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The overall objective of any process is to convert certain raw material into desired prod-

ucts using available resources. During its operation, the plant must satisfy several re-

quirements imposed by its designers and the general technical, economic and social con-

ditions in the presence of ever-changing external influences. Among such requirements

are product specifications, operational constraints and safety and environmental regula-

tions. But the most significant incentive for using automated feedback control is the fact,

that under the effect of external disturbances, the system must be operated in such a fash-

ion, that it makes the maximum profit. In current practice, this incentive is answered by

means of the setpoint/target terminology, which is essentially the process control objec-

tive translation of the main economic objective. Translation of objectives in this fashion,

results in a loss of economic information and the dynamic regulation layer has no infor-

mation about the original plant economics except for a fixed steady state target.

This thesis aims to address the primary aim of any feedback control strategy, to optimize
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plant economics. This thesis presents a plantwide model predictive control strategy that

optimizes plant economics directly in the dynamic regulation problem. A class of systems

is identified for which optimizing economic objective would lead to stable plant opera-

tion, and consequently the asymptotic stability is established for these systems. Not all

of the existing tools of stability analysis for feedback control systems work for generic

nonlinear problems, hence new tools have been developed and used to establish stability

properties.

This thesis also addresses the applications for which nonsteady operation may be desired

and proposes MPC strategies for nonsteady operation. These strategies are demonstrated

by means of suitable examples from the literature. The economic superiority of economic

optimizing controllers is also established.

The benefit of optimizing economics is demonstrated using various chemical engi-

neering process examples from literature. The economic performance is compared to the

standard tracking type controllers and the benefit is calculated as a fraction of the steady

state profit. To demonstrate the feasibility of online solution to economics optimizing

dynamic regulation problem, a software tool is developed using open source nonlinear

solvers and automatic differentiation packages. The utility of this tool is demonstrated by

using it to perform all the simulation studies in this thesis.
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Chapter 1

Introduction

Process control is an integral part of chemical engineering. Chemical plants convert large

quantities of raw material into value-added products. Each process within a plant must

function efficiently, requiring process units to respond to internal disturbances, e.g., tem-

perature or flow fluctuations, and to external disturbances, e.g., raw material or prod-

uct price. Efficient operation of processes requires efficient control. The drive toward

greater productivity led to the development of PID control. PID controllers reject local

disturbances but require complicated ad-hoc methods to stabilize constrained processes

(Pannocchia, Laachi, and Rawlings, 2005). The need to consider system constraints in a

natural way and the need for better Multi-Input-Multi-Output (MIMO) control led to op-

timization based controllers such as Model Predictive Control (MPC) (Mayne, Rawlings,

Rao, and Scokaert, 2000). MPC satisfies these needs efficiently and, consequently, has had

a significant impact in industry (Qin and Badgwell, 2003; Young, Bartusiak, and Fontaine,

2001; Morari and Lee, 1997).
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1.1 Model Predictive Control

Model Predictive Control (MPC) is one of the most widely used multi-variable control

techniques in the chemical industry. Among its strengths are the ability to handle con-

straints directly in its framework and satisfaction of some optimal performance criteria

by solving online optimization problems. The most vital component of MPC regulator

is the process model, which is used not only to forecast the effects of future inputs, but

also to estimate the current state of the plant given the history of past measurements and

controls.

In the MPC dynamic optimization problem, the future behavior of the system is

predicted using the process model, and based on this prediction, a cumulative cost is

minimized. This optimization is usually solved online accounting for the current pro-

cess conditions and process operation and safety constraints. Then the first move of this

optimal input sequence is injected into the system, and based on the measurements and

information about the process model and the disturbances, the next state of the system

is estimated. This estimate is used to call the dynamic optimizer again and the feedback

loop repeats.

1.2 Optimizing process economics in MPC

The primary goal of any control system is to operate the plant such that the net return

is maximized in the presence of disturbances and uncertainties, exploiting the available
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Figure 1.1: MPC strategy

measurements. In current practice, this this done in a two step process, where the pro-

cess economics are solved to obtain the economically best steady operating state called

the setpoint. Hence the economic objective is converted into control objective by means

of a steady-state optimization and the controller is designed such that these control ob-

jectives are tracked. Hence the controller generates a solution that will drive the system

to the economically best steady state. However in the process of converting the process

economic measure into steady-state setpoints, a lot of economic information is lost.

For example, Figure 1.2 shows an economic cost surface where the steady-state op-

timum is different from the global economic optimum. When the economic objective is

converted into control objective in terms of the setpoint, information about these poten-

tial high profit regions is lost as the controller is unaware of these high profit states. The

control objective becomes centered around the setpoint instead. Hence, this motivates

the use of economic objective in the dynamic regulations layer directly, so that the con-

troller optimizes over cumulative economic profit allowing it to possible make the system
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Figure 1.2: Economic cost surface and the steady-state plane showing the difference be-

tween the economic steady optimum and the economic global optimum

transient through the high profit areas.

1.3 Academic impact

Trying to optimize process economics in the dynamic optimization problem poses a big

challenge for nonlinear MPC researchers. The standard approach of tracking setpoints in-

volves convex quadratic objectives, which are easier to optimize. Proposing to optimize

nonlinear and possibly nonconvex objectives subject to nonlinear process models opens

up the vast horizon of problems related to nonlinear model predictive control. Stabil-
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ity properties have been well established for linear controllers but there is relatively less

literature on the theory of nonlinear MPC. In this thesis we throw light on some outstand-

ing issues in the stability theory of nonlinear MPC by identifying the class of systems for

which closed loop stability is expected. New tools for constructing a Lyapunov function

are introduced and asymptotic stability is established. A performance comparison is es-

tablished for nonsteady operation establishing the superiority of the economic optimizing

controllers.

1.4 Industrial impact

Process industries today thrive on the performance of advanced control systems. In a

competition based economy, most of the developments in advanced control applications

aim at better economic performance of the control system. In the present day two layer

approach, a lot of focus is on the real time optimization layer, which optimizes the process

economics under steady state assumption. A small gain in profit from a subsystem in a

plant translates into substantial profits for the whole plant. Hence improving economic

performance of the controller is highly attractive for process industries. In this thesis

we demonstrate the benefit of optimizing economics directly over tracking steady-state

setpoints by means of various examples from the literature.

Proposing to optimize process economics instead of tracking setpoints also opens

up the possibility of nonsteady operation, which even though might be unfavorable from

the operator’s perspective, but a possible significant economic advantage may motivate
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to rethink the operational strategy of that process. In this thesis, we discuss some applica-

tions where nonsteady operation may be desirable and discuss possible ways to control

such operation.
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1.5 Overview of the thesis

Chapter 2: Literature review

We review the literature used in this thesis and summarize all the previous research on

and related to optimizing process economics in dynamic regulation problems.

Chapter 3: Formulations and nominal stability theory

This chapter formulates present the fundamental nominal stability theory for nonlinear

systems subject to nonlinear costs. A class of systems is identified for which nominal

closed-loop stability is expected for the MPC feedback-control system. The tools for de-

termining Lyapunov functions are extended to this new class of systems and nominal

stability is established.

Chapter 4: Suboptimal control

Global optimality is hard to guarantee for nonlinear optimization problems. The nominal

stability theory is formulated in Chapter 3 based on the assumption that the global opti-

mum is determined for the dynamic regulation problem. This assumption is relaxed in

this chapter to establish the stability properties for suboptimal MPC algorithms.

Chapter 5: Nonsteady operation

This chapter discusses scenarios in which asymptotic stability is not expected and a non-

steady operation is economically better. A performance comparison is established for

such scenarios and two MPC algorithms are discussed for controlling such operations.
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Chapter 6: Computational methods

Methods to numerically solve dynamic optimization problems are discussed in this chap-

ter. The direct methods for dynamic optimization are discussed in detail and the use of

these methods for the development of a software tool to solve dynamic regulation prob-

lems is presented. A brief manual of the new tool is presented in Appendix B.

Chapter 7: Case studies

Three case studies are presented to demonstrate the economic benefit of optimizing pro-

cess economics in the dynamic regulation layer. The performance is compared with the

tracking type controllers as a fraction of the steady state profit.

Chapter 8: Conclusions

The thesis concludes with a summary of contributions of this thesis and recommend some

research issues for future work.



9

Chapter 2

Literature Review

2.1 Introduction

The controllers proposed in this thesis are model predictive controllers. The theory of

model predictive control (MPC) has evolved a lot over the past three decades. Several

texts on MPC are available (Maciejowski, 2002; Camacho and Bordons, 2004; Rossiter,

2004; Wang, 2009). In particular, this thesis makes use of the monograph by Rawlings

and Mayne (2009) as a standard baseline reference. Rawlings and Mayne (2009, Ch. 2)

investigate the MPC regulation problem in detail. Two types of dynamic regulation for-

mulations are presented and the corresponding stability theory is developed for standard

convex costs. The monograph provides key control principles, such as dynamic regula-

tion stability theory and suboptimal MPC, used in this thesis.
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2.2 Economics literature

The high level objective for any plant operation is to optimize an economic measure of

the plant, usually the net profit. Optimizing economics in control problems is not a new

concept. Even before extensive research on advanced process control systems, optimal

control problems have been common in economics literature. The earliest work on opti-

mal economic control problems dates back to 1920s (Ramsey, 1928), in which the objective

was to determine optimal savings rates to maximize capital accumulation. An array of

works followed in the 1950s focussing on various economic considerations like scarce re-

sources, expanding populations, multiple products and technologies. All the economic

optimal control problems in these works were infinite time horizon problems since they

tried to optimize based on long term predictions. Among these works was the popu-

lar concept of “turnpikes” (Dorfman, Samuelson, and Solow, 1958), which was used to

characterize the optimal trajectories for these economic control problems. Dorfman et al.

(1958, Ch. 12) were the first ones to introduce this concept, and proposed that in an econ-

omy, if planning a long-run growth, i.e. the planning horizon is sufficiently long, it is

always optimal to reach the optimial steady rate of growth and stay there for most of the

time, even if towards the end of the planning period, the growth needs to drop from the

steady value. This bevaiour, seen in econimics optimal control problems, was called the

“tunrpike” behavior since it was exactly like a turnpike paralleled by a network of minor

roads. Hence the asymptotic properties of efficient paths of capital accumulation were

known as “turnpike theorems.” (McKenzie, 1976). This literature provided the seed for



11

research on optimizing economic performance in the control literature. For infinite hori-

zon optimal control of continuous time systems, Brock and Haurie (1976) established the

existence of overtaking optimal trajectories. Convergence of these trajectories to an opti-

mal steady state is also demonstrated. Leizarowitz (1985) extended the results of (Brock

and Haurie, 1976) to infinite horizon control of discrete time systems. Reduction of the

unbounded cost, infinite horizon optimal control problem to an equivalent optimization

problem with finite costs is established. Carlson, Haurie, and Leizarowitz (1991) provide

a comprehensive overview of these infinite horizon results.

2.3 Real time optimization

In most industrial advanced control systems, the goal of optimizing dynamic plant eco-

nomic performance is addressed by a control structure that splits the problem into a num-

ber of levels (Marlin and Hrymak, 1997). The overall plant hierarchical planning and

operations structure is summarized in numerous books, for example Findeisen, Bailey,

Bryds, Malinowski, Tatjewski, and Wozniak (1980); Marlin (1995); Luyben, Tyreus, and

Luyben (1999). Planning focuses on economic forecasts and provides production goals. It

answers questions like what feed-stocks to purchase, which products to make and how

much of each product to make. Scheduling addresses the timing of actions and events

necessary to execute the chosen plan, with the key consideration being feasibility. The

planning and scheduling unit also provides parameters of the cost functions (e.g. prices

of products, raw materials, energy costs) and constraints (e.g. availability of raw mate-
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rials). The RTO is concerned with implementing business decisions in real time based

on a fundamental steady-state model of the plant. It is based on a profit function of the

plant and it seeks additional profit based on real-time analysis using a calibrated non-

linear model of the process. The data are first analyzed for stationarity of the process

and, if a stationary situation is confirmed, reconciled using material and energy balances

to compensate for systematic measurement errors. The reconciled plant data are used to

compute a new set of model parameters (including unmeasured external inputs) such that

the plant model represents the plant as accurately as possible at the current (stationary)

operating point. Then new values for critical state variables of the plant are computed

that optimize an economic cost function while meeting the constraints imposed by the

equipment, the product specifications, and safety and environmental regulations as well

as the economic constraints imposed by the plant management system. These values are

filtered by a supervisory system that usually includes the plant operators (e.g. checked

for plausibility, mapped to ramp changes and clipped to avoid large changes (Miletic and

Marlin, 1996)) and forwarded to the process control layer as set points. When viewed

from the dynamic layer, these setpoints are often inconsistent and unreachable because

of the discrepancies between the models used for steady-state optimization and dynamic

regulation. Rao and Rawlings (1999) discuss methods for resolving these inconsistencies

and finding reachable steady-state targets that are as close as possible to the unreachable

setpoints provided by the RTO.

The two main disadvantages of the current two layer approach are:
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• Models in the optimization layer and in the control layer are not fully consistent (Backx,

Bosgra, and Marquardt, 2000; Sequeira, Graells, and Puigjaner, 2002). It is pointed

out that, in particular, their steady-state gains may be different.

• The two layers have different time scales. The delay in optimization is inevitable

because of the steady-state assumption (Cutler and Perry, 1983).

Because of the disadvantages of long sampling times, several authors have proposed re-

ducing the sampling time in the RTO layer (Sequeira et al., 2002). In an attempt to narrow

the gap between the sampling rates of the nonlinear steady-state optimization performed

in the RTO layer and the linear MPC layer, the so called LP-MPC and QP-MPC two-stage

MPC structures have been suggested (Morshedi, Cutler, and Skrovanek, 1985; Yousfi and

Tournier, 1991; Muske, 1997; Brosilow and Zhao, 1988).

Engell (2007) reviews the developments in the field of feedback control for optimal

plant operations, in which the various disadvantages of the two layer strategy are pointed

out. Jing and Joseph (1999) perform a detailed analysis of this approach and analyze its

properties. The task of the upper MPC layer is to compute the setpoints both for the

controlled variables and for the manipulated inputs for the lower MPC layer by solving

a constrained linear or quadratic optimization problem, using information from the RTO

layer and from the MPC layer. The optimization is performed with the same sampling

period as the lower-level MPC controller.

Forbes and Marlin (1996); Zhang and Forbes (2000) introduce a performance mea-

sure for RTO systems to compare the actual profit with theoretic profit. Three losses were
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considered as a part of the cost function: the loss in the transient period before the system

reaches a steady state, the loss due to model errors, and the loss due to propagation of

stochastic measurement errors. The issue of model fidelity is discussed by Yip and Marlin

(2004). Yip and Marlin (2003) proposed the inclusion of effect of setpoint changes on the

accuracy of the parameter estimates into the RTO optimization. Duvall and Riggs (2000)

evaluate the performance of RTO for Tennessee Eastman Challenge Problem and point

out “RTO profit should be compared to optimal, knowledgeable operator control of the

process to determine the true benefits of RTO. Plant operators, through daily control of

the process, understand how process setpoint selection affects the production rate and/or

operating costs.”

Kadam, Marquardt, Schlegel, Backx, Bosgra, Brouwer, Dunnebier, van Hessem,

Tiagounov, and de Wolf (2003) point out that the RTO techniques are limited with respect

to the achievable flexibility and economic benefit, especially when considering intention-

ally dynamic processes such as continuous processes with grade transitions and batch

processes. They also describe dynamics as the core of plant operation, motivating eco-

nomically profitable dynamic operation of processes.

2.4 Dynamic optimization of process economics

Morari, Arkun, and Stephanopoulos (1980) state that the objective in the synthesis of a

control structure is to translate the economic objectives into process control objectives. Backx

et al. (2000) describe the need for dynamic operations in the process industries in an in-
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creasingly market-driven economy where plant operations are embedded in flexible sup-

ply chains striving for just-in-time production in order to maintain competitiveness. They

point out that minimizing operation cost while maintaining the desired product quality

in such an environment is considerably harder than in an environment with infrequent

changes and disturbances, and this minimization cannot be achieved by relying solely on

experienced operators and plant managers using their accumulated knowledge about the

performance of the plant. Profitable agile operations call for a new look at the integration

of process control with process operations.

Huesman, Bosgra, and Van den Hof (2007) point out that doing economic opti-

mization in the dynamic sense leaves some degrees of freedom of the system unused.

With the help of examples, it is shown that economic optimization problems can result in

multiple solutions suggesting unused degrees of freedom. It is proposed to utilize these

additional degrees of freedom for further optimization based on non-economic objectives

to get a unique solution.

2.4.1 Controller designs

Helbig, Abel, and Marquardt (2000) introduce the concept of a dynamic real time opti-

mization (D-RTO) strategy, in which, instead of doing a steady-state economic optimiza-

tion to compute setpoints, a dynamic optimization over a fixed horizon is done to com-

pute a reference trajectory. To avoid dynamic re-optimization, the regulator tracks the

reference trajectory using a simpler linear model (or PID controller) with the standard
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tracking cost function, hence enabling the regulator to act at a faster sampling rate. When

using a simplified linear model for tracking a dynamic reference trajectory, an inconsis-

tency remains between the model used in the two layers. Often an additional disturbance

model would be required in the linear dynamic model to resolve this inconsistency. These

disturbance states would have to be estimated from the output measurements. Kadam

and Marquardt (2007) review the D-RTO strategy and improvements to it, and discuss

the practical considerations behind splitting the dynamic real-time optimization into two

parts. A trigger strategy is also introduced, in which D-RTO reoptimization is only in-

voked if predicted benefits are significant, otherwise linear updates to the reference tra-

jectory are provided using parametric sensitivity techniques.

