
being broken, although still not immune. However, at the time of writing, this
example is very relevant.

Chapter 1: Basic Defensive Database Programming Techniques

37

In this case, one simple step both enforces the underlying assumption, by ensuring that
it is always valid, and eliminates it, by ensuring that the code continues to work in cases
where ROWCOUNT is not at its default value.

Proactively fixing SET ROWCOUNT vulnerabilities

We have fixed the ROWCOUNT vulnerability in our trigger, but our job is not done. What
about other modules in our system? Might they not have the same vulnerability?

Having learned of the potential side effects of SET ROWCOUNT, we can now analyze all
the other modules in our system, determine if they have the same problem, and fix them
if they do. For example, our stored procedure, SelectMessagesBySubjectBegin-
ning (Listing 1-1) has the same vulnerability, as demonstrated by the test in Listing 1-14.

SET ROWCOUNT 1 ;
-- must return two rows
EXEC dbo.SelectMessagesBySubjectBeginning
 @SubjectBeginning = 'Ne' ;

…(Snip)…

Subject Body
------------------------------ -------------------
Next release delayed Still fixing bugs

Listing 1-14: SET ROWCOUNT can break a stored procedure just as easily as it can
break a trigger.

We can apply the same fix, adding SET ROWCOUNT 0; to the very beginning of this
stored procedure. Similarly, we should apply this fix to all other modules that need it.

If your code is supposed to exist for a considerable time, then it makes perfect sense to
fix problems proactively. It is usually faster and easier to do so than to wait until the
problem occurs, spend considerable time troubleshooting, and then eventually
implement the same fix.

Chapter 1: Basic Defensive Database Programming Techniques

38

How SET LANGUAGE can break a query

Just as the value of ROWCOUNT can be changed at the session level, so can other settings,
such as the default language. Many developers test their code only under the default
language setting of their server, and do not test how their code will respond if executed
on a server with a different language setting, or if there is a change in the setting at the
session level.

This practice is perfectly correct, as long as our code always runs under the same settings
as those under which we develop and test it. However, if or when the code runs under
different settings, this practice will often result in code that is vulnerable to errors,
especially when dealing with dates.

Consider the case of a stored procedure that is supposed to retrieve from our
ObjectsChangeLog table (Listing 1-10) a listing of all changes made to the Objects
table over a given date range. According to the requirements, only the beginning of the
range is required; the end of the range is an optional parameter. If an upper bound for
the date range is not provided, we are required to use a date far in the future, December
31, 2099, as the end of our range.

CREATE PROCEDURE dbo.SelectObjectsChangeLogForDateRange
 @DateFrom DATETIME ,
 @DateTo DATETIME = NULL
AS
 SET ROWCOUNT 0 ;
 SELECT ObjectID ,
 ChangedColumnName ,
 ChangedAt ,
 OldValue
 FROM dbo.ObjectsChangeLog
 WHERE ChangedAt BETWEEN @DateFrom
 AND COALESCE(@DateTo, '12/31/2099') ;
GO

Listing 1-15: Creating the SelectObjectsChangeLogForDateRange
stored procedure.

Chapter 1: Basic Defensive Database Programming Techniques

39

Note that this stored procedure uses a string literal, 12/31/2099, to denote December 31,
2099. Although 12/31/2099 does represent December 31, 2099 in many languages, such
as US English, in many other cultures, such as Norwegian, this string does not represent
a valid date. This means that the author of this stored procedure has made an implicit
assumption: the code will always run under language settings where 12/31/2099
represents December 31, 2099.

When we convert string literals to DATETIME values, we do not have to make
assumptions about language settings. Instead, we can explicitly specify the
DATETIME format from which we are converting.

The following scripts demonstrate both the safe way to convert character strings to
DATETIME values, and the vulnerability of our stored procedure to changes in language
settings. The script shown in Listing 1-18 populates the ObjectsChangeLog table and
calls the SelectObjectsChangeLogForDateRange stored procedure under two
different language settings, US English and Norwegian.

-- we can populate this table via our trigger, but
-- I used INSERTs,to keep the example simple
INSERT INTO dbo.ObjectsChangeLog
 (ObjectID ,
 ChangedColumnName ,
 ChangedAt ,
 OldValue
)
 SELECT 1 ,
 'SizeInInches' ,
-- the safe way to provide July 7th, 2009
 '20090707',
 12.34 ;
 GO

SET LANGUAGE 'us_english' ;
-- this conversion always works in the same way,
-- regardless of the language settings,
-- because the format is explicitly specified
EXEC dbo.SelectObjectsChangeLogForDateRange

Chapter 1: Basic Defensive Database Programming Techniques

40

 @DateFrom = '20090101';

SET LANGUAGE 'Norsk' ;

EXEC dbo.SelectObjectsChangeLogForDateRange
 @DateFrom = '20090101';

-- your actual error message may be different from mine,
-- depending on the version of SQL Server

Changed language setting to us_english.
(successful output skipped)

Changed language setting to Norsk.
ObjectID ChangedColumnName ChangedAt OldValue
----------- -------------------- ------------- --------------
Msg 242, Level 16, State 3, Procedure SelectObjectsChangeLogF
orDateRange, Line 6
The conversion of a char data type to a datetime data type
resulted in an out-of-range datetime value.

Listing 1-16: Our stored procedure breaks under Norwegian language settings.

Under the Norwegian language settings we receive an error at the point where it
attempts to convert 12/31/2099 into a DATETIME string.

Note that we are, in fact, quite fortunate to receive an error message right away. Should
we, in some other script or procedure, convert '10/12/2008' to DATETIME, SQL Server
would silently convert this constant to a wrong value and we'd get incorrect results.

Listing 1-17 shows how our stored procedure can return unexpected results without
raising errors; such silent bugs may be very different to troubleshoot.

INSERT INTO dbo.ObjectsChangeLog
 (ObjectID ,
 ChangedColumnName ,
 ChangedAt ,

Chapter 1: Basic Defensive Database Programming Techniques

41

 OldValue
)
 SELECT 1 ,
 'SizeInInches' ,
 -- this means June 15th, 2009
 '20090615',
 12.3
 UNION ALL
 SELECT 1 ,
 'SizeInInches' ,
 -- this means September 15th, 2009
 '20090915',
 12.5

SET LANGUAGE 'us_english' ;

-- this call returns rows from Jul 6th to Sep 10th, 2009
-- one log entry meets the criteria
EXEC SelectObjectsChangeLogForDateRange
 @DateFrom = '07/06/2009',
 @DateTo = '09/10/2009' ;

SET LANGUAGE 'Norsk' ;

-- this call returns rows from Jun 7th to Oct 9th, 2009
-- three log entries meet the criteria
EXEC SelectObjectsChangeLogForDateRange
 @DateFrom = '07/06/2009',
 @DateTo = '09/10/2009' ;

Changed language setting to us_english.
ObjectID ChangedColumnName ChangedAt OldValue
----------- -------------------- -----------------------
1 SizeInInches 2009-07-07 12.34

-- because the stored procedure does not have an ORDER BY
-- clause, your results may show up in a different
-- order

Chapter 1: Basic Defensive Database Programming Techniques

42

Changed language setting to Norsk.

ObjectID ChangedColumnName ChangedAt OldValue
----------- -------------------- -----------------------
1 SizeInInches 2009-07-07 12.34
1 SizeInInches 2009-06-15 12.3
1 SizeInInches 2009-09-15 12.5

Listing 1-17: Our stored procedure call returns different results, depending on
language settings.

To fix the stored procedure, as shown in Listing 1-18, we need to explicitly specify the
format from which we convert the VARCHAR values provided when the stored procedure
is executed.

ALTER PROCEDURE dbo.SelectObjectsChangeLogForDateRange
 @DateFrom DATETIME ,
 @DateTo DATETIME = NULL
AS
 SET ROWCOUNT 0 ;
 SELECT ObjectID ,
 ChangedColumnName ,
 ChangedAt ,
 OldValue
 FROM dbo.ObjectsChangeLog
 WHERE ChangedAt BETWEEN @DateFrom
 AND COALESCE(@DateTo,
 '20991231') ;

Listing 1-18: Fixing the stored procedure.

The stored procedure will now run correctly, regardless of the language settings. In this
case, we chose to fix the problem by eliminating the assumption. Alternatively, in some
cases, we might choose to enforce it by setting the language at the beginning of the
stored procedure, just as we did with the ROWCOUNT setting.

Chapter 1: Basic Defensive Database Programming Techniques

43

Of course, there are situations when our code will always run under one and the
same settings, in which case there is no need to do anything. For example, if a module
implements business rules specific to the state of Minnesota, it is reasonable to assume
that it will always run under the same language settings.

Defensive Data Modification

Data modification is, in general, an area in which I see developers getting into trouble
time and again. We'll start with a case that demonstrates how data can be erroneously
updated as a result of a false assumption in the stored procedure that modifies it. It is a
simple example, but the underlying problem is a very common one: using search criteria
that affect more rows than intended.

We'll then discuss a second, somewhat more complex case, where an UPDATE can
go wrong because it fails to unambiguously identify the row(s) to be modified,
perhaps falsely assuming that the underlying data structures will ensure that no
such ambiguity exists.

Updating more rows than intended

Listing 1-19 creates a simple Employee table, and a SetEmployeeManager stored
procedure that assigns a manager to a given employee.

CREATE TABLE dbo.Employee
 (
 EmployeeID INT NOT NULL ,
 ManagerID INT NULL ,
 FirstName VARCHAR(50) NULL ,
 LastName VARCHAR(50) NULL ,
 CONSTRAINT PK_Employee_EmployeeID
 PRIMARY KEY CLUSTERED (EmployeeID ASC) ,
 CONSTRAINT FK_Employee_EmployeeID_ManagerID
 FOREIGN KEY (ManagerID)
 REFERENCES dbo.Employee (EmployeeID)
) ;

Chapter 1: Basic Defensive Database Programming Techniques

44

GO

CREATE PROCEDURE dbo.SetEmployeeManager
 @FirstName VARCHAR(50) ,
 @LastName VARCHAR(50) ,
 @ManagerID INT
AS
 SET NOCOUNT ON ;
 UPDATE dbo.Employee
 SET ManagerID = @ManagerID
 WHERE FirstName = @FirstName
 AND LastName = @LastName ;

Listing 1-19: The Employee table and SetEmployeeManager stored procedure.

Clearly, the person who developed the stored procedure assumed that, at most, one
employee may have the provided first and last name. If there happen to be two people in
the organization with the same name, then this stored procedure will assign them both
to the same manager.

Again, having uncovered the assumption, we need to decide whether to enforce it
or eliminate it. We could enforce it by simply placing a UNIQUE constraint on the
FirstName and LastName columns. However, in this case, it seems much more
reasonable to assume that there may well be more than one employee with the same
first and last name, and that these namesake employees may report to different
managers. We therefore need to eliminate the incorrect assumption.

There are many ways to do this, the simplest being to ensure that the parameter
supplied to the stored procedure, and used in the search criteria, identifies a unique
row, as shown in Listing 1-20.

ALTER PROCEDURE dbo.SetEmployeeManager
 @EmployeeID INT ,
 @ManagerID INT
AS
 SET NOCOUNT ON ;
 UPDATE dbo.Employee

Chapter 1: Basic Defensive Database Programming Techniques

45

 SET ManagerID = @ManagerID
 WHERE EmployeeID = @EmployeeID ;

Listing 1-20: Using unambiguous search criteria.

As long as EmployeeID is the primary key on the dbo.Employee table, this procedure
will work correctly.

The problem of ambiguous updates

The results of data modifications may be unpredictable in the hands of the careless
programmer. Let's consider a very common requirement: populating a permanent table
from a staging table. First of all, let's create our permanent table, Codes, and a staging
table, CodesStaging, as shown in Listing 1-21. Note that CodesStaging does not
have a primary key. This is very common for staging tables, because data is often loaded
into such tables before detecting duplicates and other data integrity violations.

CREATE TABLE dbo.Codes
 (
 Code VARCHAR(5) NOT NULL ,
 Description VARCHAR(40) NOT NULL ,
 CONSTRAINT PK_Codes PRIMARY KEY (Code)
) ;
GO

CREATE TABLE dbo.CodesStaging
 (
 Code VARCHAR(10) NOT NULL ,
 Description VARCHAR(40) NOT NULL
) ;
GO

Listing 1-21: Creating the Codes and CodesStaging tables.

Chapter 1: Basic Defensive Database Programming Techniques

46

Now, let's populate each table with some sample data, as shown in Listing 1-22.

DELETE FROM dbo.Codes ;
INSERT INTO dbo.Codes
 (Code ,
 Description
)
 SELECT 'AR' ,
 'Old description for Arkansas'
 UNION ALL
 SELECT 'IN' ,
 'Old description for Indiana' ;

DELETE FROM dbo.CodesStaging ;
INSERT INTO dbo.CodesStaging
 (Code ,
 Description
)
 SELECT 'AR' ,
 'description for Argentina'
 UNION ALL
 SELECT 'AR' ,
 'new description for Arkansas'
 UNION ALL
 SELECT 'IN' ,
 'new description for Indiana ' ;

Listing 1-22: Populating the Codes and CodesStaging tables.

Now, we'll examine two different ways of updating data in the permanent table, based
on data in the staging table, both of which are subject to ambiguities if care is not taken.

1. Using UPDATE…FROM.

2. Updating an inline view.

We'll then discuss strategies for avoiding such ambiguities.

Chapter 1: Basic Defensive Database Programming Techniques

47

Using UPDATE…FROM

Notice, in Listing 1-22, that the incoming data in our staging table has a duplicate: the
code AR occurs twice, with different descriptions. Suppose that we have not detected or
resolved this duplicate, and that we are updating our Codes table from the staging table.

UPDATE dbo.Codes

SET Description = s.Description
FROM dbo.Codes AS c INNER JOIN dbo.CodesStaging AS s
 ON c.Code = s.Code ;

SELECT Code ,
 Description
FROM dbo.Codes ;

Code Description
---------- --
AR description for Argentina
IN new description for Indiana

(2 row(s) affected)

Listing 1-23: An ambiguous UPDATE…FROM, when loading data from a staging table
(CodesStaging) into a target table (Codes).

Although two descriptions were provided for the AR code, the UPDATE…FROM
command did not raise an error; it just silently updated the corresponding row in the
Codes table with one of the two provided values. In this case, the 'old description
for Arkansas' has been overwritten with the 'description for Argentina.'

Chapter 1: Basic Defensive Database Programming Techniques

48

Updating inline views

When we update inline views, we may encounter exactly the same problem. First,
repopulate each of the tables with the original data, using the code from Listing 1-22.
Next, create an inline view, and then use it to implement exactly the same functionality
as the previous UPDATE…FROM commands, as shown in Listing 1-24.

WITH c AS (SELECT c.Code ,
 c.Description ,
 s.Description AS NewDescription
 FROM dbo.Codes AS c
 INNER JOIN dbo.CodesStaging AS s
 ON c.Code = s.Code
)
 UPDATE c
 SET Description = NewDescription ;

SELECT Code ,
 Description
FROM dbo.Codes ;

Code Description
---------- --
AR description for Argentina
IN new description for Indiana

Listing 1-24: An ambiguous update of an inline view.

Note that, neither in this example nor in the previous UPDATE…FROM example,
can we predict which of these two values will end up in the target table – that, as usual,
depends on the execution plan and, as such, is completely unpredictable. It is by pure
chance that, in my examples, Argentina was chosen over Arkansas in both cases. I was
able to get different results, with the description of Arkansas rather than Argentina
inserted into Codes, just by changing the order in which the rows are inserted into
CodesStaging. However, again, there is no guarantee that you will get the same
results on your box. Also, bear in mind that, if we ever did add an index to the staging
table, this would almost certainly affect the result as well.

Chapter 1: Basic Defensive Database Programming Techniques

49

How to avoid ambiguous updates

In both previous examples, the developer has written the UPDATE command apparently
under the assumption that there can be no duplicate data in the CodesStaging –
which cannot be guaranteed in the absence of a UNIQUE or PRIMARY KEY constraint
no the Code column – or that any duplicate data should have been removed before
updating the permanent table.

Generally, performing this sort of ambiguous update is unacceptable. In some cases, we
might want to refine the query to make sure it never yields ambiguous results. Typically,
however, we want either to raise an error when an ambiguity is detected, or to update
only what is unambiguous.

In SQL Server 2008, we can circumvent such problems with UPDATE…FROM or
CTE-based updates, by use of the MERGE command. However, prior to SQL Server
2008, we have to detect these ambiguities.

Using MERGE to detect ambiguity (SQL Server 2008 only)

If you are working with SQL Server 2008, then easily the best option is to use the
MERGE command (covered in further detail in Chapter 4, When Upgrading Breaks Code).
In Listing 1-25, we use the MERGE command to update our primary table from our
staging table and immediately encounter the expected error.

MERGE INTO dbo.Codes AS c
 USING dbo.CodesStaging AS s
 ON c.Code = s.Code
 WHEN MATCHED
 THEN UPDATE
 SET c.Description = s.Description ;

Chapter 1: Basic Defensive Database Programming Techniques

50

Msg 8672, Level 16, State 1, Line 1
The MERGE statement attempted to UPDATE or DELETE the same
row more than once. This happens when a target row matches
more than one source row. A MERGE statement cannot UPDATE/
DELETE the same row of the target table multiple times.
Refine the ON clause to ensure a target row matches at most
one source row, or use the GROUP BY clause to group the
source rows.

Listing 1-25: MERGE detects an ambiguity in incoming data.

An ANSI-standard method

Pre-SQL Server 2008, we are forced to seek alternative ways to raise an error whenever
there is an ambiguity. The code in Listing 1-26 is ANSI-standard SQL and accomplishes
that goal.

-- rerun the code from Listing 1-22
-- before executing this code
UPDATE dbo.Codes
SET Description =
 (SELECT Description
 FROM dbo.CodesStaging
 WHERE Codes.Code = CodesStaging.Code
)
WHERE EXISTS (SELECT *
 FROM dbo.CodesStaging AS s
 WHERE Codes.Code = s.Code
) ;
Msg 512, Level 16, State 1, Line 3
Subquery returned more than 1 value. This is not permitted
when the subquery follows =, !=, <, <= , >, >= or when the
subquery is used as an expression.
The statement has been terminated.

Listing 1-26: An ANSI-standard UPDATE command, which raises an error when
there is an ambiguity.

Chapter 1: Basic Defensive Database Programming Techniques

51

Note that, in order to update just one column, we had to use two almost identical
subqueries in this command. This is definitely not a good practice. Should we need to
update ten columns, we would have to repeat almost the same code eleven times! If,
at some later time, we need to modify the subquery, we will have to make one and the
same change in eleven places, which is very prone to errors.

Defensive inline view updates

Fortunately, there are several ways to improve the robustness of inline view updates, as
well as UPDATE…FROM updates (covered in the next section), which work with SQL 2005.

In the previous two examples, an error was raised when ambiguity was detected. This
is usually preferable but, if your business rules allow you to ignore ambiguities and only
update that which is unambiguous, then the solution shown in Listing 1-27 will work.

-- rerun the code from Listing 1-22
-- before executing this code
BEGIN TRAN ;

WITH c AS (SELECT c.Code ,
 c.Description ,
 s.Description AS NewDescription
 FROM dbo.Codes AS c
 INNER JOIN dbo.CodesStaging AS s
 ON c.Code = s.Code
 AND (SELECT COUNT(*)
 FROM dbo.CodesStaging AS s1
 WHERE c.Code = s1.Code
) = 1
)
 UPDATE c
 SET Description = NewDescription ;

ROLLBACK ;

Listing 1-27: Using a subquery to ignore ambiguities when updating an inline view.

Chapter 1: Basic Defensive Database Programming Techniques

52

This time, only the description of Indiana is updated. In a similar fashion, we could
filter out (i.e. ignore) ambiguities with the help of an analytical function, as shown in
Listing 1-28.

-- rerun the code from Listing 1-22
-- before executing this code
BEGIN TRAN ;

WITH c AS (SELECT c.Code ,
 c.Description ,
 s.Description AS NewDescription ,
 COUNT(*) OVER (PARTITION BY s.Code)
 AS NumVersions
 FROM dbo.Codes AS c
 INNER JOIN dbo.CodesStaging AS s
 ON c.Code = s.Code
)
 UPDATE c
 SET Description = NewDescription
 WHERE NumVersions = 1 ;

ROLLBACK ;

Listing 1-28: Using PARTITION BY to ignore ambiguities when updating
an inline view.

In some cases, the approach of only performing unambiguous updates, and silently
ignoring ambiguous ones, is unacceptable. In the absence of built-in methods, we can
use tricky workarounds to reuse the code as much as possible and still raise an error if
there is an ambiguity. Consider the example shown in Listing 1-29, in which a divide by
zero occurs if there is an ambiguity.

-- rerun the code from Listing 1-22
-- before executing this code
DECLARE @ambiguityDetector INT ;
WITH c AS (SELECT c.Code ,
 c.Description ,

Chapter 1: Basic Defensive Database Programming Techniques

53

 s.Description AS NewDescription ,
 COUNT(*) OVER (PARTITION BY s.Code)
 AS NumVersions
 FROM dbo.Codes AS c
 INNER JOIN dbo.CodesStaging AS s
 ON c.Code = s.Code
)
 UPDATE c
 SET Description = NewDescription ,
 @ambiguityDetector = CASE WHEN NumVersions = 1
 THEN 1
-- if we have ambiguities, the following branch executes
-- and raises the following error:
-- Divide by zero error encountered.
 ELSE 1 / 0
 END ;

Msg 8134, Level 16, State 1, Line 4
Divide by zero error encountered.
The statement has been terminated.

Listing 1-29: An UPDATE command using an inline view and raising a divide by zero
error when there is an ambiguity.

Of course, the error message raised by this code (divide by zero) is misleading, so we
should only use this approach when none of the previous options are viable.

Defensive UPDATE…FROM

Some of the approaches just outlined for improving the robustness of inline view
updates, apply equally as well to improving the UPDATE…FROM command. For example,
we can use a subquery to ignore ambiguities, as shown in Listing 1-30.

-- rerun the code from Listing 1-22
-- before executing this code
BEGIN TRAN ;
UPDATE dbo.Codes

Chapter 1: Basic Defensive Database Programming Techniques

54

SET Description = 'Old Description' ;

UPDATE dbo.Codes
SET Description = s.Description
FROM dbo.Codes AS c
 INNER JOIN dbo.CodesStaging AS s
 ON c.Code = s.Code
 AND (SELECT COUNT(*)
 FROM dbo.CodesStaging AS s1
 WHERE s.Code = s1.Code
) = 1 ;
SELECT Code ,
 Description
FROM dbo.Codes ;
ROLLBACK ;

Listing 1-30: Using a subquery to ignore ambiguities when using UPDATE…FROM.

Likewise, we can use an analytical function for detecting and ignoring ambiguities, as
shown in Listing 1-31.

-- rerun the code from Listing 1-22
-- before executing this code
BEGIN TRAN ;
UPDATE dbo.Codes
SET Description = 'Old Description' ;

UPDATE dbo.Codes
SET Description = s.Description
FROM dbo.Codes AS c
 INNER JOIN (SELECT Code ,
 Description ,
 COUNT(*) OVER (PARTITION BY Code)
 AS NumValues
 FROM dbo.CodesStaging
) AS s
 ON c.Code = s.Code

Chapter 1: Basic Defensive Database Programming Techniques

55

 AND NumValues = 1 ;
SELECT Code ,
 Description
FROM dbo.Codes ;
ROLLBACK ;

Listing 1-31: Using an analytical function to detect and ignore ambiguities when
using UPDATE…FROM.

Summary

The goal of this chapter was to introduce, by way of some simple examples, some
of the basic ideas that underpin defensive database programming. It is vital that you
understand and document the assumptions that underpin your implementation, test
them to ensure their validity, and eliminate them if they are not. It is also vital that
you consider as many use cases as possible for your code, and ensure it behaves
consistently in each case. Where inconsistencies or incorrect behavior are found, the
defensive programmer will not only fix the offending module, but also test all other
modules that might suffer from a similar problem and proactively safeguard against it.

Along the way, I hope you've learned the following specific lessons in defensive
programming:

• how to use complex patterns to improve the robustness of LIKE searches

• how to avoid potential difficulties with SET ROWCOUNT

• the importance of safe date formats and of explicitly specifying the required format
when converting dates

• how to avoid dangerous ambiguity when performing updates by, for example:

• using MERGE, in SQL Server 2008

• using subqueries, pre-SQL Server 2008.

• how to use subqueries or the COUNT(*) OVER analytic function to improve the
robustness of modifications when using UPDATE...FROM, or updating inline views,
so that ambiguous updates are ignored.

56

57

Chapter 2: Code Vulnerabilities
due to SQL Server
Misconceptions
In Chapter 1, we discussed several examples where we could choose whether to ensure
that an assumption that underpinned our code implementation was always true, or to
eliminate that assumption, if possible. However, certain vulnerabilities occur due to a
basic misunderstanding of how the SQL Server engine, or the SQL language, work. Such
vulnerabilities should always be eliminated, or they will ultimately lead to code failure.

This chapter will discuss the following three, very common, misconceptions:

• WHERE clause conditions will always be evaluated in the same order – a common
cause of intermittent query failure

• SET and SELECT always change the values of variables – this false assumption can
lead to the dreaded infinite loop

• Data will be returned in some "natural order" – another common cause of
intermittent query failure.

In each case we'll examine how, with simple defensive coding techniques, we can
improve the quality and resilience of our database code.

Conditions in a WHERE clause can evaluate in any
order

Quite a few languages explicitly guarantee that logical expressions will evaluate
in a certain order, from left to right. SQL is not one of them. Never assume that the
conditions in your WHERE clause will evaluate in the left-to-right order in which you
list them. If your code relies on the WHERE clause conditions being evaluated in a given
order, then the resulting query is unsafe.

Chapter 2: Code Vulnerabilities due to SQL Server Misconceptions

58

Consider, for example, the query shown in Listing 2-1. At first glance, it seems
straightforward enough: we check that a provided expression is a valid date and, if so,
CAST it to a specific date format; in many client-side languages this approach would
always work.

-- this is example syntax only. The code will not run
-- as the EmailMesssages table does not exist
SELECT Subject ,
 Body
FROM dbo.EmailMessages
WHERE ISDATE(VarcharColumn) = 1
 AND CAST(VarcharColumn AS DATETIME) = '20090707';

Listing 2-1: A potentially unsafe query.

This query might work for some data, but it can blow up at any time, and the reason is
simple: the conditions in the WHERE clause can evaluate in any order, and the order can
change from one execution of the query to the next. If the CAST is evaluated before the
ISDATE validity check, and if the string is not a valid date, than the query will fail.

I would like to demonstrate how brittle this sort of code can be, and how little it may
take to break such code. I will provide a script in which a query originally succeeds, but
fails after I have added an index. Usually, such problems occur intermittently, but this
example has been devised in such a way that it behaves consistently on different
servers, running different versions of SQL Server (though, even having done this,
there is no guarantee that it will run in your environment exactly like it does in mine).

Listing 2-2 shows how to create a helper table, Numbers, with over a million
integer numbers.

Helper tables

Helper tables such as Numbers are probably familiar to most SQL programmers
and have a variety of uses. If you don't already have one, it's worth creating the one
in Listing 2-2, and keeping it around for future use.

Chapter 2: Code Vulnerabilities due to SQL Server Misconceptions

59

It also creates a Messages table and populates it with test data (if you already have a
table with this name, from running examples in Chapter 1, you will need to drop it). To
make sure that the example consistently executes in the same way on different servers, I
had to populate the table with a large number of wide rows; this is why we need to insert
one million rows, and that every row has a CHAR(200) column. As a result, the code may
take some time to complete. Note also that only one row out of one million has a valid
date in the MessageDateAsVarcharColumn column.

-- helper table
CREATE TABLE dbo.Numbers
 (
 n INT NOT NULL
 PRIMARY KEY
) ;
GO

DECLARE @i INT ;
SET @i = 1 ;
INSERT INTO dbo.Numbers
 (n)
 SELECT 1 ;
WHILE @i < 1000000
 BEGIN;
 INSERT INTO dbo.Numbers
 (n)
 SELECT n + @i
 FROM dbo.Numbers ;
 SET @i = @i * 2 ;
 END ;
GO

CREATE TABLE dbo.Messages
 (
 MessageID INT NOT NULL
 PRIMARY KEY ,
-- in real life the following two columns
-- would have foreign key constraints;

Chapter 2: Code Vulnerabilities due to SQL Server Misconceptions

60

-- they are skipped to keep the example short
 SenderID INT NOT NULL ,
 ReceiverID INT NOT NULL ,
 MessageDateAsVarcharColumn VARCHAR(30) NULL ,
 SomeMoreData CHAR(200) NULL
) ;
GO

INSERT INTO dbo.Messages
 (MessageID ,
 SenderID ,
 ReceiverID ,
 MessageDateAsVarcharColumn ,
 SomeMoreData
)
 SELECT n ,
 n % 1000 ,
 n / 1000 ,
 'Wrong Date' ,
 'SomeMoreData'
 FROM dbo.Numbers ;
GO
-- after the insert all the messages have wrong dates

UPDATE dbo.Messages
SET MessageDateAsVarcharColumn = '20090707'
WHERE SenderID = 123
 AND ReceiverID = 456 ;
-- after the update exactly one message has a valid date

Listing 2-2: Creating the helper Numbers table and Messages table.

Given that almost all the rows in this table have invalid DATETIME values, attempting to
convert such invalid values to DATETIME leads to conversion errors, such as shown in
Listing 2-3.

Chapter 2: Code Vulnerabilities due to SQL Server Misconceptions

61

SELECT MessageID ,
 SenderID ,
 ReceiverID ,
 MessageDateAsVarcharColumn ,
 SomeMoreData
FROM dbo.Messages
WHERE CAST(MessageDateAsVarcharColumn AS DATETIME) =
 '20090707';

-- your actual error message may be different
-- depending on the version of SQL Server

Msg 241, Level 16, State 1, Line 1
Conversion failed when converting datetime from character
string.

Listing 2-3: A simple query against the Messages table fails with a conversion error.

Clearly, we need to filter out invalid values before converting to DATETIME. The naïve
query shown in Listing 2-4 may or may not work on your server.

SELECT MessageID ,
 SenderID ,
 ReceiverID ,
 MessageDateAsVarcharColumn ,
 SomeMoreData
FROM dbo.Messages
WHERE ISDATE(MessageDateAsVarcharColumn) = 1
 AND CAST(MessageDateAsVarcharColumn AS DATETIME)
 = '20090707' ;

Listing 2-4: An unsafe way to filter out invalid DATETIME values.

There is no way to predict whether or not this query will work for you; the database
engine will evaluate the WHERE conditions in any order it wishes. In fact, if it does work
for you, you are unlucky. If it is going to break, as it inevitably will, it is best to know
immediately rather than find out later, at some inconvenient moment.

Chapter 2: Code Vulnerabilities due to SQL Server Misconceptions

62

The safe way to develop such queries is to use CASE expressions to explicitly specify the
order in which our conditions must evaluate, as demonstrated in Listing 2-5.

SELECT MessageID ,
 SenderID ,
 ReceiverID ,
 MessageDateAsVarcharColumn ,
 SomeMoreData
FROM dbo.Messages
WHERE CASE WHEN ISDATE(MessageDateAsVarcharColumn) = 1
 THEN CAST(MessageDateAsVarcharColumn
 AS DATETIME)
 END = '20090707' ;

Listing 2-5: CASE expressions ensure that only valid DATETIME values are converted

Before we move on, let's consider a variation of our previous unsafe date-filtering query,
shown in Listing 2-6.

SELECT MessageID ,
 SenderID ,
 ReceiverID ,
 MessageDateAsVarcharColumn ,
 SomeMoreData
FROM dbo.Messages
WHERE SenderID = 123
 AND ReceiverID = 456
 AND CAST(MessageDateAsVarcharColumn AS DATETIME)
 = '20090707' ;

Listing 2-6: Attempting to select the only valid date.

This query attempts to select the only row that contains a valid date, and it succeeded
on quite a few servers on which I have tried it out. I need to state clearly again, though,
that there is no guarantee that this query will succeed on your server.

Chapter 2: Code Vulnerabilities due to SQL Server Misconceptions

63

However, in this case and under these conditions, the optimizer was choosing to
convert the MessageDate value to DATETIME only after both other conditions were
evaluated, and it was doing so consistently on several servers running different versions
of SQL Server. We can confirm this is the case by changing the order of conditions in
our WHERE clause, as shown in Listing 2-7.

SELECT MessageID ,
 SenderID ,
 ReceiverID ,
 MessageDateAsVarcharColumn ,
 SomeMoreData
FROM dbo.Messages
WHERE CAST(MessageDateAsVarcharColumn AS DATETIME) =
 '20090707'
 AND SenderID = 123
 AND ReceiverID = 456 ;

Listing 2-7: Even though CAST now appears first in the WHERE clause, it may (or may
not) be evaluated last.

As we have discussed, the conditions in the WHERE clause are not evaluated in left-to-
right order. More to the point, the next time this (or any other) query runs, the order in
which the conditions are evaluated can change.

To demonstrate this, let's create an index on the SenderID column of the Messages
table, as shown in Listing 2-8.

CREATE INDEX Messages_SenderID_MessageDate
ON dbo.Messages(SenderID, MessageDateAsVarcharColumn) ;

Listing 2-8: Creating an index on the Messages table.

Now, when I rerun the query in Listing 2-6, the query blows up, presenting the same
conversion error as shown in Listing 2-3. Clearly, in the presence of this index, my server
converts to DATETIME before evaluating both other conditions. Here is one possible
explanation: without the index, the optimizer chooses to scan the whole table (basically

Chapter 2: Code Vulnerabilities due to SQL Server Misconceptions

64

there are no other possible plans). As the table is scanned, the conditions on
integer columns are evaluated first because integer comparisons are cheaper than
DATETIME conversions.

In any event, after creating the new index, the optimizer has decided that the new index
Messages_SenderID_MessageDate is selective enough to be used in our query.
So the database engine begins a range scan of the index Messages_SenderID_
MessageDate on the condition SenderID=123. For each index entry that satisfies
this condition, it also evaluates the condition CAST(MessageDateAsVarcharColumn
AS DATETIME)='20090707' to narrow down the search, because the column
MessageDateAsVarcharColumn is also stored in the same index entry.

Let me repeat my disclaimer: there is no guarantee that this query will succeed or fail on
your server the way it does on mine. We cannot assume that conditions in the WHERE
clause execute in any particular order. We have learned that the safe way to guarantee
the order in which conditions evaluate is to use CASE expressions.

SET, SELECT, and the dreaded infinite loop

We cannot assume that SET and SELECT always change the values of variables. If we
rely on that incorrect assumption, our code may not work as expected, so we need to
eliminate it. Listing 2-9 demonstrates a case where SELECT leaves the value of a variable
unchanged, if the result set is empty.

SET NOCOUNT ON ;

DECLARE @i INT ;
SELECT @i = -1 ;

SELECT @i AS [@i before the assignment] ;
SELECT @i = 1
WHERE 1 = 2 ;
SELECT @i AS [@i after the assignment] ;

Chapter 2: Code Vulnerabilities due to SQL Server Misconceptions

65

@i before the assignment

-1

@i after the assignment

-1

Listing 2-9: SELECT may leave a variable unchanged if the result set is empty.

Listing 2-10 shows that that, in the same case, SET changes the values of variables even if
the result set is empty.

SET NOCOUNT ON ;
DECLARE @i INT ;
SELECT @i = -1 ;

SELECT @i AS [@i before the assignment] ;
SET @i = (SELECT 1
 WHERE 1 = 2
) ;
SELECT @i AS [@i after the assignment] ;

@i before the assignment

-1

@i after the assignment

NULL

Listing 2-10: SET will change the value of the variable.

If SET raises an error, the value of the variable is also unchanged.

SET NOCOUNT ON ;
DECLARE @i INT ;

Chapter 2: Code Vulnerabilities due to SQL Server Misconceptions

66

SELECT @i = -1 ;

SELECT @i AS [@i before the assignment] ;
SET @i = (SELECT 1
 UNION ALL
 SELECT 2
) ;
SELECT @i AS [@i after the assignment] ;

@i before the assignment

-1

Msg 512, Level 16, State 1, Line 6
Subquery returned more than 1 value. This is not permitted
when the subquery follows =, !=, <, <= , >, >= or when the
subquery is used as an expression.
@i after the assignment

-1

Listing 2-11: SET may leave a variable unchanged if it raises an error.

Similarly, if SELECT raises an error, the value of the variable can also be left unchanged.
Run Listing 2-12 and you will get the same output as in Listing 2-11.

SET NOCOUNT ON ;
DECLARE @i INT ;
SELECT @i = -1 ;

SELECT @i AS [@i before the assignment] ;
SELECT @i = 1
WHERE (SELECT 1 AS n
 UNION ALL
 SELECT 2
) = 1 ;

Chapter 2: Code Vulnerabilities due to SQL Server Misconceptions

67

SELECT @i AS [@i after the assignment] ;

Listing 2-12: SELECT may leave a variable unchanged if it raises an error.

Understanding how SET and SELECT behave is very important. In particular, the
behavior of SELECT demonstrated in Listing 2-9, whereby it leaves a variable unchanged
if the selected result set is empty, can lead to the dreaded infinite loop.

Use set-based solutions where possible

Of course, wherever possible we should avoid procedural, row-by-row processing in
our T-SQL code, in favor of proper set-based aggregation. However, sometimes loops
are unavoidable.

In order to demonstrate the infinite loop problem, create the Orders table shown in
Listing 2-13 and populate it with sample data.

CREATE TABLE dbo.Orders
 (
 OrderID INT NOT NULL ,
 OrderDate DATETIME NOT NULL ,
 IsProcessed CHAR(1) NOT NULL ,
 CONSTRAINT PK_Orders PRIMARY KEY (OrderID) ,
 CONSTRAINT CHK_Orders_IsProcessed
 CHECK (IsProcessed IN ('Y', 'N'))
) ;
GO

INSERT dbo.Orders
 (OrderID ,
 OrderDate ,
 IsProcessed
)
 SELECT 1 ,
 '20090420' ,
 'N'
 UNION ALL

Chapter 2: Code Vulnerabilities due to SQL Server Misconceptions

68

 SELECT 2 ,
 '20090421' ,
 'N'
 UNION ALL
 SELECT 3 ,
 '20090422' ,
 'N' ;

Listing 2-13: Creating and populating the Orders table.

When creating the stored procedure shown in Listing 2-14, the developer made the
following assumption: the SELECT at the end of the loop will always change the value of
the variable @ID. As we now know, this assumption is incorrect.

CREATE PROCEDURE dbo.ProcessBatchOfOrders
 @IDsIntervalSize INT
AS
 DECLARE @minID INT ,
 @ID INT ;

 SELECT @minID = MIN(OrderID) ,
 @ID = MIN(OrderID)
 FROM dbo.Orders ;

 WHILE @ID < (@minID + @IDsIntervalSize)
 BEGIN;

 UPDATE dbo.Orders
 SET IsProcessed = 'Y'
 WHERE OrderID = @ID ;

-- this SELECT may leave the value
-- of @ID unchanged
 SELECT TOP (1)
 @ID = OrderID
 FROM dbo.Orders
 WHERE IsProcessed = 'N'

Chapter 2: Code Vulnerabilities due to SQL Server Misconceptions

69

 ORDER BY OrderID ;

-- PRINT is needed for debugging purposes only
 PRINT @ID ;
 END ;

Listing 2-14: The loopy stored procedure.

As shown in Listing 2-15, if we do not request to process all the orders, then the stored
procedure completes.

EXEC dbo.ProcessBatchOfOrders 2;
GO
-- restore the data to its original state
UPDATE [dbo].[Orders]
 SET IsProcessed='N';

Listing 2-15: The stored procedure completes as long as we don't try to process
all the orders.

If, however, we attempt to process more orders than there are unprocessed orders in
the table (in this case, more than three orders), then our stored procedure runs into
an infinite loop. When the last order has been processed, the SELECT in the stored
procedure leaves the value of @ID unchanged and so the code iterates again and again
using the same unchanged value of @ID – here is the dreaded infinite loop.

-- this call processes 3 orders and then runs infinitely
-- cancel it
EXEC dbo.ProcessBatchOfOrders 10 ;

Listing 2-16: The execution of dbo.ProcessBatchOfOrders results in an
infinite loop.

Clearly, we should not assume that our SELECT statements will always change the value
of the variable used to terminate the loop. Yet, as soon as we know what is wrong, it is
easy to fix the loop in order to make sure that the variable does always change. The first
possible fix, shown in Listing 2-17, uses an unconditional assignment.

Chapter 2: Code Vulnerabilities due to SQL Server Misconceptions

70

ALTER PROCEDURE dbo.ProcessBatchOfOrders @IDsIntervalSize INT
AS
 DECLARE @minID INT ,
 @ID INT ;

 SELECT @minID = MIN(OrderID) ,
 @ID = MIN(OrderID)
 FROM dbo.Orders ;

 WHILE @ID < (@minID + @IDsIntervalSize)
 BEGIN;
 UPDATE dbo.Orders
 SET IsProcessed = 'Y'
 WHERE OrderID = @ID ;
-- this unconditional assignment fixes the problem
 SET @ID = NULL ;

 SELECT TOP (1)
 @ID = OrderID
 FROM dbo.Orders
 WHERE IsProcessed = 'N'
 ORDER BY OrderID ;
-- PRINT is needed for debugging purposes
 PRINT @ID ;
 END ;

Listing 2-17: Using an unconditional assignment to fix the problem.

Listing 2-18 demonstrates that the fixed stored procedure completes the call that the
original one could not.

-- restoring the data to its original state
UPDATE dbo.Orders
SET IsProcessed = 'N' ;
GO

Chapter 2: Code Vulnerabilities due to SQL Server Misconceptions

71

-- this call processes 3 orders and then completes
EXEC dbo.ProcessBatchOfOrders 10 ;

Listing 2-18: Invoking the fixed procedure.

Alternatively, we can fix this problem by replacing the SELECT with a SET assignment,
as shown in Listing 2-19.

ALTER PROCEDURE dbo.ProcessBatchOfOrders @IDsIntervalSize INT
AS
 DECLARE @minID INT ,
 @ID INT ;

 SELECT @minID = MIN(OrderID) ,
 @ID = MIN(OrderID)
 FROM dbo.Orders ;

 WHILE @ID < (@minID + @IDsIntervalSize)
 BEGIN;
 UPDATE dbo.Orders
 SET IsProcessed = 'Y'
 WHERE OrderID = @ID ;

-- SELECT is replaced with SET
 SET @ID = (SELECT TOP (1)
 OrderID
 FROM dbo.Orders
 WHERE IsProcessed = 'N'
 ORDER BY OrderID
) ;
-- PRINT is needed for debugging purposes
 PRINT @ID ;
 END ;

Listing 2-19: Replacing the SELECT with a SET removes the infinite loop.

We can rerun Listing 2-18 to verify that the procedure works.

Chapter 2: Code Vulnerabilities due to SQL Server Misconceptions

72

In Chapter 3, we will discuss the dangers of using SELECT, rather than SET, to assign a
variable when multiple rows can be returned, and how use of the latter can make your
code much more resilient to changes to the underlying schema objects.

Specify ORDER BY if you need ordered data

If your query does not have an ORDER BY clause, the data can be returned in any order.
This may sound trivial, but all too many developers who are new to SQL assume that the
data has some "natural" or "default" order. This is simply not true; there is no such thing
as default or natural order.

To demonstrate this fact, I have chosen to use a really wide table; a table with just a few
rows on every page.

CREATE TABLE dbo.WideTable
 (
 ID INT NOT NULL ,
 RandomInt INT NOT NULL ,
 CharFiller CHAR(1000) NULL ,
 CONSTRAINT PK_WideTable PRIMARY KEY (ID)
) ;

Listing 2-20: Creating a wide table.

Also, let us make sure that the table is big enough (100K rows), so that it is stored on
many pages. As such, the script in Listing 2-21 may take some time to run.

SET NOCOUNT ON ;

DECLARE @ID INT ;
SET NOCOUNT ON ;
SET @ID = 1 ;
WHILE @ID < 100000
 BEGIN ;
 INSERT INTO dbo.WideTable
 (ID, RandomInt, CharFiller)

Chapter 2: Code Vulnerabilities due to SQL Server Misconceptions

73

 SELECT @ID ,
 RAND() * 1000000 ,
 'asdf' ;

 SET @ID = @ID + 1 ;
 END ;
GO

Listing 2-21: Adding 100K rows to the wide table.

If we select the data from this table, without providing an ORDER BY clause, the data
may be retrieved in the order in which it was inserted, as was the case when I ran the
query shown in Listing 2-22 on my server.

SELECT TOP (1000)
 ID
FROM dbo.WideTable ;

ID

1
2
3
4
5
(snip)

Listing 2-22: Without an ORDER BY clause, the rows are returned in the order they
were inserted.

However, there is no guarantee that this script will work on your server in exactly the
same way that it did on mine. Many people assume that, in the absence of an ORDER BY
clause, the data will be returned "in the order of the primary key," or "in the order of the
clustering index," or "in the order it was inserted." None of these assumptions is correct.
Listing 2-23 demonstrates that after we have added a non-clustered index, the result of
our query is different.

Chapter 2: Code Vulnerabilities due to SQL Server Misconceptions

74

CREATE INDEX WideTable_RandomInt
 ON dbo.WideTable(RandomInt) ;
GO
SELECT TOP (1000)
 ID
FROM dbo.WideTable ;

ID

61345
78137
36333
76724
65341
(snip)

Listing 2-23: When an index is added the rows are returned in a different order.

In this example, I tried hard to ensure that the example works the same on your
server as on mine: I made sure that the table was wide and the non-clustered index
was narrow, so there is a very strong reason to prefer reading from a non-clustered
index over reading from the clustered one. Nevertheless, there is no guarantee that
this script will work on your server exactly as it did on mine.

Anyway, the lesson to learn is that, if we need the data returned in some particular order,
we must explicitly provide an ORDER BY clause.

Summary

If you don't understand how SQL works, then your code will inevitably be plagued by
intermittent failure, resulting in incorrect results, or worse. This chapter covered just
three common examples of how misplaced assumptions about the way certain
constructs behaved led to unreliable code, but the message is clear: such assumptions
must always be eliminated from your code.

Chapter 2: Code Vulnerabilities due to SQL Server Misconceptions

75

Along the way, I hope you've learned the following lessons in defensive programming:

• use CASE expressions instead of relying on WHERE clause conditions being evaluated
in a specific order

• make sure variable assignments are unconditional, and use SET rather than SELECT
to avoid infinite loops

• don't rely on data being returned in some default order. If order is required, use
ORDER BY.

76

77

Chapter 3: Surviving Changes
to Database Objects
It is quite common for perfectly-functioning SQL code to be knocked off its feet
by a change to the underlying database schema, or to other objects that are used
in the code. If we are "lucky," the code will suddenly start producing error messages;
if not, it may just silently start producing different results. In either case, once the
problem is discovered, the process of adjusting all of the application code can be long
and painstaking.

Fortunately, there are a few simple defensive techniques that take little time to
implement, but yet may significantly reduce the possibility of such errors. Once again,
the relatively small extra effort up front will save a lot of maintenance toil later.

In this chapter, we'll examine several examples of how changes to database objects
can cause unpredictable behavior in code that accesses them, and discuss how to
develop code that will not break, or behave unpredictably, as a result of such changes.
Specifically, we will cover:

• changes to the primary or unique keys, and how to test and validate assumptions
regarding the "uniqueness" of column data

• changes to stored procedure signatures, and the importance of using explicitly
named parameters

• changes to columns, such as adding columns as well as modifying an existing
column's nullability, size or data type.

One of the main lessons to be learned is that if your implementation relies on a
particular property of the underlying schema, such as the uniqueness of a given
column, then you must document that assumption, preferably in your unit tests, and
make sure it always holds true.

Chapter 3: Surviving Changes to Database Objects

78

Surviving Changes to the Definition of a Primary
or Unique Key

Changes to the keys in your tables should, hopefully, be rare, but they can cause
trouble to the unwary when they happen. In a broader context, the defensive
programmer should always fully document and test any assumptions about the
underlying uniqueness of the column data, as we saw in the sections of Chapter 1
about ambiguous updates. The following examples demonstrate what can happen to
perfectly correct code when changes are made to the underlying unique or primary
keys, thus invalidating assumptions in the code regarding the uniqueness of the
column data. We'll then discuss how a query against the system views, or use of
@@ROWCOUNT, can detect if such assumptions are still true.

In Listing 3-1, we create a table, Customers, using a UNIQUE constraint to guarantee
the uniqueness of phone numbers, and then populate it with some test data.

CREATE TABLE dbo.Customers
 (
 CustomerId INT NOT NULL ,
 FirstName VARCHAR(50) NOT NULL ,
 LastName VARCHAR(50) NOT NULL ,
 Status VARCHAR(50) NOT NULL ,
 PhoneNumber VARCHAR(50) NOT NULL ,
 CONSTRAINT PK_Customers PRIMARY KEY (CustomerId) ,
 CONSTRAINT UNQ_Customers UNIQUE (PhoneNumber)
) ;
GO
INSERT INTO dbo.Customers
 (CustomerId ,
 FirstName ,
 LastName ,
 Status ,
 PhoneNumber
)
 SELECT 1 ,
 'Darrel' ,
 'Ling' ,

Chapter 3: Surviving Changes to Database Objects

79

 'Regular' ,
 '(123)456-7890'
 UNION ALL
 SELECT 2 ,
 'Peter' ,
 'Hansen' ,
 'Regular' ,
 '(234)123-4567' ;

Listing 3-1: Creating the Customers table, with a UNIQUE constraint on the
PhoneNumber column.

We need to implement a simple stored procedure, shown in Listing 3-2, which will allow
users to find a customer based on their phone number, and set their customer status
(regular, preferred, or VIP). If no customer exists for a given phone number, we don't
need to raise an exception; we simply do nothing.

CREATE PROCEDURE dbo.SetCustomerStatus
 @PhoneNumber VARCHAR(50) ,
 @Status VARCHAR(50)
AS
 BEGIN;
 UPDATE dbo.Customers
 SET Status = @Status
 WHERE PhoneNumber = @PhoneNumber ;
 END ;

Listing 3-2: The SetCustomerStatus stored procedure, which finds a customer by
phone number and sets their status.

This implementation assumes that at most one customer has any given phone number.
Clearly, right now, this assumption is true as it is guaranteed by the UNQ_Customers
constraint.

Suppose, however, that at some later time we need to store data about customers
from different countries. At this point, the phone number alone no longer uniquely
indentifies a customer, but the combination of country code and phone number does.

Chapter 3: Surviving Changes to Database Objects

80

In order to accommodate this requirement, our Customers table is altered to add the
new column, CountryCode, and our UNQ_Customers constraint is modified so that it
enforces uniqueness based on a combination of the CountryCode and PhoneNumber
columns. These alterations are shown in Listing 3-3.

ALTER TABLE dbo.Customers
 ADD CountryCode CHAR(2) NOT NULL
 CONSTRAINT DF_Customers_CountryCode
 DEFAULT('US') ;
GO

ALTER TABLE dbo.Customers DROP CONSTRAINT UNQ_Customers;
GO

ALTER TABLE dbo.Customers
 ADD CONSTRAINT UNQ_Customers
 UNIQUE(PhoneNumber, CountryCode) ;

Listing 3-3: Adding a CountryCode column to the table and to the
unique constraint.

Note that, in reality, we should have added a lookup table, dbo.CountryCodes,
referred to by a FOREIGN KEY constraint. However, I've avoided a lookup table in this
case, in favor of keeping the example simple.

At this point, our constraint is no longer enforcing the uniqueness of values in the
PhoneNumber column, so we can insert a customer with an identical phone number to
an existing customer, but with a different country code, as shown in Listing 3-4.

UPDATE dbo.Customers
SET Status = 'Regular' ;

INSERT INTO dbo.Customers
 (CustomerId ,
 FirstName ,
 LastName ,
 Status ,

Chapter 3: Surviving Changes to Database Objects

81

 PhoneNumber ,
 CountryCode
)
 SELECT 3 ,
 'Wayne' ,
 'Miller' ,
 'Regular' ,
 '(123)456-7890' ,
 'UK' ;

Listing 3-4: Wayne Miller has the same phone number as Darrell Ling, but with
a different country code.

Our Stored procedure, however, is still working on the assumption that a customer can
be uniquely identified by their phone number alone. Since this assumption is no longer
valid, the stored procedure, in its current form, could erroneously update more than one
row of data, as demonstrated in Listing 3-5.

-- at this moment all customers have Regular status
EXEC dbo.SetCustomerStatus
 @PhoneNumber = '(123)456-7890',
 @Status = 'Preferred' ;

-- the procedure has modified statuses of two customers
SELECT CustomerId ,
 Status
FROM dbo.Customers ;

CustomerId Status
----------- -------------
1 Preferred
2 Regular
3 Preferred

Listing 3-5: The unchanged stored procedure modifies two rows instead of one.

Chapter 3: Surviving Changes to Database Objects

82

As noted in Chapter 1, perhaps the most prevalent and damaging mistake made during
the development of SQL code is a failure to define or recognize the assumptions on
which the implementation relies. The result, as demonstrated here, is code that is brittle,
and liable to behave unpredictably when these assumptions are invalidated by changes
to the underlying database objects.

Of course, the most obvious lesson to be learned here is that whenever we change
our unique and/or primary keys, we need to review all the procedures that depend on
the modified tables. However, the manual process of reviewing the potentially affected
code is, like all manual processes, slow and prone to error. It may be more efficient to
automate the process of identifying the modules that rely on particular assumptions
about the underlying schema. Unit tests allow us to accomplish exactly that; we can
easily, for example, write a unit test that succeeds if there is a UNIQUE constraint on the
PhoneNumber column alone, and fails when this is no longer the case.

Using unit tests to document and test assumptions

Let's translate the assumption that the PhoneNumber column uniquely identifies a
customer into a query against the system views. The query is rather complex, so we'll
develop it in several steps. First of all, we need to know if there are any constraints on
the PhoneNumber column, as shown in Listing 3-6.

SELECT COUNT(*)
FROM INFORMATION_SCHEMA.CONSTRAINT_COLUMN_USAGE AS u
WHERE u.TABLE_NAME = 'Customers'
 AND u.TABLE_SCHEMA = 'dbo'
 AND u.COLUMN_NAME = 'PhoneNumber' ;

Listing 3-6: Step 1, a query to check for constraints on PhoneNumber.

This query returns 1, confirming that there is a constraint on that column. Next, we
need to verify that the constraint is either a primary key or a unique constraint:

Chapter 3: Surviving Changes to Database Objects

83

SELECT COUNT(*)
FROM INFORMATION_SCHEMA.CONSTRAINT_COLUMN_USAGE AS u
 JOIN INFORMATION_SCHEMA.TABLE_CONSTRAINTS AS c
 ON c.TABLE_NAME = u.TABLE_NAME
 AND c.TABLE_SCHEMA = u.TABLE_SCHEMA
 AND c.CONSTRAINT_NAME = u.CONSTRAINT_NAME
WHERE u.TABLE_NAME = 'Customers'
 AND u.TABLE_SCHEMA = 'dbo'
 AND u.COLUMN_NAME = 'PhoneNumber'
 AND c.CONSTRAINT_TYPE
 IN ('PRIMARY KEY', 'UNIQUE') ;

Listing 3-7: Step 2 determines if the constraint on column PhoneNumber is a
primary key or unique.

Finally, we need to make sure that no other columns are included in that UNIQUE or
PRIMARY KEY constraint, as follows:

SELECT COUNT(*)
FROM INFORMATION_SCHEMA.CONSTRAINT_COLUMN_USAGE AS u
 JOIN INFORMATION_SCHEMA.TABLE_CONSTRAINTS AS c
 ON c.TABLE_NAME = u.TABLE_NAME
 AND c.TABLE_SCHEMA = u.TABLE_SCHEMA
 AND c.CONSTRAINT_NAME = u.CONSTRAINT_NAME
WHERE u.TABLE_NAME = 'Customers'
 AND u.TABLE_SCHEMA = 'dbo'
 AND u.COLUMN_NAME = 'PhoneNumber'
 AND c.CONSTRAINT_TYPE
 IN ('PRIMARY KEY', 'UNIQUE')
 -- this constraint involves only one column
 AND (SELECT COUNT(*)
 FROM INFORMATION_SCHEMA.CONSTRAINT_COLUMN_USAGE
 AS u1

Chapter 3: Surviving Changes to Database Objects

84

 WHERE u1.TABLE_NAME = u.TABLE_NAME
 AND u1.TABLE_SCHEMA = u.TABLE_SCHEMA
 AND u1.CONSTRAINT_NAME =
 u.CONSTRAINT_NAME
) = 1 ;

Listing 3-8: Step 3, the final query determines whether there is a unique or primary
key constraint that is built on only the PhoneNumber column.

When we run this query against the original database schema, with a UNIQUE constraint
on the PhoneNumber column, it returns a value of 1 indicating that there is indeed
a constraint built only on the PhoneNumber column. However, when we run it after
the column CountryCode has been added to the definition of the unique constraint,
the second subquery returns the value 2, which means that the UNIQUE constraint
UNQ_Customers is built on two columns, and so the outer query returns a value of 0.

In short, this query provides us with a means to verify the validity of the assumption that
the PhoneNumber column uniquely identifies a customer. By incorporating this query
into our unit test harness, we can accomplish two goals:

• our assumption is documented – the code in Listing 3-8 clearly documents the fact
that the dbo.SetCustomerStatus stored procedure needs a unique or primary
constraint on a single column, PhoneNumber

• our assumption is tested – if the required constraint is dropped, or includes more
than one column, we shall get a clear warning, because the unit test will fail.

Of course, we should wrap this query in a stored procedure and reuse it, because
there will surely be other cases when we rely on the uniqueness of a column used in
our search condition.

We can use a similar technique to verify whether or not a combination of columns,
considered together, are guaranteed to be unique. Implementing this query is left as an
exercise to the reader.

Chapter 3: Surviving Changes to Database Objects

85

Using @@ROWCOUNT to verify assumptions

Alternatively, instead of documenting our assumption as a unit test, we can have our
stored procedure detect how many rows it modified, and roll back if it updated more
than one row, as shown in Listing 3-9.

ALTER PROCEDURE dbo.SetCustomerStatus
 @PhoneNumber VARCHAR(50) ,
 @Status VARCHAR(50)
AS
 BEGIN ;
 BEGIN TRANSACTION ;

 UPDATE dbo.Customers
 SET Status = @Status
 WHERE PhoneNumber = @PhoneNumber ;

 IF @@ROWCOUNT > 1
 BEGIN ;
 ROLLBACK ;
 RAISERROR('More than one row updated',
 16, 1) ;
 END ;
 ELSE
 BEGIN ;
 COMMIT ;
 END ;
 END ;

Listing 3-9: A stored procedure that will not modify more than one row.

To see it in action, run Listing 3-10; the stored procedure raises an error and does not
modify the data.

Chapter 3: Surviving Changes to Database Objects

86

UPDATE dbo.Customers
SET Status = 'Regular' ;

EXEC dbo.SetCustomerStatus
 @PhoneNumber = '(123)456-7890',
 @Status = 'Preferred' ;

Msg 50000, Level 16, State 1, Procedure SetCustomerStatus,
Line 15
More than one row updated
-- verify if the procedure has modified any data
SELECT CustomerId ,
 Status
FROM dbo.Customers ;

Listing 3-10: Testing the altered stored procedure.

In general, this approach could be useful although, in this particular case, it is less
preferable than a unit test. The reason is very simple: a unit test will alert us about a
problem before deployment, allowing us fix the problem early, and to deploy without this
particular bug. The altered stored procedure might not indicate a problem until the code
has been deployed to production, which means troubleshooting a production system
and redeploying a fix; a situation we usually want to avoid.

Using SET instead of SELECT when assigning
variables

In the previous chapter, we discussed how important it is to understand the
different behavior of SET and SELECT when assigning values to variables. That
same knowledge will help you write application code that is resistant to changes
to the underlying schema objects.

Let's consider a second example whereby a search condition contains an implied
assumption regarding the uniqueness of the underlying data column. The search
condition, and subsequent variable assignment, shown in Listing 3-11 assumes, again,
that the PhoneNumber column can uniquely identify a customer.

Chapter 3: Surviving Changes to Database Objects

87

DECLARE @CustomerId INT ;

SELECT @CustomerId = CustomerId
FROM dbo.Customers
WHERE PhoneNumber = '(123)456-7890' ;

SELECT @CustomerId AS CustomerId ;

-- Do something with CustomerId

Listing 3-11: Unpredictable variable assignment, using SELECT.

In our original database schema, before we added CountryCode column to the
Customers table, the result of this assignment was predictable. However, in our new
schema, the UNQ_Customers constraint only guarantees the uniqueness of the values
in the PhoneNumber and CountryCode columns, considered together. As a result,
we have two customers with this phone number and so the variable assignment is
unpredictable; we do not, and cannot, know which of the two CustomerId values,
1 or 3, will populate the variable.

In most cases, such ambiguity is not acceptable. The simplest fix is to use SET instead of
SELECT to populate the variable, as shown in Listing 3-12.

DECLARE @CustomerId INT ;

-- this assignment will succeed,
-- because in this case there is no ambiguity
SET @CustomerId = (SELECT CustomerId
 FROM dbo.Customers
 WHERE PhoneNumber = '(234)123-4567'
) ;

SELECT @CustomerId AS CustomerId ;

CustomerId

2

Chapter 3: Surviving Changes to Database Objects

88

-- this assignment will fail,
-- because there is ambiguity,
-- two customers have the same phone number
SET @CustomerId = (SELECT CustomerId
 FROM dbo.Customers
 WHERE PhoneNumber = '(123)456-7890'
) ;

Msg 512, Level 16, State 1, Line 16
Subquery returned more than 1 value. This is not permitted
when the subquery follows =, !=, <, <= , >, >= or when the
subquery is used as an expression.

-- the above error must be intercepted and handled
-- See Chapter 8
-- the variable is left unchanged
SELECT @CustomerId AS CustomerId ;

CustomerId

2

Listing 3-12: Whereas SELECT ignores the ambiguity, SET detects it and raises an
error.

Surviving Changes to the Signature of a Stored
Procedure

Consider the stored procedure shown in Listing 3-13, SelectCustomersByName,
which takes two optional search conditions, and selects data from the Customers table,
as defined in Listing 3-1.

CREATE PROCEDURE dbo.SelectCustomersByName
 @LastName VARCHAR(50) = NULL ,
 @PhoneNumber VARCHAR(50) = NULL

Chapter 3: Surviving Changes to Database Objects

89

AS
 BEGIN ;
 SELECT CustomerId ,
 FirstName ,
 LastName ,
 PhoneNumber ,
 Status
 FROM dbo.Customers
 WHERE LastName = COALESCE(@LastName, LastName)
 AND PhoneNumber = COALESCE(@PhoneNumber,
 PhoneNumber) ;
 END ;

Listing 3-13: The SelectCustomersByName stored procedure.

When we invoke this stored procedure, we can explicitly name its parameters, and make
the code more readable, but we are not forced to do so, as shown in Listing 3-14.

EXEC dbo.SelectCustomersByName
 'Hansen', -- @LastName
 '(234)123-4567' ; -- @PhoneNumber

EXEC dbo.SelectCustomersByName
 @LastName = 'Hansen',
 @PhoneNumber = '(234)123-4567' ;

Listing 3-14: Two ways to invoke the SelectCustomersByName stored procedure.

At the moment, either way of invoking the stored procedure produces the same result.
Suppose, however, that the signature of this stored procedure is subsequently modified
to accept an optional @FirstName parameter, as described in Listing 3-15.

ALTER PROCEDURE dbo.SelectCustomersByName
 @FirstName VARCHAR(50) = NULL ,
 @LastName VARCHAR(50) = NULL ,
 @PhoneNumber VARCHAR(50) = NULL

Chapter 3: Surviving Changes to Database Objects

90

AS
 BEGIN ;
 SELECT CustomerId ,
 FirstName ,
 LastName ,
 PhoneNumber ,
 Status
 FROM dbo.Customers
 WHERE FirstName = COALESCE (@FirstName, FirstName)
 AND LastName = COALESCE (@LastName,LastName)
 AND PhoneNumber = COALESCE (@PhoneNumber,
 PhoneNumber) ;
 END ;
GO

Listing 3-15: The modified SelectCustomersByName stored procedure includes an
additional FirstName parameter.

As a result of this modification, the two ways of invoking the stored procedure are no
longer equivalent. Of course, we will not receive any error message; we will just silently
start getting different results, as shown in Listing 3-16.

-- in the new context this call is interpreted
-- differently. It will return no rows
EXEC dbo.SelectCustomersByName
 'Hansen', -- @FirstName
 '(234)123-4567' ; -- @LastName

-- this stored procedure call is equivalent
-- to the previous one
EXEC dbo.SelectCustomersByName
 @FirstName = 'Hansen',
 @LastName = '(234)123-4567' ;

Chapter 3: Surviving Changes to Database Objects

91

-- this call returns the required row
EXEC dbo.SelectCustomersByName
 @LastName = 'Hansen',
 @PhoneNumber = '(234)123-4567' ;

Listing 3-16: The same stored procedure call is interpreted differently after the
signature of that stored procedure has changed.

The lesson here is clear: stored procedure calls with explicitly named parameters
are more robust; they continue to work correctly even when the signature of the
stored procedure changes, or they give explicit errors instead of silently returning
incorrect results.

Surviving Changes to Columns

One of the most common causes of brittle code is a failure to program defensively
against subsequent changes to the columns of the underlying data tables. These changes
can take the form of adding columns, or changing the definition of existing columns, for
example, their data type or size.

Of course, some changes are so serious that our code cannot survive them. For example,
if a column that is required in a query is removed, then that is a breaking change that we
can do nothing to protect against. However, in many other cases, we can develop code
that is resilient to changes to the underlying columns. In this section, we'll examine a
few examples, explaining how to make our code more robust in each case.

Qualifying column names

It takes a few extra keystrokes to qualify column names when writing our queries, but
these keystrokes pay healthy dividends in terms of the resilience of the resulting code.
Consider the example tables created in Listing 3-17, Shipments and ShipmentItems,
populated with sample data.

Chapter 3: Surviving Changes to Database Objects

92

CREATE TABLE dbo.Shipments
 (
 Barcode VARCHAR(30) NOT NULL PRIMARY KEY,
 SomeOtherData VARCHAR(100) NULL
) ;
GO

INSERT INTO dbo.Shipments
 (Barcode ,
 SomeOtherData
)
 SELECT '123456' ,
 '123456 data'
 UNION ALL
 SELECT '123654' ,
 '123654 data' ;
GO

CREATE TABLE dbo.ShipmentItems
 (
 ShipmentBarcode VARCHAR(30) NOT NULL,
 Description VARCHAR(100) NULL
) ;
GO

INSERT INTO dbo.ShipmentItems
 (ShipmentBarcode ,
 Description
)
 SELECT '123456' ,
 'Some cool widget'
 UNION ALL
 SELECT '123456' ,
 'Some cool stuff for some gadget' ;
GO

Listing 3-17: The Shipments and ShipmentItems tables.

Chapter 3: Surviving Changes to Database Objects

93

Against this schema, we develop the query shown in Listing 3-18, which, for every
shipment, selects its Barcode and calculates the number of shipment items with a
ShipmentBarcode matching the Barcode for that shipment.

SELECT Barcode ,
 (SELECT COUNT(*)
 FROM dbo.ShipmentItems
 WHERE ShipmentBarcode = Barcode
) AS NumItems
FROM dbo.Shipments ;

Barcode NumItems

123456 2
123654 0

Listing 3-18: A correlated subquery that works correctly even though column
names are not qualified.

The inner query is an example of a correlated subquery; it uses in its WHERE clause the
Barcode column from the Shipments table in the outer query. Notice that the query
works even though we failed to qualify the column names.

Yet the situation can change. Rather than just having a barcode to identify shipments,
we start using barcodes to identify individual items in the shipment, so we need to add a
Barcode column to the ShipmentItems table, as shown in Listing 3-19.

ALTER TABLE dbo.ShipmentItems
ADD Barcode VARCHAR(30) NULL ;
GO
SELECT Barcode ,
 (SELECT COUNT(*)
 FROM dbo.ShipmentItems
 WHERE ShipmentBarcode = Barcode
) AS NumItems
FROM dbo.Shipments ;

Chapter 3: Surviving Changes to Database Objects

94

Barcode NumItems

123456 0
123654 0

Listing 3-19: The query works differently when a Barcode column is added to
the ShipmentItems table.

We do not get any error messages; our query continues to work but silently changes its
behavior. With the addition of the Barcode column to the ShipmentItems table, our
query is interpreted quite differently. Now, for every shipment, it selects its barcode
followed by the number of ShipmentItems whose Barcode value matches their
ShipmentBarcode value. In other words, the correlated subquery becomes
uncorrelated; the WHERE clause of the inner query no longer uses a value from the
outer query.

It takes just a few moments to properly qualify all the column names in our query,
and the improved query will continue to work correctly even after the addition of the
Barcode column to our ShipmentItems table, as shown in Listing 3-20.

SELECT s.Barcode ,
 (SELECT COUNT(*)
 FROM dbo.ShipmentItems AS i
 WHERE i.ShipmentBarcode = s.Barcode
) AS NumItems
FROM dbo.Shipments AS s ;

Barcode NumItems

123456 2
123654 0

Listing 3-20: Qualified column names lead to more robust code.

As I hope this example proves, qualifying column names improves the robustness of
our queries. The same technique also ensures that you get an error, instead of incorrect
results, when a column is removed or when a column name is misspelled. For example,

Chapter 3: Surviving Changes to Database Objects

95

consider the case of an uncorrelated subquery that becomes correlated because a
column from a table in the subquery is removed (or misspelled in the query), but
happens to match a column in the outer query. Many developers forget that the parser
will look in the outer query if it fails to find a match in the inner query.

Handling changes in nullability: NOT IN versus
NOT EXISTS

Queries with NOT IN have a well known vulnerability. They do not work as an
inexperienced database programmer might expect, if the subquery contained in the
NOT IN clause returns at least one NULL. This is easy to demonstrate. In Listing 3-21,
we recreate our ShipmentItems table with a Barcode column that does not
accept NULLs, and then insert some fresh data. We then execute a query that uses
the NOT IN clause.

DROP TABLE dbo.ShipmentItems ;
GO

CREATE TABLE dbo.ShipmentItems
 (
 ShipmentBarcode VARCHAR(30) NOT NULL ,
 Description VARCHAR(100) NULL ,
 Barcode VARCHAR(30) NOT NULL
) ;
GO

INSERT INTO dbo.ShipmentItems
 (ShipmentBarcode ,
 Barcode ,
 Description
)
 SELECT '123456' ,
 '1010203' ,
 'Some cool widget'
 UNION ALL

Chapter 3: Surviving Changes to Database Objects

96

 SELECT '123654' ,
 '1010203' ,
 'Some cool widget'
 UNION ALL
 SELECT '123654' ,
 '1010204' ,
 'Some cool stuff for some gadget' ;
GO

-- retrieve all the items from shipment 123654
-- that are not shipped in shipment 123456
SELECT Barcode
FROM dbo.ShipmentItems
WHERE ShipmentBarcode = '123654'
 AND Barcode NOT IN (SELECT Barcode
 FROM dbo.ShipmentItems
 WHERE ShipmentBarcode =
 '123456') ;

Barcode

1010204

Listing 3-21: Creating the new ShipmentItems table, populating it with some test
data, and proving that the query using the NOT IN clause succeeds.

The query works as expected, and will continue to do so as long as the Barcode column
disallows NULLs. However, let's see what happens when we change the nullability of that
column, as shown in Listing 3-22.

ALTER TABLE dbo.ShipmentItems
ALTER COLUMN Barcode VARCHAR(30) NULL ;
INSERT INTO dbo.ShipmentItems
 (ShipmentBarcode ,
 Barcode ,
 Description
)

Chapter 3: Surviving Changes to Database Objects

97

 SELECT '123456' ,
 NULL ,
 'Users manual for some gadget' ;
GO

SELECT Barcode
FROM dbo.ShipmentItems
WHERE ShipmentBarcode = '123654'
 AND Barcode NOT IN (SELECT Barcode
 FROM dbo.ShipmentItems
 WHERE ShipmentBarcode =
 '123456') ;
Barcode

(0 row(s) affected)

Listing 3-22: Now that the Barcode column accepts NULL, our NOT IN query
no longer works as expected.

This can often seem like a very subtle bug; sometimes the query works as expected,
but sometimes it does not. In fact, the behavior is completely consistent. Every time
the subquery inside the NOT IN clause returns at least one NULL, then the query
returns nothing. Listing 3-23 shows a much simpler script that demonstrates this
behavior very clearly.

SELECT CASE WHEN 1 NOT IN (2, 3) THEN 'True'
 ELSE 'Unknown or False'
 END ,
 CASE WHEN 1 NOT IN (2, 3, NULL) THEN 'True'
 ELSE 'Unknown or False'
 END ;

True Unknown or False

Listing 3-23: NOT IN queries will work differently when there are NULLs
in the subquery.

Chapter 3: Surviving Changes to Database Objects

98

This behavior may seem counterintuitive, but it actually makes perfect sense. Let me
explain why, in just two simple steps. Listing 3-24 shows two queries. The first one uses
an IN clause; the second is logically equivalent to the first, but the IN clause has been
expressed using OR predicates.

-- A query using the IN clause:
SELECT CASE WHEN 1 IN (1, 2, NULL) THEN 'True'
 ELSE 'Unknown or False'
 END ;
-- its logical eqiuvalent using OR
SELECT CASE WHEN (1 = 1)
 OR (1 = 2)
 OR (1 = NULL) THEN 'True'
 ELSE 'Unknown or False'
 END ;

Listing 3-24: A query with an IN clause, and a logically equivalent query using OR.

In the second step, we must consider the NOT IN version of our query, convert it to
use OR predicates, and then apply DeMorgan's law, which states that for the logical
expressions P and Q:

NOT(P OR Q) = (NOT P) AND (NOT Q)

The result is shown in Listing 3-25.

-- A query using the NOT IN clause:
SELECT CASE WHEN 1 NOT IN (1, 2, NULL) THEN 'True'
 ELSE 'Unknown or False'
 END ;

-- its logical eqiuvalent using OR
SELECT CASE WHEN NOT ((1 = 1)
 OR (1 = 2)
 OR (1 = NULL)
) THEN 'True'
 ELSE 'Unknown or False'

Chapter 3: Surviving Changes to Database Objects

99

 END ;
-- applying DeMorgan's law, replacing every OR with AND,
-- and every = with <>
SELECT CASE WHEN ((1 <> 1)
 AND (1 <> 2)
 AND (1 <> NULL)
) THEN 'True'
 ELSE 'Unknown or False'
 END ;

Listing 3-25: Three equivalent queries, the first using NOT IN, the second using two
OR predicates and the third one with two AND predicates.

Take note of the (1<>NULL) condition in the final query; by definition, the result of this
condition is always unknown and, when joined with other conditions using AND, the
result of the whole expression will always be false. This is why no row can ever qualify a
NOT IN condition if the subquery inside that NOT IN returns at least one NULL.

Whenever we write a query using the NOT̀ IN clause, we implicitly assume that the
subquery can never return a NULL. Usually, we do not need to rely on such assumptions,
because it is very easy to develop correct queries without making them. For example,
Listing 3-26 shows how to remove this assumption from our original SELECT query.

SELECT Barcode
FROM dbo.ShipmentItems
WHERE ShipmentBarcode = '123654'
 AND Barcode NOT IN (SELECT Barcode
 FROM dbo.ShipmentItems
 WHERE ShipmentBarcode = '123456'
 AND Barcode IS NOT NULL) ;

Listing 3-26: A query with a subquery that never returns any NULLs.

By adding just one short and simple line to our query, we have improved its robustness.
Alternatively, we can develop a query that does not assume anything about the
nullability of any columns, as shown in Listing 3-27.

Chapter 3: Surviving Changes to Database Objects

100

-- retrieve all the items from shipment 123654
-- that are not shipped in shipment 123456
SELECT i.Barcode
FROM dbo.ShipmentItems AS i
WHERE i.ShipmentBarcode = '123654'
 AND NOT EXISTS (SELECT *
 FROM dbo.ShipmentItems AS i1
 WHERE i1.ShipmentBarcode = '123456'
 AND i1.Barcode = i.Barcode) ;

Listing 3-27: An equivalent query with NOT EXISTS.

This query will work in the same way, regardless of whether or not the Barcode
column is nullable.

Handling changes to data types and sizes

We frequently develop stored procedures with parameters, the types and lengths of
which must match the types and lengths of some underlying columns. By way of an
example, Listing 3-28 creates a Codes table, and populates it with test data. It then
to creates a SelectCode stored procedure with one parameter, @Code, the type and
length of which must match the type and length of the Code column in Codes table.

DROP TABLE dbo.Codes -- created in previous Chapters
GO

CREATE TABLE dbo.Codes
 (
 Code VARCHAR(5) NOT NULL ,
 Description VARCHAR(40) NOT NULL ,
 CONSTRAINT PK_Codes PRIMARY KEY (Code)
) ;
GO

Chapter 3: Surviving Changes to Database Objects

101

INSERT INTO dbo.Codes
 (Code ,
 Description
)
VALUES ('12345' ,
 'Description for 12345'
) ;
INSERT INTO dbo.Codes
 (Code ,
 Description
)
VALUES ('34567' ,
 'Description for 34567'
) ;
GO

CREATE PROCEDURE dbo.SelectCode
-- clearly the type and length of this parameter
-- must match the type and length of Code column
-- in dbo.Codes table
 @Code VARCHAR(5)
AS
 SELECT Code ,
 Description
 FROM dbo.Codes
 WHERE Code = @Code ;
GO

Listing 3-28: The Codes table and SelectCode stored procedure.

When we execute the stored procedure, supplying an appropriate value for the @Code
parameter, the result is as expected, and is shown in Listing 3-29.

Chapter 3: Surviving Changes to Database Objects

102

EXEC dbo.SelectCode @Code = '12345' ;

Code Description
---------- --
12345 Description for 12345

Listing 3-29: The SelectCode stored procedure works as expected.

Suppose, however, that we have to change the length of the Code column to accept
longer values, as shown in Listing 3-30.

ALTER TABLE dbo.Codes DROP CONSTRAINT PK_Codes ;
GO

ALTER TABLE dbo.Codes
 ALTER COLUMN Code VARCHAR(10) NOT NULL ;
GO

ALTER TABLE dbo.Codes
ADD CONSTRAINT PK_Codes
PRIMARY KEY(Code) ;
GO

INSERT INTO dbo.Codes
 (Code ,
 Description
)
VALUES ('1234567890' ,
 'Description for 1234567890'
) ;

Listing 3-30: Increasing the length of the Code column and adding a row with
maximum Code length.

However, the unmodified stored procedure still expects a VARCHAR(5) parameter,
and it silently truncates any longer value, as shown in Listing 3-31.

Chapter 3: Surviving Changes to Database Objects

103

EXEC dbo.SelectCode @Code = '1234567890' ;

Code Description
---------- ---------------------
12345 Description for 12345

Listing 3-31: The unchanged stored procedure retrieves the wrong row.

Such bugs are quite subtle, and may take considerable time to troubleshoot. How can
we prevent such errors, except for manually referring to a data dictionary every time
we change column types? The best way, in my opinion, is to document the requirement
that the type and lengths of our stored procedure parameters must match the type and
lengths of our columns and then incorporate this requirement into a boundary case unit
test, to protect us from such errors.