Skogestad (2000) describes one approach to implement optimal plant operation by

a conventional feedback control structure, termed “self-optimizing” control. In this ap-

proach, the feedback control structure is chosen so that maintaining some function of

the measured variables constant automatically maintains the process near an economi-

cally optimal steady state in the presence of disturbances. The problem is posed from

the plantwide perspective, since the economics are determined by overall plant behavior.

Aske, Strand, and Skogestad (2008) also point out the lack of capability in steady-state

RTO, in the cases when there are frequent changes in active constraints of large economic

importance. The important special case is addressed in which prices and market condi-

tions are such that economic optimal operation of the plant is the same as maximizing

plant throughput. A coordinator model predictive control strategy is proposed in which
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a coordinator controller regulates local capacities in all the units.

Sakizlis, Perkins, and Pistikopoulos (2004) describe an approach of integrating op-

timal process design with process control. They discuss integration of process design,

process control and process operability together, and hence deal with the economics of

the process. The incorporation of advanced optimizing controllers in simultaneous pro-

cess and control design is the goal of the optimization strategy. It deals with an offline

control approach where an explicit optimizing control law is derived for the process. The

approach is reported to yield a better economic performance.

Extremum-seeking control is another approach in which the controller drives the

system states to steady values that optimize a chosen performance objective. Krstic and

Wang (2000) address closed-loop stability of the general extremum-seeking approach

when the performance objective is directly measured online. Guay and Zhang (2003)

address the case in which the performance objective is not measurable and available for

feedback. This approach has been evaluated for temperature control in chemical reactors

subject to state constraints (Guay, Dochain, and Perrier, 2003; DeHaan and Guay, 2004).

awrynczuk, Marusak, and Tatjewski (2007) propose two versions of the integrated

MPC and set-point calculation algorithms. In the first one, the nonlinear steady-state

model is used. This leads to a nonlinear optimization problem. In the second version, the

model is linearized on-line. It leads to a quadratic programming problem, which can be

effectively solved using standard routines. In both these problems, the economic objective

used in the steady-state optimization as well as the dynamic optimization is either linear
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or quadratic in the outputs and inputs.

Heidarinejad, Liu, and Christofides (2011b,a) propose an economic MPC scheme

based on explicit Lyapunov-based nonlinear controller design techniques that allows for

an explicit characterization of the stability region of the closed-loop system. The under-

lying assumption for this design is the existence of a Lyapunov-based controller which

renders the origin of the nominal closed-loop system asymptotically stable. Hence the

methodology assumes that a control law is known such that some corresponding Lya-

punov function has a negative gradient in time. The authors point out that there are

currently no general methods for constructing Lyapunov functions for generic nonlinear

systems, and bases on previous results, use a quadratic controller and a quadratic Lya-

punov function. A two-tier controller approach is proposed in this paper. In the first

mode, the controller drives the system optimizing the economic performance measure

subject to the states of the system remaining inside a defined stability region. The sta-

bility region is defined as a level set of the chosen Lyapunov function such that it is the

largest subset of the neighborhood of the equilibrium point in which a Lyapunov based

controller can be defined. A terminal time is chosen for this first mode and after this time,

an additional constraint is turned on, which is the second mode. In this second mode,

an additional constraint ensures that the chosen Lyapunov function decreases at least at

the rate given by the Lyapunov based controller. The paper is a direct extension on the

authors’ previous work (Mhaskar, El-Farra, and Christofides, 2006). Heidarinejad et al.

(2011b) extended the approach to account for bounded disturbances and asynchronous
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delayed measurements.

Huang, Harinath, and Biegler (2011b) point out applications like simulated mov-

ing bed (SMB) and pressure swing adsorption (PSA) in which non-steady operation is

desirable due to economic benefit and the design of the process. They provide a nonlin-

ear MPC scheme for cyclic processes for which the period of the process is known. They

present two different formulations. In the first formulation, a finite horizon problem is

formulated with the horizon chosen as a multiple of the process period. A terminal pe-

riodic constraint is implemented which forces the state at the end of the horizon to be

the same as one period before the end of the horizon. The second formulation is an infi-

nite horizon formulation. To deal with the infinite sum of an economically oriented cost,

a discount factor is used to project the future profit. There is no terminal periodic con-

straint since the problem is infinite dimensional. Both the formulations are assumed to

satisfy optimality conditions to assume local uniqueness of the solution, and regulariza-

tion tracking terms are added to the economic stage cost to satisfy these assumptions.

Hence the objective is not purely economic. Asymptotic stability is proved for both the

controllers by proposing the optimal value of the shifted cost as the Lyapunov function

for the system. Huang, Biegler, and Harinath (2011a) extend the concept of concept of

rotated cost, introduced in this thesis and Diehl, Amrit, and Rawlings (2011), and extend

it to the framework of cyclic systems. The authors propose a requirement of convexity

on the rotated cost to ensure closed loop stability. The nominal stability results are then

extended to robust stability using the standard Input-to-State stability framework.
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2.4.2 Implementation and applications

Zanin, Tvrzska de Gouvea, and Odloak (2000, 2002); Rotava and Zanin (2005) report

the formulation, solution and industrial implementation of a combined MPC/optimizing

control scheme for a fluidized bed catalytic cracker. The economic criterion is the amount

of liquified petroleum gas produced. The optimization problem that is solved in each con-

troller sampling period is formulated in a mixed manner: range control MPC with a fixed

linear plant model (imposing soft constraints on the controlled variables by a quadratic

penalty term that only becomes active when the constraints are violated) plus a quadratic

control move penalty plus an economic objective that depends on the values of the ma-

nipulated inputs at the end of the control horizon.

Ma, Qin, Salsbury, and Xu (2011) demonstrate the effectiveness of model predictive

control (MPC) technique in reducing energy and demand costs, which form the objective

of the controller, for building heating, ventilating, and air conditioning (HVAC) systems.

A simulated multi-zone commercial building equipped with a set of variable air volume

(VAV) cooling system is studied. System identification is performed to obtain zone tem-

perature and power models, which are used in the MPC framework. The economic ob-

jective function in MPC accounts for the daily electricity costs, which include time of use

energy cost and demand cost. In each time step, a min-max optimization is formulated,

converted into a linear programming problem and solved. Cost savings by MPC are esti-

mated by comparing with the baseline and other open-loop control strategies.
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Chapter 3

Formulations and nominal stability

theory

Note: The text of this chapter appears in Angeli, Amrit, and Rawlings (2011a); Amrit

et al. (2011).

3.1 Introduction

The dynamic optimization problem in model predictive control can be formulated in two

different ways, depending on the choice of objective function and the stabilizing con-

straints, as discussed in detail by Rawlings and Mayne (2009, Ch. 2). In the standard MPC

problem, in which the stage cost is defined as the deviation from the best steady state, the

stability of the closed-loop system is established by observing that the optimal cost along

the closed-loop trajectory is a Lyapunov function. In the economic MPC problem the op-

timal cost is not a Lyapunov function. In this chapter we present the model predictive
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control formulations using a generic nonlinear economic objective. In Section 3.2, we first

introduce our basic notation and definitions that will be used in developing the theory in

this chapter and the rest of the thesis. We present the terminal constraint and the terminal

penalty MPC formulations in Section 3.3 and Section 3.4 respectively, and state and prove

the respective stability properties of these formulations. In Section 3.5 we propose a third

formulation in which the stabilizing constraint is removed. The performance of the three

formulations is then compared with each other and with the steady state performance.

3.2 Preliminaries and Definitions

We first establish the notation that defines the dynamic nonlinear system and the eco-

nomic cost function. Consider the following nonlinear discrete time system

x+ = f(x, u) (3.1)

with state x ∈ X ⊆ Rn, control u ∈ U ⊂ Rm, and state transition map f : Z → Rn, where

the system is subject to the mixed constraint

(x(k), u(k)) ∈ Z k ∈ I≥0

for some compact set Z ⊆ X × U. We consider a cost function `(x, u) : Z → R, which is

based on the process economics. Consider the following steady-state problem

min
(x,u)∈Z

`(x, u) subject to x = f(x, u) (3.2)
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The solution of the steady-state problem is denoted by (xs, us), and is assumed to be

unique. We now review some important definitions that will be used in the theory devel-

oped in the chapter and rest of the thesis.

Definition 3.1 (Positive definite function). A function ρ(·) is positive definite with respect to

x = a if it is continuous, ρ(a) = 0, and ρ(x) > 0 for all x 6= a.

Definition 3.2 (Class K function). A function γ(·) : R → R≥0 is a class K if it is continuous,

zero at zero and strictly increasing.

Lemma 3.3. Given a positive definite function ρ(x) defined on a compact set C containing the

origin, there exists a class K function γ(·) such that

ρ(x) ≥ γ(|x|), ∀x ∈ C

Definition 3.4 (Positive invariant set). A set A is positive invariant for the nonlinear system

x+ = f(x), if x ∈ A implies x+ ∈ A.

Definition 3.5 (Asymptotic stability). The steady state xs of a nonlinear system x+ = f(x)

is asymptotically stable on X , xs ∈ X , if there exist a class K function γ(·) such that for any

x ∈ X , all solutions φ(k;x) satisfy:

φ(k;x) ∈ X , |φ(k;x)− xs| ≤ γ(|x− xs| , k) for all k ∈ I≥0.

Definition 3.6 (Lyapunov function). A function V : Rn → R≥0 is said to be a Lyapunov

function for the nonlinear system x+ = f(x) in the set X if there exist class K functions γi,



24

i ∈ {1, 2, 3} such that for any x ∈ X

γ1(|x|) ≤ V (x) ≤ γ2(|x|) V (f(x))− V (x) ≤ −γ3(|x|)

Lemma 3.7 (Lyapunov function and asymptotic stability). Consider a set X , that is positive

invariant for the nonlinear system x+ = f(x); f(xs) = xs. The steady state xs is an asymp-

totically stable equilibrium point for the system x+ = f(x) on X , if and only if there exists a

Lyapunov function V on X such that V (x− xs) satisfies the properties in Definition 3.6.

Definition 3.8 (Strictly dissipative system). The system x+ = f(x, u) is strictly dissipative

with respect to the supply rate s : Z → R if there exists a storage function λ : X → R and a

positive definite function ρ : Z→ R≥0, such that for all (x, u) ∈ Z ⊆ X × U

λ(f(x, u))− λ(x) ≤ −ρ(x− xs, u− us) + s(x, u) (3.3)

Next we introduce the concept of rotated cost which forms the backbone of the sta-

bility theory of economic nonlinear MPC.

3.2.1 Rotated cost

Unlike the standard MPC problem, the optimal cost along the closed loop, may not be a

Lyapunov function for the nonlinear system. Hence we introduce a modified stage cost,

which we call the ’rotated cost’. To define the rotated cost, we first make the following

assumptions:
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Assumption 3.9 (Dissipative system). The nonlinear system x+ = f(x, u) is dissipative with

respect to the supply rate s(x, u) = `(x, u)− `(xs, us).

Assumption 3.10 (Continuity of cost, system and storage). The cost `(·), the system dynam-

ics function f(·), and the storage function λ(·) are continuous on Z.

We define the rotated stage cost L(x, u) : Z→ R≥0 as a function of the economic stage

cost `(·), and the corresponding storage function λ(·):

L(x, u) := `(x, u) + λ(x)− λ(f(x, u))− `(xs, us) (3.4)

Let Assumptions 3.9–3.10 hold. Then the rotated cost has the following properties

1. Steady-state solution: Consider the following steady-state problem

min
(x,u)∈Z

L(x, u) subject to x = f(x, u) (3.5)

Problems (3.2) and (3.5) have the same solution (xs,us).

2. Lower bound: The dissipation inequality (3.3) implies that the rotated stage cost

L(x, u) ≥ ρ(x − xs, u − us) for all (x, u) ∈ Z and hence can be underbounded by a

class K function (Lemma 3.3).

L(x, u) ≥ γ(|(x− xs, u− us)|) ≥ γ(|x− xs|) ≥ 0, ∀(x, u) ∈ Z (3.6)

3.3 Terminal constraint formulation

We now formulate the terminal constraint MPC formulation in which the nonlinear sys-

tem is stabilized by means of an equality constraint on the terminal state.
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3.3.1 Objective function

In this formulation, we define the economic objective function for the dynamic regulation

problem as the sum of N stage costs, i.e.

VN,c(x,u) =
N−1∑
k=0

`(x(k), u(k)) (3.7)

in which x is the initial state, `(·) : Z → R is the economic stage cost, N is the control

horizon, and the control sequence is denoted as u := {u(0), u(1), . . . , u(N − 1)}.

3.3.2 Constraints

One method to stabilize nonlinear systems using MPC is to add the requirement that the

system terminates at the optimal steady state. Hence we include an equality terminal

state constraint of the form

x(N) = xs

The control constraint set UN,c(x) is then the set of control sequences u satisfying the

control constraints and terminal state constraint. It is defined by

UN,c(x) := {u | (x,u) ∈ ZN,c} (3.8)

in which the set ZN,c ⊂ X× UN is defined by

ZN,c :=
{

(x,u) | (φ(k;x,u), u(k)) ∈ Z,∀k ∈ I0:N−1, φ(N ;x,u) = xs
}

(3.9)
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where φ(k;x,u) is the solution to (3.1) at time k ∈ I0:N for initial state x and control

sequence u. The set of admissible states XN,c is defined as the projection of ZN,c onto X.

XN,c = {x ∈ X | ∃u such that (x,u) ∈ ZN,c}

3.3.3 Stability

We now propose a candidate Lyapunov function and establish asymptotic stability of the

nonlinear system driven by the terminal constraint MPC. We first make the following

assumptions

Assumption 3.11 (Weak controllability). There exists γ of classK∞ such that for each x ∈ XN,c

there exists a feasible u, with

|u− [us, . . . , us]
′| ≤ γ(|x− xs|)

Candidate Lyapunov function

With the rotated stage cost as defined in (3.4), we define the rotated regulator cost function

as follows

V N,c(x,u) :=
N−1∑
k=0

L(x(k), u(k)) (3.10)

The standard and auxiliary nonlinear optimal control problems PN,c(x) and PN,c(x) are

PN,c(x) : V 0
N,c(x) := min

u
{VN,c(x,u) | u ∈ UN,c(x)}

PN,c(x) : V
0

N,c(x) := min
u
{V N,c(x,u) | u ∈ UN,c(x)}
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Due to Assumptions 3.10, both VN,c(·) and V N,c(·) are defined and continuous on the set

UN,c. Since the set Z is compact, the set UN,c(x) is compact for all x ∈ XN,c. Hence solutions

exist for both problems PN,c(x) and PN,c(x) for x ∈ XN,c. As we shall establish later, the

two problems have identical solution sets. Denote the optimal solution of these problems

as

u0(x) = {u0(0;x), u0(1;x), · · · , u0(N − 1, x)} (3.11)

In MPC, the control applied to the plant is the first element of the optimal control se-

quence, yielding the implicit MPC control law κN,c(·) defined as

κN,c(x) = u0(0;x)

Then the close loop system evolves according to

x+ = f(x, κN,c(x)) (3.12)

We propose V
0

N,c(x) as the candidate Lyapunov function for the system under the control

law κN,c(x).

Proposition 3.12 (Equivalence of solutions). The solution sets for PN,c(x) and PN,c(x) are

identical.

Proof. Expanding the rotated regulator cost function gives

V N,c(x,u) =
N−1∑
k=0

L(x(k), u(k))

=
N−1∑
k=0

(`(x(k), u(k))− `(xs, us)) +
N−1∑
k=0

(λ(x(k))− λ(f(x(k), u(k))))

= VN,c(x,u) + λ(x)− λ(xs)−N`(xs, us)
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Since λ(x), λ(xs) and N`(xs, us) are independent of the decision variable vector u, the two

objective functions V N,c and VN,c differ by terms which are constant for a given initial state

x, and hence the two optimization problems PN,c(x) and PN,c(x) have the same solution

sets.

Theorem 3.13 (Asymptotic stability). If Assumptions 3.9, 3.10 and 3.11 hold, then the steady-

state solution xs is an asymptotically stable equilibrium point of the nonlinear system (3.12) with

a region of attraction XN,c.

Proof. Consider the rotated cost function (3.10)

V N,c(x,u) =
N−1∑
k=0

L(x(k), u(k)), x ∈ XN,c

The candidate Lyapunov function for the problem is V
0

N,c(x) = V N,c(x,u
0(x)), where

u0(x) is the optimal control sequence as defined in (3.22). The resulting optimal state se-

quence is x0(x) = {x0(0;x), x0(1;x), . . . , x0(N ;x)}. We choose a candidate input sequence

and a corresponding state sequence as follows

u(x) = {u0(1;x), u0(2;x), . . . , u0(N − 1;x), us)}

x(x) =
{
x0(1;x), x0(2;x), . . . , x0(N ;x), xs)

}
Due to the terminal state constraint, x0(N ;x) = xs, and hence x0(N + 1;x) = xs. For all

x ∈ XN,c, the definition of V N,c(·) gives

V N,c(x
+,u) =

N−1∑
k=1

L(x0(k;x), u0(k;x)) + L(xs, us)

= V
0

N,c(x)− L(x, u0(0;x))
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Since V
0

N,c(x
+) ≤ V N,c(x

+,u), it follows that

V
0

N,c(x
+)− V 0

N,c(x) ≤− L(x, u0(0;x))

≤− γ(|x− xs|) using (3.6)

We also observe that due to (3.6):

V
0

N,c(x) ≥ L(x, u(0)) ≥ γ(|x− xs|), x ∈ XN,c

Also using Assumption 3.11, it can be shown that V
0

N,c(x) ≤ γ(|x− xs|) for all x ∈ XN,c,

where γ(|x− xs|) is a class K function. Hence V
0

N,c is a Lyapunov function and xs is an

asymptotically stable equilibrium point of (3.12) with a region of attraction XN,c.