Summary

In this chapter, we have seen how changes in database objects may break our code, and
discussed several defensive techniques that improve the robustness of our code, so that
it better survives changes in other database objects. Specifically, I hope you've learned
the following lessons in defensive programming:

• how to test the continuing validity of your assumptions about the characteristics of
the underlying primary and unique keys

• why using SET is generally safer than using SELECT when assigning values
to variables

• the importance of explicitly named parameters in stored procedure calls

• the need to qualify column names in queries

• why NOT EXISTS leads to more resilient queries than NOT IN

• the importance of testing and validating even the "obvious" assumptions,
such as the need for the types and length of parameters to match those of the
underlying columns.

104

105

Chapter 4: When Upgrading
Breaks Code
In previous chapters, we have discussed the sort of weaknesses that might exist in
your code that, if left unchecked, will undermine its consistency and reliability, and
make it vulnerable to breaking when, for example, environmental settings are
changed, or objects in the underlying schema are modified. The goal of the defensive
programmer is to root out as many of these weaknesses as possible and remove them,
before the potential problems even arise.

However, there are times when potential changes cannot be foreseen and so we cannot
"weatherproof" our code against them; we cannot know in advance, for example, how
use of a new feature might affect our existing code when we do not know what these
new features are, and how they behave.

A SQL Server upgrade is always a time of concern for the applications that use it, and
for the developers of those applications. It's a time when the defensive programmer
must proactively research how existing applications will behave when the new database
settings or features are enabled, investigate how these features can be implemented in
the most robust way possible, and then revisit and revise existing code as appropriate.

This chapter does not, and cannot, provide a complete list of new features in SQL
Server 2005 and 2008 that could potentially break existing code. Instead, it is intended
as an eye-opener, an encouragement to analyze fully how new features work with
existing code, before using these new features in production. In order to demonstrate
the difficulties that can arise, we'll discuss the following new features, both of which are
highly useful, and so are very likely to be used, but yet may break existing code:

• snapshot isolation (new in 2005)

• MERGE statement (new in 2008).

Chapter 4: When Upgrading Breaks Code

106

Understanding Snapshot Isolation

The default transaction isolation level in SQL Server is READ COMMITTED, which
prevents statements from reading data that has been modified by another
transaction, but not committed. Most applications are developed to run in this mode.
However, in order to enforce this mode, SQL Server has to use shared and exclusive
locks in order to prevent data being read that is currently being modified by another
connection, and to prevent other transactions modifying data that is currently being
read. If a statement running under READ COMMITTED isolation level encounters data
that is being modified by another transaction, it must wait until those changes are either
committed or rolled back before proceeding. This can limit concurrency. Furthermore,
as will be demonstrated in Chapters 9 and 10, under conditions of high concurrency, the
READ COMMITTED mode can return inconsistent results.

SQL Server 2005 introduced the new snapshot isolation levels, with the goal of
"enhancing concurrency for OLTP applications." It is well beyond the scope of this
book to offer a full explanation of how the snapshot isolation levels work, and I refer
you to Books Online for that. However, the essential difference is that under snapshot
isolation, SQL Server maintains in tempdb a time-stamped "version store" of all data
changes since the beginning of the oldest outstanding transaction. Instead of blocking
when it encounters an exclusive lock, a reader transaction will simply "read around" the
lock, retrieving from the version store the version of the row consistent with a certain
point in time. snapshot isolation introduces two new modes of operation:

• SNAPSHOT mode – queries running in this mode return committed data as of the
beginning of the transaction

• READ_COMMITTED_SNAPSHOT mode – queries return committed data as of the
beginning of the current statement.

To demonstrate how snapshot isolation works, it first has to be enabled, as shown in
Listing 4-1. Note that it is enabled at the database level and, because we cannot use
either of the types of snapshot isolation in tempdb, be sure to choose a database other
than tempdb for these examples.

-- Replace Test with the name of your database
-- in both commands and make sure that no other
-- connections are accessing the database

Chapter 4: When Upgrading Breaks Code

107

-- as a result of this command,
-- READ_COMMITTED_SNAPSHOT becomes
-- the default isolation level.
ALTER DATABASE Test SET READ_COMMITTED_SNAPSHOT ON ;
GO

-- as a result of this command,
-- we can explitly specify that SNAPSHOT is
-- the current isolation level,
-- but it does not affect the default behavior.
ALTER DATABASE Test SET ALLOW_SNAPSHOT_ISOLATION ON ;
GO

Listing 4-1: Enabling snapshot isolation.

Next, create the TestTable table, for use in our example.

CREATE TABLE dbo.TestTable
 (
 ID INT NOT NULL
 PRIMARY KEY ,
 Comment VARCHAR(100) NOT NULL
) ;
GO
INSERT INTO dbo.TestTable
 (ID ,
 Comment
)
VALUES (1 ,
 'row committed before transaction began'
) ;

Listing 4-2: Creating and populating TestTable.

Open a tab in SSMS and start a transaction that inserts one more row into the table, and
keep the transaction open.

Chapter 4: When Upgrading Breaks Code

108

BEGIN TRANSACTION ;
INSERT INTO dbo.TestTable
 (ID ,
 Comment
)
VALUES (2 ,
 'row committed after transaction began'
) ;

-- COMMIT ;

Listing 4-3: Tab 1, an open transaction that inserts a row into TestTable.

Without snapshot isolation, a query may be blocked if some of the data it needs to read
is locked. To demonstrate this, open a second tab and run the code in Listing 4-4.

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ ;

SELECT ID ,
 Comment
FROM dbo.TestTable ;
-- This statement hangs in lock-waiting state.
-- Cancel the query.

Listing 4-4: Tab 2, when not using snapshot isolation, a query is blocked by the
outstanding transaction in Tab 1.

Cancel the query in Tab 2, and run it again under SNAPSHOT isolation level, as shown in
Listing 4-5.

IF @@TRANCOUNT = 0
 BEGIN ;
 SET TRANSACTION ISOLATION LEVEL SNAPSHOT ;
 PRINT 'Beginning transaction' ;
 BEGIN TRANSACTION ;
 END ;

Chapter 4: When Upgrading Breaks Code

109

SELECT ID ,
 Comment
FROM dbo.TestTable ;
--COMMIT ;

Beginning transaction

ID Comment
----------- --
1 Row committed before transaction began

(1 row(s) affected)

Listing 4-5: Tab 2, when using SNAPSHOT isolation, the same query completes.

The same query under READ_COMMITTED_SNAPSHOT also completes, and the output is
exactly the same as in the previous listing. Open a new tab and run the script shown in
Listing 4-6.

IF @@TRANCOUNT = 0
 BEGIN ;
-- this is actually READ_COMMITTED_SNAPSHOT because
-- we have already set READ_COMMITTED_SNAPSHOT to ON
 SET TRANSACTION ISOLATION LEVEL READ COMMITTED ;
 PRINT 'Beginning transaction' ;
 BEGIN TRANSACTION ;
 END ;

SELECT ID ,
 Comment
FROM dbo.TestTable ;

--COMMIT ;

Listing 4-6: Tab 3, when using READ_COMMITTED_SNAPSHOT isolation, the query
also completes right away.

Chapter 4: When Upgrading Breaks Code

110

So far, the queries return exactly the same results under either SNAPSHOT or
READ_COMMITTED_SNAPSHOT mode. To observe the difference between the two
modes, return to Tab 1 (Listing 4-3) and commit the modification. Go to Tab 2
(Listing 4-5), which is running in SNAPSHOT mode, and rerun the query. Since we
started the initial transaction before the addition of the second row was committed,
only the row committed before the transaction began is returned. Now go to Tab 3
(Listing 4-6), which is running in SNAPSHOT_READ_COMMITTED mode, and rerun the
query. Since the second row was committed before the statement was run, both rows
will be returned.

As a final clean up, highlight and execute COMMIT in the tabs for Listings 4-5 and 4-6.

When Snapshot Isolation Breaks Code

Queries that may previously have been blocked, in lock-waiting state, under traditional
isolation levels, can complete when running under the snapshot isolation levels. This
feature is highly useful in many situations but, unfortunately, it may in some cases break
existing code, such as triggers.

The following example demonstrates a typical scenario where triggers are used to
enforce a business rule that involves rows in different tables. The triggers, previously
working normally, begin to intermittently fail when they run under snapshot isolation.
Note that, although I have chosen triggers to demonstrate the problem, I could just as
easily provide similar examples using stored procedures. In other words, triggers are no
more or less vulnerable to this issue than stored procedures.

Suppose that we need to implement two business rules, expressed as follows:

• developers cannot go on vacation if they have active tickets assigned to them

• inactive tickets cannot be changed to active status if they are assigned to developers
who are on vacation.

We are going to use triggers to implement these business rules. As noted, this is not the
only implementation option, but it is a very common approach. Listing 4-7 creates the
Developers and Tickets tables that form the basis of our implementation. Let me
repeat that these examples should be not be run in the tempdb database.

Chapter 4: When Upgrading Breaks Code

111

CREATE TABLE dbo.Developers
 (
 DeveloperID INT NOT NULL ,
 FirstName VARCHAR(30) NOT NULL ,
 Lastname VARCHAR(30) NOT NULL ,
 Status VARCHAR(10) NOT NULL ,
 CONSTRAINT PK_Developers PRIMARY KEY (DeveloperID) ,
 CONSTRAINT CHK_Developers_Status CHECK (Status IN
 ('Active',
 'Vacation'))
) ;
GO
CREATE TABLE dbo.Tickets
 (
 TicketID INT NOT NULL ,
 AssignedToDeveloperID INT NULL ,
 Description VARCHAR(50) NOT NULL ,
 Status VARCHAR(10) NOT NULL ,
 CONSTRAINT PK_Tickets PRIMARY KEY (TicketID) ,
 CONSTRAINT FK_Tickets_Developers
 FOREIGN KEY (AssignedToDeveloperID)
 REFERENCES dbo.Developers (DeveloperID) ,
 CONSTRAINT CHK_Tickets_Status
 CHECK (Status IN ('Active', 'Closed'))
) ;

Listing 4-7: Creating the Developers and Tickets tables.

Note that, thanks to our FOREIGN KEY constraint, FK_Tickets_Developers, newly
added developers cannot have tickets assigned to them. We only need to make sure our
rules are enforced at the point when a developer's status is updated. Therefore, on the
Developers table, we create an AFTER UPDATE trigger, as shown in Listing 4-8. It is
designed to make sure that developers cannot go on vacation if they have active tickets
assigned to them.

Chapter 4: When Upgrading Breaks Code

112

CREATE TRIGGER dbo.Developers_Upd ON dbo.Developers
 AFTER UPDATE
AS
 BEGIN ;
 IF EXISTS (SELECT *
 FROM inserted AS i
 INNER JOIN dbo.Tickets AS t
 ON i.DeveloperID =
 t.AssignedToDeveloperID
 WHERE i.Status = 'Vacation'
 AND t.Status = 'Active')
 BEGIN ;

-- this string has been wrapped for readability here
-- it appears on a single line in the code download file
 RAISERROR ('Developers must assign their
 active tickets to someone
 else before going on
 vacation', 16, 1) ;
 ROLLBACK ;
 END ;
 END ;

Listing 4-8: The Developers_Upd trigger.

Similarly, on the Tickets table, we create an AFTER UPDATE trigger, as shown in
Listing 4-9. It is designed to make sure that inactive tickets cannot be changed to active
status if they are assigned to developers who are on vacation. In a complete solution,
we would also need to create an AFTER INSERT trigger to ensure that it is impossible
to insert a new ticket with active status and assign it to a developer who is on vacation.
However, we will focus only on the AFTER UPDATE trigger here.

CREATE TRIGGER dbo.Tickets_Upd ON dbo.Tickets
 AFTER UPDATE
AS
 BEGIN ;
 IF EXISTS (SELECT *

Chapter 4: When Upgrading Breaks Code

113

 FROM inserted AS i
 INNER JOIN dbo.Developers AS d
 ON i.AssignedToDeveloperID =
 d.DeveloperID
 WHERE d.Status = 'Vacation'
 AND i.Status = 'Active')
 BEGIN ;
 RAISERROR ('Cannot change status to
 Active if the developer in
 charge is on vacation',
 16, 1) ;
 ROLLBACK ;
 END ;
 END ;

Listing 4-9: The Tickets_Upd trigger.

Trigger behavior in normal READ COMMITTED mode

Let's test these triggers out under the default READ COMMITTED isolation level. First of
all, we need to make sure that we are not running under READ_COMMITTED_SNAPSHOT
isolation level, as shown in Listing 4-10.

-- Replace Test with the name of your database
-- it must not be tempdb

-- Before running this code, close or disconnect any
-- tabs conneted to the same database

ALTER DATABASE Test SET READ_COMMITTED_SNAPSHOT OFF ;

Listing 4-10: Make sure that READ_COMMITTED_SNAPSHOT is turned off.

Next, add some test data to our tables, as shown in Listing 4-11.

Chapter 4: When Upgrading Breaks Code

114

INSERT INTO dbo.Developers
 (
 DeveloperID,
 FirstName,
 Lastname,
 Status
)
 SELECT 1,
 'Arnie',
 'Brown',
 'Active'
 UNION ALL
 SELECT 2,
 'Carol',
 'Dale',
 'Active' ;
GO
INSERT INTO dbo.Tickets
 (
 TicketID,
 AssignedToDeveloperID,
 Description,
 Status
)
 SELECT 1,
 1,
 'Order entry form blows up',
 'Active'
 UNION ALL
 SELECT 2,
 2,
 'Incorrect totals in monthly report',
 'Closed' ;

Listing 4-11: Adding test data to the Developers and Tickets tables.

Chapter 4: When Upgrading Breaks Code

115

Our test data includes one developer (Arnie) who is currently active and has one active
ticket assigned to him, so we can test what happens if Arnie attempts to go on holiday
without assigning his ticket to someone else. Apparently, under READ COMMITTED
isolation level, our Developers_Upd trigger prevents violation of this business rule, as
shown in Listing 4-12.

SET TRANSACTION ISOLATION LEVEL READ COMMITTED ;
UPDATE dbo.Developers
SET Status = 'Vacation'
WHERE DeveloperID = 1 ;

Msg 50000, Level 16, State 1, Procedure Developers_Upd, Line
11
Developers must assign their active tickets to someone else
before going on vacation
Msg 3609, Level 16, State 1, Line 2
The transaction ended in the trigger. The batch has been
aborted.

Listing 4-12: Testing the Developers_Upd trigger.

Similarly, our dbo.Tickets_Upd trigger ensures that inactive tickets cannot be
changed to active status if they are assigned to developers who are on vacation, as shown
in Listing 4-13.

SET TRANSACTION ISOLATION LEVEL READ COMMITTED ;

-- make sure Carol's ticket is closed
UPDATE dbo.Tickets
SET Status = 'Closed'
WHERE TicketID = 2 ;

-- Carol can now go on vacation
UPDATE dbo.Developers
SET Status = 'Vacation'
WHERE DeveloperID = 2 ;

Chapter 4: When Upgrading Breaks Code

116

-- can we reopen Carol's ticket?
UPDATE dbo.Tickets
SET Status = 'Active'
WHERE TicketID = 2 ;
(1 row(s) affected)

(1 row(s) affected)
Msg 50000, Level 16, State 1, Procedure Tickets_Upd, Line 10
Cannot change status to Active if the developer in charge is
on vacation
Msg 3609, Level 16, State 1, Line 10
The transaction ended in the trigger. The batch has been
aborted.

Listing 4-13: Testing out the Tickets_Upd trigger.

So, it looks like our triggers work and our two business rules are enforced. However, so
far we have only tested them from a single connection. What happens when we have
concurrent access, so our triggers are being fired from multiple connections?

To mimic real life concurrency, we'll begin two transactions in two tabs, but not commit
them. That will ensure that two modifications are active at the same time. In one tab,
run the script shown in Listing 4-14, which first resets the test data to ensure Arnie's
ticket is closed, and then starts the test transaction, which will send him on vacation.

-- Tab 1
-- reset the test data; close Arnie's ticket
UPDATE dbo.Tickets
SET Status = 'Closed'
WHERE TicketID = 1 ;

-- start the transaction that sends Arnie on vacation
SET TRANSACTION ISOLATION LEVEL READ COMMITTED ;
BEGIN TRANSACTION ;

Chapter 4: When Upgrading Breaks Code

117

UPDATE dbo.Developers
SET Status = 'Vacation'
WHERE DeveloperID = 1 ;

-- COMMIT ;

Listing 4-14: Arnie is on vacation, but the change has not committed yet.

Note that, when this script has finished, the transaction opened by this connection is
still outstanding, because we have neither committed it nor rolled it back. In a second
tab, try to reopen the ticket assigned to Arnie, as shown in Listing 4-15.

-- Tab 2
SET TRANSACTION ISOLATION LEVEL READ COMMITTED ;
BEGIN TRANSACTION ;
UPDATE dbo.Tickets
SET Status = 'Active'
WHERE TicketID = 1 ;

-- COMMIT ;

Listing 4-15: Attempting to reopen a ticket assigned to Arnie.

This script will not complete; it will stay in lock-waiting state, because the
Tickets_Upd trigger needs to read the Developers table and find out whether
Arnie is active or on vacation, and that row has been changed and is locked by the
transaction in the first tab (Listing 4-14).

Go back to the first tab, and commit the outstanding transaction. The script in the
second tab will immediately fail with the same error message as shown in Listing 4-13,
which is the expected behavior.

Chapter 4: When Upgrading Breaks Code

118

Trigger behavior in SNAPSHOT mode

In fact, our triggers work in all the versions of SQL Server prior to SQL Server 2005.
However, in SQL Server 2005, our triggers may fail when working in either READ_
COMMITTED_SNAPSHOT or SNAPSHOT isolation mode.

This is very easy to demonstrate, simply by rerunning the previous example in
SNAPSHOT isolation mode. If you haven't done so already, then you'll first need to enable
SNAPSHOT isolation by running the ALTER DATABASE Test SET ALLOW_SNAPSHOT_
ISOLATION ON command from Listing 4-1.

In one tab, run the script shown in Listing 4-16, which first resets the test data so that
all tickets are closed, one developer (Arnie) is currently active, and the other (Carol) is
on vacation. It then starts (but does not commit) a transaction that sets Arnie's status
to Vacation.

-- Tab 1
SET TRANSACTION ISOLATION LEVEL SNAPSHOT ;

-- reset the test data
UPDATE dbo.Tickets
SET Status = 'Closed'
WHERE TicketID = 1 ;
UPDATE dbo.Developers
SET Status = 'Active'
WHERE DeveloperID = 1 ;

-- begin the transaction
BEGIN TRANSACTION ;
UPDATE dbo.Developers
SET Status = 'Vacation'
WHERE DeveloperID = 1 ;

-- COMMIT ;

Listing 4-16: The code in Tab 1 begins a transaction to set Arnie's status to Vacation.

Chapter 4: When Upgrading Breaks Code

119

In the second tab, reopen the closed ticket, as shown in Listing 4-17.

-- Tab 2
SET TRANSACTION ISOLATION LEVEL SNAPSHOT ;
BEGIN TRANSACTION ;
UPDATE dbo.Tickets
SET Status = 'Active'
WHERE TicketID = 1 ;

-- COMMIT ;

Listing 4-17: The code in Tab 2 starts a transaction to reopen a ticket that is
assigned to Arnie.

This time, under SNAPSHOT isolation level, this script also completes. The reason is
simple: under SNAPSHOT isolation writers do not block readers; when the SELECT
statement in the Tickets_Upd trigger executes, SQL Server detects that the required
row is subject to pending changes and so retrieves from the "version store" the row as it
existed at the time the transaction started.

In other words, from the perspective of Tickets_Upd trigger Arnie's status is still
Active (I shall prove this shortly).

To complete the example, commit the transactions in both tabs and, as you can see in
Listing 4-18, our data now violates our business rules.

SELECT d.DeveloperID,
 d.Status AS DeveloperStatus,
 t.TicketID,
 t.Status AS TicketStatus
FROM dbo.Developers AS d
 INNER JOIN dbo.Tickets AS t
 ON t.AssignedToDeveloperID = d.DeveloperID ;

Chapter 4: When Upgrading Breaks Code

120

DeveloperID DeveloperStatus TicketID TicketStatus
----------- --------------- ----------- ------------
1 Vacation 1 Active
2 Vacation 2 Closed

Listing 4-18: Data integrity is violated; we have an active ticket assigned to the
developer who is on vacation.

To prove that the Tickets_Upd trigger does not see the uncommitted changes from
another transaction, we can embed a query in the trigger's body that will show exactly
what data our trigger sees. Of course, this embedded query is for troubleshooting only
and should never be included in production code.

ALTER TRIGGER dbo.Tickets_Upd ON dbo.Tickets
 AFTER UPDATE
AS
 BEGIN ;
 SELECT d.DeveloperID ,
 d.Status AS DeveloperStatus ,
 t.TicketID ,
 t.Status AS TicketStatus
 FROM dbo.Developers AS d
 INNER JOIN inserted AS t
 ON t.AssignedToDeveloperID = d.DeveloperID ;

 IF EXISTS (SELECT *
 FROM inserted AS i
 INNER JOIN dbo.Developers AS d
 ON i.AssignedToDeveloperID =
 d.DeveloperID
 WHERE d.Status = 'Vacation'
 AND i.Status = 'Active')
 BEGIN ;

Chapter 4: When Upgrading Breaks Code

121

 RAISERROR ('Cannot change status to
 Active if the developer in
 charge is on vacation',
 16, 1) ;
 ROLLBACK ;
 END ;
 END ;

Listing 4-19: Modifying the Tickets_Upd trigger so that it reports the data, as it sees
it, in the Developers table.

Now, simply run through the example again, running Listing 4-16 in one tab, resetting
the test data and then starting a transaction to set Arnie's status to "vacation," and
Listing 4-20 in a second tab.

SET TRANSACTION ISOLATION LEVEL SNAPSHOT ;
BEGIN TRANSACTION ;
UPDATE dbo.Tickets
SET Status = 'Active'
WHERE TicketID = 1 ;

-- COMMIT ;

DeveloperID DeveloperStatus TicketID TicketStatus
----------- --------------- ----------- ------------
1 Active 1 Active

Listing 4-20: The Tickets_Upd trigger does not see the uncommitted changes from
the other transaction.

Clearly the Tickets_Upd trigger is not blocked by the modification in the first tab; it
just reads the corresponding row in the Developers table as it existed at the time the
transaction began.

Before moving on, remember to commit (or roll back) both of the open transactions.

Chapter 4: When Upgrading Breaks Code

122

Building more robust triggers?

Our example has demonstrated that triggers that work perfectly well under traditional
isolation levels can fail when using the new snapshot isolation level. Could we have
developed more robust triggers; ones that continue to enforce our business rules under
snapshot isolation? In this case, I do not think so. We might have been completely
unaware of snapshot isolation at the time we were developing our triggers.

However, at the point that we plan to implement a new feature, such as snapshot
isolation, we need to be fully aware of all the downstream ramifications of using it, and
look for ways to either ensure our triggers function correctly, or find an alternative way
to enforce our business rules. In this case, the fix takes the form of a very simple
modification to our Tickets_Upd trigger, to add the READCOMMITTEDLOCK hint, as
shown in Listing 4-21. Note that we also remove our previous "troubleshooting" query.

ALTER TRIGGER dbo.Tickets_Upd ON dbo.Tickets
 AFTER UPDATE
AS
 BEGIN ;
 IF EXISTS (SELECT *
 FROM inserted AS i
 INNER JOIN dbo.Developers AS d
 WITH (READCOMMITTEDLOCK)
 ON i.AssignedToDeveloperID =
 d.DeveloperID
 WHERE d.Status = 'Vacation'
 AND i.Status = 'Active')
 BEGIN ;
 RAISERROR ('Cannot change status to
 Active if the developer in
 charge is on vacation',
 16, 1) ;
 ROLLBACK ;
 END ;
 END ;

Listing 4-21: Adding the READCOMMITTEDLOCK hint to the Tickets_Upd trigger.

Chapter 4: When Upgrading Breaks Code

123

The READCOMMITTEDLOCK hint in the body of our trigger ensures that the query to
which it applies, against the Developers table, runs under the READ COMMITTED
isolation level. If we rerun our tests, the Tickets_Upd trigger behaves under
SNAPSHOT isolation level exactly as it does under READ COMMITTED isolation level.

Alternatively, presented in Chapter 7, Advanced Use of Constraints, is a rather advanced,
non-trigger-based solution to this type of problem. It uses constraints and, at the time of
writing, works consistently under all isolation levels.

Before moving on, commit or roll back any outstanding transactions and then
re-establish READ COMMITTED as our default isolation level, by rerunning Listing 4-10.

Understanding MERGE

The MERGE statement was introduced in SQL Server 2008 as a way to allow us to both
insert new rows and update or delete existing ones, in a single command. The following
simple example should demonstrate how it works, for those unfamiliar with it. First, we
need a table and some test data.

CREATE TABLE dbo.FrontPageArticles
 (
 ArticleID INT NOT NULL PRIMARY KEY ,
 Title VARCHAR(30) NOT NULL ,
 Author VARCHAR(30) NULL ,
 NumberOfViews INT NOT NULL
) ;
GO
INSERT dbo.FrontPageArticles
 (ArticleID ,
 Title ,
 Author ,
 NumberOfViews
)

Chapter 4: When Upgrading Breaks Code

124

VALUES (1 ,
 'Road Construction on Rt 59' ,
 'Lynn Lewis' ,
 0
) ;

Listing 4-22: The FrontPageArticles table, with test data.

The MERGE command shown in Listing 4-23 will update the existing article and insert
a new one.

MERGE dbo.FrontPageArticles AS target
 USING
 (SELECT 1 AS ArticleID ,
 'Road Construction on Rt 53' AS Title
 UNION ALL
 SELECT 2 AS ArticleID ,
 'Residents are reaching out' AS Title
) AS source (ArticleID, Title)
 ON (target.ArticleID = source.ArticleID)
 WHEN MATCHED
 THEN UPDATE
 SET Title = source.Title
 WHEN NOT MATCHED
 THEN INSERT
 (
 ArticleID ,
 Title ,
 NumberOfViews
)
 VALUES (source.ArticleID ,
 source.Title ,
 0
) ;
SELECT ArticleID ,
 Title ,
 NumberOfViews

Chapter 4: When Upgrading Breaks Code

125

FROM dbo.FrontPageArticles ;

ArticleID Title NumberOfViews
----------- ------------------------------ -------------
1 Road Construction on Rt 53 0
2 Residents are reaching out 0

Listing 4-23: Demonstrating the MERGE command (SQL 2008 and upwards).

Issues When Triggers Using @@ROWCOUNT Are
Fired by MERGE

The MERGE statement is a powerful new feature but, again, we need to be mindful of
its use alongside existing code. In this example, I will demonstrate how a previously
working trigger may start to misbehave when called from a MERGE statement.

Consider the trigger shown in Listing 4-24, designed to prevent the deletion of more
than one row at a time from the FrontPageArticles table.

CREATE TRIGGER CannotDeleteMoreThanOneArticle
 ON dbo.FrontPageArticles
 FOR DELETE
AS
 BEGIN ;
 IF @@ROWCOUNT > 1
 BEGIN ;
 RAISERROR ('Cannot Delete More Than One
 Row', 16, 1) ;
 END ;
 END ;

Listing 4-24: Creating the CannotDeleteMoreThanOneRow trigger.

We can test out our trigger using the code shown in Listing 4-25.

Chapter 4: When Upgrading Breaks Code

126

-- this fails. We cannot delete more than one row:
BEGIN TRY ;
 BEGIN TRAN ;
 DELETE FROM dbo.FrontPageArticles ;
 PRINT 'Previous command failed;this will not print';
 COMMIT ;
END TRY
BEGIN CATCH ;
 SELECT ERROR_MESSAGE() ;
 ROLLBACK ;
END CATCH ;

-- this succeeds:
BEGIN TRY ;
 BEGIN TRAN ;
 DELETE FROM dbo.FrontPageArticles
 WHERE ArticleID = 1 ;
 PRINT 'The second DELETE completed' ;
-- we are rolling back the change, because
-- we still need the original data in the next listing
 ROLLBACK ;
END TRY
BEGIN CATCH ;
 SELECT ERROR_MESSAGE() ;
 ROLLBACK ;
END CATCH ;

Listing 4-25: Our trigger allows us to delete one row, but prevents us from
deleting two rows.

So, we have proven that the trigger works when it is fired by a DELETE command. Note
that our trigger implicitly assumes that @@ROWCOUNT is equal to the number of rows
being deleted. Prior to SQL Server 2008, issuing a DELETE command is the only way to
fire an AFTER DELETE trigger, so this assumption is correct.

Chapter 4: When Upgrading Breaks Code

127

In SQL Server 2008, however, we can also fire this trigger by executing a MERGE
command. After a MERGE command completes, @@ROWCOUNT is set to the total
number of rows affected by it, including inserted, updated, and deleted rows.
Therefore, our assumption is no longer correct and our trigger is broken, as is shown
in the following example.

The intent of the MERGE command shown in Listing 4-26 is to modify one row and
delete exactly one row, yet the trigger mistakenly interprets this command as an attempt
to delete two rows, because @@ROWCOUNT is set to 2.

BEGIN TRY ;
 BEGIN TRAN ;

 MERGE dbo.FrontPageArticles AS target
 USING
 (SELECT 2 AS ArticleID ,
 'Residents are reaching out!' AS Title
) AS source (ArticleID, Title)
 ON (target.ArticleID = source.ArticleID)
 WHEN MATCHED
 THEN UPDATE
 SET Title = source.Title
 WHEN NOT MATCHED BY SOURCE
 THEN DELETE ;

 PRINT 'MERGE Completed' ;

 SELECT ArticleID ,
 Title ,
 NumberOfViews
 FROM dbo.FrontPageArticles ;

-- we are rolling back the change, because
-- we still need the original data in the next examples.
 ROLLBACK ;
END TRY

Chapter 4: When Upgrading Breaks Code

128

BEGIN CATCH ;
 SELECT ERROR_MESSAGE() ;
 ROLLBACK ;
END CATCH ;

Cannot Delete More Than One Row

Listing 4-26: The MERGE command intends to delete only one row (and to modify
another one) but falls foul of our trigger. These commands run only on
SQL 2008 and upwards.

Let us drop the trigger altogether, as shown in Listing 4-27.

DROP TRIGGER dbo.CannotDeleteMoreThanOneArticle ;

Listing 4-27: Dropping the trigger before rerunning the MERGE command.

And now we can rerun the code from Listing 4-26 and see that this MERGE command
modified one row and deleted only one row, so it should not have failed.

We have proved that, when we start using MERGE, some of our triggers may
malfunction. Again, assuming this trigger was developed prior to SQL Server 2008,
I would argue that there is little the developer could have done at the time to anticipate
that it might no longer work in a later version. However, at the point where we upgrade
to SQL Server 2008, the defensive programmer must get to work investigating how the
use of MERGE might affect existing code, and fixing the issues that are found.

In this case, the fix is quite straightfoward, as shown in Listing 4-28. Rather than rely on
@@ROWCOUNT, we simply query the deleted table to ensure that we are not deleting
more than one row at a time.

CREATE TRIGGER CannotDeleteMoreThanOneArticle
 ON dbo.FrontPageArticles
 FOR DELETE
AS
 BEGIN ;

Chapter 4: When Upgrading Breaks Code

129

-- these two queries are provided for better
-- understanding of the contents of inserted and deleted
-- virtual tables.
-- They should be removed before deploying!
 SELECT ArticleID ,
 Title
 FROM inserted ;

 SELECT ArticleID ,
 Title
 FROM deleted ;

 IF (SELECT COUNT(*)
 FROM deleted
) > 1
 BEGIN ;
 RAISERROR ('Cannot Delete More Than One
 Row', 16, 1) ;
 END ;
 END ;

Listing 4-28: The improved trigger.

To test this trigger, just rerun Listings 4-25 and 4-26; they both produce the expected
results, proving that now the trigger works when it is fired by our MERGE command as
well as when it is fired by DELETE.

Chapter 4: When Upgrading Breaks Code

130

Summary

Hopefully the examples in this chapter have clearly demonstrated that when we start
using new features, we can break our existing code. When we upgrade our servers,
it is important that the defensive programmer researches all of the downstream
ramifications before deciding when and how to use the new features.

Specifically, I hope you've learned the following lessons in defensive programming:

• code that works perfectly when using READ COMMITTED isolation level, may fail to
correctly enforce business rules under SNAPSHOT or READ_COMMITTED_SNAPSHOT
isolation

• code that uses @@ROWCOUNT may behave incorrectly when used after a MERGE
statement.

131

Chapter 5: Reusing T-SQL Code
Often, we have code that works perfectly well for a particular purpose, and then we find
that we need to implement some very similar functionality in another database. It is all
too tempting to just copy the code, adapt it to meet the new requirements, and then
deploy this slightly modified code. However, every time we copy and paste code in this
manner, we are exposed to the following risk: the requirements change, and we fail to
change the code in both places.

Whenever evidence of repetition is found in the code base, a defensive programmer
should seek to refactor, so that the code to tackle a given problem or enforce a given
rule is implemented in one place only. In other words, common logic should be
refactored into a single reusable code unit, in the form of a constraint, stored procedure,
trigger, user-defined function (UDF), or index. Whichever approach we use in each
particular case, this proper form of code reuse reduces the possibility of bugs and is a
vitally important part of defensive programming.

Unfortunately, many developers find it difficult to choose the correct implementation
for the given requirement; in this chapter I will offer some useful pointers as to the
approach that will lead to the most defensive, and therefore robust, code. We must, as
always, benchmark our solutions because the one that most conveniently promotes
reuse is not necessarily the one that will perform the best.

Specifically, this chapter will cover:

• why copy-and-paste will get you into trouble

• how proper code reuse will help

• using views to encapsulate simple queries

• using UDFs to encapsulate parameterized queries; and why UDFs may sometimes
be preferable to stored procedures for this requirement

• potential performance issues with UDFs

• using constraints, triggers and filtered indexes to implement business logic in
one place.

Chapter 5: Reusing T-SQL Code

132

The Dangers of Copy-and-Paste

The biggest problem with copy-and-paste as a means of solving a set of similar problems
is that, of course, it leads to code duplication. In turn, this means that we need to
maintain multiples copies of essentially the same code, but with each copy subtly
modified to suit a particular need. The real danger arises when requirements change,
and we need to make sure that this is reflected, not just in the original code, but in all
the subsequent copies. We can easily demonstrate this risk with an example. Listing 5-1
creates the Sales table and loads it with some test data.

CREATE TABLE dbo.Sales
 (
 SalesID INT NOT NULL
 IDENTITY
 PRIMARY KEY ,
 StateCode CHAR(2) NOT NULL ,
 SaleDateTime DATETIME NOT NULL ,
 Amount DECIMAL(10, 2) NOT NULL
) ;
GO
SET NOCOUNT ON ;
DECLARE @d DATETIME ,
 @i INT ;
SET @d = '20091002' ;
SET @i = 0 ;
WHILE @i < 40
 BEGIN ;
 INSERT INTO dbo.Sales
 (StateCode ,
 SaleDateTime ,
 Amount
)
 SELECT 'CA' ,
 @d ,
 case WHEN @d <'20091001' THEN 5000000
 ELSE 5000
 END

Chapter 5: Reusing T-SQL Code

133

 UNION ALL
 SELECT 'OR' ,
 @d ,
 case WHEN @d <'20091001' THEN 1000000
 ELSE 1000
 END ;
 SELECT @d = DATEADD(day, -1, @d) ,
 @i = @i + 1 ;
 END ;

Listing 5-1: Creating the Sales table and populating it with test data.

Listing 5-2 shows the stored procedure, SelectTotalSalesPerStateForMonth,
which returns the total sales per state for a given month.

CREATE PROCEDURE dbo.SelectTotalSalesPerStateForMonth
 @AsOfDate DATETIME
AS
 SELECT SUM(Amount) AS SalesPerState ,
 StateCode
 FROM dbo.Sales
-- month begins on the first calendar day of the month
 WHERE SaleDateTime >= DATEADD(month,
 DATEDIFF(month, '19900101',
 @AsOfDate),
 '19900101')
 AND SaleDateTime <= @AsOfDate
 GROUP BY StateCode ;

Listing 5-2: The SelectTotalSalesPerStateForMonth stored procedure.

At the time we developed this code, our understanding of a report "for a given month" is
one that covers the period of time from the first calendar day of the month until the day
we run the report. For this purpose, our stored procedure serves the customers' needs
well, and we soon receive a request for a similar report, returning the average sales per
state, for a given month. Note that our new report is required to use the same definition
of "for a given month."

Chapter 5: Reusing T-SQL Code

134

It is very tempting to just copy the existing SelectTotalSalesPerStateForMonth
procedure, and replace sum with avg to meet the new requirements, as shown in
Listing 5-3.

CREATE PROCEDURE dbo.SelectAverageSalesPerStateForMonth
 @AsOfDate DATETIME
AS
 SELECT AVG(Amount) AS SalesPerState ,
 StateCode
 FROM dbo.Sales
-- month begins on the first calendar day of the month
 WHERE SaleDateTime >= DATEADD(month,
 DATEDIFF(month, '19900101',
 @AsOfDate),
 '19900101')
 AND SaleDateTime <= @AsOfDate
 GROUP BY StateCode ;

Listing 5-3: A simple adaptation of our "total sales" stored procedure allows us to
produce an "average sales" equivalent.

In this way, we have completed the task in just a few seconds and, in the short term at
least, it will do the job.

Suppose, however, that at some later time the users request to change the definition of
"for a given month" to "thirty consecutive calendar days, ending on the day we run the
report." Unfortunately, the definition of "for a given month" is implemented twice, both
in SelectTotalSalesPerStateForMonth and in SelectAverageSalesPer-
StateForMonth. Even if one and the same person developed them both, it is possible
to forget it by the time we need to implement the change. Even if it is clearly docu-
mented that both procedures should use one and the same definition, it is still possible
that the developer implementing the change has failed to modify both stored procedures
in a consistent way.

Suppose, for example, that only the SelectAverageSalesPerStateForMonth
stored procedure was modified to meet this new requirement. Listing 5-4 shows how
it was changed.

Chapter 5: Reusing T-SQL Code

135

ALTER PROCEDURE dbo.SelectAverageSalesPerStateForMonth
 @AsOfDate DATETIME
AS
 SELECT AVG(Amount) AS SalesPerState ,
 StateCode
 FROM dbo.Sales
-- month means 30 calendar days
 WHERE SaleDateTime >= DATEADD(day, -29, @AsOfDate)
 AND SaleDateTime <= @AsOfDate
 GROUP BY StateCode ;

Listing 5-4: The modified SelectAverageSalesPerStateForMonth stored
procedure, accomodating the new definition of "for a given month."

When we make such changes, it is very easy to forget that we have implemented the
definition of "for a given month" in two places. If we update the definition in one place
and not the other, we will get inconsistent results, as demonstrated by Listing 5-5.

PRINT 'Total Sales Per State For Month:' ;
EXEC dbo.SelectTotalSalesPerStateForMonth
 @AsOfDate = '20091005' ;

PRINT 'Average Sales Per State For Month:' ;
EXEC dbo.SelectAverageSalesPerStateForMonth
 @AsOfDate = '20091005' ;

Total Sales Per State For Month:
SalesPerState StateCode
--------------------------------------- ---------
10000.00 CA
2000.00 OR

(2 row(s) affected)

Chapter 5: Reusing T-SQL Code

136

Average Sales Per State For Month:
SalesPerState StateCode
--------------------------------------- ---------
4630000.000000 CA
926000.000000 OR
(2 row(s) affected)

Listing 5-5: The stored procedures produce different results.

Clearly the average sales size for the state of California (4,630,000) is many times
greater than the total sales for the same state (10,000), which makes no sense at all. In
this example, I have deliberately used test data that makes the discrepancy obvious. In
general, however, such discrepancies may be more subtle and difficult to spot, so they
can lurk around for a long time.

As this example clearly demonstrates, when we cut and paste code, we expose our code
to the possibility of bugs if our requirements change, and we fail to change each of the
multiple implementations of one and the same logic in exactly the same way. In short,
copy-and-paste coding is a direct violation of the DRY (Don't Repeat Yourself) principle,
which is so fundamental in software engineering.

The DRY principle…

…was originally stated by Andy Hunt see http://en.wikipedia.org/wiki/Andy_

Hunt_(author) and Dave Thomas see http://en.wikipedia.org/wiki/Dave_Tho-

mas_(author) in their book The Pragmatic Programmer. For details, go to http://

en.wikipedia.org/wiki/The_Pragmatic_Programmer. I encourage you to read this
book; it is very relevant to every programmer.

The code to implement a given logic should be implemented once, and once only, and
reused by all applications that need it. However, of course, due care must be taken when
reusing SQL code. Careless reuse of code can lead to maintenance and performance
issues, especially when this reuse takes the form of scalar UDFs. We cannot reuse code
without first verifying that it runs fast enough. We shall discuss this in more detail later
in the chapter.

http://en.wikipedia.org/wiki/Andy_Hunt_%28author%29
http://en.wikipedia.org/wiki/Andy_Hunt_(author)
http://en.wikipedia.org/wiki/Andy_Hunt_(author)
http://en.wikipedia.org/wiki/Dave_Thomas_%28author%29
http://en.wikipedia.org/wiki/Dave_Thomas_(author)
http://en.wikipedia.org/wiki/Dave_Thomas_(author)
http://en.wikipedia.org/wiki/The_Pragmatic_Programmer
http://en.wikipedia.org/wiki/The_Pragmatic_Programmer
http://en.wikipedia.org/wiki/The_Pragmatic_Programmer

Chapter 5: Reusing T-SQL Code

137

How Reusing Code Improves its Robustness

Rather than repeat the same logic in multiple places, we need to refactor the common
functionality out of our two stored procedures. We can implement the definition of
"sales for a given month" in an inline UDF, as shown in Listing 5-6.

CREATE FUNCTION dbo.SalesForMonth (@AsOfDate DATETIME)
RETURNS TABLE
AS
RETURN
 (SELECT SalesID ,
 StateCode ,
 SaleDateTime ,
 Amount
 FROM dbo.Sales
 WHERE SaleDateTime >= DATEADD(day, -29, @AsOfDate)
 AND SaleDateTime <= @AsOfDate
) ;

Listing 5-6: Implementing the definition of "sales for a given month" in an inline
UDF.

This new inline UDF can then be used in both stored procedures.

ALTER PROCEDURE dbo.SelectTotalSalesPerStateForMonth
 @AsOfDate DATETIME
AS
 BEGIN
 SELECT SUM(Amount) AS SalesPerState ,
 StateCode
 FROM dbo.SalesForMonth(@AsOfDate)
 GROUP BY StateCode ;
 END ;
GO
ALTER PROCEDURE dbo.SelectAverageSalesPerStateForMonth
 @AsOfDate DATETIME
AS

Chapter 5: Reusing T-SQL Code

138

 BEGIN
 SELECT AVG(Amount) AS SalesPerState ,
 StateCode
 FROM dbo.SalesForMonth(@AsOfDate)
 GROUP BY StateCode ;
 END ;

Listing 5-7: Utilizing the new inline function in our two stored procedures.

After this refactoring, our two stored procedures are guaranteed to have the same defini-
tion of "for a given month." We can rerun Listing 5-5 and try them out. If, at some later
date, we change the definition of the reporting period again, we will have to modify only
one module, SalesForMonth.

Can we reuse the definition of the reporting period in other queries against other tables?
We can at least try to go one step further and have one module define our reporting
period and do nothing else. As usual, we should verify that the performance is still
acceptable. The code in Listing 5-8 shows how to implement the definition of reporting
period as an inline UDF.

CREATE FUNCTION dbo.MonthReportingPeriodStart
 (@AsOfDate DATETIME)
RETURNS TABLE
AS
RETURN
 (SELECT DATEADD(day, -29, @AsOfDate) AS PeriodStart
) ;

Listing 5-8: An inline UDF that implements the definition of a reporting period.

We can utilize this inline UDF when we implement the "sales for a given
month" functionality.

ALTER FUNCTION dbo.SalesForMonth (@AsOfDate DATETIME)
RETURNS TABLE
AS
RETURN

Chapter 5: Reusing T-SQL Code

139

 (SELECT SalesID ,
 StateCode ,
 SaleDateTime ,
 Amount
 FROM dbo.Sales AS s
 CROSS APPLY
 dbo.MonthReportingPeriodStart(@AsOfDate) AS ps
 WHERE SaleDateTime >= ps.PeriodStart
 AND SaleDateTime <= @AsOfDate
) ;

Listing 5-9: Altering SalesPerStateForMonth to utilize the new MonthReport-
ingPeriodStart function.

You can rerun Listing 5-5 one more time to verify that both our stored procedures still
work correctly.

Alternatively, we can use a scalar UDF to implement the definition of reporting period,
as shown in Listing 5-10.

-- being defensive, we must drop the old implementation
-- so that reporting periods are implemented
-- only in one place
DROP FUNCTION dbo.MonthReportingPeriodStart ;
GO
CREATE FUNCTION dbo.MonthReportingPeriodStart
 (@AsOfDate DATETIME)
RETURNS DATETIME
AS
 BEGIN ;
 DECLARE @ret DATETIME ;
 SET @ret = DATEADD(day, -29, @AsOfDate) ;
 RETURN @ret ;
 END ;

Listing 5-10: Scalar UDF which implements the definition of reporting period.

Chapter 5: Reusing T-SQL Code

140

We also have to change our SalesForMonth function, so that it utilizes our new scalar
UDF, as shown in Listing 5-11.

ALTER FUNCTION dbo.SalesForMonth (@AsOfDate DATETIME)
RETURNS TABLE
AS
RETURN
 (SELECT SalesID ,
 StateCode ,
 SaleDateTime ,
 Amount
 FROM dbo.Sales AS s
 WHERE SaleDateTime >=
 dbo.MonthReportingPeriodStart(@AsOfDate)
 AND SaleDateTime <= @AsOfDate
) ;

Listing 5-11: Altering SalesForMonth to utilize the new scalar UDF
MonthReportingPeriodStart.

Note that the new implementation of SalesForMonth is simpler than the previous one
(Listing 5-9): instead of using the CROSS APPLY clause to utilize the inline UDF, we can
just invoke the scalar UDF directly in the WHERE clause.

In fact, however, the CROSS APPLY version will perform better in many cases. As always
when we reuse code, we need to benchmark the performance of each of the possible
approaches before making a choice. In some cases, chaining functions can lead to bad
performance so, depending on the results of our benchmarking, we might even have to
abandon the SalesForMonth and MonthReportingPeriodStart UDFs and return
to the simpler function from Listing 5-6.

The basic fact remains, however, that implementing the same logic in multiple places
increases the possibility of bugs when our requirements change. Instead, we should
aim for sensible code reuse wherever possible, and UDFs are just one of the means to
achieve this.

Chapter 5: Reusing T-SQL Code

141

Over the coming sections, we'll discuss other ways in which we can reuse T-SQL code,
as dictated by the given circumstances. Overall, reusing code is a very important
component of defensive programming, and I cannot emphasize strongly enough how
much it can improve the robustness of our code.

Wrapping SELECTs in Views

In some cases, it makes sense to wrap a frequently-used query in a view, as shown in
Listing 5-12.

CREATE VIEW dbo.TotalSalesByState
AS
SELECT SUM(Amount) AS TotalSales, StateCode
FROM dbo.Sales
GROUP BY StateCode ;

Listing 5-12: Wrapping a query inside a view.

You can SELECT from views in exactly the same way as you can SELECT from tables, so
views are very convenient and useful. However, views do not offer the ability to provide
parameters to the SELECT statements that we are reusing. When this requirement
arises, we reuse SELECT statements by wrapping them either in stored procedures or in
user-defined functions.

As usual, we need to consider performance whenever we choose to use views. Typically
views do not cause any performance degradation at all. However, we need to use them
in moderation: having to deal with too many layers of nested views may overwhelm the
optimizer and cause it to choose a suboptimal plan.

Reusing Parameterized Queries: Stored
Procedures versus Inline UDFs

If we want to reuse parameterized queries, it is usually preferable to wrap them in user-
defined functions. It is typically less convenient to reuse parameterized queries that are
wrapped in stored procedures, as the following examples will demonstrate.

Chapter 5: Reusing T-SQL Code

142

Let's say we have a stored procedure that returns all sales for the month, across all states,
as shown in Listing 5-13.

CREATE PROCEDURE dbo.SelectSalesForMonth @AsOfDate DATETIME
AS
 BEGIN ;
 SELECT Amount ,
 StateCode
 FROM dbo.Sales
 WHERE SaleDateTime >= DATEADD(day, -29, @AsOfDate)
 AND SaleDateTime <= @AsOfDate ;
 END ;
GO

Listing 5-13: A stored procedure that returns all sales for the month.

Hopefully, you spotted the missed opportunity for code reuse in this listing. We should
have reused our MonthReportingPeriodStart in the WHERE clause; I leave this as
an exercise for the reader.

We now need to develop a stored procedure that retrieves the total sales per state for
a given month, and we want to reuse the SelectSalesForMonth stored procedure,
Although it's possible to do this, we will need to create a table variable or a temporary
table with a structure that matches the structure of the result set returned by stored
procedure, as shown in Listing 5-14.

CREATE PROCEDURE dbo.SelectSalesPerStateForMonth
 @AsOfDate DATETIME
AS
 BEGIN ;
 DECLARE @SalesForMonth TABLE
 (
 StateCode CHAR(2) ,
 Amount DECIMAL(10, 2)
) ;

 INSERT INTO @SalesForMonth

Chapter 5: Reusing T-SQL Code

143

 (Amount ,
 StateCode
)
 EXEC dbo.SelectSalesForMonth @AsOfDate ;

 SELECT SUM(Amount) AS TotalSalesForMonth ,
 StateCode
 FROM @SalesForMonth
 GROUP BY StateCode
 ORDER BY StateCode ;
 END ;
GO

Listing 5-14: The SelectSalesPerStateForMonth stored procedure, which reuses
the SelectSalesForMonth stored procedure and returns total sales per
state for the month.

We can run a smoke test to verify that our two stored procedures work.

EXEC dbo.SelectSalesForMonth @AsOfDate = '20091002' ;
EXEC dbo.SelectSalesPerStateForMonth @AsOfDate = '20091002' ;

Listing 5-15: Testing the new stored procedures.

So far so good; we have reused the code wrapped in SelectSalesForMonth procedure
and it works. However, now suppose we want to select the state with the highest total
sales for a given month. It looks as if we can simply reuse the SelectSalesPerState-
ForMonth procedure, again with a slight modification to create a table variable or a
temporary table, as shown in Listing 5-16.

CREATE PROCEDURE dbo.SelectStateWithBestSalesForMonth
 @AsOfDate DATETIME
AS
 BEGIN ;
 DECLARE @SalesForMonth TABLE
 (
 TotalSales DECIMAL(10, 2) ,

Chapter 5: Reusing T-SQL Code

144

 StateCode CHAR(2)
) ;

 INSERT INTO @SalesForMonth
 (TotalSales ,
 StateCode
)
 EXEC dbo.SelectSalesPerStateForMonth @AsOfDate ;

 SELECT TOP (1)
 TotalSales ,
 StateCode
 FROM @SalesForMonth
 ORDER BY TotalSales DESC ;
 END ;

Listing 5-16: Reusing SelectSalesPerStateForMonth procedure to get the state
with most sales.

Unfortunately, although the procedure creates, it does not work.

EXEC dbo.SelectStateWithBestSalesForMonth
 @AsOfDate = '20091002' ;

Msg 8164, Level 16, State 1, Procedure
SelectSalesPerStateForMonth, Line 10
An INSERT EXEC statement cannot be nested.

Listing 5-17: An INSERT…EXEC statement cannot be nested. Note that the exact error
message may vary depending on the version of your SQL Server.

Unfortunately, the INSERT…EXEC approach that we used in SelectSalesPerState-
ForMonth procedure cannot be nested. This is a very serious limitation.

The two inline UDFs shown in Listing 5-18 implement the same requirements. Note that
the TotalSalesPerStateForMonth function implements the same functionality as
our previous SelectTotalSalesPerStateForMonth stored procedure.

Chapter 5: Reusing T-SQL Code

145

As per our rules of code reuse, we would only ever implement one or the other, not both,
in our solutions.

CREATE FUNCTION dbo.TotalSalesPerStateForMonth
 (@AsOfDate DATETIME)
RETURNS TABLE
AS
RETURN
 (SELECT StateCode ,
 SUM(Amount) AS TotalSales
 FROM dbo.SalesPerStateForMonth(@AsOfDate)
 GROUP BY StateCode
) ;
GO

CREATE FUNCTION dbo.StateWithBestSalesForMonth
 (@AsOfDate DATETIME)
RETURNS TABLE
AS
RETURN
 (SELECT TOP (1)
 StateCode ,
 TotalSales
 FROM dbo.TotalSalesPerStateForMonth(@AsOfDate)
 ORDER BY TotalSales DESC
) ;

Listing 5-18: Implementing the same functionality via inline UDFs.

In contrast to what we saw in Listing 5-17, our attempt to reuse result sets returned from
nested inline UDFs works just fine.

SELECT * FROM dbo.TotalSalesPerStateForMonth ('20091002') ;
SELECT * FROM dbo.StateWithBestSalesForMonth ('20091002') ;

Chapter 5: Reusing T-SQL Code

146

StateCode TotalSales
--------- ---------------------------------------
CA 140010000.00
OR 28002000.00

(2 row(s) affected)

StateCode TotalSales
--------- ---------------------------------------
CA 140010000.00

(1 row(s) affected)

Listing 5-19: Testing the inline UDFs.

It is often easier to reuse code when it is wrapped in inline UDFs than when it is
wrapped in stored procedures. I should emphasize that I refer only to inline UDFs,
not to all three varieties of UDF. Whenever we are deciding whether to use stored
procedures or UDFs, we also need to consider the following:

• INSERT EXEC requires you to create a table variable or temporary table before doing
the call; stored procedures can have multiple and/or varying result sets, depending
on code path, causing all kinds of problems with INSERT EXEC

• some functionality, such as data modifications and TRY…CATCH blocks, is not
allowed in UDFs

• the inline UDF, like a view, is expanded in the execution plan, giving the optimizer
the choice to take shortcuts, or even remove joined tables if their columns are
not used.

Let's discuss performance considerations and see why it might not be a good idea to use
scalar UDFs.

Chapter 5: Reusing T-SQL Code

147

Scalar UDFs and Performance

Hopefully, the examples so far have demonstrated that laying out code in simple
reusable modules can simplify maintenance, and reduce the chance of bugs when
requirements change.

Although the emphasis of this book is on writing correct and robust code, we must, in
this chapter, discuss performance. The reason is simple: careless code reuse can seriously
hurt performance. For example, in some cases scalar UDFs may perform very poorly,
and I will provide an example that demonstrates this, for SQL Server 2005 and 2008. Of
course, in future versions of SQL Server the relative performance of the different flavors
of UDFs may change, so it's essential that you always benchmark the performance
impact of code refactoring, and rerun these benchmarks when you upgrade to a new
SQL Server version.

For this example, we'll need to create a test table with a reasonable number of rows, so
let's first set up a 128K-row helper table, Numbers, as shown in Listing 5-20, which we
can use to populate the test table.

These helper tables are a must-have in database development and, in fact, if you have
been working sequentially through the chapters, you will have already created an
almost-identical 1-million row Numbers table in Chapter 2 (Listing 2-2). If so, or
if you already have your own version that suits the same purpose, then feel free to
use that instead.

CREATE TABLE dbo.Numbers
 (
 n INT NOT NULL ,
 CONSTRAINT PK_Numbers PRIMARY KEY (n)
) ;
GO
DECLARE @i INT ;
SET @i = 1 ;
INSERT INTO dbo.Numbers
 (n)
VALUES (1) ;
WHILE @i < 100000

Chapter 5: Reusing T-SQL Code

148

 BEGIN ;
 INSERT INTO dbo.Numbers
 (n)
 SELECT @i + n
 FROM dbo.Numbers ;
 SET @i = @i * 2 ;
 END ;

Listing 5-20: Creating and populating the Numbers helper table.

Next, in Listing 5-21, we create the sample Packages table and populate it using our
Numbers helper table.

CREATE TABLE dbo.Packages
 (
 PackageID INT NOT NULL ,
 WeightInPounds DECIMAL(5, 2) NOT NULL ,
 CONSTRAINT PK_Packages PRIMARY KEY (PackageID)
) ;
 GO

INSERT INTO dbo.Packages
 (PackageID ,
 WeightInPounds
)
 SELECT n ,
 1.0 + (n % 900) / 10
 FROM dbo.Numbers ;

Listing 5-21: Create the Packages table and populate it with test data.

Suppose that the cost of shipping for a package is $1 if it weighs less than 5 pounds
and $2 if it weighs 5 pounds or more. Listing 5-22 shows how to implement this simple
algorithm, both as a scalar and as an inline UDF.

Chapter 5: Reusing T-SQL Code

149

CREATE FUNCTION dbo.GetShippingCost
 (
 @WeightInPounds DECIMAL(5, 2)
)
RETURNS DECIMAL(5, 2)
AS
 BEGIN
 DECLARE @ret DECIMAL(5, 2) ;
 SET @ret = CASE WHEN @WeightInPounds < 5 THEN 1.00
 ELSE 2.00
 END ;
 RETURN @ret ;
 END ;
GO

CREATE FUNCTION dbo.GetShippingCost_Inline
 (
 @WeightInPounds DECIMAL(5, 2)
)
RETURNS TABLE
AS
RETURN
 (SELECT CAST(CASE WHEN @WeightInPounds < 5 THEN 1.00
 ELSE 2.00
 END AS DECIMAL(5, 2)) AS ShippingCost
) ;

Listing 5-22: Calculating the shipping cost using a scalar UDF, GetShippingCost,
and an inline UDF, GetShippingCost_Inline.

Now, we are ready to examine the comparative performance of each function, using the
simple benchmark shown in Listing 5-23.

SET STATISTICS TIME ON ;
SET NOCOUNT ON ;

PRINT 'Using a scalar UDF' ;

Chapter 5: Reusing T-SQL Code

150

SELECT SUM(dbo.GetShippingCost(WeightInPounds))
 AS TotalShippingCost
FROM dbo.Packages ;

PRINT 'Using an inline UDF' ;
SELECT SUM(s.ShippingCost) AS TotalShippingCost
FROM dbo.Packages AS p CROSS APPLY
 dbo.GetShippingCost_Inline(p.WeightInPounds) AS s
;

PRINT 'Not using any functions at all' ;
SELECT SUM(CASE WHEN p.WeightInPounds < 5 THEN 1.00
 ELSE 2.00
 END) AS TotalShippingCost
FROM dbo.Packages AS p ;

SET STATISTICS TIME OFF ;

Listing 5-23: A simple benchmark to compare the performance of the scalar and inline
UDFs vs. the performance of the copy-and-paste approach.

Although both functions implement exactly the same algorithm, the performance is
dramatically different. When we run this benchmark on SQL Server 2005 or 2008, the
query that uses our scalar UDF runs dramatically slower. Also, in this particular case, the
query which uses the inline UDF performs very well, although not as fast as the query
that does not use any UDFs at all, as shown in Listing 5-24. Of course, when you run
these benchmarks on your system, you may get different results.

Using a scalar UDF

…<snip>…

SQL Server Execution Times:
 CPU time = 1531 ms, elapsed time = 1552 ms.

Using an inline UDF

Chapter 5: Reusing T-SQL Code

151

…<snip>…

SQL Server Execution Times:
 CPU time = 109 ms, elapsed time = 82 ms.

Not using any functions at all

…<snip>…

 SQL Server Execution Times:
 CPU time = 32 ms, elapsed time = 52 ms.

Listing 5-24: The performance of the query using our scalar UDF is dramatically
slower than the performance of other equivalent queries.

I am not saying that using inline UDFs never incurs any performance penalties; blanket
statements do not belong in database programming, and we always need to consider the
performance of each particular case separately. However, in many cases, inline UDFs
perform very well.

Multi-statement Table-valued UDFs

Besides scalar and inline UDFs, there are multi-statement table-valued UDFs. I will
not discuss or benchmark them here, because I feel I've already proved the point that
we need to consider performance when we refactor code. However, it's worth noting
that, in general, while inline UDFs tend to be "performance neutral," scalar and multi-
statement ones tend to hurt performance if not used carefully, and should be rigorously
tested and benchmarked. Be especially wary of using a multi-statement table-valued
UDF in an APPLY, since that may force the optimizer to re-execute the UDF for each
row in the table the UDF is applied against.

If you are interested in learning about different flavors of UDF, I encourage you to
read Books Online and Itzik Ben Gan's T-SQL Programming book (www.amazon.co.uk/

Inside-Microsoft-Server-2008-Pro-Developer/dp/0735626022/).

http://www.amazon.co.uk/Inside-Microsoft-Server-2008-Pro-Developer/dp/0735626022/
http://www.amazon.co.uk/Inside-Microsoft-Server-2008-Pro-Developer/dp/0735626022/

Chapter 5: Reusing T-SQL Code

152

Reusing Business Logic: Stored Procedure,
Trigger, Constraint or Index?

There are several ways in which we can choose to implement our business logic. For
example, we could use:

• stored procedures

• constraints

• triggers

• unique filtered indexes.

Over the coming sections we'll discuss the sort of situations where each approach may,
or may not be appropriate

Use constraints where possible

In many cases, constraints are the easiest and simplest to use. To demonstrate this point,
consider the Teams table shown in Listing 5-25, with a primary key constraint on the
TeamID column.

CREATE TABLE dbo.Teams
 (
 TeamID INT NOT NULL ,
 Name VARCHAR(50) NOT NULL ,
 CONSTRAINT PK_Teams PRIMARY KEY (TeamID)
) ;

Listing 5-25: Creating the Teams table.

Since we wish to forbid access to the base tables, teams will be inserted into the table,
one at a time, by calling a stored procedure. Our business rule is simple: team names
must be unique. So, we need to decide where to implement this business rule. One
choice is to enforce it in the stored procedure, as shown in Listing 5-27.

Chapter 5: Reusing T-SQL Code

153

CREATE PROCEDURE dbo.InsertTeam
 @TeamID INT ,
 @Name VARCHAR(50)
AS
 BEGIN ;
 -- This is not a fully-functional stored
 -- procedure. Error handling is skipped to keep
 -- the example short.
 -- Also potential race conditions
 -- are not considered in this simple module
 INSERT INTO dbo.Teams
 (TeamID ,
 Name
)
 SELECT @TeamID ,
 @Name
 WHERE NOT EXISTS (SELECT *
 FROM dbo.Teams
 WHERE Name = @Name) ;
 -- we also need to raise an error if we
 -- already have a team with such a name
 END ;

Listing 5-26: The InsertTeam stored procedure inserts a team, if the team name does
not already exist in the table.

So, we have a stored procedure that enforces our rule, at least in the absence of high
concurrency. However, what happens when we need another stored procedure that
modifies a single row in the Teams table, or one that merges a batch of new rows into
that table? We'll need to re-implement this same logic for every stored procedure that
modifies this table. This is a form of copy-and-paste and is both time consuming and
error prone.

Besides, unless you can guarantee that no applications can run modifications directly
against the Teams table, it's likely that your business rule will be bypassed at some point,
and inconsistent data will be introduced.

Chapter 5: Reusing T-SQL Code

154

It is much easier and safer to just create the business rule once, in one place, as a
UNIQUE constraint, as shown in Listing 5-27.

ALTER TABLE dbo.Teams
 ADD CONSTRAINT UNQ_Teams_Name UNIQUE(Name) ;

Listing 5-27: The UNQ_Teams_Name constraint enforces the uniqueness of team
names.

We can now let the database engine make sure that this business rule is always enforced,
regardless of the module or command that modifies the table.

Turn to triggers when constraints are not practical

As we have seen, constraints are extremely useful in many simple cases. However,
our business rules are often more complex, and it is sometimes not possible or not
practical to use constraints. To demonstrate this point, let's add one more table,
TeamMembers, which references the Teams table through the TeamID column, as
shown in Listing 5-28.

CREATE TABLE dbo.TeamMembers
 (
 TeamMemberID INT NOT NULL ,
 TeamID INT NOT NULL ,
 Name VARCHAR(50) NOT NULL ,
 IsTeamLead CHAR(1) NOT NULL ,
 CONSTRAINT PK_TeamMembers PRIMARY KEY (TeamMemberID) ,
 CONSTRAINT FK_TeamMembers_Teams
 FOREIGN KEY (TeamID) REFERENCES dbo.Teams (TeamID)
,
 CONSTRAINT CHK_TeamMembers_IsTeamLead
 CHECK (IsTeamLead IN ('Y', 'N'))
) ;

Listing 5-31: Creating the TeamMembers table.

Chapter 5: Reusing T-SQL Code

155

Suppose that we need to implement the following business rule: no team can have more
than two members. Implementing this business rule in a trigger is quite straightforward,
as shown in Listing 5-29, and you only have to do it once. It is possible, but much more
complex, to implement this rule via constraints.

CREATE TRIGGER dbo.TeamMembers_TeamSizeLimitTrigger
 ON dbo.TeamMembers
 FOR INSERT, UPDATE
AS
 IF EXISTS (SELECT *
 FROM (SELECT TeamID ,
 TeamMemberID
 FROM inserted
 UNION
 SELECT TeamID ,
 TeamMemberID
 FROM dbo.TeamMembers
 WHERE TeamID IN (SELECT TeamID
 FROM inserted)
) AS t
 GROUP BY TeamID
 HAVING COUNT(*) > 2)
 BEGIN ;
 RAISERROR('Team size exceeded limit',16, 10) ;
 ROLLBACK TRAN ;
 END ;

Listing 5-29: The TeamMembers_TeamSizeLimitTrigger trigger ensures that the
teams do not exceed the maximum size.

With our business rule implemented in only one place, we can comprehensively test just
one object. In order to test this trigger, we need some test data in our parent table, as
shown in Listing 5-30.

Chapter 5: Reusing T-SQL Code

156

INSERT INTO dbo.Teams
 (TeamID ,
 Name
)
 SELECT 1 ,
 'Red Bulls'
 UNION ALL
 SELECT 2 ,
 'Blue Tigers'
 UNION ALL
 SELECT 3 ,
 'Pink Panthers' ;

Listing 5-30: Adding some test data to the Teams table.

The script shown next, in Listing 5-31, verifies that we can successfully add new team
members, as long as the teams' sizes do not exceed the limit imposed by our trigger.

-- adding team members to new teams
INSERT INTO dbo.TeamMembers
 (TeamMemberID ,
 TeamID ,
 Name ,
 IsTeamLead
)
 SELECT 1 ,
 1 ,
 'Jill Hansen' ,
 'N'
 UNION ALL
 SELECT 2 ,
 1 ,
 'Sydney Hobart' ,
 'N'
 UNION ALL
 SELECT 3 ,
 2 ,

Chapter 5: Reusing T-SQL Code

157

 'Hobart Sydney' ,
 'N' ;

-- add more team members to existing teams
BEGIN TRANSACTION ;
INSERT INTO dbo.TeamMembers
 (TeamMemberID ,
 TeamID ,
 Name ,
 IsTeamLead
)
 SELECT 4 ,
 2 ,
 'Lou Larry' ,
 'N' ;
ROLLBACK TRANSACTION ;

Listing 5-31: Testing the _TeamSizeLimitTrigger trigger with valid INSERTs.

The script shown next, in Listing 5-32, verifies that we can successfully transfer team
members between teams, as long as the teams' sizes do not exceed the limit.

BEGIN TRANSACTION ;
UPDATE dbo.TeamMembers
SET TeamID = TeamID + 1 ;
ROLLBACK ;

BEGIN TRANSACTION ;
UPDATE dbo.TeamMembers
SET TeamID = 3 - TeamID ;
ROLLBACK ;

Listing 5-32: Testing the _TeamSizeLimitTrigger trigger with valid UPDATEs.

So, we've proved that our trigger allows modifications that do not violate our business
rules. Now we need to make sure that it does not allow modifications that do violate
our business rules; there are quite a few cases, and we need to verify them all. First of all,

Chapter 5: Reusing T-SQL Code

158

Listing 5-33 verifies that we cannot add new team members if the resulting teams' sizes
are too big. All the statements in the script must, and do, fail.

-- attempt to add too many team members
-- to a team which already has members
INSERT INTO dbo.TeamMembers
 (TeamMemberID ,
 TeamID ,
 Name ,
 IsTeamLead
)
 SELECT 4 ,
 2 ,
 'Calvin Lee' ,
 'N'
 UNION ALL
 SELECT 5 ,
 2 ,
 'Jim Lee' ,
 'N' ;
GO
 -- attempt to add too many team members to an empty team
INSERT INTO dbo.TeamMembers
 (TeamMemberID ,
 TeamID ,
 Name ,
 IsTeamLead
)
 SELECT 4 ,
 3 ,
 'Calvin Lee' ,
 'N'
 UNION ALL
 SELECT 5 ,
 3 ,
 'Jim Lee' ,
 'N'

Chapter 5: Reusing T-SQL Code

159

 UNION ALL
 SELECT 6 ,
 3 ,
 'Jake Lee' ,
 'N' ;

Listing 5-33: Testing the _TeamSizeLimitTrigger trigger with invalid INSERTs.

Also, we need to make sure that we cannot transfer team members if the resulting teams'
sizes are too big, as shown in Listing 5-34. Again, all the following statements fail as
expected.

-- attempt to transfer members from other teams
-- to a team which is full to capacity
UPDATE dbo.TeamMembers
SET TeamID = 1
WHERE TeamMemberID = 3 ;
GO
 -- attempt to transfer too many team members
 -- to a team that is not full yet
UPDATE dbo.TeamMembers
SET TeamID = 2
WHERE TeamMemberID IN (1, 2) ;
GO
 -- attempt to transfer too many team members
 -- to an empty team
UPDATE dbo.TeamMembers
SET TeamID = 3 ;

Listing 5-34: Testing the _TeamSizeLimitTrigger trigger with invalid UPDATEs.

The amount of testing needed to ensure that a trigger works as expected can be quite
substantial. However, this is the easiest alternative; if we were to re-implement this
business rule in several stored procedures, then the same amount of testing required for
the single trigger would be required for each of these procedures, in order to ensure that
every one of them implements our business rule correctly.

Chapter 5: Reusing T-SQL Code

160

Unique filtered indexes (SQL Server 2008 only)

Last, but not least, in some cases filtered indexes also allow us to implement business
rules. For example, suppose that we need to make sure that each team has at most one
team lead. If you are using SQL Server 2008 and upwards, then a filtered index can easily
implement this business rule, as shown in Listing 5-35. I encourage you to try out this
index and see for yourself that it works.

CREATE UNIQUE NONCLUSTERED INDEX TeamLeads
ON dbo.TeamMembers(TeamID)
WHERE IsTeamLead='Y' ;

Listing 5-35: The TeamLeads filtered index ensures that each team has at most one
team lead.

Summary

The aim of this chapter is to prove to you that a copy-and-paste approach to code reuse
will lead to multiple, inconsistent versions of the same logic being scattered throughout
your code base, and a maintenance nightmare.

It has also demonstrated how common logic can be refactored into a single reusable
code unit, in the form of a constraint, stored procedure, trigger, UDF or index. This
careful reuse of code will reduce the possibility of bugs and greatly improve the robust-
ness of our code.

Unfortunately, performance considerations may prevent us from reusing our code to
the fullest. Yet, with careful benchmarking, we can usually find a nice compromise and
develop code that is easy to maintain but still performs well enough.

Specifically, I hope the chapter has taught you the following lessons in defensive
programming:

• views are useful for simple reuse of non-parameterized queries

• for reuse of parameterized queries, inline UDFs are often preferable to
stored procedures

Chapter 5: Reusing T-SQL Code

161

• be wary of performance issues with scalar and multi-statement table-valued UDFs

• if possible, enforce reusable business logic in a simple constraint, or possibly a filtered
index in SQL 2008 and upwards

• for more complex logic, triggers often offer the most convenient means of promoting
reuse, but they require extensive testing.

162

163

Chapter 6: Common Problems
with Data Integrity
SQL Server provides built-in tools, in the form of constraints and triggers, which are
designed to enforce data integrity rules in the database. Alternatively, we can choose to
enforce data integrity in our applications. Which approach is best? To make an informed
decision, we need to understand the advantages and potential difficulties involved in
each approach, as well as the downstream ramifications of making the wrong choice.

In this chapter, we shall discuss benefits and common problems associated with each of
the following approaches:

• using our applications to enforce data integrity rules

• using constraints to enforce data integrity rules

• using triggers to enforce data integrity rules.

Triggers are usually used to implement those business rules or data integrity rules that
are just too complex to easily enforce using constraints. In this chapter, we'll examine
a few of the most common problems that can beset triggers and show how to make the
trigger code more robust. Ultimately, however, no matter how defensively we code, only
constraints can fully guarantee data integrity. In the next chapter we'll discuss some
advanced ways of using constraints to enforce complex business rules.

Enforcing Data Integrity in the Application Layer

In this example, consider the Boxes table, shown in Listing 6-1, which our application
needs to populate.

CREATE TABLE dbo.Boxes
 (
 Label VARCHAR(30) NOT NULL
 PRIMARY KEY ,
 LengthInInches DECIMAL(4, 2) NULL ,

Chapter 6: Common Problems with Data Integrity

164

 WidthInInches DECIMAL(4, 2) NULL ,
 HeightInInches DECIMAL(4, 2) NULL
) ;

Listing 6-1: Creating the Boxes table, which is populated by our application.

Our application has already loaded some data into our table, as represented by the script
shown in Listing 6-2.

INSERT INTO dbo.Boxes
 (
 Label,
 LengthInInches,
 WidthInInches,
 HeightInInches
)
VALUES (
 'School memorabilia',
 3,
 4,
 5
) ;

Listing 6-2: Loading some existing data into the Boxes table.

However, suppose that we then develop a new version of our application, in which we
have started to enforce the following rule when inserting rows into the Boxes table:

The height of a box must be less than, or equal to, the width; and the width must be less
than, or equal to, the length.

At some later point, we are asked to develop a query that returns all the boxes with at
least one dimension that is greater than 4 inches. With our new business rule in place we
know (or at least we think we know) that the longest dimension of any box is the length,
so all we have to do in our query is check for boxes with a length of more than 4 inches.
Listing 6-3 meets these requirements.

Chapter 6: Common Problems with Data Integrity

165

SELECT Label,
 LengthInInches,
 WidthInInches,
 HeightInInches
FROM dbo.Boxes
WHERE LengthInInches > 4 ;

Listing 6-3: A query to retrieve all boxes with at least one dimension
greater than 4 inches.

Unfortunately, we have failed to ensure that our existing data meets our business
rule. This query will not return the existing row, even though its largest dimension
is 5 inches.

As usual, we can either eliminate our assumption, which will involve writing a more
complex query that does not rely on it, or we can clean up our data, assume that it will
stay clean, and leave our query alone. Unfortunately, the assumption that the data will
"stay clean" is a dangerous one, when enforcing data integrity rules in the application.
Our application may have bugs and, in some cases, may fail to enforce the rule. Some
clients may continue to run the old version of the application, which does not enforce
the new business rule at all. Some data may be loaded by means other than the
application, such as through SSMS, therefore bypassing the rule enforcement altogether.
All too many developers completely overlook these possibilities, assuming that enforcing
business rules only in the application is safe. In reality, data integrity logic housed in the
application layer is frequently bypassed.

As a result, it is quite possible that we will have data in the Boxes table that does
not meet our business rule, and that we're likely to have to repeat any "data clean up"
process many times. Some shops run such data clean-ups weekly or even daily. In
short, although we can use our applications to enforce our data integrity rules, and
although this may seem to be the fastest way to get things done in the short term, it is an
approach that is inefficient in the long run.

Most of the arguments covered here may also apply to enforcing data integrity logic in
stored procedures, unless you are able to implement a design whereby access of your
stored procedure layer is enforced, by forbidding all direct table access.

Chapter 6: Common Problems with Data Integrity

166

Over the following sections, we'll discuss how to use constraints and triggers, which are
usually the preferred ways to protect data integrity.

Enforcing Data Integrity in Constraints

It is well known that using constraints is the most reliable way to enforce data integrity
rules. So how do we go about enforcing our previous business rule (the height of a box
must be less than, or equal to, the width; and the width must be less than, or equal to,
the length) in a constraint?

Our first attempt might look as shown in Listing 6-4.

ALTER TABLE dbo.Boxes
ADD CONSTRAINT Boxes_ConsistentDimensions
CHECK(HeightInInches <= WidthInInches
 AND WidthInInches <= LengthInInches) ;

Listing 6-4: The flawed Boxes_ConsistentDimensions constraint.

The attempt to add this constraint fails, because some data in the table does not validate
against it.

Msg 547, Level 16, State 0, Line 1
The ALTER TABLE statement conflicted with the CHECK
constraint "Boxes_ConsistentDimensions". The conflict
occurred in database "TEST3", table "dbo.Boxes".

Listing 6-5: Existing data violates the constraint.

First, we need to remove the offending data, as shown in Listing 6-6. In real life, we
would probably want to clean up that data instead of just deleting it, but we shall skip
this step for brevity.

Chapter 6: Common Problems with Data Integrity

167

DELETE FROM dbo.Boxes
WHERE NOT (HeightInInches <= WidthInInches
 AND WidthInInches <= LengthInInches
) ;

Listing 6-6: Deleting invalid data.

If we rerun Listing 6-4, the constraint creates. Now, if we try to insert some invalid data,
by running Listing 6-2, the constraint enforces our rule and the INSERT operation fails.

Unfortunately, in its current form our constraint is still flawed, as demonstrated by the
fact that Listing 6-7 succeeds in adding a box that is taller than it is long.

INSERT INTO dbo.Boxes
 (Label ,
 LengthInInches ,
 WidthInInches ,
 HeightInInches

)
VALUES ('School memorabilia' ,
 3 ,
 NULL ,
 5
) ;

Listing 6-7: Adding a box with height greater than length.

In order to use constraints effectively, we need to understand how they work;
otherwise we may end up, as here, with a false sense of security and some dirty data
in our database.

The problem here, as you may have guessed, is a failure to handle NULL values correctly.
This is one of several very common mistakes that are made when using constraints, and
over the coming sections we'll learn what they are, and how to avoid them. Along the
way, we'll fix our constraint so that it works reliably.

Chapter 6: Common Problems with Data Integrity

168

Handling nulls in CHECK constraints

Logical conditions in CHECK constraints work differently from logical conditions in the
WHERE clause. If a condition in a CHECK constraint evaluates to "unknown," then the
row can still be inserted, but if a condition in a WHERE clause evaluates to "unknown,"
then the row will not be included in the result set. To demonstrate this difference, add
another CHECK constraint to our Boxes table, as shown in Listing 6-8.

ALTER TABLE dbo.Boxes
ADD CONSTRAINT CHK_Boxes_PositiveLength
 CHECK (LengthInInches > 0) ;

Listing 6-8: The CHK_Boxes_PositiveLength constraint ensures that boxes can-
not have zero or negative length.

However, the condition used in the CHECK constraint will not prevent us from inserting
a row with NULL length, as demonstrated in Listing 6-9.

INSERT INTO dbo.Boxes
 (
 Label,
 LengthInInches,
 WidthInInches,
 HeightInInches
)
VALUES (
 'Diving Gear',
 NULL,
 20,
 20
) ;

Listing 6-9: The CHK_Boxes_PositiveLength check constraint allows us to save
rows with NULL length.

Chapter 6: Common Problems with Data Integrity

169

However, this row will not validate against exactly the same condition in a
WHERE clause.

SELECT Label,
 LengthInInches,
 WidthInInches,
 HeightInInches
FROM dbo.Boxes
WHERE LengthInInches > 0 ;

Listing 6-10: This SELECT statement does not return rows with NULL length.