Hence we have established nominal asymptotic stability for the nonlinear system

under the terminal constraint MPC.

3.4 Terminal penalty/control formulation

Having a terminal equality constraint in the problem can be a demanding constraint,

especially if the control horizon is short. Equality constraints, in general, makes the non-

linear optimization problem, hard to solve for the NLP solver In this section we propose

the terminal control MPC formulation, which attempts to relax the terminal equality con-

straint as used in the previous formulation, and replace it with a terminal state penalty

and a terminal region pair.
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3.4.1 Objective function

The economic objective function for the dynamic regulation problem in the terminal

penalty formulation is defined as the sum of N stage costs and a penalty cost on the

terminal state

VN,p(x,u) =
N−1∑
k=0

`(x(k), u(k)) + Vf (x(N)) (3.13)

in which x is the initial state, `(·) : Z → R is the economic stage cost, Vf (·) : Xf → R is

the terminal penalty, where Xf ⊆ X is a compact terminal region containing the steady-

state operating point in its interior, N is the control horizon, and the control sequence is

denoted as u := {u(0), u(1), . . . , u(N − 1)}.

3.4.2 Constraints

For nonlinear models, one often can define Xf in which a control Lyapunov function is

available (Rawlings and Mayne, 2009, Ch. 2). The second method to stabilize nonlinear

systems using MPC is to add the requirement that the terminal state lie in this terminal

region, instead of at the best steady state xs. Hence we include a terminal state constraint

of the form

x(N) ∈ Xf

The standard control constraint set UN,p(x) is then the set of control sequences u

satisfying the control constraints and terminal state constraint. It is defined by

UN,p(x) := {u | (x,u) ∈ ZN,p} (3.14)
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in which the set ZN,p ⊂ X× UN is defined by

ZN,p :=
{

(x,u) | (φ(k;x,u), u(k)) ∈ Z,∀k ∈ I0:N−1, φ(N ;x,u) ∈ Xf

}
(3.15)

where φ(k;x,u) is the solution to (3.1) at time k ∈ I0:N for initial state x and control

sequence u. The set of admissible states XN,p is defined as the projection of ZN,p onto X.

XN,p = {x ∈ X | ∃u such that (x,u) ∈ ZN,p}

3.4.3 Stability

Similar to the terminal constraint formulation presented in Section 3.3, we propose a Lya-

punov function for the closed loop system to establish closed-loop stability. We make the

following assumptions.

Assumption 3.14 (Stability assumption). There exists a compact terminal region Xf ⊆ X,

containing the point xs in its interior, and control law κf : Xf → U, such that the following holds

Vf (f(x, κf (x))) ≤ Vf (x)− `(x, κf (x)) + `(xs, us), ∀x ∈ Xf (3.16)

This assumption requires that for each x ∈ Xf , f(x, κf (x)) ∈ Xf , i.e. the set Xf is control

invariant under control law u = κf (x).

Remark 3.15. Since Assumption 3.14 is the only requirement on Vf , we can assume Vf (xs) = 0

without loss of generality. It should be noted that unlike the standard MPC problem, Vf (x) is not

necessarily positive definite with respect to xs.
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Candidate Lyapunov function

For ease of notation, we first define the shifted stage cost as following

`(x, u) = `(x, u)− `(xs, us) (3.17)

Next we define the rotated terminal cost in the region (x, u) ∈ Z. Correspondingly we

define the rotated regulator cost function.

V f (x) := Vf (x) + λ(x)− Vf (xs)− λ(xs) (3.18)

V N,p(x,u) :=
N−1∑
k=0

L(x(k), u(k)) + V f (x(N)) (3.19)

The standard and auxiliary nonlinear optimal control problems PN,p(x) and PN,p(x) are

PN,p(x) : V 0
N,p(x) := min

u
{VN,p(x,u) | u ∈ UN,p(x)} (3.20)

PN,p(x) : V
0

N,p(x) := min
u
{V N,p(x,u) | u ∈ UN,p(x)} (3.21)

Due to Assumption 3.10, both VN,p(·) and V N,p(·) are defined and continuous on the set

UN,p. Since the set Z is compact, the set UN,p(x) is compact for all x ∈ XN . Hence solutions

exist for both problems PN,p(x) and PN,p(x) for x ∈ XN . As we shall establish later, the

two problems have identical solution sets. Denote the optimal solution of these problems

as

u0(x) = {u0(0;x), u0(1;x), · · · , u0(N − 1, x)} (3.22)

In MPC, the control applied to the plant is the first element of the optimal control se-

quence, yielding the implicit MPC control law κN,p(·) defined as

κN,p(x) = u0(0;x)
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Then the close loop system evolves according to

x+ = f(x, κN,p(x)) (3.23)

We propose V
0

N,p(x) as the candidate Lyapunov function for the system under the control

law κN,p(x).

Properties of the rotated costs

We now present some interesting properties of the rotated stage and terminal costs de-

fined above and use them later in the stability analysis of the terminal penalty controller.

Lemma 3.16 (Modified terminal cost). The pair (V f (·), L(·)) satisfies the following property if

and only if (Vf (·), `(·)) satisfies Assumption 3.14.

V f (f(x, κf (x))) ≤ V f (x)− L(x, κf (x)) ∀x ∈ Xf (3.24)

Proof. Adding λ(f(x, κf (x))) + λ(x) to both sides of (3.16) and rearranging gives the de-

sired inequality

V f (f(x, κf (x)))− V f (x) ≤−
(
`(x, κf (x)) + λ(x)−

λ(f(x, κf (x)))− `(xs, us)
)

=− L(x, κf (x))



35

Lemma 3.17. If Assumptions 3.9, 3.10 and 3.14 hold, then the rotated terminal cost V f (x) defined

by (3.18) is positive definite on Xf with respect to x = xs.

Proof. From Assumption 3.10, V f (·) is continuous on Xf and from (3.18), V f (xs) = 0.

Next we show V f (x) > 0 for x ∈ Xf , x 6= xs. Let x(x;κf ) and u(x;κf ) denote the state

and control sequences starting from x ∈ Xf and using the control law u = κf (x), defined

in Assumption 3.14, in the closed-loop system x+ = f(x, κf (x)). Consider the sequence

{V f (x(k;x, κf ))}, k ∈ I≥0, which satisfies for all k ∈ I≥0 by (3.24)

V f (x(k + 1;x, κf ))− V f (x(k;x, κf )) ≤ −L(x(k;x, κf ), u(k;x, κf )) (3.25)

From (3.6) we have that the sequence {V f (x(k;x, κf ))} is nonincreasing with k. It is

bounded below since V f (·) is continuous and Xf is compact. Therefore, the sequence

converges and L(x(k;x, κf ), u(k;x, κf ))→ 0 as k →∞, and, from (3.6), x(k;x, κf )→ xs as

k → ∞. Since V f (·) is continuous and V f (xs) = 0, we also have that Vf (x(k;x, κf )) → 0

as k →∞. Summing (3.25) for k ∈ I0:M−1 gives

V f (x) ≥
M−1∑
k=0

L(x(k;x, κf ), u(k;x, κf )) + V f (x(M ;x, κf ))

Taking the limit as M →∞ gives

V f (x) ≥
∞∑
k=0

L(x(k;x, κf ), u(k;x, κf ))

By (3.6), L(x, κf (x) > 0 for x 6= xs, so we have established that V f (x) > 0 for x ∈ Xf , x 6= xs

and the proof is complete.
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Lemma 3.18 (Rawlings and Mayne (2011)). Let a function V (x) be defined on a set X , which

is a closed susbset of Rn. If V (·) is continuous at the origin and V (0) = 0, then there exists a class

K function α(·) such that

V (x) ≤ α(|x|), ∀x ∈ X

Lemma 3.19 (Bounds on the rotated terminal cost). If Assumptions 3.9, 3.10 and 3.14 hold,

the rotated terminal cost V f (x) satisfies

γ(|x− xs|) ≤ V f (x) ≤ γ(|x− xs|), ∀x ∈ Xf

in which functions γ(·), γ(·) are class K.

Proof. The lower bound follows from (3.24) and (3.6) and Lemma 3.17. For the upper

bound, from Assumption 3.10 and Lemma 3.18 it follows that

V f (x) ≤ γ(|x− xs|), ∀x ∈ Xf

which completes the proof.

Lemma 3.20 (Equivalence of solutions). Let Assumptions 3.10 and 3.14 hold. The solution

sets for PN,p(x) and PN,p(x) are identical.
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Proof. Expanding the rotated regulator cost function gives

V N,p(x,u) =
N−1∑
k=0

L(x(k), u(k)) + V f (x(N))

=
N−1∑
k=0

`(x(k), u(k)) + Vf (x(N))− Vf (xs)− λ(xs)+

N−1∑
k=0

(λ(x(k))− λ(f(x(k), u(k)))− `(xs, us)) + λ(x(N))

=VN,p(x,u) + λ(x)− λ(x(N)) + λ(x(N))−

Vf (xs)− λ(xs)−N`(xs, us)

=VN,p(x,u)−N`(xs, us) + λ(x)− λ(xs)− Vf (xs)

Since λ(x), λ(xs), Vf (xs) and N`(xs, us) are independent of the decision variable vector

u, the two objective functions V N,p and VN,p differ by terms that are constant for a given

initial state x, and hence the two optimization problems PN,p(x) and PN,p(x) have the same

solution sets.

Theorem 3.21. Let Assumptions 3.9, 3.10 and 3.14 hold. Then the steady-state solution xs is an

asymptotically stable equilibrium point of the nonlinear system (3.23) with a region of attraction

XN,p.

Proof. Consider the rotated cost function (3.19)

V N,p(x,u) =
N−1∑
k=0

L(x(k), u(k)) + V f (x(N)), x ∈ XN

The candidate Lyapunov function for the problem is V
0

N,p(x) = V N,p(x,u
0
p(x)), where

u0
p(x) is the optimal control sequence as defined in (3.22). The resulting optimal state se-

quence is x0
p(x) =

{
x0
p(0;x), x0

p(1;x), . . . , x0
p(N ;x)

}
. We choose a candidate input sequence
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and a corresponding state sequence as follows

u(x) = {u0
p(1;x), u0

p(2;x), . . . , u0
p(N − 1;x), κf (x

0(N ;x)))} (3.26)

x(x) =
{
x0
p(1;x), x0

p(2;x), . . . , x0
p(N ;x), x0

p(N + 1;x))
}

(3.27)

where x0
p(N+1;x) = f(x0

p(N ;x), κf (x
0
p(N ;x)). Due to the terminal state constraint, x0

p(N ;x) ∈

Xf , and hence x0
p(N + 1; x) ∈ Xf due to the invariance property of Xf (Assumption 3.14).

For all x ∈ XN , the definition of V N,p(·) gives

V N,p(x
+,u) =

N−1∑
k=1

L(x0
p(k;x), u0

p(k;x))+

L(x0
p(N, x), κf (x

0
p(N ;x))) + V f (x

0
p(N + 1;x))

=V
0

N(x)− L(x, u0
p(0;x)) + L(x0

p(N, x), κf (x
0
p(N ;x)))−

V f (x
0
p(N ;x)) + V f (x

0
p(N + 1;x))

≤V 0

N(x)− L(x, u0
p(0;x)), (from Lemma 3.16)

Since V
0

N,p(x
+) ≤ V N,p(x

+,u), it follows that

V
0

N,p(x
+)− V 0

N,p(x) ≤− L(x, u0
p(0;x)) (3.28)

≤− γ(|x− xs|) using (3.6)

Due to Lemmas 3.16 and 3.19, γ(|x− xs|) ≤ V
0

N,p(x) ≤ γ(|x− xs|) for all x ∈ XN (Rawl-

ings and Mayne, 2009, Propositions 2.17 and 2.18), where γ(|x− xs| is a class K function.

Hence V
0

N,p is a Lyapunov function and xs is an asymptotically stable equilibrium point

of (3.23) with a region of attraction XN .
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Hence we have established nominal asymptotic stability of the nonlinear system

under terminal penalty/control formulation.

3.4.4 Terminal cost prescription

Finding terminal cost function Vf (·) and region Xf that satisfy the stability assumption

(Assumption 3.14) is not obvious for generic costs and nonlinear systems. The most com-

mon case of positive, quadratic cost is addressed in Rawlings and Mayne (2009, Sec. 2.5).

In this section we propose candidate terminal cost functions Vf (·) that satisfy (3.16) inside

well-defined terminal region Xf .

For notational simplicity, in the following discussion we shift the origin to (xs, us),

i.e., the optimal steady state of the system. Similarly, we shift the origin of the sets X, U,

Z, and Xf . We make the following assumption.

Assumption 3.22. The functions f(·) and `(·) are twice continuously differentiable on Rn×Rm,

and the linearized system x+ = Ax+Bu, where A := fx(0, 0) and B := fu(0, 0), is stabilizable.

We choose any controller u = Kx such that the origin is exponentially stable for

the system x+ = AKx,AK := A + BK. Such a K exists since (A,B) is stabilizable. The

following establishes the existence of the invariant set required for Assumption 3.14.

In the standard case, where `(·) is positive definite, one chooses Xf to be a level

set of Vf (·) to inherit control invariance from (3.16). In economic case, `(·) is not positive

definite and hence we use the control invariant set defined in the following way:
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Lemma 3.23 (Control invariant set for f(·) (Rawlings and Mayne, 2009)). Let Assumption

3.22 hold and consider K such that A + BK is stable. Then there exist matrices P > 0, Q > 0,

and scalar b > 0, such that the following holds for all b′ ≤ b

V (f(x,Kx))− V (x) ≤ −(1/2)x′Qx, ∀x ∈ levb′V

in which V (x) := (1/2)x′Px.

Proof. This result is established in (Rawlings and Mayne, 2009, pp.136–137).

Remark 3.24. From Lemma 3.23 we have the existence of a family of nested ellipsoidal neigh-

borhoods of the origin, levb′V , with b′ ≤ b, and each member of the family (corresponding to a

b′ value) is control invariant for the nonlinear system x+ = f(x, u) under the linear control law

u = Kx.

We next classify the function Vf (·) based on whether or not a storage function λ(·)

is known for the system (Assumption 3.9.)

Prescription 1: Storage function λ(·) unknown

The ideal choice for Vf (x) satisfying (3.16), is the infinite horizon shifted cost to go for the

optimal nonlinear control law κf (x). Since there are no generic ways to know the nature

of this nonlinear control law, we chose the linear control law u = Kx defined above, and

compute the cost to go based on this choice.

Vf (x) =
∞∑
k=0

`(x,Kx), x+ = AKx, x(0) = 0
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One can immediately see this choice of Vf satisfies (3.16). In general the summability of

the above infinite sum is not guaranteed. For special cases like quadratic costs, the infinite

sum can be analytically computed. But for most cases, in which the above sum cannot be

explicitly determined, we propose ways to compute a terminal penalty satisfying (3.16)

in the following sections. If the above infinite sum can be determined, one can use the

invariant region Xf = levb′V as the desired terminal region.

Prescription 2: Storage function λ(·) unknown

Note: The results of this section are taken from Amrit et al. (2011).

We now construct a Vf (·) without knowledge of λ(·).

Lemma 3.25. Let Assumption 3.22 hold and let `(x) := `(x,Kx) − `(0, 0). Then there exists

matrix Q? such that for any compact set C ⊂ Rn

x′
(
Q? − `xx(x)

)
x ≥ 0, ∀x ∈ C

Proof. Let λi(`xx(x)), i ∈ I1:n denote the real-valued eigenvalues of symmetric matrix

`xx(x), which depends on x. The eigenvalues are continuous functions of the elements

of the matrix (Horn and Johnson, 1985, p.540), and the elements of the matrix `xx(x) are

continuous functions of x on C by Assumption 3.22, so the following optimization prob-

lem has a solution

λ? = max
x,i

{
λi(`xx(x)) | x ∈ C, i ∈ I1:n

}
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for an arbitrary Hermitian matrixH , x′Hx ≤ λmx
′x for all x ∈ Rn, where λm = maxi(λi(H))

(Horn and Johnson, 1985, p.176). Hence we conclude that λ?x′x ≥ x′`xx(x)x for all x ∈ C.

Define Q? as the diagonal matrix Q? := λ?In. We have

x′Q?x = λ?x′x ≥ x′`xx(x)x, ∀x ∈ C

Next we define the quadratic cost function `q(x) := (1/2)x′Qx+ q′x.

Lemma 3.26. Let Assumption 3.22 hold. Choose matrices (Q, q) such that q := `x(0, 0) and

Q := Q? + αI , with Q? defined in Lemma 3.25 and α ∈ R. Then `q(x) ≥ `(x) + (α/2)x′x for all

x ∈ X and α ∈ R.

Proof. Choose compact set C in Lemma 3.25 to be convex and contain X, which is possible

since X is bounded. Then we have that if x ∈ C, sx ∈ C for s ∈ [0, 1]. From Proposition

A.11 (b) (Rawlings and Mayne, 2009), we have that for all x ∈ C

`q(x)− `(x) = (q − `x(0, 0))′x+∫ 1

0

(1− s)x′
(
Q− `xx(sx)

)
xds

=

∫ 1

0

(1− s)x′
(
Q? − `xx(sx) + αI

)
xds

≥ (α/2)x′x

Since X ⊆ C, the inequality holds on X and the result is established.
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We define the candidate Vf (x) as follows

Vf (x) :=
∞∑
k=0

`q(x(k)), x+ = AKx, x(0) = x

= (1/2)x′Px+ p′x (3.29)

where Q and q are selected as in Lemma 3.26 with α > −λ? so that Q > 0. Hence P is the

solution to the Lyapunov equation A′KPAK − P = −Q and p = (I −AK)−T q. Note that P

depends on the parameter α. In fact,

P = P ∗ + αPI

in which P ∗ and PI satisfy the Lyapunov equations A′KP
∗AK−P ∗ = −Q∗ and A′KP

∗AK−

P ∗ = −I , respectively.