Many SQL developers get into trouble because they fail to consider how NULL evaluates
in logical expressions. For example, we've already proven that our constraint Boxes_
ConsistentDimensions does not quite work; it validated a box with height greater
than length.

Now we know enough to understand how that happened: the constraint will only
forbid rows where the CHECK clause (HeightInInches <= WidthInInches AND
WidthInInches <= LengthInInches) evaluates to FALSE. If either condition in
the clause evaluates to UNKNOWN, and another evaluates to UNKNOWN or TRUE, then
the overall clause evaluates to UNKNOWN and the row can be inserted. In this case, both
conditions in our CHECK constraint evaluated as UNKNOWN.

SELECT CASE WHEN LengthInInches >= WidthInInches THEN 'True'
 WHEN LengthInInches < WidthInInches THEN 'False'
 ELSE 'Unknown'
 END AS LengthNotLessThanWidth ,
 CASE WHEN WidthInInches >= HeightInInches THEN 'True'
 WHEN WidthInInches < HeightInInches THEN 'False'
 ELSE 'Unknown'
 END AS WidthNotLessThanHeight
FROM dbo.Boxes
WHERE Label = 'School memorabilia' ;

Chapter 6: Common Problems with Data Integrity

170

LengthNotLessThanWidth WidthNotLessThanHeight
---------------------- ----------------------
Unknown Unknown

Listing 6-11: Both conditions in Boxes_ConsistentDimensions evaluate
as "unknown."

When we develop constraints, we must take added care if the columns involved are nul-
lable. The script in Listing 6-11 fixes our Boxes_ConsistentDimensions constraint.

DELETE FROM dbo.Boxes
WHERE HeightInInches > WidthInInches
 OR WidthInInches > LengthInInches
 OR HeightInInches > LengthInInches ;
GO

ALTER TABLE dbo.Boxes
DROP CONSTRAINT Boxes_ConsistentDimensions ;
GO

ALTER TABLE dbo.Boxes
ADD CONSTRAINT Boxes_ConsistentDimensions
CHECK ((HeightInInches <= WidthInInches
 AND WidthInInches <= LengthInInches
 AND HeightInInches <= LengthInInches)
) ;

Listing 6-12: The fixed Boxes_ConsistentDimensions constraint.

Rerun Listing 6-7 and you'll find that, this time, the constraint will prevent invalid data
from saving. The lesson here is simple: when testing CHECK constraints, always include
in your test cases rows with NULLs.

Chapter 6: Common Problems with Data Integrity

171

Foreign key constraints and NULLs

It is a common misconception that foreign keys always prevent orphan rows, that is,
rows in the child table that do not have corresponding rows in the parent table. In fact,
if the columns involved in the foreign key constraint are nullable, then we may have
orphan rows.

Let's see for ourselves. Listing 6-13 creates a parent and child pair of tables.

CREATE TABLE dbo.ParkShelters
 (
 Latitude DECIMAL(9, 6) NOT NULL ,
 Longitude DECIMAL(9, 6) NOT NULL ,
 ShelterName VARCHAR(50) NOT NULL ,
 CONSTRAINT PK_ParkShelters
 PRIMARY KEY (Latitude, Longitude)
) ;
GO

CREATE TABLE dbo.ShelterRepairs
 (
 RepairID INT NOT NULL PRIMARY KEY ,
 Latitude DECIMAL(9, 6) NULL ,
 Longitude DECIMAL(9, 6) NULL ,
 RepairDate DATETIME NOT NULL ,
 CONSTRAINT FK_ShelterRepairs_ParkShelters
 FOREIGN KEY (Latitude, Longitude)
 REFERENCES dbo.ParkShelters (Latitude, Longitude)
) ;

Listing 6-13: Create a parent table (ParkShelters) and a child table
(ShelterRepairs).

We have a composite FOREIGN KEY constraint on the Latitude and Longitude
columns in the child table, but since both of these columns are nullable, we can add a
child row without a matching parent row into the child table, even though the parent
table is empty at this time, as Listing 6-14 demonstrates.

Chapter 6: Common Problems with Data Integrity

172

INSERT INTO dbo.ShelterRepairs
 (RepairID ,
 Latitude ,
 Longitude ,
 RepairDate
)
VALUES (0 , -- RepairID - int
 12.34 , -- Latitude - decimal
 NULL , -- Longitude - decimal
 '2010-02-06T21:07:52' -- RepairDate - datetime
) ;

Listing 6-14: Adding repairs even though there is no such shelter.

The database engine will verify whether or not there is a matching row in the parent
table if, and only if, neither the Latitude nor Longitude column in the child table
contains a NULL. Listing 6-15, for example, will fail.

INSERT INTO dbo.ShelterRepairs
 (RepairID ,
 Latitude ,
 Longitude ,
 RepairDate
)
VALUES (1 , -- RepairID - int
 12.34 , -- Latitude - decimal
 34.56 , -- Longitude - decimal
 '20100207' -- RepairDate - datetime
) ;

Listing 6-15: We cannot add repairs if both Latitude and Longitude columns in the
child table are not null, and there is no matching shelter.

This demonstrates that, if we need to make sure that every row in the child table has a
matching row in the parent table, it is not enough to simply create a FOREIGN KEY; in
such cases, we also need to ensure that the columns involved in the FOREIGN KEY, in
the child table, are not nullable. Use of nullable columns in FOREIGN KEY constraints

Chapter 6: Common Problems with Data Integrity

173

must be reserved only for the cases when it is acceptable to have rows in the child table
without matching rows in the parent one.

Understanding disabled, enabled, and trusted
constraints

Not all types of constraints behave in the same way. UNIQUE and PRIMARY KEY
constraints always ensure that all the data is valid with respect to them but a FOREIGN
KEY or CHECK constraint can exist in the database in one of three states:

• disabled – exists in the database, is exposed via system views, and can be scripted
out; but does not do anything

• enabled but not trusted – validates all modifications, but does not guarantee that all
existing data conforms to its rules

• enabled and trusted – validates all modifications, and guarantees that all existing
data is valid.

Note that only CHECK constraints and FOREIGN KEY constraints can be disabled. Under
the hood PRIMARY KEY and UNIQUE constraints are implemented as UNIQUE indexes.
As such, neither PRIMARY KEY nor UNIQUE constraints can be disabled, and will always
be trusted.

We can demonstrate the differences between disabled, enabled, and trusted constraints
with a simple example, involving a FOREIGN KEY constraint. Listing 6-16 drops and
recreates our Boxes table and then creates a child table, Items.

DROP TABLE dbo.Boxes ;
GO
CREATE TABLE dbo.Boxes
 (
 BoxLabel VARCHAR(30) NOT NULL ,
 LengthInInches DECIMAL(4, 2) NOT NULL ,
 WidthInInches DECIMAL(4, 2) NOT NULL ,
 HeightInInches DECIMAL(4, 2) NOT NULL ,
 CONSTRAINT PK_Boxes PRIMARY KEY (BoxLabel)

Chapter 6: Common Problems with Data Integrity

174

) ;
GO
CREATE TABLE dbo.Items
 (
 ItemLabel VARCHAR(30) NOT NULL ,
 BoxLabel VARCHAR(30) NOT NULL ,
 WeightInPounds DECIMAL(4, 2) NOT NULL ,
 CONSTRAINT PK_Items PRIMARY KEY (ItemLabel) ,
 CONSTRAINT FK_Items_Boxes FOREIGN KEY (BoxLabel)
 REFERENCES dbo.Boxes (BoxLabel)
) ;

Listing 6-16: Dropping and recreating the Boxes table, and creating Items table.

Listing 6-17 populates each table with some valid test data, as per our
FK_Items_Boxes constraint.

INSERT INTO dbo.Boxes
 (
 BoxLabel,
 LengthInInches,
 WidthInInches,
 HeightInInches
)
VALUES (
 'Camping Gear',
 40,
 40,
 40
) ;
GO
INSERT INTO dbo.Items
 (
 ItemLabel,
 BoxLabel,
 WeightInPounds
)

Chapter 6: Common Problems with Data Integrity

175

VALUES (
 'Tent',
 'Camping Gear',
 20
) ;

Listing 6-17: Populating Boxes and Items tables with valid test data.

Listing 6-18 confirms that the constraint prevents invalid data from saving.

INSERT INTO dbo.Items
 (
 ItemLabel,
 BoxLabel,
 WeightInPounds
)
VALUES (
 'Yoga mat',
 'No Such Box',
 2
) ;

Msg 547, Level 16, State 0, Line 1
The INSERT statement conflicted with the FOREIGN KEY
constraint "FK_Items_Boxes". The conflict occurred in
database "TEST", table "dbo.Boxes", column 'BoxLabel'.
The statement has been terminated.

Listing 6-18: FK_Items_Boxes prohibits orphan rows.

Disabled constraints do…nothing

Say we need to bulk load data into these two tables, and that the loading must complete
as quickly as possible; this is a very common requirement. Assuming we know that the
data comes from a trusted source, and that all the data in that source is clean, it is quite
a common practice to disable the FOREIGN KEY constraint, so that we can start loading

Chapter 6: Common Problems with Data Integrity

176

data into both tables simultaneously without having to make sure that parent rows load
before their child ones.

Disabling the constraint is shown in Listing 6-19.

ALTER TABLE dbo.Items
 NOCHECK CONSTRAINT FK_Items_Boxes ;

Listing 6-19: Disabling the FK_Items_Boxes constraint.

We can confirm that the constraint is disabled, by running the query in Listing 6-20.

SELECT CAST(name AS char(20)) AS Name,
 is_disabled
FROM sys.foreign_keys
WHERE name = 'FK_Items_Boxes' ;

Name is_disabled
-------------------- -----------
FK_Items_Boxes 1

Listing 6-20: Confirming that the FK_Items_Boxes constraint is disabled.

To determine if a CHECK constraint is disabled…

…we need to query another system view, named sys.check_constraints.

Our disabled constraint no longer prevents us from saving orphan rows. If we rerun
Listing 6-18 it will succeed, and an orphan row will be inserted into the child table, as
shown in Listing 6-21.

SELECT ItemLabel ,
 BoxLabel
FROM dbo.Items AS i
WHERE NOT EXISTS (SELECT *
 FROM dbo.Boxes AS b

Chapter 6: Common Problems with Data Integrity

177

 WHERE i.BoxLabel = b.BoxLabel) ;

ItemLabel BoxLabel
------------------------------ ------------------------
Yoga mat No Such Box

Listing 6-21: Exposing the orphan row.

In short, a disabled constraint does not actually do anything, although it still exists, and
you can still script it out.

Enabled constraints do not validate existing data

For the following reasons, it is quite possible that, at the end of our bulk load, the row
inserted by Listing 6-18 will still be an orphan:

• the source of our data has failed to maintain data integrity

• parent rows were exported before child ones, so the data being loaded does not
represent a consistent point-in-time snapshot

• our load has partially failed.

Once the bulk load has finished, we can re-enable the FOREIGN KEY constraint, as
shown in Listing 6-22.

ALTER TABLE dbo.Items
 CHECK CONSTRAINT FK_Items_Boxes ;

Listing 6-22: Re-enabling the FK_Items_Boxes constraint.

Having successfully re-enabled the constraint (rerun Listing 6-20 to verify), we cannot
insert any more invalid data.

INSERT INTO dbo.Items
 (
 ItemLabel,
 BoxLabel,

Chapter 6: Common Problems with Data Integrity

178

 WeightInPounds
)
VALUES (
 'Camping Stove',
 'No Such Box',
 2
) ;

Msg 547, Level 16, State 0, Line 1
The INSERT statement conflicted with the FOREIGN KEY
constraint "FK_Items_Boxes". The conflict occurred in
database "TEST3", table "dbo.Boxes", column 'BoxLabel'.
The statement has been terminated.

Listing 6-23: The FK_Items_Boxes constraint stops insertion of further orphan
rows.

However, we still have an orphan row in the Items table. In short, enabled constraints
prevent entering invalid data, but they do not guarantee that all existing data is valid.

Trusted constraints guarantee that existing data is valid

The problem we have is that when we enabled our FOREIGN KEY constraint, in Listing
6-22, we did not validate existing data against the constraint, and so SQL Server marks it
as "not trusted," as shown in Listing 6-24.

SELECT CAST(name AS char(20)) AS Name,
 is_disabled,
 is_not_trusted
FROM sys.foreign_keys
WHERE name = 'FK_Items_Boxes' ;

Name is_disabled is_not_trusted
-------------------- ----------- ------------
FK_Items_Boxes 0 1

Listing 6-24: The constraint FK_Items_Boxes is enabled but not trusted.

Chapter 6: Common Problems with Data Integrity

179

To perform this validation, simply use the WITH CHECK option when enabling the
constraint, as shown in Listing 6-25. The command fails, as it should, because we have
an orphan row.

ALTER TABLE [dbo].[Items]
 WITH CHECK
 CHECK CONSTRAINT FK_Items_Boxes ;

Msg 547, Level 16, State 0, Line 1
The ALTER TABLE statement conflicted with the FOREIGN KEY
constraint "FK_Items_Boxes". The conflict occurred in
database "test", table "dbo.Boxes", column 'Label'.

Listing 6-25: A failed attempt to validate the FK_Items_Boxes constraint.

Let us delete that orphan row, as shown in Listing 6-26.

DELETE FROM dbo.Items
WHERE NOT EXISTS (SELECT *
 FROM dbo.Boxes AS b
 WHERE Items.BoxLabel = b.BoxLabel);

Listing 6-26: Deleting the orphan row.

Now rerun Listing 6-25 and it will succeed, and the constraint will now be trusted
(which can be verified by rerunning 6-24).

Only PRIMARY KEY and UNIQUE constraints are always trusted. A CHECK or FOREIGN
KEY constraint may become non-trusted as a result, for example, of disabling it, and
then re-enabling it without validating the existing data. Even if the data were completely
valid, the constraint will still not be trusted unless the WITH CHECK option is used when
it is enabled.

Only when a constraint is trusted can we know for certain that all the data in the table
is valid with respect to that constraint. An added advantage of trusted constraints is
that they can be used by the optimizer when devising execution plans. Conversely, the

Chapter 6: Common Problems with Data Integrity

180

optimizer will ignore non-trusted constraints, meaning that valuable information will go
unused, and could lead to suboptimal plans.

Problems with UDFs wrapped in CHECK constraints

Some complex business rules are difficult or impossible to implement via regular
constraints. In such cases, it seems intuitive to develop a scalar UDF and wrap it in
a CHECK constraint.

For example, suppose that we need to enforce a data integrity rule that states:

We can have any number of NULLs in the Barcode column, but the NOT NULL values
must be unique.

Clearly, we cannot use a UNIQUE index or constraint in this situation, because it
would only allow a single NULL value, and we need to support multiple NULL values in
this column.

The behavior of UNIQUE in SQL Server is not ANSI standard

ANSI specifies that a UNIQUE constraint should enforce uniqueness for non-NULL
values only. Microsoft's implementation of the UNIQUE constraint deviates from this
standard definition.

To set up the example, we just need to add a Barcode column to our Items table, as
shown in Listing 6-27.

ALTER TABLE dbo.Items
ADD Barcode VARCHAR(20) NULL ;

Listing 6-27: Adding a Barcode column to the Items table.

To enforce our business rule, it is technically possible to develop a scalar UDF and invoke
it from a CHECK constraint, as demonstrated in Listing 6-28.

Chapter 6: Common Problems with Data Integrity

181

CREATE FUNCTION dbo.GetBarcodeCount
 (@Barcode varchar(20))
RETURNS int
AS
 BEGIN ;
 DECLARE @barcodeCount int ;
 SELECT @barcodeCount = COUNT(*)
 FROM dbo.Items
 WHERE Barcode = @Barcode ;
 RETURN @barcodeCount ;
 END ;
GO
ALTER TABLE dbo.Items
ADD CONSTRAINT UNQ_Items_Barcode
 CHECK (dbo.GetBarcodeCount(Barcode) < 2) ;
GO

Listing 6-28: Creating GetBarcodeCount, a scalar UDF, and invoking it from
a CHECK constraint.

This solution looks intuitive and it works fine for INSERTs. Listing 6-29 verifies that we
can INSERT more than one NULL barcode.

-- DELETE FROM dbo.Items

INSERT INTO dbo.Items
 (
 ItemLabel,
 BoxLabel,
 WeightInPounds,
 Barcode
)
VALUES (
 'Sleeping Bag',
 'Camping Gear',
 4,
 NULL

Chapter 6: Common Problems with Data Integrity

182

) ;
GO
INSERT INTO dbo.Items
 (
 ItemLabel,
 BoxLabel,
 WeightInPounds,
 Barcode
)
VALUES (
 'Sleeping Mat',
 'Camping Gear',
 1,
 NULL
) ;

Listing 6-29: The CHECK constraint UNQ_Items_Barcode allows us to insert more
than one row with a NULL barcode.

Listing 6-30 verifies that we can INSERT items with NOT NULL barcodes, as long as we
do not INSERT duplicates.

INSERT INTO dbo.Items
 (
 ItemLabel,
 BoxLabel,
 WeightInPounds,
 Barcode
)
VALUES (
 'Big Flashlight',
 'Camping Gear',
 2,
 '12345678'
) ;
GO

Chapter 6: Common Problems with Data Integrity

183

INSERT INTO dbo.Items
 (
 ItemLabel,
 BoxLabel,
 WeightInPounds,
 Barcode
)
VALUES (
 'Red Flashlight',
 'Camping Gear',
 1,
 '12345679'
) ;

Listing 6-30: UNQ_Items_Barcode allows us to insert more rows with NOT NULL
barcodes, as long as there are no duplicate barcodes.

Finally, Listing 6-31 verifies that we cannot INSERT a duplicate NOT NULL barcode.

INSERT INTO dbo.Items
 (
 ItemLabel,
 BoxLabel,
 WeightInPounds,
 Barcode
)
VALUES (
 'Cooking Pan',
 'Camping Gear',
 2,
 '12345679'
) ;

Msg 547, Level 16, State 0, Line 1

Chapter 6: Common Problems with Data Integrity

184

The INSERT statement conflicted with the CHECK constraint
"UNQ_Items_Barcode". The conflict occurred in database
"test", table "dbo.Items", column 'Barcode'.
The statement has been terminated.

Listing 6-31: UNQ_Items_Barcode prevents duplicate NOT NULL barcodes.

So, as long as we only insert rows, the CHECK constraint UNQ_Items_Barcode works.
Similarly, we can test it for a single-row UPDATE. The constraint allows a single-row
UPDATE if there is no collision, as shown in Listing 6-32.

-- this update succeeds
BEGIN TRAN ;
UPDATE dbo.Items
SET Barcode = '12345677'
WHERE Barcode = '12345679' ;
ROLLBACK TRAN ;

Listing 6-32: The check constraint UNQ_Items_Barcode allows us to modify a NOT
NULL barcode, as long as there is no collision.

Finally, Listing 6-33 shows that the constraint prevents a single-row UPDATE if it would
result in a collision, as expected.

BEGIN TRAN ;
UPDATE dbo.Items
SET Barcode = '12345678'
WHERE Barcode = '12345679' ;
ROLLBACK ;
Msg 547, Level 16, State 0, Line 2
The UPDATE statement conflicted with the CHECK constraint
"UNQ_Items_Barcode". The conflict occurred in database
"test", table "dbo.Items", column 'Barcode'.
The statement has been terminated.

Listing 6-33: The check constraint UNQ_Items_Barcode does not allow modification
of a NOT NULL barcode if it would result in a collision.

Chapter 6: Common Problems with Data Integrity

185

Apparently our CHECK constraint meets our requirements, correct? Not exactly.
Unfortunately, the CHECK constraint may prevent a perfectly valid UPDATE, if that
UPDATE modifies more than one row at a time.

In fact, this technique has the following three problems:

• such constraints may produce false negatives; they may prohibit a valid update

• such constraints may produce false positives; they may allow an invalid modification

• such constraints are very slow.

False negatives: failure during multi-row updates

A valid UPDATE can fail to validate against a scalar UDF wrapped in a CHECK
constraint. To demonstrate this, we'll attempt to swap two NOT NULL barcodes
that are already saved into our table and are clearly unique, as shown in Listing 6-34.
Unfortunately, somehow, the UPDATE fails with exactly the same error message as we
saw in Listing 6-33.

UPDATE dbo.Items
SET Barcode = CASE
 WHEN Barcode = '12345678'
 THEN '12345679'
 ELSE '12345678'
 END
WHERE Barcode IN ('12345678', '12345679') ;

Msg 547, Level 16, State 0, Line 10
The UPDATE statement conflicted with the CHECK constraint
"UNQ_Items_Barcode". The conflict occurred in database
"test", table "dbo.Items", column 'Barcode'.
The statement has been terminated.

Listing 6-34: The failed attempt to swap two unique Barcode items.

Chapter 6: Common Problems with Data Integrity

186

Let us verify that this UPDATE does not result in a collision. To accomplish that,
we'll have to disable the constraint so that the UPDATE can complete, as shown in
Listing 6-35.

ALTER TABLE dbo.Items
 NOCHECK CONSTRAINT UNQ_Items_Barcode ;
GO
UPDATE dbo.Items
SET Barcode = CASE
 WHEN Barcode = '12345678'
 THEN '12345679'
 ELSE '12345678'
 END
WHERE Barcode IN ('12345678', '12345679') ;

Listing 6-35: Disabling the constraint UNQ_Items_Barcode so that the
update completes.

Listing 6-36 verifies that we do not have duplicate NOT NULL barcodes.

SELECT Barcode,
 COUNT(*)
FROM dbo.Items
WHERE Barcode IS NOT NULL
GROUP BY Barcode
HAVING COUNT(*) > 1 ;

(0 row(s) affected)

Listing 6-36: Verifying that we do not have duplicate NOT NULL barcodes.

We can re-enable the constraint and make sure that it is trusted, as shown in
Listing 6-37.

Chapter 6: Common Problems with Data Integrity

187

ALTER TABLE dbo.Items
 WITH CHECK
 CHECK CONSTRAINT UNQ_Items_Barcode ;

SELECT CAST(name AS char(20)) AS Name,
 is_disabled,
 is_not_trusted
FROM sys.check_constraints
WHERE name = 'UNQ_Items_Barcode' ;

Name is_disabled is_not_trusted
-------------------- ----------- ---------------
UNQ_Items_Barcode 0 0

Listing 6-37: Re-enabling the constraint and making sure that it is trusted.

Clearly, the CHECK constraint recognizes that, after the UPDATE, all the data in
Items table is valid; otherwise the ALTER TABLE command would have failed and
the constraint would not be trusted

So, why did the constraint prevent a perfectly correct UPDATE from completing? The
reason, I believe, is as follows: CHECK constraints evaluate earlier than other types of
constraint. As soon as a single row is modified, the CHECK constraint, UNQ_Items_
Barcode, verifies that the modified row is valid. This verification occurs before other
rows are modified. In this particular case, two rows need to be modified. We do not
know which row is modified first but suppose, for the sake of argument, that it is the
row with barcode 12345679. When this row is modified, the new barcode for that row
is 12345678. Immediately, the CHECK constraint, UNQ_Items_Barcode, invokes the
scalar UDF, dbo.GetBarcodeCount, which returns 2, because there is another, as yet
unmodified row with the same barcode, 12345678.

Note

In this particular case we are discussing an update that touches a very small table
and modifies only two rows. As such, we are not considering the possibility that this
update will execute on several processors in parallel.

Chapter 6: Common Problems with Data Integrity

188

As a result, our CHECK constraint provides a false negative; it erroneously prohibited a
perfectly valid multi-row update. Note that the behavior described here is arguably a bug
in SQL Server. As such, it could be fixed in future versions of SQL Server.

False positives: allowing an invalid modification

With this technique, a more common problem than the false negative is the false
positive, i.e. allowing an invalid modification. This problem occurs because people
forget that CHECK constraints only fire if the columns they protect are modified. To
demonstrate this, we need to change the implementation of our scalar UDF and rewrap
it in a CHECK constraint, as shown in Listing 6-38. Before the change, the UDF took
Barcode as a parameter; now it takes ItemLabel.

ALTER TABLE dbo.Items
 DROP CONSTRAINT UNQ_Items_Barcode ;
GO
ALTER FUNCTION dbo.GetBarcodeCount
 (@ItemLabel VARCHAR(30))
RETURNS INT
AS
 BEGIN ;
 DECLARE @barcodeCount INT ;
 SELECT @barcodeCount = COUNT(*)
 FROM dbo.Items AS i1
 INNER JOIN dbo.Items AS i2
 ON i1.Barcode = i2.Barcode
 WHERE i1.ItemLabel = @ItemLabel ;
 RETURN @barcodeCount ;
 END ;
GO
ALTER TABLE dbo.Items
ADD CONSTRAINT UNQ_Items_Barcode
CHECK (dbo.GetBarcodeCount(ItemLabel) < 2) ;
GO

Listing 6-38: Modifying the GetBarcodeCount scalar UDF and CHECK constraint.

Chapter 6: Common Problems with Data Integrity

189

This new implementation looks equivalent to the previous one. To test it, simply rerun
Listings 6-29 (including the initial DELETE), 6-30, and 6-31; they should all work exactly
as before. However, this new constraint allows an UPDATE that results in a duplicate
barcode.

BEGIN TRANSACTION ;

UPDATE dbo.Items
SET Barcode = '12345678'
WHERE Barcode = '12345679' ;

SELECT Barcode ,
 COUNT(*)
FROM dbo.Items
GROUP BY Barcode ;

ROLLBACK ;

Barcode
-------------------- -----------
NULL 2
12345678 2

Listing 6-39: An invalid UPDATE succeeds, resulting in a duplicate barcode.

What happened? Why did the constraint not prevent the duplicate? If we fire up Profiler,
and set it to track individual statements, we can see that the UDF was not executed at
all. From the optimizer's point of view, this makes perfect sense: apparently this CHECK
constraint only uses ItemLabel, so there is no point invoking the constraint if
ItemLabel has not been changed.

Note that, as usual, there is no guarantee that your optimizer will make the same choice
as mine did. This means that Listings 6-40 and 6-41 may, or may not, work on your
server exactly as they worked on mine.

Listing 6-40 tricks the optimizer into thinking that ItemLabel has been changed. This
time, the CHECK constraint is invoked and prevents a duplicate.

Chapter 6: Common Problems with Data Integrity

190

BEGIN TRANSACTION ;

UPDATE dbo.Items
SET Barcode = '12345678' ,
 ItemLabel = ItemLabel + ''
WHERE Barcode = '12345679' ;

ROLLBACK ;

Msg 547, Level 16, State 0, Line 3
The UPDATE statement conflicted with the CHECK constraint
"UNQ_Items_Barcode". The conflict occurred in database
"TEST3", table "dbo.Items", column 'ItemLabel'.
The statement has been terminated.

Listing 6-40: A slightly different update fails, as it should.

As we have seen, UDFs wrapped in CHECK constraints can give us both false positives
and false negatives. Fortunately, there are safer and better approaches, described in the
following two sections.

The unique filtered index alternative (SQL Server 2008 only)

In SQL Server 2008, a filtered index is a perfect solution for this problem. Listing 6-42
drops our CHECK constraint and replaces it with a filtered index.

ALTER TABLE dbo.Items
 DROP CONSTRAINT UNQ_Items_Barcode ;
GO
CREATE UNIQUE NONCLUSTERED INDEX UNQ_Items_Barcode
 ON dbo.Items (Barcode)
 WHERE Barcode IS NOT NULL ;

Listing 6-42: Creating the UNQ_Items_Barcode filtered index.

To verify that the filtered index works, we can empty the Items table and rerun
all the steps which we took to test our CHECK constraint, which is all the scripts

Chapter 6: Common Problems with Data Integrity

191

from Listing 6-29 to Listing 6-33. We can also rerun the scenarios where we were
getting false positives and false negatives, and verify that our unique filtered index
works as expected.

Before moving on, drop the filtered index, so that it does not interfere with the forth-
coming examples.

DROP INDEX dbo.Items.UNQ_Items_Barcode ;

Listing 6-43: Dropping the filtered index.

The indexed view alternative

Prior to SQL Server 2008, we cannot use filtered indexes, but we can use an indexed
view to accomplish the same goal.

CREATE VIEW dbo.Items_NotNullBarcodes
WITH SCHEMABINDING
AS
SELECT Barcode
FROM dbo.Items
WHERE Barcode IS NOT NULL ;
GO
CREATE UNIQUE CLUSTERED INDEX UNQ_Items_Barcode
ON dbo.Items_NotNullBarcodes (Barcode) ;
GO

-- after testing, uncomment the command and
-- drop the view, so that it does not
--interfere with forthcoming examples
--DROP VIEW dbo.Items_NotNullBarcodes;

Listing 6-44: Creating an indexed view.

To test, empty the Items table, and then run Listings 6-29 to 6-33, as well as
Listings 6-34 and 6-39.

Chapter 6: Common Problems with Data Integrity

192

Enforcing Data Integrity Using Triggers

Constraints are robust but, as we've discussed, they are often not suitable for
implementing more complex data integrity rules. When such requirements arise,
many developers turn to triggers. Triggers allow a lot of flexibility; we can tuck pretty
much any code into the body of a trigger. Also, in most cases (though not all, as we will
see) triggers automatically fire when we modify data.

However, triggers do have limitations with regard to what functionality can be achieved,
and are also hard to code, and therefore prone to weaknesses. As such, they are the cause
of many common data integrity issues. Some of the typical data integrity problems
related to triggers are as follows:

• some triggers falsely assume that only one row at a time is inserted/updated/deleted

• some triggers falsely assume that the primary key columns will never be modified

• under some circumstances, triggers do not fire

• triggers may undo changes made by other triggers

• some triggers do not work under snapshot isolation levels.

Some of these problems can be fixed by improving the triggers. However, not all of
these problems mean that the trigger was poorly coded – some are inherent limitations
of triggers in general. For example, in some cases the database engine does not fire a
trigger, and there is nothing we can change in the trigger to fix that problem.

We'll discuss each of these problems in detail over the coming sections.

Problems with multi-row modifications

In the following example, our goal is to record in a "change log" table any
updates made to an item's Barcode. Listing 6-45 creates the change log table,
ItemBarcodeChangeLog. Note that there is no FOREIGN KEY on purpose, because
the change log has to be kept even after an item has been removed.

Chapter 6: Common Problems with Data Integrity

193

CREATE TABLE dbo.ItemBarcodeChangeLog
 (
 ItemLabel varchar(30) NOT NULL,
 ModificationDateTime datetime NOT NULL,
 OldBarcode varchar(20) NULL,
 NewBarcode varchar(20) NULL,
 CONSTRAINT PK_ItemBarcodeChangeLog
 PRIMARY KEY (ItemLabel, ModificationDateTime)
) ;

Listing 6-45: Creating a table to log changes in the Barcode column of the
Items table.

The FOR UPDATE trigger shown in Listing 6-46 is designed to populate the ItemBar-
codeChangeLog table, whenever a barcode is updated. When an UPDATE statement
runs against the Items table, the trigger reads the Barcode value as it existed before
the update, from the deleted virtual table, and stores it in a variable. It then reads the
post-update Barcode value from the inserted virtual table and compares the two
values. If the values are different, it logs the change in ItemBarcodeChangeLog. I have
added a lot of debugging output, to make it easier to understand how it works.

CREATE TRIGGER dbo.Items_LogBarcodeChange ON dbo.Items
 FOR UPDATE
AS
 BEGIN ;
 PRINT 'debugging output: data before update' ;
 SELECT ItemLabel ,
 Barcode
 FROM deleted ;

 PRINT 'debugging output: data after update' ;
 SELECT ItemLabel ,
 Barcode
 FROM inserted ;

 DECLARE @ItemLabel VARCHAR(30) ,
 @OldBarcode VARCHAR(20) ,

Chapter 6: Common Problems with Data Integrity

194

 @NewBarcode VARCHAR(20) ;
-- retrieve the barcode before update
 SELECT @ItemLabel = ItemLabel ,
 @OldBarcode = Barcode
 FROM deleted ;
-- retrieve the barcode after update
 SELECT @NewBarcode = Barcode
 FROM inserted ;
 PRINT 'old and new barcode as stored in variables' ;
 SELECT @OldBarcode AS OldBarcode ,
 @NewBarcode AS NewBarcode ;
-- determine if the barcode changed
 IF ((@OldBarcode <> @NewBarcode)
 OR (@OldBarcode IS NULL
 AND @NewBarcode IS NOT NULL
)
 OR (@OldBarcode IS NOT NULL
 AND @NewBarcode IS NULL
)
)
 BEGIN ;
 INSERT INTO dbo.ItemBarcodeChangeLog
 (ItemLabel ,
 ModificationDateTime ,
 OldBarcode ,
 NewBarcode

)
 VALUES (@ItemLabel ,
 CURRENT_TIMESTAMP ,
 @OldBarcode ,
 @NewBarcode
) ;
 END ;
 END ;

Listing 6-46: The Items_LogBarcodeChange trigger logs changes made to the
Barcode column of the Items table.

Chapter 6: Common Problems with Data Integrity

195

Listing 6-47 demonstrates how this trigger works when we perform a single-row update.

TRUNCATE TABLE dbo.Items ;
TRUNCATE TABLE dbo.ItemBarcodeChangeLog ;
INSERT dbo.Items
 (ItemLabel ,
 BoxLabel ,
 WeightInPounds ,
 Barcode
)
VALUES ('Lamp' , -- ItemLabel - varchar(30)
 'Camping Gear' , -- BoxLabel - varchar(30)
 5 , -- WeightInPounds - decimal
 '123456' -- Barcode - varchar(20)
) ;
GO
UPDATE dbo.Items
SET Barcode = '123457' ;
GO
SELECT ItemLabel ,
 OldBarcode ,
 NewBarcode
FROM dbo.ItemBarcodeChangeLog ;

(1 row(s) affected)
debugging output: data before update
ItemLabel Barcode
------------------------------ ------------------------------
Lamp 123456

(1 row(s) affected)

Chapter 6: Common Problems with Data Integrity

196

debugging output: data after update
ItemLabel Barcode
------------------------------ ------------------------------
Lamp 123457

(1 row(s) affected)

old and new barcode as stored in variables
OldBarcode NewBarcode
-------------------- --------------------
123456 123457

(1 row(s) affected)
(1 row(s) affected)
(1 row(s) affected)

ItemLabel OldBarcode NewBarcode
--------------- -------------------- --------------------
Lamp 123456 123457

(1 row(s) affected)

Listing 6-47: One row is modified and our trigger logs the change.

Our trigger works for single-row updates, but how does it handle multi-row updates?
Listing 6-48 empties the change log table, adds one more row to the Items table,
updates two rows in the Items table, and then interrogates the log table,
dbo.ItemBarcodeChangeLog, to see what has been saved.

SET NOCOUNT ON ;
BEGIN TRANSACTION ;

DELETE FROM dbo.ItemBarcodeChangeLog ;

INSERT INTO dbo.Items
 (ItemLabel ,
 BoxLabel ,

Chapter 6: Common Problems with Data Integrity

197

 Barcode ,
 WeightInPounds
)
VALUES ('Flashlight' ,
 'Camping Gear' ,
 '234567' ,
 1
) ;

UPDATE dbo.Items
SET Barcode = Barcode + '9' ;

SELECT ItemLabel ,
 OldBarcode ,
 NewBarcode
FROM dbo.ItemBarcodeChangeLog ;

-- roll back to restore test data
ROLLBACK ;

debugging output: data before update
ItemLabel Barcode
------------------------------ ------------------------------
Lamp 123457
Flashlight 234567

debugging output: data after update
ItemLabel Barcode
------------------------------ ------------------------------
Lamp 1234579
Flashlight 2345679

old and new barcode as stored in variables
OldBarcode NewBarcode
-------------------- --------------------
234567 2345679

Chapter 6: Common Problems with Data Integrity

198

ItemLabel OldBarcode NewBarcode
--------------- -------------------- --------------------
Flashlight 234567 2345679

Listing 6-48: Trigger fails to record all changes when two rows are updated.

Our trigger does not handle the multi-row update properly; it silently inserts only
one row into the log table. Note that I say "inserts only one row," rather than "logs
only one change." The difference is important: if we modify two or more rows, there
is no guarantee that our trigger will record the OldBarcode and NewBarcode values
associated with a single modified row. When we update more than one row, both the
inserted and deleted virtual tables have more than one row, as shown by the
debugging output in Listing 6-48.

The SELECT that populates the OldBarcode variable in our trigger will randomly
pick one of the two values, 123457 or 234567, listed in the "debugging output:
data before update" section. The SELECT that populates NewBarcode works in
the same way; it can choose either 1234579 or 2345679. In this case, it happens that the
OldBarcode and NewBarcode do come from one and the same modified row, and so
the net effect is that the trigger appears to log only one of the updates, albeit correctly.
In fact, this was just chance; it could equally well have taken the OldBarcode from
one row and the NewBarcode from the other, the net effect being an erroneous, single
log record.

In short, this logic used in this trigger does not work for multi-row updates; it contains
a "hidden" assumption that only one row at a time will be updated. We cannot easily get
rid of that incorrect assumption; in fact, since enforcing the assumption does not seem
feasible in this situation, we need to rewrite the trigger from scratch in order to remove
it, as shown in Listing 6-49. This time, rather than store the old and new values in
variables, we use the inserted and deleted virtual tables directly, and then populate
the change log table via a set-based query that joins those virtual tables, and correctly
handles multi-row updates.

ALTER TRIGGER dbo.Items_LogBarcodeChange ON dbo.Items
 FOR UPDATE
AS
 BEGIN ;

Chapter 6: Common Problems with Data Integrity

199

 PRINT 'debugging output: data before update' ;
 SELECT ItemLabel ,
 Barcode
 FROM deleted ;

 PRINT 'debugging output: data after update' ;
 SELECT ItemLabel ,
 Barcode
 FROM inserted ;

 INSERT INTO dbo.ItemBarcodeChangeLog
 (ItemLabel ,
 ModificationDateTime ,
 OldBarcode ,
 NewBarcode

)
 SELECT d.ItemLabel ,
 CURRENT_TIMESTAMP ,
 d.Barcode ,
 i.Barcode
 FROM inserted AS i
 INNER JOIN deleted AS d
 ON i.ItemLabel = d.ItemLabel
 WHERE ((d.Barcode <> i.Barcode)
 OR (d.Barcode IS NULL
 AND i.Barcode IS NOT NULL
)
 OR (d.Barcode IS NOT NULL
 AND i.Barcode IS NULL
)
) ;
 END ;

Listing 6-49: Altering our trigger so that it properly handles multi-row updates.

Rerunning Listing 6-48 verifies that our altered trigger now handles multi-row updates.

Chapter 6: Common Problems with Data Integrity

200

(snip)
ItemLabel OldBarcode NewBarcode
--------------- -------------------- --------------------
Flashlight 234567 2345679
Lamp 123457 1234579

Listing 6-50: Our altered trigger properly handles multi-row updates.

The first lesson here is that, when developing triggers, the defensive programmer should
always use proper set-based logic, rather than iterative logic.

Mishandling updates that affect the primary key

We have fixed one problem in our trigger, but it has another serious bug; it does
not handle the case when the primary key column is also modified. Listing 6-51
demonstrates the problem. This time, the code also updates the ItemLabel column,
which forms part of our Primary Key, as well as the Barcode column.

BEGIN TRAN ;
DELETE FROM dbo.ItemBarcodeChangeLog ;
UPDATE dbo.Items
SET ItemLabel = ItemLabel + 'C' ,
 Barcode = Barcode + '9' ;

SELECT ItemLabel ,
 OldBarcode ,
 NewBarcode
FROM dbo.ItemBarcodeChangeLog ;
ROLLBACK ;

debugging output: data before update
ItemLabel Barcode
------------------------------ ---------------------------
Lamp 123457

Chapter 6: Common Problems with Data Integrity

201

debugging output: data after update
ItemLabel Barcode
------------------------------ ---------------------------
LampC 1234579

ItemLabel OldBarcode NewBarcode
--------------- -------------------- --------------------

Listing 6-51: Our altered trigger does not handle the case when we modify both the
primary key column and the barcode.

In this case, the modified row does not get inserted into the log table. The problem is
that our trigger relies on the implicit assumption that the primary key column in the
Items table is immutable, and so can be relied on to uniquely identify a row. If the PK
column is modified, the trigger has no way to relate the old value of Barcode to the
new one.

As usual, we need either to enforce this assumption or to eliminate it. If we choose to
ensure that our primary key column cannot change, we must modify our trigger to
enforce it, as shown in Listing 6-52.

ALTER TRIGGER dbo.Items_LogBarcodeChange ON dbo.Items
 FOR UPDATE
AS
 BEGIN
 IF UPDATE(ItemLabel)
 BEGIN ;
 RAISERROR ('Modifications of ItemLabel
 Not Allowed', 16, 1) ;
 ROLLBACK ;
 RETURN ;
 END ;

 INSERT INTO dbo.ItemBarcodeChangeLog
 (ItemLabel ,
 ModificationDateTime ,
 OldBarcode ,

Chapter 6: Common Problems with Data Integrity

202

 NewBarcode

)
 SELECT d.ItemLabel ,
 CURRENT_TIMESTAMP ,
 d.Barcode ,
 i.Barcode
 FROM inserted AS i
 INNER JOIN deleted AS d
 ON i.ItemLabel = d.ItemLabel
 WHERE ((d.Barcode <> i.Barcode)
 OR (d.Barcode IS NULL
 AND i.Barcode IS NOT NULL
)
 OR (d.Barcode IS NOT NULL
 AND i.Barcode IS NULL
)
) ;
 END ;

Listing 6-52: Altering our trigger so that is does not allow modification of the
primary key column.

To test this trigger, we can rerun Listings 6-48 and 6-51. If, however, our business rules
allow changes to be made to labels on items, then we need some other immutable
column; some column that cannot be changed, and so can uniquely identify a row.

This is one of those cases when IDENTITY columns are so useful. Listing 6-53 adds an
IDENTITY column and creates a UNIQUE constraint to make sure that the IDENTITY
column is always unique.

ALTER TABLE dbo.Items
ADD ItemID int NOT NULL
 IDENTITY(1, 1) ;
GO

Chapter 6: Common Problems with Data Integrity

203

ALTER TABLE dbo.Items
 ADD CONSTRAINT UNQ_Items_ItemID#
 UNIQUE (ItemID) ;

Listing 6-53: Creating an IDENTITY column that holds only unique values.

This new IDENTITY column, ItemID, is immutable; it is not possible to modify an
IDENTITY column, as Listing 6-54 demonstrates.

UPDATE dbo.Items
SET ItemID = -1
WHERE ItemID = 1 ;

Msg 8102, Level 16, State 1, Line 1
Cannot update identity column 'ItemID'.

Listing 6-54: It is not possible to modify IDENTITY columns.

We can now use our immutable ItemId column so that it does not have to assume that
the primary key will never change, and so fixes the weakness in our trigger, as shown in
Listing 6-55.

ALTER TRIGGER dbo.Items_LogBarcodeChange ON dbo.Items
 FOR UPDATE
AS
 BEGIN ;
 INSERT INTO dbo.ItemBarcodeChangeLog
 (ItemLabel ,
 ModificationDateTime ,
 OldBarcode ,
 NewBarcode

)
 SELECT i.ItemLabel ,
 CURRENT_TIMESTAMP,
 d.Barcode ,
 i.Barcode

Chapter 6: Common Problems with Data Integrity

204

 FROM inserted AS i
 INNER JOIN deleted AS d
 ON i.ItemID = d.ItemID
 WHERE ((d.Barcode <> i.Barcode)
 OR (d.Barcode IS NULL
 AND i.Barcode IS NOT NULL
)
 OR (d.Barcode IS NOT NULL
 AND i.Barcode IS NULL
)
) ;
 END ;

Listing 6-55: The Items_LogBarcodeChange trigger now uses an immutable
column, ItemID.

Again, to test this trigger, we can rerun Listings 6-48 and 6-51.

When developing triggers, we need to beware of assuming that the primary key
column(s) cannot change. We have learned how to enforce this assumption when it
makes sense, and how to eliminate this assumption when it does not make sense.

Sometimes triggers do not fire

Even if we have a "bug-free" trigger, it does not mean that it will fire every time our data
changes. There are certain settings and actions that can prevent a trigger from firing:

• disabling a trigger

• use of the IGNORE_TRIGGERS hint in an INSERT statement when the BULK option
is used with OPENROWSET

• when the nested triggers or recursive_triggers setting prevents a trigger
from firing

• the TRUNCATE TABLE command does not fire FOR DELETE or INSTEAD OF DELETE
triggers

• when the BULK INSERT command runs without the FIRE_TRIGGERS option

Chapter 6: Common Problems with Data Integrity

205

• if a trigger is dropped and later recreated, then any modifications made to the table
in the interim will not have been subject to the trigger's logic

• if a table is dropped and recreated

• when parent and child tables are in different databases, and an old backup of the
parent database is restored.

The final item in this list requires some elaboration. When parent and child tables
are in different databases, we cannot use a FOREIGN KEY constraint to ensure that there
are no orphan rows in our child table. In this case, it is very tempting to use triggers.
However, suppose that we need to restore the database that contains our parent table,
after a failure. Clearly, when a database is restored, triggers do not fire. This means that
nothing protects us from the following scenario:

• back up the parent database

• add a new parent row

• add some child rows referring to that new parent row

• restore the parent database to the backup that does not have the latest parent row.

All of this means that we cannot necessarily assume our trigger fires every time the table
it protects is modified. If our system is subject to any of the cases when triggers do not
fire, then we need to have a script that will clean up our data. For example, if we have a
parent and a child table in different databases, we need a script that deletes orphan rows.

Accidentally overriding changes made by other triggers

When using triggers, it is important to realize that it is possible to have more than
one trigger on one and the same table, for one and the same operation. For example,
consider the FOR UPDATE trigger shown in Listing 6-50.

Chapter 6: Common Problems with Data Integrity

206

CREATE TRIGGER dbo.Items_EraseBarcodeChangeLog
ON dbo.Items
 FOR UPDATE
AS
 BEGIN ;
 DELETE FROM dbo.ItemBarcodeChangeLog ;
 END ;

Listing 6-56: Creating a second FOR UPDATE trigger,
Items_EraseBarcodeChangeLog, on table Items.

This new trigger creates without any warnings, and we may not realize that we already
have another FOR UPDATE trigger on the same table. We can rerun the script in Listing
6-48 and see for ourselves that this new trigger and the previous one do the opposite
things and, as such, they should not coexist. Of course, this is a simplified example, but
the point is that when we have multiple triggers for the same operation on the same
table, then it's a recipe for bugs and data integrity issues.

As a defensive technique, before you start coding a trigger, it's well worth running a
quick check to find out if any other triggers exist on the target table. To be even safer,
after adding a trigger it is a good practice to check for multiple triggers on the same table
for the same operation. Listing 6-57 shows a script that finds all the tables on which
there is more than one trigger for the same operation.

SELECT OBJECT_NAME(t.parent_id),
 te.type_desc
FROM sys.triggers AS t
 INNER JOIN sys.trigger_events AS te
ON t.OBJECT_ID = te.OBJECT_ID
GROUP BY OBJECT_NAME(t.parent_id),te.type_desc
HAVING COUNT(*) > 1 ;

Listing 6-57: Selecting all the tables on which there is more than one trigger for the
same operation.

Chapter 6: Common Problems with Data Integrity

207

Multiple triggers for the same operation, on the same table, not only introduce the
chances of conflicting changes, they also introduce the chance of redundant actions, or
of unwanted and maybe unknown dependencies on undocumented execution orders.

If we want to make sure that there is not more than one trigger for one operation on
one table, we can wrap the query in Listing 6-57 in a unit test and have our test harness
verify that it never returns anything.

Before moving on to other examples, let us get rid of the triggers we no longer need, as
shown in Listing 6-58.

DROP TRIGGER dbo.Items_EraseBarcodeChangeLog ;
GO
DROP TRIGGER dbo.Items_LogBarcodeChange ;

Listing 6-58: Dropping the triggers.

Problems with triggers under snapshot isolation levels

In Chapter 4, we discussed in detail how triggers can fail when running under snapshot
isolation. As we demonstrated there, when our triggers are selecting from other rows
or other tables, in some cases we are implicitly assuming that they will not run under
snapshot isolation level. In such cases, it is necessary to use the READCOMMITTEDLOCK
hint to eliminate this assumption.

Summary

We have discussed several cases where incorrect assumptions may lead to compromised
data integrity, and we have investigated ways to improve the integrity of data by proper
use of constraints and triggers.

Data integrity logic in the application layer is too easily bypassed. The only completely
robust way to ensure data integrity is to use a trusted constraint. Even then, we need to
test our constraints, and make sure that they handle nullable columns properly.

Chapter 6: Common Problems with Data Integrity

208

Triggers are dramatically more flexible than constraints, but we need to be very careful
when we use them. We need to make sure that they properly handle multi-row modi-
fications, modifications of primary key columns, and snapshot isolation. Also we need
to be aware that sometimes triggers do not fire, and to be ready to clean up data if that
actually happens.

Following is a brief summary of the defensive techniques learned in this chapter with
regard to protecting data integrity.

• When testing CHECK constraints, always include in your test cases rows with NULLs.

• Don't make assumptions about the data, based on the presence of FOREIGN KEY or
CHECK constraints, unless they are all trusted.

• UDFs wrapped in CHECK constraints are sometimes unreliable as a means to enforce
data integrity rules. Filtered Indexes or Indexed Views are safer alternatives.

• When developing triggers:

• always use proper set-based logic; never assume that only one row at a time can
be modified

• if your code assumes that the primary key won't be modified, make sure that is
true, or use an IDENTITY column that is, by definition, immutable

• query the sys.triggers system view to make sure there are no existing triggers
on the table with which your one may interfere

• make appropriate use of the READCOMMITTEDLOCK hint if the trigger needs to
run under snapshot isolation levels.

209

Chapter 7: Advanced Use of
Constraints
In the previous chapter, as well as in Chapter 4, we discussed some of the common
problems with enforcing data integrity logic in triggers. Some developers have a
tendency to hide all sorts of twisted logic inside the body of a trigger, in order to enforce
complex business rules. Once implemented, a trigger tends to sink quietly into the
background and get forgotten…until it suddenly begins misfiring and causing seemingly
inexplicable data integrity issues. For example, as we proved in Chapter 4, a trigger that
works when using the standard READ COMMITTED isolation level may fail under the
snapshot isolation levels.

Constraints are, in general, a safer haven. As long as a constraint is trusted, then we
know for sure that all our data complies with the rules that it dictates. However,
received wisdom suggests that constraints can enforce only a very limited set of simple
rules. In fact, in many cases developers give up on constraints far too easily; they allow
us to solve far more complex problems than many people realize.

In this chapter, we'll revisit some of the problems discussed in previous chapters,
and imperfectly solved using a trigger, and show how to solve each one using only
constraints. My intention is not to lay out brain-teasers, or try to solve Sudoku
puzzles in T-SQL. On the contrary, my goal is very pragmatic: to demonstrate rock-solid
constraints-only solutions for typical problems. When data integrity is important, such
solutions may be strongly preferable to the alternatives that use triggers.

Unlike in Chapter 4, in this chapter we shall not need to worry about the effect of
isolation levels. Constraints are completely robust and ensure the integrity of data
regardless of the isolation level at the time when we run the modification.

Chapter 7: Advanced Use of Constraints

210

The Ticket-Tracking System

In Chapter 4, we implemented a trigger-based solution to the problem of assigning
tickets in a ticket-tracking system. Our AFTER UPDATE trigger, dbo.Developers_Upd,
enforced the following two business rules:

• developers cannot go on vacation if they have active tickets assigned to them

• inactive tickets cannot be changed to active status if they are assigned to developers
that are on vacation.

Here, we'll re-implement these business rules using only constraints and, in addition,
we'll be able to enforce the rule that "newly added active tickets cannot be assigned to
a developer on vacation," which would have required an additional AFTER INSERT
trigger. To ensure that we are all on the same page, we'll drop the original tables from
Chapter 4 and start again from scratch.

IF EXISTS (SELECT *
 FROM sys.objects
 WHERE OBJECT_ID
 = OBJECT_ID(N'dbo.Tickets'))
 BEGIN ;
 DROP TABLE dbo.Tickets ;
 END ;
GO

IF EXISTS (SELECT *
 FROM sys.objects
 WHERE OBJECT_ID
 = OBJECT_ID(N'dbo.Developers'))
 BEGIN ;
 DROP TABLE dbo.Developers ;
 END ;
GO

CREATE TABLE dbo.Developers
 (
 DeveloperID INT NOT NULL ,

Chapter 7: Advanced Use of Constraints

211

 FirstName VARCHAR(30) NOT NULL ,
 Lastname VARCHAR(30) NOT NULL ,
 DeveloperStatus VARCHAR(8) NOT NULL ,
 CONSTRAINT PK_Developers PRIMARY KEY (DeveloperID) ,
 CONSTRAINT CHK_Developers_Status
 CHECK (DeveloperStatus
 IN ('Active', 'Vacation'))
) ;

CREATE TABLE dbo.Tickets
 (
 TicketID INT NOT NULL ,
 AssignedToDeveloperID INT NULL ,
 Description VARCHAR(50) NOT NULL ,
 TicketStatus VARCHAR(6) NOT NULL ,
 DeveloperStatus VARCHAR(8) NOT NULL ,
 CONSTRAINT PK_Tickets PRIMARY KEY (TicketID) ,
 CONSTRAINT FK_Tickets_Developers
 FOREIGN KEY (AssignedToDeveloperID)
 REFERENCES dbo.Developers (DeveloperID) ,
 CONSTRAINT CHK_Tickets_Status
 CHECK (TicketStatus IN ('Active', 'Closed'))
) ;

Listing 7-1: Recreating the Developers and Tickets tables.

Enforcing business rules using constraints only

The Developers table is identical to one we used in Chapter 4, but the Tickets table
is different; it has an extra column, DeveloperStatus, which we will use in a CHECK
constraint that attempts to enforce both our business rules, as shown in Listing 7-2.

Chapter 7: Advanced Use of Constraints

212

ALTER TABLE dbo.Tickets
 ADD CONSTRAINT CHK_Tickets_ValidStatuses
 CHECK((TicketStatus = 'Active'
 AND DeveloperStatus = 'Active')
 OR TicketStatus = 'Closed'
) ;

Listing 7-2: The CHK_Tickets_ValidStatuses constraint enforces both
business rules.

However, this constraint makes a serious assumption, and we do not know yet if
we can enforce it. Can we really guarantee that the Tickets.DeveloperStatus
column will always match the Developers.DeveloperStatus column, for the
assigned developer?

The answer is "maybe." FOREIGN KEY constraints are supposed to guarantee that
columns in different tables match and the one shown in Listing 7-3 attempts to do just
that. We'll discuss why we need the ON UPDATE CASCADE clause shortly.

ALTER TABLE dbo.Tickets
 ADD CONSTRAINT FK_Tickets_Developers_WithStatus
 FOREIGN KEY (AssignedToDeveloperID, DeveloperStatus)
 REFERENCES dbo.Developers
 (DeveloperID, DeveloperStatus)
 ON UPDATE CASCADE ;

Listing 7-3: FK_Tickets_Developers_WithStatus attempts to ensure that,
for a given developer, the relevant column values match.

Unfortunately, when we run Listing 7-3, it fails. Fortunately, the error message is very
explicit and clear.

Chapter 7: Advanced Use of Constraints

213

Msg 1776, Level 16, State 0, Line 1
There are no primary or candidate keys in the referenced
table 'dbo.Developers' that match the referencing column list
in the foreign key 'FK_Tickets_Developers_WithStatus'.
Msg 1750, Level 16, State 0, Line 1
Could not create constraint. See previous errors.

Listing 7-4: A very clear error message.

As the error states, the column, or combination of columns, to which a FOREIGN KEY
refers in the parent table, in this case (DeveloperID, DeveloperStatus), must be
unique. The uniqueness can be enforced very easily using a UNIQUE constraint or, as
shown in Listing 7-5, a UNIQUE index.

CREATE UNIQUE INDEX UNQ_Developers_IDWithStatus
ON dbo.Developers(DeveloperID, DeveloperStatus) ;

Listing 7-5: Enforcing the uniqueness of (DeveloperID, DeveloperStatus) in
the Developers table.

The reason I chose to use an index here, rather than a constraint, is because I try to use
the latter strictly to enforce business rules, and the former for performance or other
issues. In this case, we are not enforcing a business rule (as DeveloperID by itself is
already a candidate key) so much as overcoming a SQL Server technicality, and therefore
I chose to use an index.

Now Listing 7-3 will complete successfully. Before testing our solution, let's summarize
the changes we have made so far.

• Added a new column, DeveloperStatus, to the Tickets table.

• Added a CHECK constraint, CHK_Tickets_ValidStatuses, to enforce our
business rules.

• Created a UNIQUE index on (DeveloperID, DeveloperStatus) in the
Developers table, which allowed these two columns to be used as the parent
columns in a foreign key relationship.

Chapter 7: Advanced Use of Constraints

214

• Created a dual-key FOREIGN KEY constraint on the Tickets table, FK_Tickets_
Developers_WithStatus, which includes an ON UPDATE CASCADE clause.

We need to realize that in this solution one and the same information, the status of
a developer, can be stored in more than one place: both in a row in the Developers
table and, if the developer has tickets, in each corresponding row in the Tickets table.
Clearly this is de-normalization. Usually de-normalization is common practice in data
warehousing environments, but is frowned upon in OLTP systems. However, in this
particular case, de-normalization is very useful.

Note that, at this time, we have two FOREIGN KEY constraints referring from Tickets
to Developers:

• FK_Tickets_Developers, which relates a single column, AssignedToDevelo-
perID, in Tickets to its equivalent in Developers

• FK_Tickets_Developers_WithStatus, which relates two
columns,(AssignedToDeveloperID, DeveloperStatus), in Tickets to their
equivalent in Developers.

The reason why we need them both will soon become clear. Let's see how our
constraints work. Listing 7-6 adds a single developer to our system, who is on vacation.

INSERT INTO dbo.Developers
 (DeveloperID ,
 FirstName ,
 Lastname ,
 DeveloperStatus
)
VALUES (1 ,
 'Justin' ,
 'Larsen' ,
 'Vacation'
) ;

Listing 7-6: Adding a developer who is on vacation.

Chapter 7: Advanced Use of Constraints

215

Listing 7-7 shows that our CHECK constraint prevents an attempt to assign an active
ticket to a developer on vacation.

INSERT INTO dbo.Tickets
 (TicketID ,
 AssignedToDeveloperID ,
 Description ,
 TicketStatus ,
 DeveloperStatus
)
VALUES (1 ,
 1 ,
 'Cannot print TPS report' ,
 'Active' ,
 'Vacation'
) ;

Msg 547, Level 16, State 0, Line 1
The INSERT statement conflicted with the CHECK constraint
"CHK_Tickets_ValidStatuses". The conflict occurred in
database "test2", table "dbo.Tickets".
The statement has been terminated.

Listing 7-7: We cannot add an active ticket assigned to a developer on vacation.

Also, our dual-column FOREIGN KEY prevents us from cheating the system by
adding a ticket with a DeveloperStatus that does not match the status of the
assigned developer.

INSERT INTO dbo.Tickets
 (TicketID ,
 AssignedToDeveloperID ,
 Description ,
 TicketStatus ,
 DeveloperStatus
)

Chapter 7: Advanced Use of Constraints

216

VALUES (1 ,
 1 ,
 'Cannot print TPS report' ,
 'Active' ,
 'Active'
) ;

Msg 547, Level 16, State 0, Line 1
The INSERT statement conflicted with the FOREIGN KEY
constraint "FK_Tickets_Developers_WithStatus". The conflict
occurred in database "test2", table "dbo.Developers".
The statement has been terminated.

Listing 7-8: The DeveloperStatus must match the Status of the
assigned developer.

Listing 7-9 shows that we can add a closed ticket, but cannot reopen it, while the
developer is still on vacation.

INSERT INTO dbo.Tickets
 (TicketID ,
 AssignedToDeveloperID ,
 Description ,
 TicketStatus,
 DeveloperStatus
)
VALUES (1 ,
 1 ,
 'Cannot print TPS report' ,
 'Closed' ,
 'Vacation'
) ;

(1 row(s) affected)

UPDATE dbo.Tickets
SET TicketStatus = 'Active'

Chapter 7: Advanced Use of Constraints

217

WHERE TicketID = 1 ;

Msg 547, Level 16, State 0, Line 1
The UPDATE statement conflicted with the CHECK constraint
"CHK_Tickets_ValidStatuses". The conflict occurred in
database "test2", table "dbo.Tickets".
The statement has been terminated.

Listing 7-9: Adding a closed ticket and a failed attempt to reopen it.

Thanks to the ON UPDATE CASCADE clause on our FOREIGN KEY constraint, when our
developer returns from vacation and is active again, his changed status, as reflected in
the Developers table, is automatically propagated to the DeveloperStatus column
of the Tickets table, as demonstrated in Listing 7-10.

PRINT 'DeveloperStatus when Justin is on vacation' ;
SELECT TicketID ,
 DeveloperStatus
FROM dbo.Tickets ;

UPDATE dbo.Developers
SET DeveloperStatus = 'Active'
WHERE DeveloperID = 1 ;

PRINT 'DeveloperStatus when Justin is active' ;
SELECT TicketID ,
 DeveloperStatus
FROM dbo.Tickets ;

DeveloperStatus when Justin is on vacation
TicketID DeveloperStatus
----------- ---------------
1 Vacation

(1 row(s) affected)

Chapter 7: Advanced Use of Constraints

218

DeveloperStatus when Justin is active
TicketID DeveloperStatus
----------- ---------------
1 Active

(1 row(s) affected)

Listing 7-10: Justin's changed status is propagated to the ticket assigned to him.

This automatic propagation of values in the Developer.DeveloperStatus
column to the Tickets.DeveloperStatus column, via the cascading update in
the FOREIGN KEY constraint, is the bedrock of this technique. Now, if we attempt to
reopen the ticket, by rerunning the UPDATE statement from Listing 7-9, it will
succeed because the DeveloperStatus column for the ticket correctly indicates
that the developer is active.

Continuing our testing, we need to ensure that our developer cannot go on vacation if
any active tickets are assigned to him, as verified by Listing 7-11.

UPDATE dbo.Developers
SET DeveloperStatus = 'Vacation'
WHERE DeveloperID = 1 ;

Msg 547, Level 16, State 0, Line 1
The UPDATE statement conflicted with the CHECK constraint
"CHK_Tickets_ValidStatuses". The conflict occurred in
database "test2", table "dbo.Tickets".
The statement has been terminated.

Listing 7-11: Justin has an active ticket, so he cannot go on vacation.

If we close the ticket, Justin can begin his vacation.

BEGIN TRANSACTION ;

UPDATE dbo.Tickets
SET TicketStatus = 'Closed'

Chapter 7: Advanced Use of Constraints

219

WHERE TicketID = 1 ;

UPDATE dbo.Developers
SET DeveloperStatus = 'Vacation'
WHERE DeveloperID = 1 ;

-- we shall need the test data intact
-- to use in other examples,
-- so we roll the changes back

ROLLBACK ;

Listing 7-12: Closing the ticket allows Justin to take a vacation.

Alternatively, we can assign the ticket to another developer.

BEGIN TRANSACTION ;

INSERT INTO dbo.Developers
 (DeveloperID ,
 FirstName ,
 Lastname ,
 DeveloperStatus
)
VALUES (2 ,
 'Peter' ,
 'Yang' ,
 'Active'
) ;

UPDATE dbo.Tickets
SET AssignedToDeveloperID = 2
WHERE TicketID = 1 ;

UPDATE dbo.Developers
SET DeveloperStatus = 'Vacation'
WHERE DeveloperID = 1 ;

Chapter 7: Advanced Use of Constraints

220

-- we shall need the test data intact
-- to use in other examples,
-- so we roll the changes back

ROLLBACK ;

Listing 7-13: Reassigning an active ticket.

Also we need to verify that our system works when we modify Developers.
DeveloperID column, as shown in Listing 7-14.

BEGIN TRANSACTION ;
PRINT 'Original Data in Tickets table' ;
SELECT TicketID ,
 AssignedToDeveloperID ,
 DeveloperStatus
FROM dbo.Tickets ;

UPDATE dbo.Developers
SET DeveloperID = -1
WHERE DeveloperID = 1 ;

PRINT 'Data in Tickets table after DeveloperID was modified'
;
SELECT TicketID ,
 AssignedToDeveloperID ,
 DeveloperStatus
FROM dbo.Tickets ;

ROLLBACK ;

Original Data in Tickets table
TicketID AssignedToDeveloperID DeveloperStatus
----------- --------------------- ---------------
1 1 Active

Chapter 7: Advanced Use of Constraints

221

(1 row(s) affected)

(1 row(s) affected)

Data in Tickets table after DeveloperID was modified
TicketID AssignedToDeveloperID DeveloperStatus
----------- --------------------- ---------------
1 -1 Active

Listing 7-14: The modified Developers.DeveloperID value propagates
into the Tickets table.

As we have seen, when we modify Developers.DeveloperID, the change propagates
into the Tickets table. This was not one of our requirements, but is a side effect of the
ON UPDATE CASCADE clause. We'll modify our solution later, and this side effect will
be gone.

So far, our constraints have worked as expected in all the cases. Of course, if we were
rolling out a production system, our testing would be far from complete. For example,
we should test cases when more than one ticket is assigned to a developer, cases where
we modify more than one row, and the case where we modify the Developers.Devel-
operID column for more than one row. However, we shall not demonstrate complete
testing here; the solution presented here passes complete testing, and I encourage you to
try out different test cases as an exercise.

Removing the performance hit of ON UPDATE
CASCADE

We need to discuss in a little more detail the ON UPDATE CASCADE behavior and its
performance implications. Whenever a developer's status changes, the corresponding
DeveloperStatus column in the Tickets table changes automatically, for all the
tickets assigned to that developer. This behavior definitely gets the job done, and our
business rules are robustly enforced. However, we need to ask ourselves the following
question: why do we need to update the DeveloperStatus column for closed tickets?
Clearly our CHECK constraint only needs to use DeveloperStatus if the ticket is open.

Chapter 7: Advanced Use of Constraints

222

Why should we care if the DeveloperStatus column is updated for closed tickets?
The reason is simple: performance. In our test cases, with just one or two developers and
only one ticket, it does not matter whether or not we update the DeveloperStatus
column for closed tickets. However, in real life, a developer might have hundreds or even
thousands of closed tickets assigned to him or her, but just a handful of active ones. If
we can avoid modifying those closed tickets every time a developer goes on vacation,
then we can significantly improve the performance of the system.

Let us change our solution, so that the DeveloperStatus column is not updated for
closed tickets. In order to do this, we need to ensure that Tickets.DeveloperStatus
is NULL for all closed tickets. Since open tickets can never be assigned to a developer on
vacation, the result will be that Tickets.DeveloperStatus can now only be Active
or NULL, and so the ON UPDATE CASCADE clause becomes redundant.

Execute the script in Listing 7-15, which performs the following steps:

• deletes the contents of both the Tickets and Developers tables (of course, in a
production system we would take steps to preserve our data rather than delete
it outright)

• makes the Tickets.DeveloperStatus column nullable, because we need it to be
NULL for closed tickets

• modifies our CHK_Tickets_ValidStatuses constraint to enforce the rules that
DeveloperStatus is NULL for all closed tickets, and is Active for all active ones

• drops the FK_Tickets_Developers_WithStatus constraint and recreates it
without the ON UPDATE CASCADE clause, which is now redundant.

DELETE FROM dbo.Tickets ;
DELETE FROM dbo.Developers ;
GO

ALTER TABLE dbo.Tickets
DROP CONSTRAINT FK_Tickets_Developers_WithStatus ;
GO

ALTER TABLE dbo.Tickets
ALTER COLUMN DeveloperStatus VARCHAR(8) NULL ;

Chapter 7: Advanced Use of Constraints

223

GO

ALTER TABLE dbo.Tickets
DROP CONSTRAINT CHK_Tickets_ValidStatuses ;
GO

ALTER TABLE dbo.Tickets
ADD CONSTRAINT CHK_Tickets_ValidStatuses
 CHECK((TicketStatus = 'Active'
 AND DeveloperStatus = 'Active'
 AND DeveloperStatus IS NOT NULL)
 OR (TicketStatus = 'Closed'
 AND DeveloperStatus IS NULL)) ;
GO

ALTER TABLE dbo.Tickets
 ADD CONSTRAINT FK_Tickets_Developers_WithStatus
 FOREIGN KEY (AssignedToDeveloperID, DeveloperStatus)
 REFERENCES dbo.Developers
 (DeveloperID, DeveloperStatus) ;

Listing 7-15: Making the DeveloperStatus column nullable and adding a new
CHK_Tickets_ValidStatuses constraint to ensure the column is
NULL for all closed tickets.

We are now ready to run some tests against our changed implementation. Listing 7-16
inserts some fresh test data, including a closed ticket with NULL DeveloperStatus.

INSERT INTO dbo.Developers
 (DeveloperID ,
 FirstName ,
 Lastname ,
 DeveloperStatus
)
VALUES (1 ,
 'Justin' ,
 'Larsen' ,

Chapter 7: Advanced Use of Constraints

224

 'Active'
) ;

INSERT INTO dbo.Tickets
 (TicketID ,
 AssignedToDeveloperID ,
 Description ,
 TicketStatus ,
 DeveloperStatus
)
VALUES (1 ,
 1 ,
 'Cannot print TPS report' ,
 'Active' ,
 'Active'
) ;

INSERT INTO dbo.Tickets
 (TicketID ,
 AssignedToDeveloperID ,
 Description ,
 TicketStatus ,
 DeveloperStatus
)
VALUES (2 ,
 1 ,
 'TPS report for June hangs' ,
 'Closed' ,
 NULL
) ;

Listing 7-16: Repopulating Developers and Tickets tables.

If we rerun Listing 7-11, it will raise an error, confirming that Justin cannot go on
vacation, because there is an active ticket assigned to him

Chapter 7: Advanced Use of Constraints

225

Now, when we close an open ticket, we also need to set DeveloperStatus to NULL, as
shown in Listing 7-17.

UPDATE dbo.Tickets
SET TicketStatus = 'Closed' ,
 DeveloperStatus = NULL
WHERE TicketID = 1 ;

Listing 7-17: Closing the ticket.

At this moment, both tickets assigned to Justin are closed, and DeveloperStatus
is NULL for both those tickets. This means that, for these tickets, the pair of columns
(AssignedDeveloperID, DeveloperStatus) does not refer to any row in the
Developers table, because DeveloperStatus is NULL. Note that, even for closed
tickets, we still need to ensure that Tickets.AssignedDeveloperID refers to a valid
Developers.DeveloperID; this is why we have another FOREIGN KEY constraint
(FK_Tickets_Developers) on AssignedDeveloperID only.

Let's proceed with the testing. If Justin goes on vacation, we expect that no rows in the
Tickets table should be modified, as verified by Listing 7-18.

-- we need a transaction
-- so that we can easily restore test data
BEGIN TRANSACTION ;
GO
SELECT TicketID ,
 AssignedToDeveloperID ,
 Description ,
 TicketStatus ,
 DeveloperStatus
FROM dbo.Tickets ;
GO
UPDATE dbo.Developers
SET DeveloperStatus = 'Vacation'
WHERE DeveloperID = 1 ;
GO
SELECT TicketID ,

Chapter 7: Advanced Use of Constraints

226

 AssignedToDeveloperID ,
 Description ,
 TicketStatus ,
 DeveloperStatus
FROM dbo.Tickets ;
GO
ROLLBACK ;

Listing 7-18: No rows in the Tickets table are modified if Justin goes on vacation.

If Justin is on vacation we cannot reopen a ticket assigned to him, as verified by
Listing 7-19.

BEGIN TRANSACTION ;
GO
UPDATE dbo.Developers
SET DeveloperStatus = 'Vacation'
WHERE DeveloperID = 1 ;

-- attempt one: just change the ticket's status
UPDATE dbo.Tickets
SET TicketStatus = 'Active'
WHERE TicketID = 1 ;

Msg 547, Level 16, State 0, Line 6
The UPDATE statement conflicted with the CHECK constraint
"CHK_Tickets_ValidStatuses"

-- attempt two: change both Status and DeveloperStatus
UPDATE dbo.Tickets
SET TicketStatus = 'Active' ,
 DeveloperStatus = 'Active'
WHERE TicketID = 1 ;

Msg 547, Level 16, State 0, Line 11
The UPDATE statement conflicted with the FOREIGN KEY
constraint "FK_Tickets_Developers_WithStatus".

Chapter 7: Advanced Use of Constraints

227

SELECT *
FROM dbo.Tickets

-- restoring test data to its original state
ROLLBACK ;

Listing 7-19: Trying to reopen a ticket assigned to Justin.

We have seen how three constraints work together to enforce a rather complex business
rule. Originally, we used an approach that works in the simplest possible way, and then
we modified it to be more efficient. We have also removed the side effect of changes in
Developers.DeveloperID column propagating into the Tickets table (and our FK
constraint will prohibit changes that would result in orphaned rows).

Let's move on to discuss another case where constraints really shine: inventory systems.

Constraints and Rock Solid Inventory Systems

In the previous example, we used constraints to improve a trigger-based solution
discussed in Chapter 4. This next example is completely new and involves an inventory
system that is used to store the history of changes to an inventory of items. Listing 7-20
creates the InventoryLog table, for this purpose.

CREATE TABLE dbo.InventoryLog
 (
-- In a real production system
-- there would be a foreign key to the Items table.
-- We have skipped it to keep the example simple.
 ItemID INT NOT NULL ,
 ChangeDate DATETIME NOT NULL ,
 ChangeQuantity INT NOT NULL ,
-- in a highly concurrent system
-- this combination of columns
-- might not be unique, but let us keep
-- the example simple

Chapter 7: Advanced Use of Constraints

228

 CONSTRAINT PK_InventoryLog
 PRIMARY KEY (ItemID, ChangeDate)
) ;

Listing 7-20: The InventoryLog table, which stores the history of changes
to our inventory.

To record any change in the inventory, we insert rows into the Inventory table. At
the very beginning, when we do not have any rows in the InventoryLog table, we
assume that we do not have any items in our inventory at all. An increase or decrease
in inventory for a given item is reflected by adding new rows. For example, if we need
to record the fact that we added five items of a given type to our inventory, we add a
row with ChangeQuantity=5. If we withdraw three items, we add another row with
ChangeQuantity=-3.

Our business rule states that, for a given item, a change in the inventory cannot be
allowed if it will result in a net inventory that is less than zero. Of course, we cannot take
out more of an item than we currently have in stock. In order to determine the current
inventory amount for a given item, we must query the history of all inventory changes
for the item, i.e. calculate the net total in the ChangeQuantity column, resulting from
all previous transactions, and make sure that the proposed ChangeQuantity would
not result in negative inventory. This is the sort of calculation that would traditionally
be performed in a trigger but, in order to make the trigger watertight, the code would be
quite complex. Instead, we'll perform the calculation as part of our INSERT statement,
using a HAVING clause to prevent illegal withdrawals.

Listing 7-21 provides several examples of valid and invalid changes to the inventory. For
simplicity, we disallow retrospective logging. For example, if we have recorded for Item1
an inventory change for 20100103 then we cannot subsequently log an inventory change
for the same item with a date earlier than 20100103. In a production system, we would
encapsulate our modification code in a stored procedure, which can be called for all
changes. Here, however, we shall just use the simplest possible code that demonstrates
the technique. Note that in several places we use the HAVING clause without GROUP BY.
This is a perfectly correct usage; we don't really need a GROUP BY clause to select
aggregates such as SUM, MIN, and AVG, as long as we only select aggregates and not
column values. Likewise, we don't need a GROUP BY clause if we want to use such
aggregates in the HAVING clause, as long as column values are not used in that clause.

Chapter 7: Advanced Use of Constraints

229

SET NOCOUNT ON ;
BEGIN TRANSACTION ;

-- this is a valid change:
-- we can always add to InventoryLog
INSERT INTO dbo.InventoryLog
 (ItemID ,
 ChangeDate ,
 ChangeQuantity
)
VALUES (1 ,
 '20100101' ,
 5
) ;

DECLARE @ItemID INT ,
 @QuantityToWithdraw INT ,
 @ChangeDate DATETIME ;

SET @ItemID = 1 ;
SET @QuantityToWithdraw = 3 ;
SET @ChangeDate = '20100103' ;

-- this is a valid change:
-- we have enough units of item 1 on hand

INSERT INTO dbo.InventoryLog
 (ItemID ,
 ChangeDate ,
 ChangeQuantity
)
 SELECT @ItemID ,
 @ChangeDate ,
 -@QuantityToWithdraw
 FROM dbo.InventoryLog
 WHERE ItemID = @ItemID
-- we have enough units of item 1 on hand
 HAVING COALESCE(SUM(ChangeQuantity), 0)

Chapter 7: Advanced Use of Constraints

230

 - @QuantityToWithdraw >= 0
-- we do not have log entries for later days
 AND COUNT(CASE WHEN @ChangeDate <=
 ChangeDate THEN ChangeDate
 END) = 0 ;
SELECT *
FROM dbo.InventoryLog ;

SET @ItemID = 1 ;
SET @QuantityToWithdraw = 15 ;
SET @ChangeDate = '20100104' ;

-- this is a invalid change:
-- we only have 2 units left of Item 1
-- so we cannot withdraw more than 2 units

INSERT INTO dbo.InventoryLog
 (ItemID ,
 ChangeDate ,
 ChangeQuantity
)
 SELECT @ItemID ,
 @ChangeDate ,
 -@QuantityToWithdraw
 FROM dbo.InventoryLog
 WHERE ItemID = @ItemID
-- we have enough units of item 1 on hand
 HAVING COALESCE(SUM(ChangeQuantity), 0)
 - @QuantityToWithdraw >= 0
-- we do not have log entries for later days
 AND COUNT(CASE WHEN @ChangeDate <=
 ChangeDate THEN ChangeDate
 END) = 0 ;

IF @@ROWCOUNT = 0
 BEGIN ;
 SELECT 'Not enough inventory to withdraw '
 + CAST(@QuantityToWithdraw AS VARCHAR(20))

Chapter 7: Advanced Use of Constraints

231

 + ' units of item '
 + CAST(@ItemID AS VARCHAR(20))
 + ' or there are log entries for later days' ;
 END ;

-- this is a invalid change:
-- we do not have any quantity of item 2
-- so we cannot withdraw any quantity
SET @ItemID = 2 ;
SET @QuantityToWithdraw = 1 ;
SET @ChangeDate = '20100103' ;

INSERT INTO dbo.InventoryLog
 (ItemID ,
 ChangeDate ,
 ChangeQuantity
)
 SELECT @ItemID ,
 @ChangeDate ,
 -@QuantityToWithdraw
 FROM dbo.InventoryLog
 WHERE ItemID = @ItemID
-- we have enough units of item 1 on hand
 HAVING COALESCE(SUM(ChangeQuantity), 0)
 - @QuantityToWithdraw >= 0
-- we do not have log entries for later days
 AND COUNT(CASE WHEN @ChangeDate <=
 ChangeDate THEN ChangeDate
 END) = 0 ;

IF @@ROWCOUNT = 0
 BEGIN ;
 SELECT 'Not enough inventory to withdraw '
 + CAST(@QuantityToWithdraw AS VARCHAR(20))
 + ' units of item '
 + CAST(@ItemID AS VARCHAR(20))
 + ' or there are log entries for later days' ;
 END ;

Chapter 7: Advanced Use of Constraints

232

SELECT ItemID ,
 ChangeDate ,
 ChangeQuantity
FROM dbo.InventoryLog ;

ROLLBACK ;

Listing 7-21: Examples of possible and impossible changes to the inventory.