Next we establish that there exists a nonzero neighborhood of the origin in which

(3.16) is satisfied. Define the set Xu ⊆ X as follows

Xu :=
{
x ∈ X | Kx ∈ U

}
and note that Xu contains the origin in its interior because U contains the origin in its

interior and Kx goes to zero with x. The next lemma characterizes a set on which we can

meet the stability assumption inequality.

Lemma 3.27 (Amrit et al. (2011)). Let Assumption 3.22 hold. There exists δ1 > 0 such that

δ1B ⊆ Xu and the following holds for all x ∈ δ1B

Vf (f(x,Kx))− Vf (x) ≤ −`(x)
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Proof. The proof of the lemma is provided in Amrit et al. (2011), and is omitted from this

thesis.

Theorem 3.28 (Amrit et al. (2011)). Let Assumption 3.22 hold. There exists a compact set Xf

containing the origin in its interior such that the quadratic function Vf (x) defined in (3.29) and

the linear control law κf (x) = Kx satisfy Assumption 3.14.

Proof. With δ1 > 0 chosen to satisfy Lemma 3.27, choose b′ > 0 with b′ ≤ b of Lemma 3.23

such that levb′V ⊆ δ1B. Since the set δ1B contains the origin in its interior, such a b′ > 0

exists. Then choose Xf = levb′V . We have that the control law κf (·) is feasible on Xf since

Xf ⊆ δ1B ⊆ Xu. The set Xf is forward invariant from Lemma 3.23 since b′ < b, and we

know that

Vf (f(x,Kx))− Vf (x) ≤ −`(x) ∀x ∈ Xf

by Lemma 3.27 because Xf ⊆ δ1B.

Remark 3.29. Unlike the standard MPC tracking problem, `(·) is not necessarily positive, and

hence sublevel sets of Vf (·) are not forward invariant under the terminal control law. See Figure

3.1 for the depiction of sublevel sets of Vf (·) and V . Notice that the center of sublevel sets of Vf (·)

is located at x = −P−1p rather than at x = 0. That is why we choose a sublevel set of V (·) rather

than Vf (·) for the terminal region Xf in economic MPC problems.

Prescription 3: Storage function λ(·) known

Let Assumption 3.9 hold, and it is assumed that the storage function λ(·) is known.
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Assumption 3.30 (Lipschitz continuity). There exists a r > 0 such that the functions `(·)

and λ(·), and hence the rotated cost L(·), as defined in (3.4), are Lipschitz continuous for all

(x, u) ∈ rB. Denote the corresponding Lipschitz constants as L`, Lλ and LL.

We assume the following error bound.

Assumption 3.31. There exists a δ2 > 0 and cδ > 0, such that

|e(x)| ≤ cδγ(|x|), ∀x ∈ δ2B

where γ(|x|) is the class K function that underbounds the rotated cost satisfying (3.6).

Remark 3.32. Since we assume f(·) to be twice continuously differentiable, for any δ > 0, there

exists a clδ > 0 such that |e(x)| ≤ (1/2)clδ |x|2 for all x ∈ δB (Rawlings and Mayne, 2009, p.

137). Hence it follows that if lim
x→0

|x|2
γ(|x|) is bounded, then there exists a δ > 0 and cδ > 0 such that

|e(x)| ≤ (1/2)clδ |x|2 ≤ cδγ(|x|) for all x ∈ δB ⊆ Xu (Figure 3.1), and hence Assumption 3.31 is

satisfied. For example, if `(·) and λ(·) are at most second order 1 functions, then L(·) is at most a

second order function, and hence γ(|x|) is at most second order, making the above limit bounded.

Now consider the function

V f (x) = α
∞∑
k=0

L(x(k), u(k)), x+ = Ax+Bu, u = Kx, α > 0 (3.30)

1A function is said to be of finite order if there exists numbers a, r > 0 such that |f(z)| ≤

exp(|z|a), ∀ |z| > r. The infimum of all such numbers a, is called the order of the function f (Krantz,

1999, p. 121)



46

Lemma 3.33. If a continuous function V (x) is Lipschitz continuous in rB, r > 0, with a Lipschitz

constantLV and V (0) = 0, then there exists a c > 0 such that the following holds true in a compact

set C containing the origin.

V (x) ≤ c |x| , ∀x ∈ C

Proof. The proof is analogous to the proof of Proposition 2.18 in Rawlings and Mayne

(2009).

Note that because of Assumption 3.30 and Lemma 3.33, there exists a cL > 0 such

that

L(x, u) ≤ cL |(x, u)| , ∀(x, u) ∈ Xu (3.31)

Since x(k) converges to the origin exponentially as k → ∞ and L(x, u) is defined and

satisfies (3.31) on all trajectories starting from x ∈ Xu, the above infinite sum converges

for all x ∈ Xu. We claim that V f (x) is a local control Lyapunov function for the system

x+ = f(x,Kx) in the region Xf and hence Xf is control invariant for the nonlinear system

x+ = f(x,Kx).

Lemma 3.34. Let Assumptions 3.9, 3.22, 3.30 and 3.31 hold. There exists an α > 0 such that for

all α ≥ α, V f (·) defined in (3.30) is a local control Lyapunov function for the system x+ = f(x, u)

in some neighborhood of the origin.
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0

levVf

levbV

X

Xu

−P−1p

δ2B

levaV f

δ1B

Figure 3.1: (Amrit et al., 2011); Relationships among the sets levaV f , δ2B, levbV , levVf , δ1B,

Xu, and X. Lemma 3.27 holds in δ1B; Theorem 3.28 holds in levbV ; Theorem 3.35 holds in

δ2B; Theorem 3.38 holds with Xf in levaV f . Recall that the origin is shifted to the optimal

steady state xs.
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Proof. From the definition of V f (x), we know

V f (AKx)− V f (x) = −αL(x,Kx), ∀x ∈ Xu (3.32)

From (3.30) and (3.31) we have

V f (x) = α
∞∑
k=0

L(x(k), Kx(k))

≤ cL (|x|+ AK |x|+ · · · )

= cV f
|x| , ∀x ∈ X

where cV f
= cL(I − AK)−1. Hence using Assumption 3.31 we can write

V f (f(x,Kx))− V f (AKx) ≤ cV f
(|f(x,Kx)| − |AKx|)

≤ cV f
|f(x,Kx)− Akx|

= cV f
|e(x)|

≤ (1/2)cV f
cδγ(|x|), ∀x ∈ δ2B (3.33)

From (3.32) and (3.33) we have

V f (f(x,Kx))− V (x) ≤ (1/2)cV f
cδγ(|x|)− αL(x,Kx)

≤ cV f
cδL(x,Kx)− αL(x,Kx) (using (3.6))

= (cV f
cδ − α)L(x,Kx), ∀x ∈ δ2B

Defining α := 1 + cV f
cδ and choosing α ≥ α gives V f (f(x,Kx))− V (x) ≤ −L(x,Kx), for

all x ∈ δ2B.
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Theorem 3.35. Let Assumptions 3.9, 3.22, 3.30 and 3.31 hold. There exists a compact set Xf

containing the origin in its interior such that the function Vf (x) = V f (x)− λ(x) + λ(xs), where

V f (x) is defined in (3.30), and the linear control law κf (x) = Kx satisfy Assumption 3.14.

Proof. With δ2 > 0 chosen to satisfy Lemma 3.34, choose b′ > 0 with b′ ≤ b of Lemma 3.23

such that levb′V ⊆ δ2B. Since the set δ2B contains the origin in its interior, such a b′ > 0

exists. Then choose Xf = levb′V . We have that the control law κf (·) is feasible on Xf since

Xf ⊆ δ2B ⊆ Xu. The set Xf is forward invariant from Lemma 3.23 since b′ < b, and from

Lemma 3.34 we know that V f (f(x,Kx)) − V f (x) ≤ −L(x,Kx) for all x ∈ Xf because

Xf ⊆ δ2B. Hence due to Lemma 3.16 we have

Vf (f(x,Kx))− Vf (x) ≤ −`(x,Kx) ∀x ∈ Xf

where Vf (x) = V f (x)− λ(x) + λ(xs).

3.5 Replacing the terminal constraint

As mentioned in the previous section, the more the number of constraints in the nonlin-

ear optimization problem, the harder it is to solve. We new extend the idea of relaxing

equality constraints by adding penalty to the terminal state, to completely remove any

terminal constraint from the system. We achieve this by modifying our terminal penalty.

To do so, we first assume that the system is dissipative (Assumption 3.9) and the storage

function λ(·) is known. We assume that the terminal region is a sublevel set of V f (x). To

show that we can find an a > 0 such that levaV f ⊆ levbV (Figure 3.1), we observe from
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(3.6) and Lemma 3.16 that V f (x) ≥ L(x,Kx) ≥ γ(|x− xs|) for all x ∈ Xu. It follows that

x ∈ levaV f implies |x− xs| ≤ γ−1(a). We also know that there exists a c > 0 such that

V (x− xs) ≤ c |x− xs|2 for all x ∈ Rn. Choose a as follows

a = γ(
√
b/c)

With this choice |x− xs| ≤ γ−1(a) implies V (x − xs) ≤ c |x− xs|2 ≤ b. Hence x ∈ levaV f

implies x ∈ levbV for this choice of a. Hence we use the set levaV f as the terminal re-

gion. Consider the following modified cost function and the corresponding rotated cost

function

V β
N (x,u) =

N−1∑
k=0

`(x(k), u(k)) + βVf (x(N)) + (β − 1)λ(x(N)

V
β

N(x,u) =
N−1∑
k=0

L(x(k), u(k)) + βV f (x(N)), β ≥ 1 (3.34)

For β ≥ 1, define the standard and auxiliary nonlinear optimal control problems as fol-

lowing:

PβN(x) : V 0,β
N (x) := min

u
{V β

N (x,u) | u ∈ UN,p(x)}

PβN(x) : V
0,β

N (x) := min
u
{V β

N(x,u) | u ∈ UN,p(x)} (3.35)

in which the control constraint set UN(x) does not include a terminal state constraint

UN(x) := {u ∈ UN | (φ(k;x,u), u(k)) ∈ Z,∀k ∈ I0,N−1}

Define the set of admissible states as follows

X β
N :=

{
x | V 0,β

N (x) ≤ V
}

(3.36)
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where V > 0 is an arbitrary constant. Denote the optimal solution and the corresponding

implicit MPC control law as

uβ(x) = {uβ(0;x), · · · , uβ(N − 1, x)} κβN(x) = uβ(0;x)

The corresponding closed-loop system evolves according to

x+ = f(x, κβN(x)) (3.37)

3.5.1 Properties of the modified cost function

We now establish some useful properties of the modified cost function V
β

N , that we shall

later use to establish stability properties of the new controller.

Lemma 3.36 (Equivalence of solutions). Let Assumptions 3.10 and 3.14 hold. The solution

sets for PβN(x) and PβN(x) are identical.

Proof. Similar to the proof of Lemma 3.20, expanding the rotated regulator cost function

gives

V
β

N(x,u) = V β
N (x,u)−N`(xs, us) + λ(x)− βλ(xs)− βVf (xs)

Since λ(x), λ(xs), Vf (xs) and `(xs, us) are constants for a given initial state, the two objec-

tive functions V
β

N and V β
N differ by a constant, and hence the two optimization problems

PβN(x) and PβN(x) have the same solution sets.

Lemma 3.37. If (V f (·),Xf ) satisfies (3.24) of Lemma 3.16 and L(x, u) satisfies Assumption 3.9,

then (βV f (·),Xf ) also satisfies (3.24) for β ≥ 1 .
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Proof. Assumption 3.9 implies that −L(x, u) ≤ −ρ(x), where ρ : X → R≥0. Since ρ(x) is

positive definite, −L(x, u) ≤ − 1
β
L(x, u) for β ≥ 1. Using (3.24)

V f (f(x, κf (x)))− V f (x) ≤ −L(x, κf (x)) ∀x ∈ Xf

≤ − 1

β
L(x, κf (x))

Hence β
(
V f (f(x, κf (x)))− V f (x)

)
≤ −L(x, κf (x)), ∀x ∈ Xf , β ≥ 1, which completes

the proof.

3.5.2 Stability

We now show that by removing the terminal state constraint and modifying the terminal

penalty appropriately, nominal stability of the closed-loop system is preserved under the

strict dissipativity assumption.

Theorem 3.38. Let Assumptions 3.10 and 3.14 hold. Suppose uβ(x) is optimal for the terminally

unconstrained problem PβN(x), and xβ(x) is the associated optimal state trajectory. There exists a

β > 1 such that for all β ≥ β and x ∈ X β
N , xβ(N ;x) ∈ Xf .

Proof. From (3.36), for any x ∈ X β
N , we have

N−1∑
k=0

L(xβ(k;x), uβ(k;x)) + βV f (x
β(N ;x)) ≤ V

βV f (x
β(N ;x)) ≤ V (due to (3.6))
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Choosing β ≥ β = max{1, V /a}, gives V f (x
β(N ;x)) ≤ a. Hence xβ(N ;x) ∈ Xf , which

completes the proof.

Theorem 3.39. Let Assumptions 3.10 and 3.14 hold. Then the steady-state solution xs is an

asymptotically stable equilibrium point of the nonlinear system (3.37) with a region of attraction

X β
N .

Proof. Analogous to the proof of Theorem 3.21, using Lemma 3.37 we have

V
0,β

N (x+)− V 0,β

N (x) ≤ −L(x, uβ(0;x))

≤ −γ(|x− xs|), ∀x ∈ X β
N

Due to Lemmas 3.16, 3.19 and 3.37, γ(|x− xs|) ≤ V
0,β

N (x) ≤ γ(|x− xs|) for all x ∈ XN (Rawl-

ings and Mayne, 2009, Propositions 2.17 and 2.18), where γ(|x− xs| is a class K function.

Hence V
0,β

N (x) is a Lyapunov function and xs is an asymptotically stable equilibrium point

of (3.37) with a region of attraction X β
N .

Lemma 3.40 (Nesting property of admissible sets). Let Assumptions 3.10 and 3.14 hold.

Define the following two sublevel sets

X1 =
{
x | V 0,β1

N (x) ≤ V1

}
, X2 =

{
x | V 0,β2

N (x) ≤ V2

}
,

where V 0,β

N is defined by (3.35) and V f (x) ≤ a, a > 0.

1. Let β1 = max{1, V1/a} and β2 = max{1, V2/a}. If V1 ≤ V2, then X1 ⊆ X2.

2. Let V1 = V2 = V . If max{1, V /a} ≤ β1 ≤ β2, then X2 ⊆ X1.
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Proof.1.

(a) In order to prove that X1 ⊆ X2, we show that x ∈ X1 implies x ∈ X2. For all x ∈ X1, we

have

V
0,β2
N (x) =

N−1∑
k=0

L(xβ2(k;x), uβ2(k;x)) + β2V f (x
β2(N ;x))

≤
N−1∑
k=0

L(xβ1(k;x), uβ1(k;x)) + β2V f (x
β1(N ;x))

=
N−1∑
k=0

L(xβ1(k;x), uβ1(k;x)) + β2V f (x
β1(N ;x))−

β1V f (x
β1(N ;x)) + β1V f (x

β1(N ;x))

=V
0,β1
N (x) + (β2 − β1)V f (x

β1(N ;x))

≤V1 + (β2 − β1)a

The inequality follows from the fact that V
0,β1
N (x) ≤ V1 and V f (x(N)) ≤ a. Now consider

the three possible scenarios for the values of V1 and V2.

• Case 1: a ≤ V1 ≤ V2. Then β1 = V1/a, β2 = V2/a

V1 + (β2 − β1)a = V1 + V2 − V1 = V2

• Case 2: V1 ≤ a ≤ V2. Then β1 = 1, β2 = V2/a

V1 + (β2 − β1)a = V2 + (V1 − a) ≤ V2

• Case 3: V1 ≤ V2 ≤ a. Then β1 = β2 = 1

V1 + (β2 − β1)a = V1 ≤ V2
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Hence for all x ∈ X1 we have V
0,β2
N (x) ≤ V2 for the three possible cases. Hence x ∈ X1 and

V1 ≤ V2 imply x ∈ X2 and hence X1 ⊆ X2.

(b) For all x ∈ X2, we have

V
0,β1
N (x) =

N−1∑
k=0

L(xβ1(k;x), uβ1(k;x)) + β1V f (x
β1(N, x))

≤
N−1∑
k=0

L(xβ2(k;x), uβ2(k;x)) + β1V f (x
β2(N, x))

=
N−1∑
k=0

L(xβ2(k;x), uβ2(k;x)) + β2V f (x
β2(N, x))+

(β1 − β2)V f (x
β2(N, x))

=V
0,β2
N (x) + (β1 − β2)V f (x

β2(N, x))

≤V 0,β2
N (x)

where the last inequality follows from the fact that β1 ≤ β2 and Lemma 3.17. Hence we

have

V
0,β1
N (x) ≤ V

0,β2
N (x) ≤ V (3.38)

Hence x ∈ X2 and β1 ≤ β2 imply x ∈ X1 and hence X2 ⊆ X1.