For the tiny number of rows in Listing 7-21, it is not a problem to perform a SUM on the
ChangeQuantity column every time we change the inventory. However, for a real
inventory system, with hundreds of thousands of transactions per item, this becomes a
huge performance drain.

To eliminate this expensive querying of historical inventory changes, it is very tempting
to store the new stock quantity of a given item that results from an inventory change,
along with the change amount. Let's add one more column to InventoryLog table to
store the current amount, as shown in Listing 7-22. At the same time, we add a CHECK
constraint to make sure that CurrentQuantity is never negative.

ALTER TABLE dbo.InventoryLog
ADD CurrentQuantity INT NOT NULL ;
GO

ALTER TABLE dbo.InventoryLog
ADD
 CONSTRAINT CHK_InventoryLog_NonnegativeCurrentQuantity
 CHECK(CurrentQuantity >= 0) ;

Listing 7-22: Adding the CurrentQuantity column to the InventoryLog table.

Now, instead of querying the history of changes, we need only look up the Current-
Quantity value for the most recent row, and add it to the proposed ChangeQuantity,
as shown in Listing 7-23.

Chapter 7: Advanced Use of Constraints

233

SET NOCOUNT ON ;
BEGIN TRANSACTION ;

DECLARE @ItemID INT ,
 @ChangeQuantity INT ,
 @ChangeDate DATETIME ;

SET @ItemID = 1 ;
SET @ChangeQuantity = 5 ;
SET @ChangeDate = '20100101' ;

-- this is a valid change:
-- we can always add to InventoryLog
INSERT INTO dbo.InventoryLog
 (ItemID ,
 ChangeDate ,
 ChangeQuantity ,
 CurrentQuantity
)
 SELECT @ItemID ,
 @ChangeDate ,
 @ChangeQuantity ,
 COALESCE((SELECT TOP (1)
 CurrentQuantity
 FROM dbo.InventoryLog
 WHERE ItemID = @ItemID
 AND ChangeDate < @ChangeDate
 ORDER BY ChangeDate DESC
), 0) + @ChangeQuantity
-- we do not have log entries for later days
 WHERE NOT EXISTS (SELECT *
 FROM dbo.InventoryLog
 WHERE ItemID = @ItemID
 AND ChangeDate > @ChangeDate) ;

SET @ItemID = 1 ;
SET @ChangeQuantity = -3 ;
SET @ChangeDate = '20100105' ;

Chapter 7: Advanced Use of Constraints

234

-- this is a valid change:
-- we have enough on hand
INSERT INTO dbo.InventoryLog
 (ItemID ,
 ChangeDate ,
 ChangeQuantity ,
 CurrentQuantity
)
 SELECT @ItemID ,
 @ChangeDate ,
 @ChangeQuantity ,
 COALESCE((SELECT TOP (1)
 CurrentQuantity
 FROM dbo.InventoryLog
 WHERE ItemID = @ItemID
 AND ChangeDate < @ChangeDate
 ORDER BY ChangeDate DESC
), 0) + @ChangeQuantity
-- we do not have log entries for later days
 WHERE NOT EXISTS (SELECT *
 FROM dbo.InventoryLog
 WHERE ItemID = @ItemID
 AND ChangeDate > @ChangeDate) ;

SELECT *
FROM dbo.InventoryLog ;

ROLLBACK ;

Listing 7-23: An example of possible changes to the inventory.

This appears to suit our requirements, but unfortunately we have nothing that
guarantees that the value of CurrentQuantity in the latest row is, indeed, the correct
current quantity in stock.

Chapter 7: Advanced Use of Constraints

235

To be more specific, there are currently many ways in which we can violate our business
rules. To name just a few:

• we can retrospectively delete or update a row from the log, and end up invalidating
the whole log trail – for example, if we retrospectively deleted the log entry for Jan 1st
in Listing 7-23, it immediately invalidates the withdrawal on Jan 5th

• we can retrospectively update ChangeQuantity and fail to modify
CurrentQuantity accordingly

• we can manually update CurrentQuantity, or set it to the wrong value
when adding a new row.

In order to make our inventory system robust, we require a reasonably complex
"network" of interacting constraints. To fully understand how it all fits together will
probably require some careful thought and experimentation. With that forewarning,
let's take a look at the solution.

We need to find a way to ensure that the value stored in the CurrentQuantity column
is always correct, which is a bigger challenge than it may sound. In order to guarantee
this, we'll need to create several more constraints, and add some additional columns to
our table.

First, we need to add two new columns, PreviousQuantity and PreviousChange-
Date, as shown in Listing 7-24, in order to accurately navigate the chain of rows that
modify the same item.

-- these columns are nullable, because
-- if we store an item for the first time,
-- there is no previous quantity
-- and no previous change date
ALTER TABLE dbo.InventoryLog
ADD PreviousQuantity INT NULL ,
 PreviousChangeDate DATETIME NULL ;

Listing 7-24: Add the PreviousQuantity and PreviousChangeDate columns to
the InventoryLog table.

Chapter 7: Advanced Use of Constraints

236

In our first solution, the user simply had to enter a change quantity and a date (alongside
the ID of the item). In our new system, they are required to enter two date values (the
dates for the current and for the previous entries) as well as three inventory values:

• PreviousQuantity – the quantity in stock before the current change is made

• ChangeQuantity – the quantity to be added or removed

• CurrentQuantity – the quantity that will exist after the change is made.

Our system must make sure that all values entered are mutually consistent and abide by
our business rules.

First, the CHK_InventoryLog_ValidChange constraint will enforce the obvious
relation between previous quantity, current quantity, and the change being made, as
shown in Listing 7-25.

ALTER TABLE dbo.InventoryLog
ADD CONSTRAINT CHK_InventoryLog_ValidChange
CHECK(CurrentQuantity = COALESCE(PreviousQuantity, 0)
 + ChangeQuantity) ;

Listing 7-25: The CHK_InventoryLog_ValidChange constraint – the value entered
for CurrentQuantity must be equal to the PreviousQuantity plus
the ChangeQuantity.

Note that, instead of having CHK_InventoryLog_ValidChange enforce the validity
of CurrentQuantity, we could implement CurrentQuantity as a persisted
computed column. This is left as an advanced exercise.

Next, the CHK_InventoryLog_ValidPreviousChangeDate constraint ensures that
changes occur in chronological order.

Chapter 7: Advanced Use of Constraints

237

ALTER TABLE dbo.InventoryLog
ADD CONSTRAINT CHK_InventoryLog_ValidPreviousChangeDate
CHECK(PreviousChangeDate < ChangeDate
 OR PreviousChangeDate IS NULL) ;

Listing 7-26: CHK_InventoryLog_ValidPreviousChangeDate –
PreviousChangeDate must occur before ChangeDate.

Clearly, for a given item, the current value for PreviousQuantity must match the
previous value for CurrentQuantity. We'll use a FOREIGN KEY constraint, plus the
required UNIQUE constraint or index, to enforce this rule. At the same time, this will also
ensure that the PreviousChangeDate is a date that actually has an inventory change
for the same item.

ALTER TABLE dbo.InventoryLog
ADD CONSTRAINT UNQ_InventoryLog_WithQuantity
UNIQUE(ItemID, ChangeDate, CurrentQuantity) ;
GO

ALTER TABLE dbo.InventoryLog
ADD CONSTRAINT FK_InventoryLog_Self
FOREIGN KEY
 (ItemID, PreviousChangeDate, PreviousQuantity)
REFERENCES dbo.InventoryLog
 (ItemID, ChangeDate, CurrentQuantity);

Listing 7-27: The FK_InventoryLog_Self FK constraint.

With these four constraints in place, in addition to our PRIMARY KEY constraint and
original CHECK constraint (CHK_InventoryLog_NonnegativeCurrentQuantity),
it's about time to run some tests.

Adding new rows to the end of the inventory trail

The simplest test case, is to INSERT new rows at the end of the inventory trail. First, let's
add an initial inventory row for each of two items, as shown in Listing 7-28.

Chapter 7: Advanced Use of Constraints

238

INSERT INTO dbo.InventoryLog
 (ItemID ,
 ChangeDate ,
 ChangeQuantity ,
 CurrentQuantity ,
 PreviousChangeDate ,
 PreviousQuantity
)
VALUES (1 ,
 '20100101' ,
 10 ,
 10 ,
 NULL ,
 NULL
);

INSERT INTO dbo.InventoryLog
 (ItemID ,
 ChangeDate ,
 ChangeQuantity ,
 CurrentQuantity ,
 PreviousChangeDate ,
 PreviousQuantity
)
VALUES (2 ,
 '20100101' ,
 5 ,
 5 ,
 NULL ,
 NULL
);

Listing 7-28: Adding two items to the Inventory table.

Our first real tests, shown in Listing 7-29, prove that we cannot save a row
with incorrect CurrentQuantity, even if we also enter the wrong value for
PreviousQuantity.

Chapter 7: Advanced Use of Constraints

239

INSERT INTO dbo.InventoryLog
 (ItemID ,
 ChangeDate ,
 ChangeQuantity ,
 CurrentQuantity ,
 PreviousChangeDate ,
 PreviousQuantity
)
VALUES (2 ,
 '20100102' ,
 -2 ,
 1 , -- CurrentQuantity should be 3
 '20100101' ,
 5
);

Msg 547, Level 16, State 0, Line 1
The INSERT statement conflicted with the CHECK constraint
"CHK_InventoryLog_ValidChange". The conflict occurred in
database "test2", table "dbo.InventoryLog".
The statement has been terminated.

INSERT INTO dbo.InventoryLog
 (ItemID ,
 ChangeDate ,
 ChangeQuantity ,
 CurrentQuantity ,
 PreviousChangeDate ,
 PreviousQuantity
)
VALUES (2 ,
 '20100102' ,
 -2 ,
 1 ,
 '20100101' ,
 3 -- PreviousQuantity should be 5
);

Chapter 7: Advanced Use of Constraints

240

Msg 547, Level 16, State 0, Line 1
The INSERT statement conflicted with the FOREIGN KEY SAME
TABLE constraint "FK_InventoryLog_Self". The conflict
occurred in database "test2", table "dbo.InventoryLog".
The statement has been terminated.

Listing 7-29: A row with incorrect current quantity does not save.

Also, we cannot withdraw more of an item than is currently in stock.

INSERT INTO dbo.InventoryLog
 (ItemID ,
 ChangeDate ,
 ChangeQuantity ,
 CurrentQuantity ,
 PreviousChangeDate ,
 PreviousQuantity
)
VALUES (2 ,
 '20100102' ,
 -6 ,
 -1 , -- CurrentQuantity cannot be negative
 '20100101' ,
 5
);

Msg 547, Level 16, State 0, Line 1
The INSERT statement conflicted with the CHECK constraint
"CHK_InventoryLog_NonnegativeCurrentQuantity". The conflict
occurred in database "test2", table "dbo.InventoryLog",
column 'CurrentQuantity'.
The statement has been terminated.

Listing 7-30: We cannot withdraw more than the available amount.

However, we can take out a valid quantity of stock.

Chapter 7: Advanced Use of Constraints

241

INSERT INTO dbo.InventoryLog
 (ItemID ,
 ChangeDate ,
 ChangeQuantity ,
 CurrentQuantity ,
 PreviousChangeDate ,
 PreviousQuantity
)
VALUES (2 ,
 '20100102' ,
 -1 ,
 4 ,
 '20100101' ,
 5
);

Listing 7-31: Taking out a valid amount succeeds.

So far our system has worked as expected. However, it still has loopholes. The command
shown in Listing 7-32 succeeds in withdrawing more stock of a given item than is avail-
able, by failing to provide a value for PreviousChangeDate.

BEGIN TRANSACTION ;

INSERT INTO dbo.InventoryLog
 (ItemID ,
 ChangeDate ,
 ChangeQuantity ,
 CurrentQuantity ,
 PreviousChangeDate ,
 PreviousQuantity
)
VALUES (2 ,
 '20100103' ,
 -20 ,
 0 ,
 NULL ,

Chapter 7: Advanced Use of Constraints

242

 20
);

SELECT *
FROM dbo.InventoryLog
WHERE ItemID = 2 ;

-- restoring test data
ROLLBACK ;

(1 row(s) affected)

-- results of the SELECT are edited for readability

ChangeDate ChangeQ CurrentQ PreviousQ PreviousChangeDate
------------ --------- -------- --------- ------------------
2010-01-01 5 5 NULL NULL
2010-01-02 -1 4 5 2010-01-01
2010-01-03 -20 0 20 NULL

(3 row(s) affected)

Listing 7-32: Withdrawing more than available amount succeeds when
PreviousChangeDate is not provided.

The fundamental problem is being caused by the need to allow NULL values in the
PreviousChangeDate column, to reflect the fact that we may be starting a brand
new branch of history entries for that item, in which case no previous change date will
exist. Our FOREIGN KEY constraint (FK_Inventory_Self) tries to match the value of
PreviousQuantity in the row being modified to the CurrentQuantity value in the
row that describes the previous modification of the same item, based on a composite
key consisting of (ItemID, PreviousChangeDate, PreviousQuantity). Since
PreviousChangeDate is NULL, no match can be made and so we can enter an
incorrect value for PreviousQuantity (20 instead of 5).

In order to fix this obvious loophole in our logic, we should require the value entered
for PreviousChangeDate to be NOT NULL if we are saving a NOT NULL value for
PreviousQuantity, as shown in Listing 7-33.

Chapter 7: Advanced Use of Constraints

243

ALTER TABLE dbo.InventoryLog
ADD CONSTRAINT CHK_InventoryLog_Valid_Previous_Columns
 CHECK((PreviousChangeDate IS NULL
 AND PreviousQuantity IS NULL)
 OR (PreviousChangeDate IS NOT NULL
 AND PreviousQuantity IS NOT NULL)) ;

Listing 7-33: Closing the loophole.

If we rerun Listing 7-32 now, the INSERT command fails. However, there is one more
problem we still need to address. Although we already have some history of changes
for item #2, we can start another trail of history for the same item by failing to provide
either a PreviousChangeDate or PreviousQuantity, as shown in Listing 7-34.

BEGIN TRANSACTION ;

INSERT INTO dbo.InventoryLog
 (ItemID ,
 ChangeDate ,
 ChangeQuantity ,
 CurrentQuantity ,
 PreviousChangeDate ,
 PreviousQuantity
)
VALUES (2 ,
 '20100104' ,
 10 ,
 10 ,
 NULL ,
 NULL
) ;

SELECT SUM(ChangeQuantity) AS TotalQuantity
FROM dbo.InventoryLog
WHERE ItemID = 2 ;

SELECT ChangeDate ,

Chapter 7: Advanced Use of Constraints

244

 ChangeQuantity ,
 CurrentQuantity
FROM dbo.InventoryLog
WHERE ItemID = 2 ;

-- restoring test data
ROLLBACK ;

(1 row(s) affected)
TotalQuantity

14

(1 row(s) affected)

ChangeDate ChangeQuantity CurrentQuantity
----------------------- -------------- ---------------
2010-01-01 5 5
2010-01-02 -1 4
2010-01-04 10 10

(3 row(s) affected)

Listing 7-34: We have managed to start a new history trail for item #2.

In order to solve this problem, we need to find a way to prevent two rows with the same
ItemID having a NULL value for PreviousChangeDate. Listing 7-35 creates a UNIQUE
constraint to solve this problem.

ALTER TABLE dbo.InventoryLog
ADD CONSTRAINT UNQ_InventoryLog_OneHistoryTrailPerItem
 UNIQUE(ItemID,PreviousChangeDate) ;

Listing 7-35: Only one history trail per item is allowed.

When we rerun Listing 7-34, the INSERT fails, as it should, and the problem has
been fixed.

Chapter 7: Advanced Use of Constraints

245

SQL Server UNIQUE constraints and the ANSI Standard

In SQL Server, a UNIQUE constraint disallows duplicate NULLs. However, according
to the ANSI standard it should allow them. Therefore, the UNIQUE constraint in
Listing 7-35 will work on SQL Server but will not port to a RDBMS that implements
ANSI-compliant UNIQUE constraints.

Updating existing rows

In all previous examples, we have used INSERT commands to add new inventory
rows. Now we need to consider how our system will behave if we allow UPDATEs of
existing rows in the inventory trail for a given item. First of all, let's add another history
of changes for item #2.

INSERT INTO dbo.InventoryLog
 (ItemID ,
 ChangeDate ,
 ChangeQuantity ,
 CurrentQuantity ,
 PreviousChangeDate ,
 PreviousQuantity
)
VALUES (2 ,
 '20100105' ,
 -3 ,
 1 ,
 '20100102' ,
 4
);

Listing 7-36: More history for item #2.

Suppose it is discovered that the initial inventory for item #2, entered on January 1st,
2010, should have reflected a quantity of 3, rather than 5, so we need to decrease the
amount added for that item.

Chapter 7: Advanced Use of Constraints

246

UPDATE dbo.InventoryLog
SET ChangeQuantity = 3 ,
 CurrentQuantity = 3
WHERE ItemID = 2
 AND ChangeDate = '20100101' ;

Msg 547, Level 16, State 0, Line 1
The UPDATE statement conflicted with the SAME TABLE REFERENCE
constraint "FK_Inventory_Self". The conflict occurred in
database "test2", table "dbo.Inventory".
The statement has been terminated.

Listing 7-37: We cannot update a single row if it is not the last in the history trail
for the item.

This UPDATE fails, which is good news, otherwise the CurrentQuantity for any
subsequent row in the history trail would be incorrect.

The correct way to UPDATE a row is to include all the downstream ramifications of
the change in one command. In other words, if we need to modify the initial inventory
entry, then we need to make sure that, at the same time, we correctly adjust all
subsequent entries in the history trail for that item. In this case, this will mean updating
three rows all at once.

The UPDATE in Listing 7-38 still fails, because decreasing the original inventory from
5 to 3 means that the final modification on January 5th, 2010 would lead to a negative
value of CurrentQuantity.

-- BEGIN and COMMIT TRANCATION statements are to
-- preserve current data for future tests
BEGIN TRANSACTION ;
DECLARE @fixAmount INT ,
 @fixDate DATETIME ,
 @fixItem INT ;
SET @fixAmount = -2 ;
SET @fixDate = '20100101' ;
SET @fixItem = 2 ;

Chapter 7: Advanced Use of Constraints

247

PRINT 'data before the update' ;
SELECT ChangeQuantity ,
 CurrentQuantity ,
 PreviousQuantity
FROM dbo.InventoryLog
WHERE ItemID = @fixItem ;

PRINT 'how data will look like if the update succeeds' ;
SELECT ChangeQuantity + CASE WHEN ChangeDate = @fixDate
 THEN @fixAmount
 ELSE 0
 END AS NewChangeQuantity ,
 CurrentQuantity + CASE WHEN ChangeDate >= @fixDate
 THEN @fixAmount
 ELSE 0
 END AS NewCurrentQuantity,
 PreviousQuantity + CASE WHEN ChangeDate > @fixDate
 THEN @fixAmount
 ELSE 0
 END AS NewPreviousQuantity
FROM dbo.InventoryLog
WHERE ItemID = @fixItem ;

UPDATE dbo.InventoryLog
SET ChangeQuantity = ChangeQuantity
 + CASE WHEN ChangeDate = @fixDate
 THEN @fixAmount
 ELSE 0
 END ,
 CurrentQuantity = CurrentQuantity + @fixAmount ,
 PreviousQuantity = PreviousQuantity
 + CASE WHEN ChangeDate > @fixDate
 THEN @fixAmount
 ELSE 0
 END
WHERE ItemID = @fixItem
 AND ChangeDate >= @fixDate ;

Chapter 7: Advanced Use of Constraints

248

ROLLBACK ;

data before the update
ChangeQuantity CurrentQuantity PreviousQuantity
-------------- --------------- ----------------
5 5 NULL
-1 4 5
-3 1 4

how data will look if the update succeeds
NewChangeQuantity NewCurrentQuantity NewPreviousQuantity
----------------- ------------------ -------------------
3 3 NULL
-1 2 3
-3 -1 2

Msg 547, Level 16, State 0, Line 12
The UPDATE statement conflicted with the CHECK constraint
"CHK_Inventory_NonnegativeCurrentQuantity". The conflict
occurred in database "test2", table "dbo.Inventory", column
'CurrentQuantity'.
The statement has been terminated.

Listing 7-38: Updating all inventory rows for a given item at the same time.

If we set @fixAmount to a valid amount, –1 instead of –2, and then rerun Listing 7-38 it
will complete successfully. We can also set @fixAmount to a positive number, run the
listing again, and see that again it succeeds, as it should.

Although we have now managed, with some difficulty, to modify a row in the middle
of a history trail, we need to emphasize that only inserting rows at the end of history
trail is fast and convenient. Correcting history is harder and may be significantly less
performant. However, our solution has dramatically simplified and speeded up the
most common operation, namely inserting rows at the end of history trails.

Chapter 7: Advanced Use of Constraints

249

Adding rows out of date order

At the moment, our inventory system robustly handles the insertion of new rows to
the end of the inventory (i.e. in date order). However, far more complex is the situation
where we need to insert a row when it is not the last in the trail history. It requires
two actions:

• inserting the row itself

• modifying CurrentQuantity and PreviousQuantity for all the later rows in the
history trail for the item.

Both inserting and updating need to be done in a single command, so we need to
use MERGE. The MERGE which gets the job done is quite complex and is shown in
Listing 7-39.

-- DEBUG: Use transaction to enable rollback at end
BEGIN TRANSACTION ;

-- Required input: Item, date, and amount of inventory
change.
DECLARE @ItemID INT ,
 @ChangeDate DATETIME ,
 @ChangeQuantity INT ;
SET @ItemID = 2 ;
SET @ChangeDate = '20100103' ;
SET @ChangeQuantity = 1 ;

-- DEBUG: showing the data before MERGE
SELECT CONVERT(CHAR(8), ChangeDate, 112) AS ChangeDate ,
 ChangeQuantity ,
 CurrentQuantity ,
 PreviousQuantity ,
 CONVERT(CHAR(8), PreviousChangeDate, 112)
 AS PreviousChangeDate
FROM dbo.InventoryLog
WHERE ItemID = @ItemID ;

Chapter 7: Advanced Use of Constraints

250

-- Find the row to be updated (if any)
DECLARE @OldChange INT ,
 @PreviousChangeDate DATETIME ,
 @PreviousQuantity INT ;

SELECT @OldChange = ChangeQuantity ,
 @PreviousChangeDate = PreviousChangeDate ,
 @PreviousQuantity = PreviousQuantity
FROM dbo.InventoryLog
WHERE ItemID = @ItemID
 AND ChangeDate = @ChangeDate ;

IF @@ROWCOUNT = 0
 BEGIN ;
 -- Row doesn't exist yet; find the previous row
 SELECT TOP (1)
 @PreviousChangeDate = ChangeDate ,
 @PreviousQuantity = CurrentQuantity
 FROM dbo.InventoryLog
 WHERE ItemID = @ItemID
 AND ChangeDate < @ChangeDate
 ORDER BY ChangeDate DESC ;
 END ;

-- Calculate new quantity; old quantity can be NULL
-- if this is a new row and there is no previous row.
DECLARE @NewChange INT ;
SET @NewChange = COALESCE(@OldChange, 0) + @ChangeQuantity ;

-- One MERGE statement to do all the work
MERGE INTO dbo.InventoryLog AS t
 USING
 (SELECT @ItemID AS ItemID ,
 @ChangeDate AS ChangeDate ,
 @NewChange AS ChangeQuantity ,
 @PreviousChangeDate AS PreviousChangeDate ,
 @PreviousQuantity AS PreviousQuantity
) AS s

Chapter 7: Advanced Use of Constraints

251

 ON s.ItemID = t.ItemID
 AND s.ChangeDate = t.ChangeDate
-- If row did not exist, insert it
 WHEN NOT MATCHED BY TARGET
 THEN INSERT (
 ItemID ,
 ChangeDate ,
 ChangeQuantity ,
 CurrentQuantity ,
 PreviousChangeDate ,
 PreviousQuantity
)
 VALUES (s.ItemID ,
 s.ChangeDate ,
 s.ChangeQuantity ,
 COALESCE(s.PreviousQuantity, 0)
 + s.ChangeQuantity ,
 s.PreviousChangeDate ,
 s.PreviousQuantity
)
-- If row does exist and change quantity becomes 0, delete it
 WHEN MATCHED AND t.ItemID = @ItemID
 AND @NewChange = 0
 THEN DELETE
-- If row does exist and change quantity does not become
-- 0, update it
 WHEN MATCHED AND t.ItemID = @ItemID
 THEN UPDATE
 SET ChangeQuantity = @NewChange ,
 CurrentQuantity = t.CurrentQuantity
 + @ChangeQuantity
-- Also update all rows with a later date
 WHEN NOT MATCHED BY SOURCE AND t.ItemID = @ItemID
 AND t.ChangeDate > @ChangeDate
 THEN UPDATE
 SET CurrentQuantity = t.CurrentQuantity
 + @ChangeQuantity ,
 PreviousQuantity =

Chapter 7: Advanced Use of Constraints

252

 CASE
-- Special case: New first row after first row was deleted
 WHEN @NewChange = 0
 AND t.PreviousChangeDate
 = @ChangeDate
 AND @PreviousChangeDate IS NULL
 THEN NULL
 ELSE COALESCE(t.PreviousQuantity,0)
 + @ChangeQuantity
 END ,
-- Previous change date has to be changed in some cases
 PreviousChangeDate =
 CASE
-- First row after row that was inserted
 WHEN @NewChange = @ChangeQuantity
 AND (t.PreviousChangeDate =
 @PreviousChangeDate
 OR (t.PreviousChangeDate
 IS NULL
 AND @PreviousChangeDate
 IS NULL
)
) THEN @ChangeDate
-- First row after row that was deleted
 WHEN @NewChange = 0
 AND t.PreviousChangeDate =
 @ChangeDate
 THEN @PreviousChangeDate
-- Otherwise no change
 ELSE t.PreviousChangeDate
 END ;

-- DEBUG: showing the data after MERGE
SELECT CONVERT(CHAR(8), ChangeDate, 112) AS ChangeDate ,
 ChangeQuantity ,
 CurrentQuantity ,
 PreviousQuantity ,
 CONVERT(CHAR(8), PreviousChangeDate, 112)

Chapter 7: Advanced Use of Constraints

253

 AS PreviousChangeDate
FROM dbo.InventoryLog
WHERE ItemID = @ItemID ;

-- DEBUG: Roll back changes so we can repeat tests
ROLLBACK TRANSACTION ;

ChangeDate ChangeQ CurrentQ PreviousQ PreviousChangeDate
------------ ------- -------- --------- -----------------
20100101 5 5 NULL NULL
20100102 -1 4 5 20100101
20100105 -3 1 5 20100102

ChangeDate ChangeQ CurrentQ PreviousQ PreviousChangeDate
---------- --------- -------- --------- ------------------
20100101 5 5 NULL NULL
20100102 -1 4 5 20100101
20100103 1 5 4 20100102
20100105 -3 2 5 20100103

(4 row(s) affected)

Listing 7-39: Inserting a row in the middle of a history trail.

This code handles inserting rows before the first date, inbetween dates, and after the last
date. More importantly, it will also handle the case when there is already a row with the
same ItemID and ChangeDate, automatically modifying that row (and all "later" rows
for the same item) to reflect the new net change, which is computed as the old change
plus the new change. Finally, it will also automatically delete a row if the new net change
equals zero (no change).

As we have seen, modifying anywhere other than in the very end of a history trail may
be quite involved, but the integrity of our data is never compromised. In many cases,
such as inventory systems, this complexity of modifications in the middle of a history
is perfectly acceptable, because under normal circumstances we just never need to do
it. However, this approach is not for everyone; we need to decide whether to use it on a
case-by-case basis.

Chapter 7: Advanced Use of Constraints

254

Summary

There are two options for business rules that are too complex for simple constraints.
The most common option is to use triggers, as they are generally easier to write and
maintain. However, although trigger logic is quite easy to write, it is not always easy, and
sometimes impossible, to ensure that the resulting triggers are entirely robust. Chapter 6
discussed several common problems with triggers, including cases where they simply do
not fire. Also, in Chapter 4, we saw that triggers do not always work as expected under
snapshot isolation levels.

The alternative solution, as presented in this chapter, uses several constraints, working
together to enforce complex business rules so that data integrity is never compromised.
The solution presented is complex but if data integrity is a top priority then such
constraints-only solutions should be considered.

The solution presented here entails data de-normalization, and so some redundant
data storage. It is robust under all circumstances but, in such situations, we must take
extreme care, as we did here, to avoid ending up with inconsistent data and to ensure
that the performance of such systems is acceptable. Nevertheless, it should be noted
that redundant storage may have some negative impact on the overall performance of
your queries.

255

Chapter 8: Defensive Error
Handling
The ability to handle errors is essential in any programming language and, naturally, we
have to implement safe error handling in our T-SQL if we want to build solid SQL Server
code. SQL Server 2005 (and later) superseded the old-style @@Error error handling, with
the TRY…CATCH blocks that are more familiar to Java and C# programmers.

While use of TRY…CATCH certainly is the best way to handle errors in T-SQL, it is not
without difficulties. Error handling in T-SQL can be very complex, and its behavior can
sometimes seem erratic and inconsistent. Furthermore, error handling in Transact SQL
lacks many features that developers who use languages such as Java and C# take for
granted. For example, in SQL Server 2005 and 2008, we cannot even re-throw an error
without changing its error code. This complicates handling errors, because we have
to write separate conditions for detecting exceptions caught for the first time, and for
detecting re-thrown exceptions.

This chapter will demonstrate simple SQL Server error handling, using XACT_ABORT
and transactions; it will describe the most common problems with TRY…CATCH error
handling, and advocate that the defensive programmer, where possible, should
implement only simple error checking and handling in SQL Server, with client-side
error handling used to enforce what is done on the server.

Prepare for Unanticipated Failure

Any statement can, and at some point inevitably will, fail. This may seem to be a
statement of the obvious, but too many programmers seem to assume that, once
their code "works," then the data modifications and queries that it contains will
always succeed.

In fact, data modifications can and do fail unexpectedly. For example, the data may
not validate against a constraint or a trigger, or the command may become a deadlock
victim. Even if the table does not have any constraints or triggers at the time the code is

Chapter 8: Defensive Error Handling

256

developed, they may be added later. It is wise to assume that our modifications will not
always succeed.

Many queries, too, can fail. Just as a modification can become a deadlock victim, so can
a SELECT (unless that SELECT is running under either of the two snapshot isolation
levels). If a SELECT statement utilizes a user-defined function, then errors may occur
in that function that will cause the query to fail. Other common causes of failure are
queries that attempt to use a temporary table that does not exist, or contain subqueries
that return more than one value.

Listing 8-1 demonstrates a very simple case of a SELECT statement that may succeed or
fail, depending on locale settings.

CREATE VIEW dbo.NextNewYearEve AS
SELECT DATEADD
 (YEAR,
 DATEDIFF(year, '12/31/2000', CURRENT_TIMESTAMP),
 '12/31/2000'
) AS NextNewYearEve ;
GO

SET LANGUAGE us_english ;
SELECT NextNewYearEve
FROM dbo.NextNewYearEve ;

Changed language setting to us_english.
NextNewYearEve

2009-12-31 00:00:00.000

SET LANGUAGE Norwegian ;
SELECT NextNewYearEve
FROM dbo.NextNewYearEve ;
GO

Chapter 8: Defensive Error Handling

257

Changed language setting to Norsk.
NextNewYearEve

Msg 241, Level 16, State 1, Line 2
Conversion failed when converting date and/or time from
character string.

DROP VIEW dbo.NextNewYearEve ;

Listing 8-1: Language settings can cause certain date queries to fail.

The main point is clear: when we develop T-SQL code, we cannot assume that our
queries or data modifications will always succeed, and we need to be prepared for such
failures and handle them gracefully. When an unexpected error occurs during data
modification, it is essential that execution of the statement is terminated, the database
is returned to the state it was in before the statement started, and a message is sent to
the calling client, giving some details of the error that occurred and the action taken as
a result. Likewise, if a SELECT fails that is part of a longer transaction that has already
modified data, then these modifications must be undone as well.

Using Transactions for Data Modifications

In many cases, during data modifications, we cannot take our database from one
consistent state to another in a single statement. If a data modification requires more
than one statement to effect the required change, then explicit transactions should
be used to ensure that these statements succeed or fail as a unit, and that our error
handling can handle them as a unit.

For example, suppose that we need to log, in one table, all the modifications made to
another table. Listing 8-2 shows the code to create the table to be modified (Codes) and
the table in which the modifications will be logged (CodeDescriptionsChangeLog).

Chapter 8: Defensive Error Handling

258

IF EXISTS (SELECT *
 FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_NAME = 'Codes'
 AND TABLE_SCHEMA = 'dbo')
 BEGIN;
 -- we used a Codes table in a previous chapter
 -- let us make sure that is does not exist any more
 DROP TABLE dbo.Codes ;
 END ;
GO
CREATE TABLE dbo.Codes
 (
 Code VARCHAR(10) NOT NULL ,
 Description VARCHAR(40) NULL ,
 CONSTRAINT PK_Codes PRIMARY KEY CLUSTERED (Code)
) ;
GO

-- we did not use this table name before in this book,
-- so there is no need to check if it already exists
CREATE TABLE dbo.CodeDescriptionsChangeLog
 (
 Code VARCHAR(10) NOT NULL ,
 ChangeDate DATETIME NOT NULL ,
 OldDescription VARCHAR(40) NULL ,
 NewDescription VARCHAR(40) NULL ,
 CONSTRAINT PK_CodeDescriptionsChangeLog PRIMARY KEY (
Code, ChangeDate)
) ;

Listing 8-2: The Codes and CodeDescriptionsChangeLog tables.

Note that the log table does not have a FOREIGN KEY constraint referring to the Codes
table, because the log records need to be kept even if we delete the corresponding rows
in Codes.

The procedure shown in Listing 8-3 modifies the Codes table, and logs the change in the
CodeDescriptionsChangeLog table.

Chapter 8: Defensive Error Handling

259

CREATE PROCEDURE dbo.ChangeCodeDescription
 @Code VARCHAR(10) ,
 @Description VARCHAR(40)
AS
 BEGIN ;
 INSERT INTO dbo.CodeDescriptionsChangeLog
 (Code ,
 ChangeDate ,
 OldDescription ,
 NewDescription
)
 SELECT Code ,
 CURRENT_TIMESTAMP ,
 Description ,
 @Description
 FROM dbo.Codes
 WHERE Code = @Code ;

 UPDATE dbo.Codes
 SET Description = @Description
 WHERE Code = @Code ;
 END ;

Listing 8-3: The ChangeCodeDescription stored procedure.

Listing 8-4 runs a simple smoke test on the new procedure.

INSERT INTO dbo.Codes
 (Code, Description)
VALUES ('IL', 'Ill.') ;
GO

EXEC dbo.ChangeCodeDescription
 @Code = 'IL',
 @Description = 'Illinois' ;
GO

Chapter 8: Defensive Error Handling

260

SELECT Code ,
 OldDescription + ', ' + NewDescription
FROM dbo.CodeDescriptionsChangeLog ;

Code
---------- ---
IL Ill., Illinois

Listing 8-4: A smoke test on the ChangeCodeDescription stored procedure.

It looks like the procedure works, right? Note, however, that this stored procedure does
not attempt to determine whether or not either of the two modifications failed, and it
does not handle possible errors. Of course, one might argue that this stored procedure
could be a component of a perfectly valid system, if it is invoked by an application that
does all the error handling. However, that does not make it, as is, a valid component.
There's a huge risk that a developer who builds another application may find this
procedure and decide to call it, unaware of the required error handling in the calling
procedure.

It may seem that nothing could possibly go wrong during these two trivial modifica-
tions, but we still cannot assume that both modifications will always succeed. In fact,
even in this trivial example, we can devise a case where one modification can fail: if
two modifications occur simultaneously, we may get a primary key violation on the
CodeDescriptionsChangeLog table.

Rather than reproduce that case here, we can prove the same point simply by
creating a CHECK constraint that prohibits inserts and updates against the Code-
DescriptionsChangeLog table, and demonstrating what happens when one of our
modifications fails and we do nothing to detect and handle it.

SET XACT_ABORT OFF ;
-- if XACT_ABORT OFF were set to ON ,
-- the code below would behave differently.
-- We shall discuss it later in this chapter.

DELETE FROM dbo.CodeDescriptionsChangeLog ;

Chapter 8: Defensive Error Handling

261

BEGIN TRANSACTION ;
GO

-- This constraint temporarily prevents all inserts
-- and updates against the log table.
-- When the transaction is rolled back, the constraint
-- will be gone.
ALTER TABLE dbo.CodeDescriptionsChangeLog
ADD CONSTRAINT CodeDescriptionsChangeLog_Immutable
 CHECK(1<0) ;
GO

EXEC dbo.ChangeCodeDescription
 @Code = 'IL',
 @Description = 'other value' ;
GO

-- dbo.Codes table has been updated
SELECT Code ,
 Description
FROM dbo.Codes ;

-- dbo.CodeDescriptionsChangeLog has not been updated
SELECT Code ,
 OldDescription + ', ' + NewDescription
FROM dbo.CodeDescriptionsChangeLog ;
GO

ROLLBACK ;

Msg 547, Level 16, State 0, Procedure ChangeCodeDescription,
Line 6
The INSERT statement conflicted with the CHECK constraint
"CodeDescriptionsChangeLog_Immutable". The conflict occurred
in database "Test", table "dbo.CodeDescriptionsChangeLog".
The statement has been terminated.

(1 row(s) affected)

Chapter 8: Defensive Error Handling

262

Code Description
---------- --
IL other value

(1 row(s) affected)

Code
---------- --

(0 row(s) affected)

Listing 8-5: An INSERT into CodeDescriptionsChangeLog fails, but the
UPDATE of Codes succeeds, and we end up with an UPDATE that
has not been logged.

In order to avoid this situation, we need to begin a transaction, attempt to do both
modifications, determine whether or not both completed successfully, and commit the
transaction only if both modifications succeeded. If either modification failed, we need
to roll back the transaction, as part of our error handling. T-SQL allows several ways to
accomplish that. Let's begin with the simplest approach: using transactions along with
the XACT_ABORT setting.

Using Transactions and XACT_ABORT to
Handle Errors

In many cases, we do not need sophisticated error handling. Quite frequently, all we
need to do in case of an error, is roll back all the changes and throw an exception, so that
the client knows that there is a problem and will handle it. In such situations, a perfectly
reasonable approach is to make use of the XACT_ABORT setting.

By default, in SQL Server this setting is OFF, which means that in some circumstances
SQL Server can continue processing when a T-SQL statement causes a run-time error.
In other words, for less severe errors, it may be possible to roll back only the statement
that caused the error, and to continue processing other statements in the transaction.

Chapter 8: Defensive Error Handling

263

If XACT_ABORT is turned on, SQL Server stops processing as soon as a T-SQL run-time
error occurs, and the entire transaction is rolled back. When handling unexpected,
unanticipated errors, there is often little choice but to cease execution and roll back to
a point where there system is in a "known state." Otherwise, you risk seeing partially
completed transactions persisted to your database, and so compromising data integrity.
In dealing with such cases, it makes sense to have XACT_ABORT turned ON.

Data modifications via OLE DB

Note that, in some cases, XACT_ABORT is already set to ON by default. For example,
OLE DB will do that for you. However, it is usually preferable to explicitly set it,
because we do not know in which context our code will be used later.

Listing 8-6 illustrates a basic error-handling approach, whereby our modifications
take place within an explicit transaction, having set XACT_ABORT to ON. The PRINT
commands in the procedure are for demonstration purposes only; we would not need
them in production code.