Hence we have established that by appropriately modifying the terminal penalty,

we can remove constraints on the terminal state. The modification of the terminal cost

ensures that the terminal state lies in the terminal region, and under appropriate assump-

tions, the closed-loop system is asymptotically stable.
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Chapter 4

Suboptimal control

4.1 Introduction

All of the stability theory in Chapter 3 assumes that we are able solve our dynamic opti-

mization problem to global optimality. When solving nonconvex optimization problems,

which is usually the case when solving nonlinear problems, it is hard to guarantee global

optimality of the solution, even within a pre-specified tolerance margin. The solution

that the nonlinear solvers converge to are local optimums, where the optimality condi-

tions are satisfied. In this chapter we show that global optimality is not required for the

stability properties stated in Chapter 3 to hold. We develop stability results for subop-

timal economic MPC in parallel to the results for suboptimal MPC with convex costs in

Pannocchia, Rawlings, and Wright (2011).
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4.2 Suboptimal MPC solution

We consider the terminal penalty formulation (Section 3.4) to develop our results and then

extend them to the terminal constraint formulation. We assume throughout this chapter

that the nonlinear system x+ = f(x, u), is dissipative with respect to the shifted economic

cost (Assumption 3.9). Hence for this class of systems, optimal MPC driven nonlinear

system is asymptotically stable (Theorem 3.21).

Consider the problem PN,p as defined in (3.20).

PN,p(x) : V 0
N,p(x) := min

u
{VN,p(x,u) | u ∈ UN,p(x)}

Instead of solving the problem to global optimality, we consider using any suboptimal

algorithm that has the following properties: Let u ∈ UN,p(x) denote the (suboptimal)

control sequence for the initial state x, where UN,p(x) is the input constraint set defined

in (3.14), and let u denote a warm start for the successor initial state x+ = f(x, u(0;x)),

obtained from (x,u) by setting

u = {u(1;x), u(2;x), . . . , u(N − 1;x), u+} (4.1)

in which u+ ∈ U is any input that satisfies the invariance conditions of Assumption 3.14

for x = φ(N ;x,u) ∈ Xf . We observe that the warm start is feasible for the successor state,

i.e.

u ∈ UN,p(x+)

The suboptimal solution for the successor state is defined as any input sequence u+ that
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satisfies the following:

u+ ∈ UN,p(x+) (4.2a)

VN,p(x
+,u+) ≤ VN,p(x

+,u) (4.2b)

VN,p(x
+,u+) ≤ Vf (x

+) +N`(xs, us) when x+ ∈ rB (4.2c)

in which VN,p is the regulator cost function as defined in (3.13), and r is a positive scalar

sufficiently small that rB ⊆ Xf . Notice that the constraint (4.2c) is required to hold only

if x+ ∈ rB. We now state some properties of the suboptimal MPC solution satisfying the

above properties.

4.2.1 Properties

We first state the rotated cost equivalent of (4.2). We can then use the properties of the

rotated costs stated in Section 3.4.3, to develop our results.

Lemma 4.1. Suboptimal solution conditions (4.2) can be equivalently stated as following

u+ ∈ UN,p(x+) (4.3a)

V N,p(x
+,u+) ≤ V N,p(x

+,u) (4.3b)

V N,p(x
+,u+) ≤ V f (x

+) when x+ ∈ rB (4.3c)

Proof. From Proposition 3.20, we know that VN,p(x,u) = V N,p(x,u) +N`(xs, us) + λ(xs) +

Vf (xs) − λ(x), and from the definition of V f (x) (3.18), we have Vf (x) = V f (x) + Vf (xs) +

λ(xs)− λ(x). Substituting these in (4.2), we get (4.3).
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Next we show that the globally optimal solution of the MPC problem satisfies the

suboptimal MPC solution conditions (4.3).

Lemma 4.2. The optimal solution to the problem PN,p(x+), u0(x+), satisfies (4.3a) and (4.3b) for

all x+ ∈ XN,p. Moreover (4.3c) is satisfied by u0(x+) for all x+ ∈ Xf .

Proof. Since the original optimization problem PN,p is equivalent to the auxiliary opti-

mization problem PN,p (Proposition 3.20), and u ∈ UN,p, the optimal solution u0(x+) satis-

fies (4.3a) and (4.3b) due to optimality. Now consider any x+ ∈ Xf , define x(0) = x+ and

choose a u(0) satisfying Assumption 3.14. Due to the invariance property of Xf , x(k) ∈ Xf

for all k ∈ I>0, and we can choose corresponding u(k) satisfying Assumption 3.14. Due to

lemma 3.16, we have

V f (x(k + 1))− V f (x(k)) ≤ −L(x(k), u(k)), ∀k ∈ I≥0 (4.4)

Denote the sequence of u(k) as uf = {u(0), u(1), · · · , u(N−1)}. Adding (4.4) for k ∈ I0:N−1,

we get

V N,p(x
+,uf ) =

N−1∑
k=0

L(x(k), u(k)) + V f (x(N)) ≤ V f (x
+) ∀x+ ∈ Xf

which completes the proof.

We note that u is a set-valued map of the state x, and so too is the associated first

component u(0;x). If we denote the latter map as κN,p(·), we can write the evolution of the

system (3.1) in closed-loop with suboptimal MPC as the following difference inclusion:

x+ ∈ F (x) = {f(x, u) | u ∈ κN,p(x)} (4.5)
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A similar difference inclusion approach could be used to describe the evolution of the

closed-loop system under optimal MPC where the optimal solution is nonunique.

Lemma 4.3. We have that κN,p(xs) = {us} and F (xs) = {xs}.

Proof. We know that L(x, u) ≥ γ(|x− xs|) (3.6) for all (x, u) ∈ Z. We also know that

Vf (x) ≥ γ(|x− xs|) for all x ∈ Xf (Lemma 3.19). Hence we can write

V N,p(x,u) =
N−1∑
k=0

L(x(k), u(k)) + Vf (x(N)) ≥ L(x, u(0;x)) ≥ γ(|x− xs|), ∀(x,u) ∈ X× UN

Since Xf contains xs (Assumption 3.14), from (4.3c) we have γ(0) ≤ V N,p(xs,u) ≤ V f (xs) =

0. Hence V N,p(xs,u) = 0. Since L(xs, u(k)) ≥ 0 for all k ∈ I0:N−1, it follows that u(k) = us

and hence κN,p(xs) = {us}. Consequently, F (xs) = f(xs, us) = xs.

4.3 Extended state and difference inclusions

It is now clear that in suboptimal MPC, we must keep track of the input u as well as

the state x, because the input is not determinable solely by the state as in optimal MPC.

Hence we define an extended state z = (x,u) and observe that it evolves according to the

difference inclusion

z+ ∈ H(z) = {(x+,u+) | x+ = f(x, u(0;x)), u+ ∈ G(z)} (4.6)

in which (noting that both x+ and u+ depend on z):

G(z) = {u+ | u+ ∈ UN,p(x+), V N,p(x
+,u+) ≤ V N,p(x

+,u), and V N,p(x
+,u+) ≤ V f (x

+) if x+ ∈ rB}
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We also define the following set (notice that rB ⊆ Xf ):

Zr = {(x,u) ∈ ZN,p | V N,p(x,u) ≤ V f (x) if x ∈ rB}.

Given the difference inclusion (4.6), we denote by ψ(k; z) = z(k) a solution at time k ∈ I≥0

starting from the initial state z(0) = z. We now define Asymptotic stability and Lyapunov

functions for the difference inclusion (4.6).

Definition 4.4 (Asymptotic stability). The steady state zs of the difference inclusion z+ ∈ H(z)

is asymptotically stable (AS) on Z , zs ∈ Z , if there exist a class K function γ(·) such that for

any z ∈ Z , all solutions ψ(k; z) satisfy:

ψ(k; z) ∈ Z, |ψ(k; z)− zs| ≤ γ(|z − zs| , k) for all k ∈ I≥0.

Definition 4.5 (Lyapunov function). V (z) is an Lyapunov function on the set Z for the dif-

ference inclusion z+ ∈ H(z) if there exist class K functions γ1(·), γ2(·), and γ3(·) such that the

following holds for all z ∈ Z :

γ1(|z − zs|) ≤ V (z) ≤ γ2(|z − zs|), max
z+∈H(z)

V (z+) ≤ V (z)− γ3(|z − zs|).

Lemma 4.6. If the set Z is positively invariant for the difference inclusion z+ ∈ H(z), H(0) =

{0}, and there exists a Lyapunov function V on Z , then zs is asymptotically stable on Z .

Proof. From the definition of V , for all z ∈ Z we have

max
z∈H(z)

V (z+) ≤ V (z)− γ3(|z − zs|) ≤ V (z)
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Hence we can write V (ψ(k; z)) ≤ V (z) for all k ∈ I≥0. Since ψ(k; z) ∈ Z for all k ∈ I≥0, we

can write

γ1(|ψ(k; z)− zs|) ≤ V (ψ(k; z)) ≤ V (z) ≤ γ2(|z − zs|)

Thus we obtain |ψ(k; z)− zs| ≤ γ−1
1 (γ2(|z − zs|)). We note that γ(·) = γ−1

1 (γ2(·)) is also a

class K function (Khalil, 2002, Lemma 4.2). Hence we have |ψ(k; z)− zs| ≤ γ(|z − zs|) for

all z ∈ Z , and hence zs is asymptotically stable on Z .

4.4 Nominal stability

We now show that the nonlinear system x+ = f(x, u) driven by a suboptimal algorithm

MPC satisfying (4.3) is asymptotically stable.

Lemma 4.7. There exists a class K function γm(·) such that |u− us| ≤ γm(|x− xs|) for any

(x,u) ∈ Zr.

Proof. We first show that |u − us| ≤ γs|x − xs| holds, for some class K function γs(·), if

x ∈ rB ⊆ Xf . From the definition of V N,p(·) and (3.6) we have

V N,p(x,u) ≥
N−1∑
k=0

ρ((φ(k;x,u)− xs, u− us)), ∀(x,u) ∈ X× UN

= ρs(x− xs,u− us)

≥ γs
(
|(x− xs,u− us)|

)
= γs(|z − zs|) (Lemma 3.3) (4.7)

where ρ(·) and ρs(·) are positive definite functions and γs(·) is a class K function. From

Lemma 3.19 we know that there exists a classK function γ(·) such that, V f (x) ≤ γ(|x− xs|)
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for all x ∈ Xf . Hence for all x ∈ rB ⊆ Xf ⊆ X, we can write

γs(|u− us|) ≤ γs(|(x− xs,u− us)|) ≤ V N,p(x,u) ≤ V f (x) ≤ γ(|x− xs|)

Hence we have |u− us| ≤ γs(|x− xs|) for all x ∈ rB, where γs(·) = γ−1
s (γ(·)) is also a

class K function (Khalil, 2002, Lemma 4.2). Define µ = maxu∈UN |u|, and note that µ < ∞

because UN is compact. Define a class K function γm(|x|) := max
{
γs(|x|), µr |x|

}
. Note

that since both γs(·) and |·| are continuous and strictly increasing, γm(·) is also continuous.

Hence we have |u− us| ≤ γm(|x− xs|) for all (x,u) ∈ Zr.

Lemma 4.8. V N,p(z) is a Lyapunov function for the extended closed-loop system (4.6) in any

compact subset of Zr.

Proof. As established in (4.7) in the proof of Lemma 4.7, V N,p(z) ≥ γs(|z − zs|) for all

z ∈ X× UN . Consider any compact set C ⊆ Zr. From the continuity of `(·), Vf (·) and λ(·)

(Assumption 3.10) and Lemma 3.18, we have

V N,p(x,u) ≤ γ2(|(x− xs,u− us)|), ∀(x,u) ∈ C ⊆ Zr

where γ2(·) = C |·| is a class K function. From the definition of V N,p(z) and (3.6) we

know that V N,p(z
+)− V N,p(z) ≤ −L(x, u(0)) ≤ −γ(|(x− xs, u(0)− us)|). From Lemma 4.7

we can write

|z − zs| ≤ |x− xs|+ |u− us| ≤ |x− xs|+ γs(|x− xs|), ∀z ∈ C

= γs(|x− xs|)

≤ γs(|(x− xs, u(0)− us)|)
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Hence we have

V N,p(z
+)− V N,p(z) ≤ −γ

(
γ−1
s (|z − zs|)

)
= −γ3(|z − zs|), ∀z ∈ C

Hence V z(z) is a Lyapunov function for the nonlinear system (4.6) for all z in C ⊆ Zr.

Theorem 4.9. Let Assumptions 3.9, 3.10, and 3.14 hold. Then the steady-state solution xs is

an asymptotically stable equilibrium point of the nonlinear system (4.5), on (arbitrarily large)

compact subsets of XN,p.

Proof. From Lemma 4.8 we have that VN,p(z) is a Lyapunov function for (4.6) in the set Zr.

Let V be an arbitrary positive scalar, and consider the set

S = {(x,u) ∈ Zr | VN,p(x,u) ≤ V }.

We observe that S ⊆ Zr is compact and is invariant for (4.6). By Lemma 4.6, these facts

prove that zs is asymptotically stable on S for the difference inclusion (4.6), i.e., there

exists a class K function γ(·), such that for any z ∈ S we can write:

ψ(k; z) ∈ S and |ψ(k; z)− zs| ≤ γ(|z − zs| , k) for all k ∈ I≥0

in which ψ(k; z) = z(k) is a solution of (4.6) at time k for a given initial extended state

z(0) = z. We define C = {x ∈ XN,p | ∃u ∈ UN,p(x) such that (x,u) ∈ S} and note that C ⊆

XN,p and that C is compact because it is the projection onto Rn of the compact set S. Thus

for any x ∈ C and its associated suboptimal input sequence u such that z = (x,u) ∈ S,
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we denote with φ(k;x) the state component of ψ(k; z) (i.e., a solution of the nonextended

system (4.5)). For all k ∈ I≥0 we can write:

φ(k;x) ∈ C and |φ(k;x)− xs| ≤ |ψ(k; z)− zs| ≤ γ(|z − zs|) ≤ γ(γs|x− xs|)

because from Lemma 4.8 it follows that |z − zs| ≤ |x − xs| + |u − us| ≤ γs|x − xs|. This

inequality establishes that the origin of the closed-loop system is asymptotically stable

on C, and V can be chosen large enough for C to contain any given compact subset of

XN,p.

Corollary 4.10. Let Assumptions 3.9, 3.10, and 3.11 hold. Then the steady-state solution xs is an

asymptotically stable equilibrium point of the nonlinear system driven by the terminal constraint

MPC using a suboptimal algorithm satisfying the following:

u+ ∈ UN,c(x+) (4.8a)

VN,c(x
+,u+) ≤ VN,c(x

+,u) (4.8b)

on (arbitrarily large) compact subsets of XN,c.

Proof. The terminal constraint formulation can be viewed as a special case of the terminal

penalty formulation with Xf = {xs}.

Hence to ensure closed-loop stability in the nominal case, it is sufficient to ensure

that the cost drops when the optimizer is invoked at each iteration with a feasible warm

start (4.3b). The cost drop is easy to check since a feasible warm start is readily generated

and when the NLP solver is initialized with a feasible warm start, it always returns a



66

solution with a lower objective value. For very large problems, this also enables us to stop

the optimizer before it converges to a local optimum, as long as the solution returned has

a lower cost than the warm start. In all the simulation studies in this thesis, a drop in the

cost is ensured since the NLP solver is always initialized with the warm start.
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Chapter 5

Non-steady operation

Note: The text of this chapter appears in Rawlings and Amrit (2008); Angeli, Amrit, and

Rawlings (2009); Angeli et al. (2011a); Angeli, Amrit, and Rawlings (2011b).

5.1 Introduction

In Chapter 3, we extended the MPC stability theory to generic nonlinear systems and

cost. As established, for general nonlinear systems and/or nonconvex cost functionals,

the optimal steady state xs may not necessarily be an equilibrium point of the closed-loop

system and therefore its stability cannot be expected in general. Chapter 3 establishes

a class of systems - strictly dissipative systems, for which closed loop stability is estab-

lished for different MPC formulations. It is in fact conceivable that the optimal path from

xs, at time 0 to xs at time N , (that is at the end of the control horizon N ), be different

from the constant solution x(k) ≡ xs for all k ∈ I0:N , for systems which are not strictly

dissipative. While this can at first sight appear to be a dangerous drawback of economic
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MPC, it might be, for specific applications, one of its major strengths. Huang et al. (2011b)

point out applications like simulated moving bed (SMB) and pressure swing adsorption

(PSA) in which non-steady operation is desirable due to the design of the process. As

we saw previously, the economic MPC formulation extracts its benefits compared to stan-

dard tracking formulation from the transient portion of process operation. Hence the

processes, for which non-steady operation outperforms steady operation, have a lot of

potential for extracting economic advantages.

In this chapter, we evaluate the importance of non-steady operation and discuss

the possible benefits, which provide the incentive to extend MPC algorithms to control

processes in non-steady fashion. Unlike Chapter 3 and 4 we do not assume that the non-

linear system x+ = f(x, u) is strictly dissipative with respect to the shifted economic cost.

Hence closed loop stability is not guaranteed.

5.2 Average performance

In this section we show that even though stability is not in general guaranteed, asymptotic

economic performance of the controller is preserved. We first define our performance

measure.

Definition 5.1 (Average performance). The asymptotic average performance of the system

x+ = f(x, u) is defined as

lim
T→∞

∑T
k=0 `(x(k), u(k))

T + 1
, x+ = f(x, u), x(0) = x
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where u(k) ∈ U for all k ∈ I≥0.

Remark 5.2. It is important to note that the above limit may fail to exist. For example, in cyclic

processes in which a recurring periodic operation is observed, the above limit does not have a finite

value. However, for such cases, the asymptotic average performance can still be quantified as the

following interval rather than a single value.

[
lim
T→∞

inf `av, lim
T→∞

sup `av

]
, `av =

∑T
k=0 `(x(k), u(k))

T + 1
x+ = f(x, u), x(0) = x

We now show that economics optimizing MPC always outperforms the best steady-

state profit in time average.

Theorem 5.3. Consider the terminal penalty MPC formulation presented in Section 3.4. If As-

sumptions 3.10 and 3.14 hold, the asymptotic average performance of the closed-loop nonlinear

system (3.23) is better, i.e., no worse, than the performance of the optimal admissible steady state.

Proof. Consider the usual optimal input sequence (3.22) corresponding to state x ∈ XN

and the candidate sequences (3.26) and (3.27) at state x+ = f(x, u0
p(0;x)):

u0
p(x) = {u0

p(0;x), u0
p(1;x), · · · , u0

p(N − 1, x)} (3.22)

u(x) = {u0
p(1;x), u0

p(2;x), . . . , u0
p(N − 1;x), κf (x

0(N ;x)))} (3.26)

x(x) =
{
x0
p(1;x), x0

p(2;x), . . . , x0
p(N ;x), x0

p(N + 1;x))
}

(3.27)

From the definition of VN,p(·) we can write

VN,p(x
+) = V 0(x)− `(x, u0

p(0;x)) + `(x0
p(N ;x), Kf (x

0
p(N ;x)))− Vf (x0

p(N ;x)) + Vf (x
0
p(N + 1;x))
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Using the stability assumption on Vf (·) (Assumption 3.14) gives

V 0
N,p(x

+)− V 0
N,p(x) ≤ `(xs, us)− `(x, u0

p(0;x)), ∀x ∈ XN (5.1)

The stage cost `(x, u) is bounded on Z since `(·) is continuous on Z and Z is compact.

Hence V 0
N,p(x

+) − V 0
N,p(x) is also bounded in the set XN , which in turn implies that the

average,
∑T

k=0 V
0
N,p(x(k+1))−V 0

N,p(x(k))

T+1
, is also bounded in the set XN . Taking averages on both sides of

(5.1)

lim inf
T→+∞

∑T
k=0 V

0
N,p(x(k + 1))− V 0

N,p(x(k))

T + 1
≤ lim inf

T→+∞

∑T
k=0 `(xs, us)− `(x(k), u(k))

T + 1

≤ `(xs, us)− lim sup
T→+∞

∑T
k=0 `(x(k), u(k))

T + 1

The left hand side of the inequality can be simplified as

lim inf
T→+∞

∑T
k=0 V

0
N,p(x(k + 1))− V 0

N,p(x(k))

T + 1
= lim inf

T→+∞

V 0
N,p(x(T + 1))− V 0

N,p(x(0)

T + 1
= 0

which gives

lim sup
T→+∞

∑T
k=0 `(x(k), u(k))

T + 1
≤ `(xs, us)

which completes the proof.

Corollary 5.4. Consider the system under the terminal constraint MPC presented in Section 3.3.

Let Assumption 3.10 hold. The asymptotic average performance of the closed-loop nonlinear sys-

tem (3.12) is better, i.e., no worse, than the performance of the optimal admissible steady state.

Proof. The terminal constraint formulation can be viewed as a special case of the terminal

penalty formulation with Xf = {xs}.
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5.3 Non-steady MPC algorithms

A lot of industrial criticism to nonsteady operation is the possibility of violating process

safety constraints, physical system requirements and raw material constraints, during

its operation, as non-steady operations can be chaotic and unpredictable. As mentioned

earlier, non-steady behavior may be desired in many applications due to its economic

benefit and hence this motivates the formulation of controlled non-steady operations. For

a plant that is not optimally operated at steady state, it is meaningful to aim at an average

asymptotic cost that is strictly less than that of the best feasible equilibrium. In these

cases, to characterize the nature of operation, we introduce the following two concepts:

1. Average constraints

2. Periodic operation

In this section, we define these characterizations and propose MPC formulations to con-

trol the systems in these desired ways.

5.3.1 Average constraints

Note: The results of this section are taken from Angeli et al. (2011a).

For stable systems, the asymptotic averages of variables (typically inputs and states)

are determined by the values of those variables at the equilibrium point. Therefore aver-

age constraints do not deserve special attention as they are taken into account by default

in the single layer economic MPC setup or can be taken into account as static constraints in
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the RTO layer. But when dealing with nonsteady operation, consideration of constraints

on average values of variables, besides pointwise hard bounds as discussed in the pre-

vious formulations, are necessary. In this section we first define asymptotic average of

any given vector valued bounded variable, and then formulate a MPC scheme to satisfy

constraints on these average quantities.

Definition 5.5 (Average vector quantity). The average of a vector valued bounded variable v is

defined as

Av[v] =
{
v ∈ Rnv | ∃ tn → +∞ : lim

n→+∞

∑tn
k=0 v(k)

tn + 1
= v

}
Remark 5.6. Similar to the limit in the definition of average performance, the average vector Av[v]

defined above may be an interval rather than a single value. The interval is always nonempty

(because bounded signals have limit points). The computed value v will depend on the sequence of

time points {tn} selected.

Formulation

We now present a MPC algorithm that controls the system fulfilling constraints on aver-

age of desired quantities, as described above. Let Y ⊆ Rp be a closed and convex set and y

an auxiliary output variable defined according to:

y = h(x, u) (5.2)

for some continuous map h : Z→ Rp. The following nestedness property is assumed:

h(xs, us) ∈ Y (5.3)
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Our goal is to design a receding horizon control strategy that ensures the following set of

constraints:

Av[`(x, u)] ⊆ (−∞, `(xs, us)]

(x(k), u(k)) ∈ Z k ∈ I≥0

Av[y] ⊆ Y

(5.4)

Consider the following dynamic regulation problem

PN,av(x) : V 0
N,av(x) := min

u

{
VN,c(x,u) | u ∈ UN,c(x),

N−1∑
k=0

h(x(k), u(k)) ∈ Yt

}

(5.5)

where VN,c(·) and UN,c(x) are the terminal constraint cost function and the corresponding

input constraint set defined in (3.7) and (3.8), respectively. We observe that due to As-

sumption 3.10 and the fact that the set Y is closed and convex, the above problem has a

solution. The time-varying output constraint set is the new feature of this problem. To

enforce the average constraints, we define the constraint sets using the following recur-

sion

Yi+1 = Yi ⊕ Y	 h(x(i), u(i)) for i ∈ I≥0 (5.6)

Y0 = NY + Y00 (5.7)

in which the set Y00 ⊂ Rp is an arbitrary compact set containing the origin and the sym-

bols ⊕ and 	 denote standard set addition, and subtraction, respectively. By adjusting

the output constraint sets with the closed-loop behavior, we force the average constraints

to be satisfied asymptotically. Denote the optimal solution of PN,av(x) as

u0
av(x) = {u0

av(0;x), u0
av(1;x), · · · , u0

av(N − 1, x)} (5.8)
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Denote the corresponding implicit MPC control law and the closed loop system as

x+ = f(x, κN,av(x)), κN,av(x) = u0
av(0;x) (5.9)

Theorem 5.7 (Angeli et al. (2011a)). Let Assumption 3.10 hold. Given a feasible initial con-

dition x for the problem PN,av(x), feasibility is ensured for all subsequent times. Moreover (5.4)

holds for the closed loop system (5.9).

Proof. The detailed proof is provided in Angeli et al. (2011a), and is omitted from this

thesis.

5.3.2 Periodic operation

Note: The results of this section are taken from Angeli et al. (2009).

In many studies, it has been established that the performance of many continuous

chemical processes can be improved by forced periodic operation (Lee and Bailey, 1980;

Sincic and Bailey, 1980; Watanabe, Onogi, and Matsubara, 1981; Watanabe, Matsubara,

Kurimoto, and Onogi, 1982). Bailey (1974) provides a comprehensive review of periodic

operation of chemical reactors. Several applications in the process industry exhibit peri-

odic/cyclic behavior due to their operational nature, such as pressure swing adsorption

(PSA) (Agarwal, Biegler, and Zitney, 2009) and simulated moving bed (SMB) separation

(Kawajiri and Biegler, 2006). This leads us to formulate MPC schemes that enforce pe-

riodic operation, in which the state at the beginning and at the end of the horizon are
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identical. Note that the steady-state solution is also a periodic solution. In this section

we define periodic solutions that outperform the best steady solution and discuss the MPC

scheme formulated by Angeli et al. (2009), that outperforms the periodic solution in time

average.

Consider a situation in which there is a Q-periodic solution x∗(k), k ∈ I0:Q−1 that

outperforms the best feasible steady state. Q, the period of the process, is assumed to

be either known from process design specifications, or fixed at the time constant of the

system. The periodic solution can be precomputed by solving the following optimization

problem:

min
x(0),u

VQ(x(0),u) =

Q−1∑
k=0

`(x(k), u(k))

subject to


x+ = f(x, u)

(x(k), u(k)) ∈ Z, k ∈ I0:Q−1

x(Q) = x(0)

(5.10)

with u = {u(0), u(1), . . . , u(Q− 1)}. Denote the optimal state and input sequence for this

problem as (x∗(k), u∗(k)), k ∈ I0:Q−1.

Next we obtain a time-varying state feedback law by solving online the following
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optimization problem over the set of terminal constraints indexed by integer q ∈ I0:Q−1

min
v
VN(x,v, q) subject to



z+ = f(z, v)

(z(k), v(k)) ∈ Z, k ∈ I0:N−1

z(N) = x∗(q)

z(0) = x

(5.11)

Let (z0(x, q),v0(x, q)) denote the optimal state and input of (5.11) (assumed unique) for

initial state x using the qth element of the periodic terminal constraint. Next define the

implicit MPC feedback control law κN(·) as the first element of the optimal input sequence

using the qth constraint

κN(x, q) = v0(0;x, q) (5.12)

The corresponding closed loop system evolves according to

x+ = f(x, κN(x, t mod Q)) (5.13)

where t is the current time and x is the state at time t. This control law κN(x, q) is de-

fined on the set of x for which problem (5.11) is feasible. Notice that, due to the periodic

terminal constraint, the resulting closed-loop system is also a Q-periodic nonlinear sys-

tem. As in the case of optimal equilibria, asymptotic convergence to the periodic solution

is not generally to be expected and can only be ensured provided suitable dissipativity

assumptions are in place.

We now show that the asymptotic average cost along the closed loop system (5.13)

is not worse than that of the optimal periodic solution.
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Theorem 5.8 (Angeli et al. (2009)). The average asymptotic performance of the nonlinear control

system (5.13) fulfills:

lim sup
T→+∞

∑T
k=0 `(x(k), u(k))

T + 1
≤
∑Q−1

k=0 `(x
∗(k), u∗(k))

Q
(5.14)

Proof. As in the proof of Theorem 5.3, we can write

V 0
N,p(x

+)− V 0
N,p(x) ≤ `(x∗(q), u∗(q))− `(x, u0

p(0;x)), ∀x ∈ XN , q = t mod Q (5.15)

Taking averages on both sides of (5.15)

lim inf
T→+∞

∑T
k=0 V

0
N,p(x(k + 1))− V 0

N,p(x(k))

T + 1
≤ lim inf

T→+∞

∑T
k=0 `(x

∗(k mod Q), u∗(k mod Q))− `(x(k), u(k))

T + 1

≤
∑Q−1

k=0 `(x
∗(k), u∗(k))

Q
− lim sup

T→+∞

∑T
k=0 `(x(k), u(k))

T + 1

The left hand side of the inequality can be simplified as

lim inf
T→+∞

∑T
k=0 V

0
N,p(x(k + 1))− V 0

N,p(x(k))

T + 1
= lim inf

T→+∞

V 0
N,p(x(T + 1))− V 0

N,p(x(0)

T + 1
= 0

which gives

lim sup
T→+∞

∑T
k=0 `(x(k), u(k))

T + 1
≤
∑Q−1

k=0 `(x
∗(k), u∗(k))

Q

which completes the proof.

5.4 Enforcing convergence

As we established in the previous sections, due to potential nonconvexity of costs con-

sidered as well as nonlinearity of the underlying dynamics, convergent behaviors are
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not always optimal and/or desirable. In many other contexts convergence to an equilib-

rium is a requirement that cannot be sacrificed by trading it off with economics. Hence

in this section we investigate ways to fulfill convergence requirements while still opti-

mizing transient economic performance. In this section, two methods are discussed and

compared to systematically enforce convergence to the best equilibrium provided by the

static optimization layer while still employing an economic MPC scheme.

5.4.1 Regularization of objective

As established in Sections 3.3 and 3.4, satisfaction of strict dissipativity (Definition 3.8)

ensures convergent behavior in the system. Angeli et al. (2011a) use this fact to propose a

method to enforce convergence.

We consider the following modified stage cost in which we shall determine the

function α : X× U→ R≥0

`(x, u) = `(x, u) + α(x, u) (5.16)

in which α(·) is chosen positive definite with respect to (xs, us). Hence, `(·) and `(·) share

the same optimal steady state, (xs, us). To achieve strict dissipativity, it is sufficient to

satisfy the following inequality for some continuous λ(x) : X→ R and all (x, u) ∈ Z

λ(x)− λ(f(x, u)) ≤ −ρ(x) + `(x, u)− `(xs, us) + α(x, u)

Rearranging, we must satisfy for some λ and all (x, u) ∈ Z

α(x, u) ≥ h(x, u, λ) := λ(x)− λ(f(x, u)) + ρ(x)− `(x, u) + `(xs, us)



79

The right hand side in the above inequality is continuous in (x, u) for all λ. To obtain the

weakest modification to the economic stage cost, we first determine the maximum of the

lower bounding function in a ball of radius r around the steady state:

h(r, λ) = max
(x,u)∈Z

|(x,u)−(xs,us)|≤r

h(x, u, λ), ∀r ∈ R≥0

in which the maximum exists for all r ∈ R≥0 by the Weierstrass theorem. Define α(·) as:

α(x, u) = h(|(x, u)− (xs, us)| , λ) (5.17)

For any λ(x) : X → R, α(x, u) is positive definite with respect to (xs, us) and suffices for

strict dissipativity. Note that the choice of λ(x) is critical for above analysis. In general,

storage functions can be nonlinear. A special class of strictly dissipative systems are called

strongly dual systems (Diehl et al., 2011), in which the storage function is a linear function

of the state, i.e. λ(x) = λ′x for λ ∈ Rn. Angeli et al. (2011a) present the above analysis for

such a choice of λ(x).

We then have the following stability result.

Theorem 5.9 (Amrit et al. (2011)). Consider a nonlinear control system x+ = f(x, u) and the

MPC control scheme defined in Sections 3.3 and 3.4. If the stage cost is chosen according to

(5.16) with α(x, u) chosen according to (5.17) for any λ ∈ Rn, then xs is an asymptotically stable

equilibrium point of the closed-loop system with region of attraction XN .

Proof. By construction of α(·), strict dissipativity is satisfied and Theorems 3.13 and 3.21

apply, giving asymptotic stability of xs.
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Theorem 5.9 allows us to add sufficiently convex regularization terms to the eco-

nomic stage cost to enforce convergent behavior, without changing the steady-state opti-

mum. For practical purposes, the most straightforward choice of the regularization term

is the following standard tracking form

α(x, u) = (1/2)(|x− xs|2Q + |u− us|2R)

where the penalties Q and R are chosen as the minimum required to achieve strict dis-

sipativity. Another choice of α(·) is motivated from the fact that non-steady operation

involves the control variables to jump between its bounds (e.g. bang-bang control). To

enforce convergence this observation leads to penalizing the input moves:

α(x, u) = (1/2) |u(k)− u(k − 1)|2S

Note that by adding the regularization terms, the contours of objective function of the

optimization problem change, and the controller is not purely economic anymore. Hence

a decrease in economic performance is expected. This decrease in performance is the

trade off for gain in stability.

5.4.2 Convergence constraint

As pointed in the previous section, changing the objective function changes the cost sur-

face and the controller does not optimize purely economic cost functions. If changing the

objective function is not desired, the next window for modification in the MPC regula-

tion problem are the constraints. In this section we exploit the MPC scheme designed in
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Section 5.3.1 to enforce constraints on average quantities during closed loop operation.

We introduce convergence constraints which specifically enforce the following zero variance

constraint on the system:

Av[|x− xs|2] ∈ {0}

Theorem 5.10 (Angeli et al. (2011b)). Consider the problem PN,av(x) defined in (5.5), with

h(x, u) = |x− xs|2 and Y = {0}. The corresponding closed loop system (5.9) asymptotically

converges to the equilibrium point xs.

Proof. The detailed proof is provided in Angeli et al. (2011b), and is omitted from this

thesis.

5.5 Illustrative examples

Having established the benefits of non-steady process operation and developed MPC

schemes to control these processes, we now present two chemical engineering examples

from the literature to demonstrate the application of these concepts.