ALTER PROCEDURE dbo.ChangeCodeDescription
 @Code VARCHAR(10) ,
 @Description VARCHAR(40)
AS
 BEGIN ;
 SET XACT_ABORT ON ;
 BEGIN TRANSACTION ;
 INSERT INTO dbo.CodeDescriptionsChangeLog
 (Code ,
 ChangeDate ,
 OldDescription ,
 NewDescription
)
 SELECT Code ,
 current_timestamp ,
 Description ,
 @Description
 FROM dbo.Codes
 WHERE Code = @Code ;

Chapter 8: Defensive Error Handling

264

 PRINT 'First modifications succeeded' ;

 UPDATE dbo.Codes
 SET Description = @Description
 WHERE Code = @Code ;
 -- the following commands execute only if both
 -- modifications succeeded
 PRINT 'Both modifications succeeded, committing
 the transaction' ;
 COMMIT ;
 END ;

Listing 8-6: Using the XACT_ABORT setting and an explicit transaction.

Note that, although we want to roll back all the changes if an error occurs, we do
not need to explicitly determine if there are any errors, and we do not need to
explicitly invoke ROLLBACK in our code; when XACT_ABORT is set to ON, it all
happens automatically. Listing 8-7 tests our altered stored procedure.

SET NOCOUNT ON ;
SET XACT_ABORT OFF ;

DELETE FROM dbo.CodeDescriptionsChangeLog ;

BEGIN TRANSACTION ;
GO

-- This constraint temporarily prevents all inserts
-- and updates against the log table.
-- When the transaction is rolled back, the constraint
-- will be gone.
ALTER TABLE dbo.CodeDescriptionsChangeLog
ADD CONSTRAINT CodeDescriptionsChangeLog_Immutable
 CHECK(1<0) ;
GO

EXEC dbo.ChangeCodeDescription

Chapter 8: Defensive Error Handling

265

 @Code = 'IL',
 @Description = 'other value' ;
GO
-- transaction is rolled back automatically
SELECT @@TRANCOUNT AS [@@TRANCOUNT after stored procedure
call] ;

-- dbo.Codes table has not been updated
SELECT Code ,
 Description
FROM dbo.Codes ;

-- dbo.CodeDescriptionsChangeLog has not been updated
SELECT Code ,
 OldDescription + ', ' + NewDescription
FROM dbo.CodeDescriptionsChangeLog ;

Msg 547, Level 16, State 0, Procedure ChangeCodeDescription,
Line 8
The INSERT statement conflicted with the CHECK constraint
"CodeDescriptionsChangeLog_Immutable". The conflict occurred
in database "test", table "dbo.CodeDescriptionsChangeLog".
@@TRANCOUNT after stored procedure call

0

Code Description
---------- ----------------------------
IL Illinois

Code
---------- ----------------------------

Listing 8-7: Testing the altered stored procedure.

As we have seen, the stored procedure worked perfectly well. Of course, this is just the
first in a series of tests we should perform on our stored procedure.

Chapter 8: Defensive Error Handling

266

Complete testing would include:

• making sure that, if both the modification of the Codes table and the INSERT into
the CodeDescriptionsChangeLog table succeed, then the transaction commits
and both changes persist

• verifying that, if an UPDATE of the Codes table fails, then the transaction rolls back.
To reproduce a failure, we can use a similar technique; a CHECK constraint that
makes sure all UPDATEs against the Codes table fail

• invoking the stored procedure without an outstanding transaction, when
@@TRANCOUNT is 0. In that case, we shall have to explicitly drop the CHECK
constraint which we create in our test.

I encourage you to tweak Listing 8-7 and try out these other tests. In many cases,
this simple approach of setting XACT_ABORT to ON and using an explicit transaction
for modifications gets the job done without much effort. We should use this simple
and robust approach unless we really need more sophisticated functionality from our
error handling.

If we really want to do some more complex error handling on the server, using
T-SQL, then we should use TRY…CATCH blocks, which are available in SQL Server 2005
and upwards.

Using TRY…CATCH blocks to Handle Errors

To handle errors in T-SQL modules, in SQL Server 2005 and upwards, we can use
TRY…CATCH blocks. If any command inside the TRY block raises an error, the execution
of the TRY block terminates immediately, which is similar to the behavior under the
XACT_ABORT setting. But, unlike with XACT_ABORT, where the whole batch terminates,
only the execution of the code inside the TRY block terminates, and the CATCH block
begins to execute.

In cases where you are aware that a certain specific error could occur, your error-
handling strategy can be different. You may attempt to add code to your CATCH block
that corrects the error, or at least allows processing to continue. In these cases, it makes
more sense to have XACT_ABORT set to OFF, so that you can handle the errors, and
inform the calling client of what happened, without rolling back the entire batch.

Chapter 8: Defensive Error Handling

267

As will become clear as we progress, my current philosophy is that all but the simplest
error handling should ideally be implemented in a client-side language where the error
handling is more robust and feature rich than it is in SQL Server TRY…CATCH.

My goal here is, therefore, not to cover TRY…CATCH in full detail, but to set out, with
examples, some of the reasons why error handling in T-SQL can be complex and a little
bewildering. I really want to encourage you to either fully understand all the ins and
outs of T-SQL error handling, or to avoid using it at all, except in the simplest cases.

Erland Sommarskog's website, http://www.sommarskog.se/, is an excellent source of
information on error handling. The book entitled Expert SQL Server 2005 Development by
Adam Machanic, Hugo Kornelis, and Lara Rubbelke is another great resource.

Finally, note that I do not cover "old-style" error handling using @@ERROR at all in this
chapter. Use of @@ERROR has some well-known problems, such as the inability to handle
errors raised by triggers, and the fact that sometimes SQL Server simply fails to set
its value correctly. In general, my advice would be to upgrade from @@ERROR to TRY…
CATCH or, even better, to client-side error handling for all but the simplest cases, as soon
as possible.

A TRY…CATCH example: retrying after deadlocks

Sometimes, it may make sense to use TRY…CATCH blocks to retry the execution of a
statement after a deadlock. One must exercise caution when doing so, as retrying an
UPDATE statement in this manner may lead to lost updates, as we discuss in detail in
Chapter 10, Surviving Concurrent Modifications. The defensive programmer must take all
possible measures to ensure that the possibility of deadlocks is minimized but, in some
cases, it may be deemed acceptable, in the short term at least, to automatically retry after
a deadlock.

In order to provide an example that you can run on your server, we'll alter our
ChangeCodeDescription stored procedure, as shown in Listing 8-8, so that it is
highly likely to be chosen as a deadlock victim, if it embraces in a deadlock with a
competing session. Our goal here is not to demonstrate how to develop stored
procedures that are unlikely to embrace in deadlocks, but to see how to use a
TRY…CATCH block to retry after a deadlock.

http://www.sommarskog.se/

Chapter 8: Defensive Error Handling

268

If processing switches to our CATCH block, we will attempt to re-execute our transaction
once more, in response to a deadlock; otherwise we will simply re-throw the error so
that the calling client is notified and can respond.

ALTER PROCEDURE dbo.ChangeCodeDescription
 @Code VARCHAR(10) ,
 @Description VARCHAR(40)
AS
 BEGIN ;
 DECLARE @tryCount INT ,
 @OldDescription VARCHAR(40) ;
 SET DEADLOCK_PRIORITY LOW ;
 SET XACT_ABORT OFF ;
 SET @tryCount = 1 ;
 WHILE @tryCount < 3
 BEGIN
 BEGIN TRY
 BEGIN TRANSACTION ;
 SET @OldDescription = (SELECT Description
 FROM dbo.Codes
 WHERE Code = @Code
) ;

 UPDATE dbo.Codes
 SET Description = @Description
 WHERE Code = @Code ;

 INSERT INTO dbo.CodeDescriptionsChangeLog
 (Code ,
 ChangeDate ,
 OldDescription ,
 NewDescription
)
 SELECT @Code ,
 CURRENT_TIMESTAMP ,
 @OldDescription ,
 @Description ;

Chapter 8: Defensive Error Handling

269

 PRINT 'Modifications succeeded' ;
 COMMIT ;
 RETURN 0 ;
 END TRY
 BEGIN CATCH
 -- transaction is not rolled back automatically
 -- we need to roll back explicitly
 IF @@TRANCOUNT <> 0
 BEGIN ;
 PRINT 'Rolling back' ;
 ROLLBACK ;
 END ;
 IF ERROR_NUMBER() <> 1205
 BEGIN
 -- if this is not a deadlock, "re-throw" the error
 DECLARE @ErrorMessage NVARCHAR(4000) ;
 SET @ErrorMessage = ERROR_MESSAGE() ;
 RAISERROR('Error %s occurred in
 SelectCodeChangeLogAndCode'
 ,16,1,@ErrorMessage) ;
 RETURN -1 ;
 END ;
 ELSE
 BEGIN ;
 PRINT 'Encountered a deadlock'
 END ;
 END CATCH ;
 SET @tryCount = @tryCount + 1 ;
 END ;
 RETURN 0 ;
 END ;

Listing 8-8: Altering the ChangeCodeDescription stored procedure so that it
retries after a deadlock.

Before we run our test, let's reset the test data in our Codes and CodeDescriptions-
ChangeLog tables.

Chapter 8: Defensive Error Handling

270

-- reset our test data
DELETE FROM dbo.CodeDescriptionsChangeLog ;
DELETE FROM dbo.Codes ;
INSERT INTO dbo.Codes
 (Code, Description)
VALUES ('IL', 'IL') ;
GO

EXEC dbo.ChangeCodeDescription
 @Code = 'IL',
 @Description = 'Ill.' ;
GO

SELECT Code ,
 Description
FROM dbo.Codes ;

SELECT Code ,
 OldDescription + ', ' + NewDescription
FROM dbo.CodeDescriptionsChangeLog ;

(1 row(s) affected)

(1 row(s) affected)
Modifications succeeded
Code Description
---------- --
IL Ill.

(1 row(s) affected)

Code
---------- --
IL IL, Ill.

(1 row(s) affected)

Listing 8-9: Resetting the test data.

Chapter 8: Defensive Error Handling

271

We're now ready to run the test. From one tab in SSMS, we'll start a SERIALIZABLE
transaction against the CodeDescriptionsChangeLog table, as shown in
Listing 8-10.

SET DEADLOCK_PRIORITY HIGH ;
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE ;
BEGIN TRANSACTION ;
SELECT * FROM dbo.CodeDescriptionsChangeLog ;

/*
UPDATE dbo.Codes
SET Description = 'Illinois'
WHERE Code = 'IL' ;
COMMIT ;

*/

Listing 8-10: Tab 1, start a transaction against the CodeDescriptionsChangeLog
table.

From a second tab, invoke our stored procedure, as shown in Listing 8-11. The session
will "hang" in lock waiting mode, due to our SERIALIZABLE transaction accessing the
CodeDescriptionsChangeLog table.

EXEC dbo.ChangeCodeDescription
 @code='IL',
 @Description='?' ;

SELECT Code ,
 Description
FROM dbo.Codes ;

SELECT Code ,
 OldDescription + ', ' + NewDescription
FROM dbo.CodeDescriptionsChangeLog ;

Listing 8-11: Tab 2, invoke the ChangeCodeDescription stored procedure.

Chapter 8: Defensive Error Handling

272

Now return to Tab 1, and execute the commented UPDATE against the Codes table,
from Listing 8-10, including the COMMIT. As soon as this code tries to execute, a
deadlock is detected. SQL Server chooses our stored procedure execution from Tab 2 as
the deadlock victim, since we deliberately contrived for this to be the case. The
transaction in our TRY block is rolled back, but then our CATCH block is executed
and we try to execute our stored procedure again. This time, since Tab 1 has now
committed, the modification succeeds. The output from Tab 2 is shown in Listing 8-12.

Rolling back
Encountered a deadlock

(1 row(s) affected)

(1 row(s) affected)
Modifications succeeded
Code Description
---------- -----------------------------------
IL ?

(1 row(s) affected)

Code
---------- -----------------------------------
IL IL, Ill.
IL Illinois, ?

Listing 8-12. Tab 2, output from execution of the stored procedure.

Note also, however, that the UPDATE we execute from Tab 1 is "lost;" its changes were
overwritten when the retry succeeded.

From these examples, we have learned the following:

• if several modifications must succeed or fail together, use transactions, and roll the
modification back, as a unit, if any one of them fails

Chapter 8: Defensive Error Handling

273

• always anticipate that any modification may fail; use XACT_ABORT to ensure that
transactions roll back after a failure; alternatively, we can wrap our transactions in
TRY blocks, and roll them back in CATCH blocks.

Unfortunately, there are a few problems with using TRY…CATCH error handling that we
need to discuss. In the next section, we'll look at some ways in which TRY…CATCH error
handling is limited and its behavior surprising. We'll then see what we can achieve when
using C# for error handling, instead of T-SQL.

TRY…CATCH Gotchas

T-SQL is not really an efficient language for error handling, and is certainly less robust
than error handling in client-side languages such as C++, Java, and C#. As such, although
in most cases TRY…CATCH blocks work as expected and catch errors as they should,
there are also quite a few "special cases" that we need to know about, where the behavior
is not as we might expect.

Furthermore, TRY…CATCH error handling does not really facilitate code reuse. If we
want to use this approach in another stored procedure, we cannot fully reuse our
T-SQL error handling code; we have to cut and paste much of it into that other stored
procedure. This, as we proved in Chapter 5, Reusing T-SQL Code, is a recipe for bugs
and inconsistencies.

Over the following sections, we'll discuss some of the special cases of which we need to
be aware when using TRY…CATCH.

Re-throwing errors

In many cases, we do not wish to handle certain errors in our CATCH block, and instead
want to re-throw them, so that they are handled elsewhere. In our previous example,
where we wished to retry execution after a deadlock, all other errors were handled by
capturing the error message, using the ERROR_MESSAGE function, and re-throwing
the error using RAISERROR. However, the error message on its own is generally
insufficient; we should also retrieve the information from the ERROR_LINE,
ERROR_NUMBER, ERROR_PROCEDURE, ERROR_SEVERITY, and ERROR_STATE
functions, declare variables to store this information, and then use RAISERROR to

Chapter 8: Defensive Error Handling

274

re-throw it. This is very verbose and, as we shall see later, we can achieve exactly the
same outcome in C# by issuing one single command: throw.

However, the real problem with the TRY…CATCH approach is this: RAISERROR cannot
preserve ERROR_NUMBER, so when we re-throw an error we often change its error code.
For example, consider the ConversionErrorDemo stored procedure in Listing 8-13.
It attempts to cast a string as an integer in the TRY block, and then in the CATCH block
invokes two of the seven error handling functions and re-throws the error.

CREATE PROCEDURE dbo.ConversionErrorDemo
AS
 BEGIN TRY ;
 SELECT CAST('abc' AS INT) ;
 -- some other code
 END TRY
 BEGIN CATCH ;
 DECLARE @ErrorNumber INT ,
 @ErrorMessage NVARCHAR(4000) ;
 SELECT @ErrorNumber = ERROR_NUMBER() ,
 @ErrorMessage = ERROR_MESSAGE() ;
 IF @ErrorNumber = 245
 BEGIN ;
 -- we shall not handle conversion errors here
 -- let us try to re-throw the error, so that
 -- it is handled elsewhere.
 -- This error has number 245, but we cannot
 -- have RAISERROR keep the number of the error.
 RAISERROR(@ErrorMessage, 16, 1) ;
 END ;
 ELSE
 BEGIN ;
 -- handle all other errors here
 SELECT @ErrorNumber AS ErrorNumber ,
 @ErrorMessage AS ErrorMessage ;
 END ;
 END CATCH ;
GO

Chapter 8: Defensive Error Handling

275

EXEC dbo.ConversionErrorDemo ;

(0 row(s) affected)
Msg 50000, Level 16, State 1, Procedure ConversionErrorDemo,
Line 19
Conversion failed when converting the varchar value 'abc' to
data type int.

Listing 8-13: An error with error number 245, which gets a different ERROR_NUMBER,
50000, when re-thrown.

The fact that re-thrown errors get a different error number means that, when we
actually come to handling conversion errors, both re-thrown and original, we cannot
catch then using the error number alone, as shown in Listing 8-14.

BEGIN TRY ;
 EXEC dbo.ConversionErrorDemo ;
 -- some other code
END TRY
BEGIN CATCH ;
 DECLARE @ErrorNumber INT ,
 @ErrorMessage NVARCHAR(4000) ;
 SELECT @ErrorNumber = error_number() ,
 @ErrorMessage = error_message() ;
 IF @ErrorNumber = 245
 BEGIN ;
 PRINT 'Conversion error caught';
 END ;
 ELSE
 BEGIN ;
 -- handle all other errors here
 PRINT 'Some other error caught';
 SELECT @ErrorNumber AS ErrorNumber ,
 @ErrorMessage AS ErrorMessage ;
 END ;
END CATCH ;
GO

Chapter 8: Defensive Error Handling

276

Some other error caught
ErrorNumber ErrorMessage
----------- -----------------
50000 Conversion failed when converting the varchar
 value 'abc' to data type int.

Listing 8-14: The re-thrown error is no longer assigned number 245.

To catch both the original and re-thrown error, we need to parse the error message, as
shown in Listing 8-15.

BEGIN TRY ;
 EXEC dbo.ConversionErrorDemo ;
 -- some other code
END TRY
BEGIN CATCH ;
 DECLARE @ErrorNumber INT ,
 @ErrorMessage NVARCHAR(4000) ;
 SELECT @ErrorNumber = ERROR_NUMBER() ,
 @ErrorMessage = ERROR_MESSAGE() ;
 IF @ErrorNumber = 245
 OR @ErrorMessage LIKE '%Conversion failed when
 converting %'
 BEGIN ;
 PRINT 'Conversion error caught' ;
 END ;
 ELSE
 BEGIN ;
 -- handle all other errors here
 PRINT 'Some other error caught' ;
 SELECT @ErrorNumber AS ErrorNumber ,
 @ErrorMessage AS ErrorMessage ;
 END ;
END CATCH ;

Listing 8-15: Parsing the error message to catch a re-thrown error.

Chapter 8: Defensive Error Handling

277

Although, this time, we did catch our re-thrown error, our method is not robust: we
can by mistake catch other errors and handle them as if they were conversion errors, as
shown in Listing 8-16.

BEGIN TRY ;
 RAISERROR('Error saving ticket %s',16,1,
 'Saving discount blows up: ''Conversion failed when
 converting ...''') ;
 -- some other code
END TRY
BEGIN CATCH ;
 DECLARE @ErrorNumber INT ,
 @ErrorMessage NVARCHAR(4000) ;
 SELECT @ErrorNumber = ERROR_NUMBER() ,
 @ErrorMessage = ERROR_MESSAGE() ;
 IF @ErrorNumber = 245
 OR @ErrorMessage LIKE '%Conversion failed when
 converting %'
 BEGIN ;
 PRINT 'Conversion error caught' ;
 END ;
 ELSE
 BEGIN ;
 -- handle all other errors here
 PRINT 'Some other error caught' ;
 SELECT @ErrorNumber AS ErrorNumber ,
 @ErrorMessage AS ErrorMessage ;
 END ;
END CATCH ;
GO

Conversion error caught

Listing 8-16: Incorrectly handling a ticket-saving error as if it were a conversion error.

As we have seen, the inability of T-SQL to re-throw errors may prevent us from robustly
handling re-thrown errors. If we need to re-throw errors, we should do it on the client.

Chapter 8: Defensive Error Handling

278

TRY…CATCH blocks cannot catch all errors

Interestingly enough, sometimes TRY…CATCH blocks just do not catch errors. This
sometimes represents "expected behavior;" in other words, the behavior is documented
and the reason why the error is not caught, for example when a connection fails, is
intuitive. However, in some other cases the behavior, while still documented, can be
quite surprising.

In either case, however, it means that we cannot assume that all errors originating in the
database can, or will, be handled in a TRY…CATCH. Whenever we issue an SQL statement
from the client, we need to be aware that it can generate an exception, and we need to
be ready to handle it on the client, in case the TRY…CATCH blocks that we use in our
T-SQL code don't catch it.

Killed connections and timeouts

In some cases, it is the expected behavior that errors cannot be caught by TRY…CATCH
blocks. For example, if your connection is killed, it is documented and well known that
your CATCH block will not catch and handle it.

Also, we need to be aware of "attentions," also known as "timeouts," as they also cannot
be caught by TRY…CATCH blocks, and this is also the expected behavior. To demonstrate
this, start the script in Listing 8-17, but cancel its execution immediately by pressing the
Cancel Executing Query button.

SET XACT_ABORT OFF;
BEGIN TRY ;
 PRINT 'Beginning TRY block' ;
 BEGIN TRANSACTION ;
 WAITFOR DELAY '00:10:00' ;
 COMMIT ;
 PRINT 'Ending TRY block' ;
END TRY
BEGIN CATCH ;
 PRINT 'Entering CATCH block' ;
END CATCH ;

Chapter 8: Defensive Error Handling

279

PRINT 'After the end of the CATCH block' ;

Beginning TRY block
Query was cancelled by user.

Listing 8-17: TRY…CATCH behavior when a timeout occurs.

The execution stops immediately, without executing the CATCH block. Listing 8-18
demonstrates that the connection is still in the middle of an outstanding transaction.

SELECT @@TRANCOUNT AS [@@TRANCOUNT] ;
ROLLBACK ;

@@TRANCOUNT

1

(1 row(s) affected)

Listing 8-18: The connection is in the middle of an outstanding transaction.

If the client initiates a timeout, the behavior is exactly the same: the execution stops
immediately, the outstanding transaction is neither committed nor rolled back, and an
unhandled exception is sent to the client. This is simply how timeouts work, and the
only way to avoid this behavior is to turn it off altogether. For instance, we can turn off
timeouts in ADO.NET by setting the CommandTimeout property to 0. Of course, we
can turn XACT_ABORT on, in which case at least the transaction will be rolled back. The
CATCH block, however, will still be bypassed.

Problems with TRY…CATCH scope

In some cases, the behavior in TRY…CATCH is documented, but will be surprising to
developers used to error handling in languages such as C#.

Listing 8-19 demonstrates a simple case of a query, wrapped in a TRY…CATCH, which
tries to use a temporary table that does not exist. However, the CATCH block is not
executed, and we get an unhandled exception.

Chapter 8: Defensive Error Handling

280

BEGIN TRY ;
 PRINT 'Beginning TRY block' ;
 SELECT COUNT(*)
 FROM #NoSuchTempTable ;
 PRINT 'Ending TRY block' ;
END TRY
BEGIN CATCH ;
 PRINT 'Entering CATCH block' ;
END CATCH ;
PRINT 'After the end of the CATCH block' ;

Beginning TRY block
Msg 208, Level 16, State 0, Line 3
Invalid object name '#NoSuchTempTable'.

Listing 8-19: Sometimes a CATCH block is bypassed when an error occurs.

Even more surprising for object-oriented developers is that this is not a bug; it is just the
way SQL Server works in this case. According to MSDN for SQL Server 2008:

"Errors that occur during statement-level recompilation…are not handled by a CATCH
block when they occur at the same level of execution as the TRY…CATCH construct."

The issue here is that compilation errors that occur at run time (as a result of deferred
name resolution) abort the rest of the scope, which is equal to the batch in directly
submitted SQL, but only equal to the rest of the procedure in a stored procedure or
function. So a TRY…CATCH at the same scope will not intercept these errors, but a TRY…
CATCH on a different scope (regardless of being nested or not) will catch it.

My point here is simple: SQL Server does not always handle errors in a way object-
oriented languages do. If we choose to use the error handling provided by SQL Server,
we really need to learn it in detail or we will be in for some unpleasant surprises.

Chapter 8: Defensive Error Handling

281

Doomed transactions

There is another serious problem with T-SQL TRY…CATCH blocks: in some cases an
error that occurred inside a TRY block is considered so severe that the whole transaction
is doomed, or, in other words, it cannot be committed. Theoretically, the concept of
doomed transactions makes perfect sense. Unfortunately, some really trivial errors, such
as conversion errors, render transactions doomed if we use TRY…CATCH provided by
T-SQL. For example, consider the transactions shown in Listing 8-20. The first attempts
to perform a 1/0 calculation, and the second, to convert a strong to an integer. We do
not want to roll back the whole transaction if an error occurs, so we set XACT_ABORT
to OFF.

SET XACT_ABORT OFF ;
SET NOCOUNT ON ;

BEGIN TRANSACTION ;
SELECT 1 ;
GO
BEGIN TRY ;
 SELECT 1 / 0 ;
END TRY
BEGIN CATCH
 PRINT 'Error occurred' ;
 SELECT error_message() AS ErrorMessage ;
END CATCH ;
GO
IF @@TRANCOUNT <> 0
 BEGIN ;
 COMMIT ;
 PRINT 'Committed' ;
 END ;
GO

BEGIN TRANSACTION ;
SELECT 1 ;
GO
BEGIN TRY ;

Chapter 8: Defensive Error Handling

282

 SELECT cast('abc' AS INT) ;
END TRY
BEGIN CATCH
 PRINT 'Error occurred' ;
 SELECT error_message() AS ErrorMessage ;
END CATCH ;
GO
IF @@TRANCOUNT <> 0
 BEGIN ;
 COMMIT ;
 PRINT 'Committed' ;
 END ;

1

Error occurred
ErrorMessage

Divide by zero error encountered.

Committed

1

Error occurred
ErrorMessage

Conversion failed when converting the varchar value 'abc' to
data type int.

Msg 3998, Level 16, State 1, Line 1
Uncommittable transaction is detected at the end of the
batch. The transaction is rolled back.

Listing 8-20: A transaction is doomed after a trivial error such as a conversion error.

Chapter 8: Defensive Error Handling

283

As the output demonstrates, we can commit a transaction after a divide by zero, but a
conversion error renders the transaction doomed, and therefore uncommitable. The
latter case demonstrates that even a seemingly trivial conversion error is considered
severe enough to override the XACT_ABORT setting, and the whole transaction is
automatically rolled back.

To determine whether or not our transaction is committable, within TRY…CATCH, we
can use the XACT_STATE() function, as demonstrated in Listing 8-21.

BEGIN TRY ;
 BEGIN TRANSACTION ;
 SELECT CAST ('abc' AS INT) ;
 COMMIT ;
 PRINT 'Ending TRY block' ;
END TRY
BEGIN CATCH ;
 PRINT 'Entering CATCH block' ;
 IF XACT_STATE () = 1
 BEGIN ;
 PRINT 'Transaction is committable' ;
 COMMIT ;
 END ;
 IF XACT_STATE () = -1
 BEGIN ;
 PRINT 'Transaction is not committable' ;
 ROLLBACK ;
 END ;
END CATCH ;
PRINT 'Ending batch' ;
GO
SELECT @@TRANCOUNT AS [@@TRANCOUNT] ;
BEGIN TRY ;
 BEGIN TRANSACTION ;
 SELECT 1 / 0 ;
 COMMIT ;
 PRINT 'Ending TRY block' ;
END TRY

Chapter 8: Defensive Error Handling

284

BEGIN CATCH ;
 PRINT 'Entering CATCH block' ;
 IF XACT_STATE () = 1
 BEGIN ;
 PRINT 'Transaction is committable' ;
 COMMIT ;
 END ;
 IF XACT_STATE () = -1
 BEGIN ;
 PRINT 'Transaction is not committable' ;
 ROLLBACK ;
 END ;
END CATCH ;
PRINT 'Ending batch' ;
GO

(0 row(s) affected)
Entering CATCH block
Transaction is not committable
Ending batch

(1 row(s) affected)

(0 row(s) affected)
Entering CATCH block
Transaction is committable
Ending batch

Listing 8-21: Using xact_state to determine if our transaction is committable
or doomed.

Clearly, there are situations where the concept of a doomed transaction makes sense.
For example, if the server runs out of disk space while running a transaction, there is
no way the transaction could complete. Unfortunately, the current implementation of
SQL Server sometimes dooms transactions for very trivial reasons. In all too many cases,
this peculiar behavior of SQL Server makes it impossible to develop feature-rich error
handling in T-SQL because, if a transaction is doomed, we have no choice other than to
roll it back.

Chapter 8: Defensive Error Handling

285

We will not cover any examples here, but this can also cause problems when attempting
to use SAVEPOINTs. Consider the following, very common, requirement:

"If our stored procedure is invoked in the middle of an outstanding transaction, and
if any command in our stored procedure fails, undo only the changes made by the
stored procedure. Do not make any decisions regarding the changes done outside of
our stored procedure."

Unfortunately, there is no robust way to implement such requirements in T-SQL using
a SAVEPOINT. While it will work in most cases, it will not work as intended when a
transaction is doomed.

Client-side Error Handling

In order to overcome the described limitations and difficulties with error handling using
SQL Server's TRY…CATCH, my advice is simple: when we need to implement feature-
rich error handling to respond intelligently to an anticipated error, we should do it in a
language that offers more robust error handling, such as C#.

By doing so, we avoid complications caused by doomed transactions (for example, trivial
conversion errors in a C# TRY block will never doom a transaction), or by error numbers
being changed when they are re-thrown, and so on. Furthermore, once error handling
is implemented in a C# class it can be reused by all modules that need it, so we promote
code reuse to its fullest extent.

Nowadays many of us developers use more than one language in our daily activities, and
the reason is very simple and very pragmatic: in many cases it is much easier to learn a
new language to accomplish a specific task, to which the language is well-suited, than it
is to try to "bend" a single language to all purposes.

By way of an example, Listing 8-22 re-implements in C# our "retry after deadlock" logic,
from Listing 8-8. We need only implement this logic once, and we can use this class to
execute any command against SQL Server.

Chapter 8: Defensive Error Handling

286

 class SqlCommandExecutor
 {
 public static void RetryAfterDeadlock
 (SqlCommand command, int timesToRetry)
 {
 int retryCount = 0;
 while (retryCount < timesToRetry)
 {
 retryCount++;
 try
 {
 command.ExecuteNonQuery();
 Console.WriteLine
 ("Command succeeded:" +
 command.CommandText);
 return;
 }
 catch (SqlException e)
 {
 if (e.Number != 1205)
 {
 throw;
 }
 Console.WriteLine
 ("Retrying after deadlock:" +
 command.CommandText);
 }
 }
 }
 }

Listing 8-22. Implementing the "retry after deadlock" logic in a C# class.

Let's try this class out. First of all, we need to remove the retry logic from our Change-
CodeDescription stored procedure, but keep it just as prone to deadlocks as before.
Listing 8-23 shows how to accomplish that.

Chapter 8: Defensive Error Handling

287

ALTER PROCEDURE dbo.ChangeCodeDescription
 @Code VARCHAR(10) ,
 @Description VARCHAR(40)
AS
 BEGIN ;
 DECLARE @OldDescription VARCHAR(40) ;
 SET DEADLOCK_PRIORITY LOW ;
 SET XACT_ABORT ON ;
 BEGIN TRANSACTION ;
 SET @OldDescription = (SELECT Description
 FROM dbo.Codes
 WHERE Code = @Code
) ;

 UPDATE dbo.Codes
 SET Description = @Description
 WHERE Code = @Code ;

 INSERT INTO dbo.CodeDescriptionsChangeLog
 (Code ,
 ChangeDate ,
 OldDescription ,
 NewDescription
)
 SELECT @Code ,
 current_timestamp ,
 @OldDescription ,
 @Description ;
 PRINT 'Modifications succeeded' ;

 COMMIT ;
 RETURN 0 ;
 END ;

Listing 8-23: Removing the retry logic from the ChangeCodeDescription
stored procedure.

Chapter 8: Defensive Error Handling

288

Obviously we'd first need to test this procedure and verify that it can successfully
complete; a step that I will leave as a simple exercise.

In order to test what happens when we have a deadlock, we need to first reset our test
data by rerunning the script in Listing 8-9. Next, start a SERIALIZABLE transaction
against the CodeDescriptionsChangeLog table, by running the script in Listing 8-10.

Rather than invoke our ChangeCodeDescription stored procedure from a second
SSMS session, as before, we need to execute the C# code shown in Listing 8-24, which
invokes the same stored procedure through our RetryAfterDeadlock method.

 class RetryAfterDeadlockDemo
 {
 static void Main(string[] args)
 {
 try
 {
 using (SqlConnection connection =
 new SqlConnection
 ("server=(local);
 trusted_connection=true;
 database=test8;"))
 {
 connection.Open();
 SqlCommand command =
 connection.CreateCommand();
 command.CommandText =
 "EXEC dbo.ChangeCodeDescription
 @code='IL', @Description='?' ;";
 command.CommandType = CommandType.Text;
 SqlCommandExecutor.
 RetryAfterDeadlock(command, 3);
 Console.WriteLine("Command succeeded");
 }
 }
 catch (Exception e)
 {

Chapter 8: Defensive Error Handling

289

 Console.WriteLine("Error in Main:" + e);
 }
 }
 }

Listing 8-24: Using the RetryAfterDeadlock method to invoke our stored
procedure.

This method will not complete, as the table is locked by our SSMS transaction. Return
to SSMS and highlight and execute the commented code, both the UPDATE command
and the COMMIT. The transaction invoked from C# will be chosen as a deadlock victim
and it will retry, and there is enough debugging output in our C# code to demonstrate
what is happening.

Finally, let us verify that, after the retry, the modification completed, as shown in
Listing 8-25.

EXEC dbo.ChangeCodeDescription @code='IL',
 @Description='?' ;

SELECT Code ,
 Description
FROM dbo.Codes ;

SELECT Code ,
 OldDescription + ', ' + NewDescription
FROM dbo.CodeDescriptionsChangeLog ;

Code Description
---------- --------------------------------------
IL ?

(1 row(s) affected)

Chapter 8: Defensive Error Handling

290

Code
---------- -------------------------------------
IL IL, Ill.
IL Illinois, ?

Listing 8-25: Checking that the data is in the expected state.

In short, C# allows us to implement our "retry after deadlock" logic just once and reuse
it as many times as we need. As defensive programmers, we really want to reuse our
code, not to cut and paste the same code all over our systems, and so we have a strong
motivation to use a good modern tool such as C# for our error handling.

My message here is quite moderate. I am not suggesting that we abandon T-SQL error
handling; far from it. In the simplest cases, when all we need is to roll back and raise an
error, we should use XACT_ABORT and transactions. Notice that in Listing 8-23 we use
XACT_ABORT and a transaction to roll back after a deadlock, but we implement all of
the more complex error-handling logic in C#.

Of course, there are situations when we do need to implement error handling in T-SQL.
Whenever we are considering such an option, we need to realize that error handling in
T-SQL is very complex and not really intuitive to a developer with experience in other
languages. Also, it has a lot of gotchas, and it lacks some features which client-side
programmers consider as their birthright, such as the ability to re-throw an error exactly
as it was caught.

Conclusion

It is essential that the defensive database programmer includes robust error handling
in all production T-SQL code. However, as much as the introduction of TRY…CATCH
has improved error handling in T-SQL, it still lacks the versatility, elegance and ease of
use that is typical of client-side languages such as Java and C#. Ultimately, you will find
that it is not possible to handle certain errors in Transact SQL at all and that we need to
complement our T-SQL error handling with error handling on the client.

Chapter 8: Defensive Error Handling

291

I hope the chapter has taught you the following specific lessons in defensive
error handling:

• if you already use a modern language such as C# in your system, then it makes sense
to utilize it to do complex handling of errors related to the database

• if handling errors on SQL Server, keep it simple where possible; set XACT_ABORT to
ON and use transactions in order to roll back and raise an error

• if you wish to use TRY…CATCH, learn it thoroughly, and watch out in particular for
the following problems:

• one and the same code may run differently depending on the
XACT_ABORT setting

• we cannot re-throw errors exactly as we catch them

• CATCH blocks do not catch all errors

• some errors do not respect XACT_ABORT settings

• some transactions may be rendered uncommittable, a.k.a. doomed.

About Red Gate
You know those annoying jobs that spoil
your day whenever they come up?

Writing out scripts to update your
production database, or trawling through
code to see why it’s running so slow.

Red Gate makes tools to fix those
problems for you. Many of our tools are
now industry standards. In fact, at the
last count, we had over 650,000 users.

But we try to go beyond that. We want
to support you and the rest of the SQL
Server and .NET communities in any
way we can.

First, we publish a library of free books on .NET and SQL Server.
You’re reading one of them now. You can get dozens more from
www.red-gate.com/books

Second, we commission and edit rigorously accurate articles from
experts on the front line of application and database development. We
publish them in our online journal Simple Talk, which is read by millions
of technology professionals each year.

On SQL Server Central, we host the largest SQL Server
community in the world. As well as lively forums, it puts
out a daily dose of distilled SQL Server know-how
through its newsletter, which now has nearly a million

subscribers (and counting).

Third, we organize and sponsor events (about 50,000
of you came to them last year), including SQL in the
City, a free event for SQL Server users in the US and
Europe.

So, if you want more free books and articles, or
to get sponsorship, or to try some tools that
make your life easier, then head over to
www.red-gate.com

http://www.red-gate.com/community/books/
https://www.simple-talk.com/
http://www.sqlservercentral.com/
http://sqlinthecity.red-gate.com/
http://www.red-gate.com/

	Introduction
	What this book covers
	What this book does not cover
	Code examples

	Chapter 1: Basic Defensive Database Programming Techniques
	Programming Defensively to Reduce Code Vulnerability
	Define your assumptions
	Rigorous testing

	Defending Against Cases of Unintended Use
	Defending Against Changes in SQL Server Settings
	How SET ROWCOUNT can break a trigger
	How SET LANGUAGE can break a query

	Defensive Data Modification
	Updating more rows than intended
	The problem of ambiguous updates
	How to avoid ambiguous updates

	Summary

	Chapter 2: Code Vulnerabilities due to SQL Server Misconceptions
	Conditions in a WHERE clause can evaluate in any order
	SET, SELECT, and the dreaded infinite loop
	Specify ORDER BY if you need ordered data

	Summary

	Chapter 3: Surviving Changes to Database Objects
	Surviving Changes to the Definition of a Primary or Unique Key
	Using unit tests to document and test assumptions
	Using @@ROWCOUNT to verify assumptions
	Using SET instead of SELECT when assigning variables

	Surviving Changes to the Signature of a Stored Procedure
	Surviving Changes to Columns
	Qualifying column names
	Handling changes in nullability: NOT IN versus
NOT EXISTS
	Handling changes to data types and sizes

	Summary

	Chapter 4: When Upgrading Breaks Code
	Understanding Snapshot Isolation
	When Snapshot Isolation Breaks Code
	Trigger behavior in normal READ COMMITTED mode
	Trigger behavior in SNAPSHOT mode
	Building more robust triggers?

	Understanding MERGE
	Issues When Triggers Using @@ROWCOUNT Are Fired by MERGE
	Summary

	Chapter 5: Reusing T-SQL Code
	The Dangers of Copy-and-Paste
	How Reusing Code Improves its Robustness
	Wrapping SELECTs in Views
	Reusing Parameterized Queries: Stored Procedures versus Inline UDFs
	Scalar UDFs and Performance
	Multi-statement Table-valued UDFs
	Reusing Business Logic: Stored Procedure, Trigger, Constraint or Index?
	Use constraints where possible
	Turn to triggers when constraints are not practical
	Unique filtered indexes (SQL Server 2008 only)

	Summary

	Chapter 6: Common Problems with Data Integrity
	Enforcing Data Integrity in the Application Layer
	Enforcing Data Integrity in Constraints
	Handling nulls in CHECK constraints
	Foreign key constraints and NULLs
	Understanding disabled, enabled, and trusted constraints
	Problems with UDFs wrapped in CHECK constraints

	Enforcing Data Integrity Using Triggers
	Summary

	Chapter 7: Advanced Use of Constraints
	The Ticket-Tracking System
	Enforcing business rules using constraints only
	Removing the performance hit of ON UPDATE CASCADE

	Constraints and Rock Solid Inventory Systems
	Adding new rows to the end of the inventory trail
	Updating existing rows
	Adding rows out of date order

	Summary

	Chapter 8: Defensive Error Handling
	Prepare for Unanticipated Failure
	Using Transactions for Data Modifications
	Using Transactions and XACT_ABORT to
Handle Errors
	Using TRY…CATCH blocks to Handle Errors
	A TRY…CATCH example: retrying after deadlocks

	TRY…CATCH Gotchas
	Re-throwing errors
	TRY…CATCH blocks cannot catch all errors

	Client-side Error Handling
	Conclusion