5.5.1 Batch process: Maximizing production rate in a CSTR

Consider a single second-order, irreversible chemical reaction in an isothermal CSTR (Sin-

cic and Bailey, 1980)

A −→ B r = kcnA
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in which k is the rate constant and n is the reaction order. The material balance for com-

ponent A is

dcA
dt

=
1

τ
(cAf − cA)− kcnA

dx

dt
=

1

τ
(u− x)− kxn τ = 10, k = 1.2, n = 2 (5.18)

in which cA = x is the molar A concentration, cAf = u is the feed A concentration, and τ =

10 is the reactor residence time. Consider the simple case in which the process economics

for the reactor are completely determined by the average production rate of B. The reactor

processes a mean feedrate of component A. The available manipulated variable is the

instantaneous feed concentration. The constraints are that the feed rate is nonnegative,

and the mean feed rate must be equal to the amount of A to be processed

u(t) ≥ 0
1

T

∫ T

0

u(t)dt = 1 (5.19)

in which T is the time interval considered. We wish to maximize the average production

rate or minimize the negative production rate

V (x(0), u(t)) = − 1

T

∫ T

0

kxn(t)dt subject to (5.18) (5.20)

The optimal control problem is then

min
u(t)

V (x(0, u(t)) subject to (5.18)–(5.19)

The optimal steady operation is readily determined. In fact, the average flowrate con-

straint admits only a single steady feed rate, u∗ = 1, which determines the optimal steady-

state reactor A concentration and production rate

u∗ = 1 x∗ = 0.25 V ∗ = −0.075
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For the second-order reaction, we can easily beat this production rate with a nonsteady A

feed policy. Consider the following extreme policy

u(t) = Tδ(t) 0 ≤ t ≤ T

which satisfies the mean feed rate constraint, and let x(0) = 0 be the reactor initial con-

dition at t = 0−. The impulsive feed policy gives a jump in x at t = 0 so x(0+) = T/τ .

Solving the reactor material balance for this initial condition and u = 0 over the remaining

time interval gives

x(t) =
T/τ

(1 + 12T/τ)e0.1t − 12T/τ
0 ≤ t ≤ T

We see from this solution that by choosing T large, x(T ) is indeed close to zero, and we

are approaching a periodic solution with a large period. Substituting x(t) into (5.20) and

performing the integral in the limit T →∞ gives

V ∗ = lim
T→∞

− 1

T

∫ T

0

kx2(t)dt = −0.1

The sequence of impulses has increased the average production rate by 33% compared

to steady operation. Of course, we cannot implement this extreme policy, but we can

understand why the production rate is higher. The impulse increases the reactor A con-

centration sharply. For second-order kinetics, that increase pays off in the production of

B, and we obtain a large instantaneous production rate which leads to a large average

production rate.

For an implementable policy we can add upper bounding constraints on u and
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Figure 5.1: Optimal periodic input and state. The achieved production rate is V ∗ =

−0.0835, an 11% improvement over steady operation.

constrain the period

0 ≤ u(t) ≤ 3
1

T

∫ T

0

u(t)dt = 1 0 ≤ T ≤ 100

Solving the optimal control problem subject to this constraint and periodic boundary con-

ditions on x(t) gives the results in Figure 5.1. With the new constraints, switching the

input between the bounds (bang bang control), yields a time average production rate of

0.0835, which is an 11% improvement over the steady-state value of 0.075. The optimal

solution is similar to the extreme policy: increase the reactor A concentration to the high-

est achievable level by maximizing the feed concentration for as long as possible while

meeting the mean constraint.
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5.5.2 CSTR with parallel reactions

We consider the control of a nonlinear continuous flow stirred-tank reactor with parallel

reactions (Bailey, Horn, and Lin, 1971).

R→ P1

R→ P2

The primary objective of such processes is a desirable distribution of products in the ef-

fluent. The dimensionless heat and mass balances for this problem are

x1 = 1− 104x2
1e
−1/x3 − 400x1e

−0.55/x3 − x1

x2 = 104x2
1e
−1/x3 − x2

x3 = u− x3

where x1 is the concentration of the component R, x2 is the concentration of the desired

product P1 and x3 is the temperature of the mixture in the reactor. P2 is the waste product.

u, which is the heat flux through the reactor wall is the manipulated variable, and is con-

strained to lie between 0.049 and 0.449, while x is considered non-negative. The primary

objective of the process is to maximize the amount of P1 (`(x, u) = −x2). Previous anal-

ysis (Bailey et al., 1971) has clearly highlighted that periodic operation can outperform

steady-state operation. The steady-state problem has a solution xs =

[
0.0832 0.0846 0.1491

]′
and us = 0.1491. We solve the dynamic regulation problem with the terminal state con-

straint.
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Figure 5.2: Closed-loop input (a) and state (b), (c), (d) profiles for economic MPC with

different initial states

A control horizon of N = 150 is chosen with a sample time Ts = 1/6. The system

is initialized at three different initial states. The closed loop system under the economic

control is seen to jump between the input bounds and hence is unstable (Figure 5.2).

We observe that this system exhibits unsteady behavior and steady state conver-

gence is not optimal. Now we demonstrate the two non-steady MPC schemes.
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Figure 5.3: Periodic solution with period Q = 1.2 for CSTR with parallel reactions

Periodic operation

We first enforce periodic operation on the process. To do this, as prescribed in Sec-

tion 5.3.2, we first compute the periodic steady state of the system by solving (5.10), with

a fixed period Q = 1.2 and x(0) = xs. Since we saw earlier that this system exhibits non-

steady behavior, the system initialized at the steady state does not stay there. Figure 5.3

shows the periodic state of the system initialized at the best steady state. As mentioned

earlier, the economic objective of the system is to maximize concentration of the desired

product xs. The periodic solution in Figure 5.3 yields a time average value of 0.092 as

compared to the best steady-state value x2s = 0.084, giving an improvement of 9.5%,

which is the incentive for non-steady operation.
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Figure 5.4: Closed loop input and state profiles of the system under periodic MPC algo-

rithm

Next the algorithm prescribed in Section 5.3.2 for converging to a recurring peri-

odic operation is implemented. Figure 5.4 shows the closed loop profiles of the system

initialized at a random state under the periodic MPC algorithm. We see that the system

transients from the initial state and settles to a recurring periodic solution.
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Average constraints: Enforcing convergence

To enforce convergence, we first add a convex term in the stage cost as prescribed in

Section 5.4.1.

VN(x,u) =
N∑
k=0

−x2(k) + |u(k)− u(k − 1)|2S

For S = 0.17, we observe a stable solution (Figure 5.5), and the closed loop system con-

verges to the optimal steady state.

We can also penalize the distance from the steady state for the convex term in the

objective

VN(x,u) =
N∑
k=0

−x2(k) + |u(k)− us|2R

For R = 0.15, we again observe that the closed loop system converges to the optimal

steady state (Figure 5.6).

Next we enforce convergence without modifying the objective function, by enforc-

ing the zero variance constraint using the iteration scheme. Figure 5.7 shows closed loop

profiles with the tuning parameter Y00 defined as

Y00 = {y | −w ≤ y ≤ w} (5.21)

in which w =

[
0.5 0.05 0.018

]′
. The solution is also seen to converge to the optimal

steady state.

Also note that the rate of convergence depends on the tuning parameter Y00, which

is the initial variance allowance for the system. If the initial allowance is larger, iteration
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scheme takes a longer time to converge and hence the system is in transient for a longer

time, slowing down the rate of convergence. Figure 5.8 shows closed loop profiles for Y00

defined by and w =

[
0.5 0.07 0.07

]′
.
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Figure 5.5: Closed-loop input (a) and state (b), (c), (d) profiles for economic MPC with a

convex term, with different initial states.
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Figure 5.6: Closed-loop input (a) and state (b), (c), (d) profiles for economic MPC with a

convex term, with different initial states.
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Figure 5.7: Closed-loop input (a) and state (b), (c), (d) profiles for economic MPC with a

convergence constraint, with different initial states.
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Figure 5.8: Closed-loop input (a) and state (b), (c), (d) profiles for economic MPC with a

convergence constraint.
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Chapter 6

Computational methods

6.1 Introduction

In the previous chapters we developed the dynamic optimization formulations for solv-

ing economic MPC problems. The standard class of problems in which the model is linear

and the objective is quadratic, is a well studied class of problems, and the dynamic opti-

mization problem is solved using well established QP algorithms (Nocedal and Wright,

2006). Economic MPC problems are, in general, nonlinear in nature and not necessarily

convex. In this chapter, we discuss solution strategies to efficiently solve these nonlinear

dynamic optimization problems, with focus on direct NLP strategies to solve economic

dynamic MPC problems, one of which is used for all simulation studies in this thesis.

First, we define the problem statement in Section 6.2. In Section 6.3 we briefly discuss

the various strategies for dynamic optimization problems and introduce the direct NLP

solution methods. Section 6.4 and 6.5 discuss the two direct NLP strategies, namely, the
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sequential and the simultaneous approach.

6.2 Problem statement

We consider the following nonlinear DAE system

dxd
dt

= f(xd(t), xa(t), u(t))

0 = g(xd(t), xa(t), u(t))

with state x :=

[
xd xa

]′
∈ X ⊂ Rn, control u ∈ U ⊂ Rm, and state transition maps

f : X × U → Rd and g : X × U → Ra, where d and a are the number of differential and

algebraic variables respectively with d+ a = n. The measurements are related to the state

and input variables by the mapping h : X× U→ Rp.

y(t) = h(xd(t), xa(t), u(t))

We consider the discrete time domain in which time is partitioned into discrete time ele-

ments of size equal to the sample time of the problem. The problem is then parametrized

in terms of the values of the state, input and measurement variables at the boundary

of these finite elements. We discuss the finite horizon problem with a fixed control and

prediction horizon N, which is also the number of finite elements. As mentioned previ-

ously, the constraints are imposed directly at the boundary points. As before, the system

is subject to the mixed constraint

(x(k), u(k), y(k)) ∈ Z k ∈ I≥0
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for some compact set Z ⊆ X×U×Y. The performance measure is denoted by ` : Z→ R.

The dynamic MPC regulation problem is set up as following:
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min
u

N∑
k=0

`(y(k), u(k)) + Vf (y(N)) (6.1a)

dxd
dt

= f(xd(t), xa(t), u(t)) (6.1b)

0 = g(xd(t), xa(t), u(t)) (6.1c)

y(t) = h(xd(t), xa(t), u(t)) (6.1d)

gl ≤ G(y(t), u(t)) ≤ gu (6.1e)

where the control sequence is denoted as u := {u(0), u(1), . . . , u(N − 1)}. The nonlin-

ear system is stabilized using MPC by adding either a terminal equality constraint (Sec-

tion 3.3), x(N) = xs and setting Vf (x) = 0, or by adding a terminal inequality constraint of

the form x(N) ∈ Xf for some appropriately chosen compact terminal region (Section 3.4)

Xf and a corresponding terminal penalty Vf (·). The terminal constraint, along with other

constraints including bounds on the state, input and measurement variables are general-

ized into the nonlinear constraint (6.1e).

In the standard tracking regulation, the performance measure is chosen as the dis-

tance from the optimal steady state (Rawlings and Mayne, 2009, Ch. 2). Hence `track(y, u) =

1/2(|y − ys|Q+ |u− us|R), whereQ andR are the tuning parameters that govern the speed

of convergence. For process economics optimizing regulation, the stage cost `(·) is cho-

sen as the economic performance measure, like the operating cost or the negative of the

profit. Note that in economic MPC `(·) is not necessarily positive definite or convex with

respect to the optimal steady state as it is in the standard MPC tracking problem.
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Figure 6.1: Classification of dynamic optimization solution methods

6.3 Methods for dynamic optimization

Chemical processes are modeled dynamically using differential and algebraic equations

(DAEs). Dynamic equations such as mass and energy balances make up the differential

equations, and physical and thermodynamic relations contribute to the algebraic part of

the process model. In Model predictive control, a dynamic regulation problem is formu-

lated in which these DAEs are used to predict the system behavior in the future. Methods

to solve these dynamic optimization problems are classified into different approaches

based on how the DAE’s are handled (Figure 6.1).

6.3.1 Hamiltonian-Jacobi-Caratheodory-Bellman (HJCB) approach

In the Hamiltonian-Jacobi-Caratheodory-Bellman (HJCB) approach, the optimal control

is obtained by solving a PDE for a value function (Pesch and Bulirsch, 1994). Solution

of PDE’s have two major drawbacks. Firstly, the numerical solution is possible for very

small state dimensions. Secondly, the inequality constraints on the state variables as well

as dynamical systems with switching points, lead to discontinuous partial derivatives and
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cannot be easily included. Discretization methods to compute numerical approximations

of the value function by solving the first order PDE with dynamic programming has been

discussed in detail by Bardi and Dolcetta (1997); Falcone and Ferretti (1994); Lions (1982).

The application of this methodology is restricted to the case of continuous state systems

with a maximum of three state dimensions(Binder, Blank, Bock, Bulirsch, Dahmen, Diehl,

Kronseder, Marquardt, and Schloder).

6.3.2 Variational/Indirect approach

The indirect or variational approach is a common approach to optimal control problems.

This approach involves defining the Hamiltonian for the problem as a function of the

cost, the constraints and adjoint variables. The necessary conditions for optimality of so-

lution trajectories can then be written as a boundary value problem in the states and

adjoints. Early developments of the Maximum principle have been carried out by Pon-

tryagin, Boltyanskii, Gamkrelidze, and Mishchenko (1962); Isaacs (1965). The approach

has been extended to handle general constraints on the control and state variables (Hartl,

Sethi, and Vickson, 1995). For problems without inequality constraints, the optimality

conditions can be formulated as a set of differential algebraic equations. Often the state

variables have specified initial conditions and the adjoint variables have final conditions.

The resulting two-point boundary value problem (TPBVP) can be addressed with dif-

ferent approaches, including single shooting, invariant embedding, multiple shooting or

some discretization method such as collocation on finite elements or finite differences.
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A review of these approaches can be found in Cervantes and Biegler (2001).If the prob-

lem requires the handling of active inequality constraints, finding the correct switching

structure as well as suitable initial guesses for state and adjoint variables is often very

difficult.

6.3.3 Direct approach

In this chapter, we discuss the Discretize then Optimize, or the direct NLP approaches. In

these approaches, the system is first discretized to form a nonlinear algebraic problem,

which is then solved using an NLP algorithm. Hence we form finite dimentional prob-

lems that can use the machinery of NLP solvers. As seen in Figure 6.1, the direct NLP ap-

proaches can be separated into two groups: Sequential and Simultaneous strategies, based

on which variables are discretized. Sequential strategy is discussed in Section 6.4. Multi-

ple shooting serves as a hybrid between sequential and simultaneous approaches. Here the

time domain is partitioned into smaller time elements and the DAE models are integrated

separately in each element (Bock and Plitt, 1984; Leineweber, 1999). Control variables are

parametrized in the same way as in sequential approach and gradient information is ob-

tained for both control variables as well as initial conditions of the state variables in each

element. The inequality constraints for state and control variables are imposed directly

at the boundary points. The other simultaneous approach: orthogonal collocation is dis-

cussed in Section 6.5.
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Discretization scheme in Discretization control

the interval t ∈ [t(k), t(k + 1)) parameters

Piecewise constant u(t) = u(k) u(k), k ∈ I0:N

Piecewise linear u(t) = u(k) +
(
u(k+1)−u(k)

∆t

)
(t− t(k)) u(k), k ∈ I0:N

Polynomial approxima-

tion

u(t) =
∑n

q=1 ψq

(
t−t(k)

∆t

)
uq(k) 1 uq(k), k ∈ I0:N , q ∈

I0:n

Table 6.1: Discretization schemes for the control variables

x(t), y(t)
DAE/ODE Solver

GradientsDesicion variables
u(t)

State profiles

Calculations
Sensitivity

NLP Solver

Figure 6.2: Sequential dynamic optimization strategy

6.4 Sequential methods

Also known as the control parametrization method, the sequential approach involves dis-

cretization of only the control variables. The time horizon is divided into N time stages,

which is essentially the control horizon in the discrete time formulation. Different dis-

cretization schemes to parametrize the control variables are summarized in Table 6.1.

1uq(k) represents the value of the control variable in stage k the collocation point q. ψq is a Langrange

polynomial of order n satisfying ψq(ρr) = δq,r
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Figure 6.2 provides a sketch of the sequential dynamic optimization strategy. Con-

sider the formulation (6.1). The input profile u(t), t ≥ 0 is approximated in terms of

the discretization control parameters u = {u(k)}, k ∈ I0:N−1 according to the type of

parametrization chosen (Table 6.1). Hence the optimization problem can be written in

terms of the optimization variable vector u as

min
u

N−1∑
k=0

`(y(k), u(k)) + Vf (y(N)) (6.2a)

dxd
dt

= f(xd(t), xa(t),u) (6.2b)

0 = g(xd(t), xa(t),u), t ∈ (t(k − 1)− t(k)], k ∈ I1:N (6.2c)

y(k) = h(xd(k), xa(k), u(k)) (6.2d)

gl ≤ G(y(k), u(k)) ≤ gu (6.2e)

A NLP solver is used to solve this optimization problem. At a given iteration of the opti-

mization cycle, the decision variables are provided by the NLP solver. With these decision

variables, the DAE/ODE system is integrated forward in time until the terminal time to

compute the state profiles that determine the objective and constraint functions. Then the

gradients of the objective and constraints are evaluated through solution of DAE sensi-

tivity equations. The function and gradient information is then passed back to the NLP

solver so that it can update the decision variables. The cycle continues until the NLP

solver converges. Since the optimization problems in question are nonlinear and non-

convex in nature, the performance of the NLP solver depends heavily on the gradient

and Hessian information. Most NLP solvers have inbuilt algorithms to compute first and
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second order derivatives using finite differences, but as we shall see in the next section,

finite difference method is error prone and does not perform well. Hence sensitivity cal-

culations are usually employed for the purpose, which we shall discuss in the following

section.

It is also well known that sequential approaches cannot handle open loop insta-

bility (Ascher and Petzold, 1998; Flores-Tlacuahuac, Biegler, and Saldvar-Guerra, 2005).

Otherwise, finding a feasible solution for a given set of control parameters may be diffi-

cult. Cervantes and Biegler (2001); Vassiliadis (1993) review these methods in detail.

6.4.1 Sensitivity strategies for gradient calculation

The most important component of the sequential approach, apart from the NLP algo-

rithm, is the gradient calculation for the NLP solver. There are three approaches for gra-

dient calculations

1. Perturbation

2. Forward sensitivity calculation

3. Adjoint sensitivity calculation
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Gradients by perturbation

Perturbation is the easiest way to compute the gradients. Consider a standard NLP of the

form

min
z
f(p, z) s.t. c(p, z) = 0 zl ≤ z ≤ zu (6.3)

where p is the parameter, which in our case would be the initial state, and z is the op-

timization variable vector. The derivatives of the objective f(·) and the constraints c(·),

need to be computed implicitly from the DAE model, often in tandem with the DAE so-

lution. To compute the gradients with respect to the decision vector z, we apply forward

difference perturbation to the vector z

zi = z + δei, i ∈ I1:nz

where the ith element of vector ei is 1 and the other elements are zero, and δ is a small

perturbation size. the approximate gradients are

1

δ
(f(p, zi)− f(p, z)) = ∇zif(p, z) +O(δ) +O(δ−1)

1

δ
(c(p, zi)− c(p, z)) = ∇zic(p, z) +O(δ) +O(δ−1)

It is well known that gradients evaluated by perturbation are often plagued by truncation

errors and roundoff errors. Truncation errors result from neglect of higher order Taylor

series terms that vanish as δ → 0. On the other hand, roundoff errors that result from

internal calculation loops (i.e. convergence noise from the DAE solver) are independent

of δ and lead to large gradient errors as δ → 0. While δ can be selected carefully and
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roundoff errors can be controlled, the gradient error cannot be eliminated completely.

Biegler (2010, Ch. 7) show that this can lead to inefficient and unreliable performance by

the NLP solver.

Forward sensitivity calculation

Consider the DAE system defined by (6.2a) and (6.2b). Assuming the functions f(·) and

g(·) are sufficiently smooth in all of their arguments, we differentiate the system with

respect to the decision variable u using chain rule as following

d

du


dxd
dt

= f(xd(t), xa(t), u(t)), xd(0) = x0

g(xd(t), xa(t), u(t)) = 0

Defining sensitivity matrices S(t) = dxd
du

T
and R(t) = dxa

du

T , we obtain the following sensi-

tivity equations

dS

dt
=

∂f

∂xd

T

S(t) +
∂f

∂xa

T

R(t) +
∂f

∂u

T

, S(0) =
∂x0

∂u

0 =
∂g

∂xd

T

S(t) +
∂g

∂xa

T

R(t) +
∂g

∂u

For n states and N decision variables, we have n × N sensitivity equations. These sensi-

tivity equations are index-1 DAE’s. To avoid the need to store the state profiles, the sen-

sitivity equations are usually solved simultaneously with the state equations. Once the

sensitivities are determined, we compute the gradients for the objective and constraint

functions as following

∇uf = S(tf )
∂f

∂x
+
∂f

∂u
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Hence we can compute the gradients by solving a larger augmented system of DAE’s and

these estimated gradients are passed to the NLP solver to compute its next iteration.

6.4.2 Adjoint sensitivity calculation

The Adjoint method is rooted in calculus of variations and the Euler-Lagrange approach to

optimal control (Bryson and Ho, 1975; Bryson Jr, 1996; Bryson, 1999). However, the ad-

joint approach to sensitivity analysis has recently had a renaissance as dynamic optimiza-

tion problems of large size and with a large number of parameters appear in engineering

applications. Petzold, Li, Cao, and Serban (2006) provide an overview of sensitivity anal-

ysis in differential algebraic systems by the adjoint approach. Cao, Li, Petzold, and Serban

(2003) analyze the numerical stability properties of the adjoint system. They show that

the stability of the adjoint system is identical to the stability of the original system for

systems of ordinary differential equations as well as for semi- explicit index-1 differen-

tial algebraic equations. For general index-0 and index-1 DAE systems, they define an

augmented adjoint system that is stable if the original DAE system is stable.

As we observed, forward sensitivity setup requires integration of n+(n×N) DAE’s

equation. This number grows if the number of optimization variables and/or the num-

ber of states become large and hence the method becomes inefficient. A complementary

approach can be derived based on variational approach. In this approach to derive the

sensitivities, we consider the sensitivity of the objective and constraint functions sepa-

rately. Denote Ψ as an element of Ψ(u), which represents either the objective or constraint
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function at the end of the sample time (t = ts).

Consider the DAE system defined by (6.1b) and (6.1c). We define adjoint variables

as follows

Ψ(xd(t), xa(t),u) = Ψ(xd(ts), xa(ts),u)+∫ ts

0

[
λd(t)

′
(
f(xd(t), xa(t),u)− dxd

dt
(t)

)
+ λa(t)

′g(xd(t), xa(t),u)

]
dt (6.4)

where λd(t) and λa(t) are the differential and algebraic adjoint variables respectively. They

can also be seen as the Langrange multipliers of 6.1b and 6.1c, i.e the constraints due the

system dynamics, in the optimization problem (6.1). Integrating (6.4) we get

Ψ(xd(t), xa(t),u) = Ψ(xd(ts), xa(ts),u)− xd(ts)′λd(ts) + xd(0)′λd(0)+∫ ts

0

[
λd(t)

′f((xd(t), xa(t),u) + xd(t)
′dλd
dt

(t) + λa(t)
′g(xd(t), xa(t),u)

]
dt

Applying perturbations to this equation we get

dΨ =

[
∂Ψ

∂xd
− λd(ts)

]′
δxd(ts) + λd(0)′δxd(0) +

∂Ψ

∂u

′
du+∫ ts

0

[
∂f

∂xd
λd −

dλd
dt

+
∂g

∂λa

]′
δxd(t) +

[
∂f

∂xa
λd +

∂g

∂xa
λa

]′
δxa(t)+[
∂f

∂u
λd +

∂g

∂u
λa

]′
dudt

We set all the terms which are not influenced by du to zero so that only du has a direct
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influence on dΨ. This gives us the following

dλd
dt

= − ∂f

∂xd
λd −

∂g

∂xd
λa (6.5a)

0 =
∂f

∂xa
λd +

∂g

∂xa
λa (6.5b)

λd(ts) =
∂Ψ

∂xd
(6.5c)

δxd(0) = 0 (6.5d)

In the above system, (6.5a) and (6.5b) give us a DAE system in the adjoint variables with

a terminal boundary condition (6.5c). (6.5d) comes from the fact that in our problem, the

initial state is a fixed parameter. Hence we get

dΨ

du
=

[
∂Ψ

∂u

]′
+

∫ ts

0

[
∂f

∂u
λd +

∂g

∂u
λa

]′
dt

Hence calculation of adjoint sensitivities requires the solution of a DAE system (6.5) with

a terminal condition instead of an initial condition. Once the state and adjoint variables

are obtained, the integrals allow direct calculation of the gradients ∇uΨ. The adjoint

sensitivity approach is more difficult to implement as compared to the forward sensi-

tivity approach since the solution requires storage of state profiles, which are used later

for backward integration of the adjoint DAE system. To avoid the storage requirement,

especially for large systems, the adjoint approach is usually implemented with a check-

pointing scheme. At the cost of at most one additional forward integration, this approach

offers the best possible estimate of memory requirements for adjoint sensitivity analysis

(Hindmarsh, Brown, Grant, Lee, Serban, Shumaker, and Woodward, 2005). Here the state

variables are stored at only a few checkpoints in time. Starting from the checkpoint closest
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to ts, the state profile is reconstructed by integrating forward from the checkpoint and

the adjoint variable is calculated by integrating backward up to this checkpoint. Once the

adjoint is calculated at this point, we back up to an earlier checkpoint and the state and

adjoint calculation is repeated until the beginning of the time horizon. The checkpointing

scheme offers a trade-off between repeated adjoint calculation and state variable storage.

Moreover, strategies have been developed for the optimal distribution of checkpoints that

lead to efficient adjoint sensitivity calculations (Griesse and Walther, 2004).

6.5 Simultaneous approach

In this thesis, we will focus on the simultaneous approach, also known as direct tran-

scription approach. In this technique both the state and control variables are discretized,

which leads to a large number of optimization variables. These large scale NLP’s require

special solution strategies (Betts and Huffman, 1990; Betts and Frank, 1994; Cervantes and

Biegler, 1998, 2000; Cervantes, Wachter, Tutuncu, and Biegler, 2000). The simultaneous

approach has a number of advantages over other approaches to dynamic optimization.

1. Control variables are discretized at the same level as the state variables. The Karush

Kuhn Tucker (KKT) conditions of the simultaneous NLP are consistent with the

optimality conditions of the discretized variational problem, and, under mild con-

ditions, convergence rates can be shown (Reddien, 1979; Cuthrell and Biegler, 1989;

Hager, 2000; Kameswaran and Biegler, 2006, 2008).
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2. As with multiple shooting approaches, simultaneous approaches can deal with in-

stabilities that occur for a range of inputs. Because they can be seen as extensions

of robust boundary value solvers, they are able to “pin down” unstable modes (or

increasing modes in the forward direction). This characteristic has benefits on prob-

lems that include transitions to unstable points, optimization of chaotic systems

(Bock and Plitt, 1984) and systems with limit cycles and bifurcations, as illustrated

in Flores-Tlacuahuac et al. (2005).

3. Simultaneous methods also allow the direct enforcement of state and control vari-

able constraints, at the same level of discretization as the state variables of the DAE

system. As was discussed in Kameswaran and Biegler (2006), these can present

some interesting advantages on large-scale problems.

4. Finally, recent work has shown (Kameswaran and Biegler, 2006, 2005) that simulta-

neous approaches have distinct advantages for singular control problems and prob-

lems with high index path constraints.

Nevertheless, simultaneous strategies require the solution of large non-linear pro-

grams, and specialized methods are required to solve them efficiently. These NLPs are

usually solved using variations of Successive Quadratic Programming (SQP). Both full-

space and reduced-space options exist for these methods. Full-space methods take advan-

tage of the sparsity of the DAE optimization problem. They are best suited for problems

where the number of discretized control variables is large (Betts and Huffman, 1990).

Here, second derivatives of the objective function and constraints are usually required, as
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are measures to deal with directions of negative curvature in the Hessian matrix (Wachter

and Biegler, 2006). Betts (2000) provides a detailed description of the simultaneous ap-

proach with full-space methods, along with mesh refinement strategies and case studies

in mechanics and aerospace. On the other hand, reduced-space approaches exploit the

structure of the DAE model and decompose the linearized KKT system; second derivative

information is often approximated here with quasi-Newton formulae. This approach has

been very efficient on many problems in process engineering that have few discretized

control variables. The NLP algorithm used for our computation is IPOPT. The details of

the algorithm are sketched and discussed in Wachter and Biegler (2006); Biegler (2007).

6.5.1 Formulation

The DAE optimization problem (6.1), which has the system dynamics in continuous time,

is converted into a discrete time NLP by approximating the state and control profiles by a

family of polynomials on finite elements. These polynomials can be represented as power

series, sums of orthogonal polynomials or in Lagrange form. Here, we use the following

monomial basis representation for the differential profiles, which is popular for Runge-

Kutta discretizations:

x(t) = x(k − 1) + h(k)
K∑
q=1

Ωq

(
t− t(k)

h(k)

)
dx

dt k,q
(6.6)

Here x(k−1) is the value of the differential variable at the beginning of element k, h(k) the

length of element k, dx/dtk,q the value of its first derivative in element k at the collocation
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point q, and Ωq is a polynomial of order K, satisfying

Ωq(0) = 0 for q = 1, · · · , K

Ω′q(ρr) = δq,r for q, r = 1, · · · , K

where ρr is the location of the rth collocation point within each element. Continuity of the

differential profiles is enforced by

x(k) = x(k − 1) + h(k)
K∑
q=1

Ωq(1)
dx

dt k,q
(6.7)

Based on the recommendation by Biegler (2007), we use Radau collocation points because

they allow constraints to be set at the end of each element and to stabilize the system more

efficiently if high index DAEs are present. In addition, the control and algebraic profiles

are approximated using a Lagrange basis representation which takes the form

y(t) =
K∑
q=1

Ψq

(
t− t(k − 1)

h(k)

)
yk,q (6.8)

u(t) =
K∑
q=1

Ψq

(
t− t(k − 1)

h(k)

)
uk,q (6.9)

Here yk,q and uk,q represent the values of the algebraic and control variables, respectively,

in element k at collocation point q. Ψq is the Lagrange polynomial of degree K satisfying

Ψq(ρr) = δq,r, for q, r = 1, · · · , K

Note that uk,K = u(k) and yy,K = y(K), i.e. the last collocation point in each finite

element lies on the boundary of that element (see Figure 6.3). Substituting (6.6)-(6.9) into
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Element boundaryFinite element, i

hi

Collocation points

Figure 6.3: Sequential dynamic optimization strategy

(6.1b)-(6.1e) gives the following NLP

min
(dx/dtk,q ,uk,q ,yk,q ,zk,q)

N−1∑
k=0

`(y(k), u(k)) + Vf (y(N)) (6.10a)

dx

dt k,q
= f(xk,q, uk,q) (6.10b)

xk,q = x(k − 1) + h(k)
K∑
q=1

Ωq′(ρq)
dx

dt k,q
(6.10c)

x(k) = x(k − 1) + h(k)
K∑
q=1

Ωq(1)
dx

dt k,q
(6.10d)

0 = g(xk,q, uk,q) k = 1, · · · , N q = 1, · · · , K (6.10e)

yk,q = h(xk,q, uk,q) k = 1, · · · , N q = 1, · · · , K (6.10f)

gl ≤ G(yk,q, uk,q) ≤ gu k = 1, · · · , N q = 1, · · · , K (6.10g)

This is a standard NLP of the form

min
z
f(z) s.t. c(z) = 0 zl ≤ z ≤ zu
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where z = (dx/dtk,q, uk,q, yk,q, zk,q), and is solved using a nonlinear solver. Hence the dif-

ferential variables are required to be continuous throughout the time horizon, while the

control and algebraic variables are allowed to have discontinuities at the boundaries of

the elements. As seen from Figure 6.3. Bounds are imposed directly on the differential

variables at element boundaries. These can also be enforced at all collocation points by

writing additional point constraints. We use IPOPT as the nonlinear solver for our simu-

lations.

6.6 Software tools

In this section, we describe the structure of the software tool: NLMPC, that was devel-

oped during this thesis. Of the two direct NLP approaches described above, the direct

collocation approach formulated in Section 6.5 has been most efficient in solving our non-

linear nonconvex dynamic regulation problems. The two most important ingredients of

the direct NLP strategy are

1. NLP solver

2. Derivative calculator

As mentioned above we use IPOPT (Wachter and Biegler, 2006) as the NLP solver

for our simulations. IPOPT is a primal-dual interior-point algorithm with a filter line-

search method tailored specifically for large scale problems, and takes advantage of sparse
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Figure 6.4: Structure of NLMPC tool

matrix memory management capabilities to efficiently implement the NLP solution algo-

rithm. The solver is written in C++.

In the direct collocation approach, the system of DAE’s is converted into a system

of explicit nonlinear algebraic equations. Hence we can use direct differentiation to com-

pute the first and second order derivatives instead of sensitivity calculations, which are

prone to integration and round-off errors as described in Section 6.4.1. We use ADOL-C

(Wagner, Walther, and Schaefer, 2010; Walther, 2008), which is an open-source package

for the automatic differentiation of C and C++ programs, for computing first and second

order derivative information of the NLP resulting from the collocation formulation (6.10).

Both NLP solver and derivative calculator being in C++, enables us to write an

interface between IPOPT and ADOL-C in C++. We call this interface, the NLMPC tool.

This tool has two plugs for interaction with the user (Figure 6.4). The first one reads
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the problem information i.e., the DAE’s, the objective function and the constraints for

the dynamic regulation problem from a C++ file provided by the user. The second one

is an interface with GNU Octave, that allows the user to pass problem parameters and

read back the results of the optimization problem in a high-level interpreted language for

further analysis.

The interface does the following operations:

1. Formulates the corresponding NLP according to the scheme derived in Section 6.5.1

2. Calls ADOL-C to compute the first and second order derivatives of the objective

and the constraints

3. Passes the NLP and the derivative information to IPOPT to optimize

4. Returns the optimal solution back to the user through the Oct interface with GNU

Octave.

The derivative information is very crucial to the performance of IPOPT’s NLP al-

gorithm and hence providing the problem definition, i.e. the DAE’s, objective and the

constraints, as a C++ code allows us to use automatic differentiation via ADOL-C, which

gives us exact derivatives, and greatly improves the performance of IPOPT. Once the

problem definition has been provided, the NLMPC tool compiles the source along with

the problem definition to transform the toolbox’s algorithm, coupled with IPOPT and

ADOL-C, into compiled code for faster execution. GNU Octave’s OCT interface allows

the toolbox to interact with this compiled code directly. It allows the user to easily pass
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problem parameters and read the results for further analysis, without having to recom-

pile the code, and hence enables the use of the tool for simulation studies with great ease.

Appendix B provides a brief user manual of the NLMPC tool.
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Chapter 7

Case studies

7.1 Introduction

The motivation behind extending the MPC framework to handle generic nonlinear non-

convex economic objectives is to gain economic benefit during the transient operation of

the processes controlled using MPC. We developed economic MPC algorithms for both

stable and unstable operation, and the corresponding theory, in the proceeding chap-

ters. In this chapter we present some case studies to demonstrate the application of the

economic dynamic regulation and show the benefits of optimizing process economics di-

rectly in the dynamic regulation problem. To gauge the benefit of using economics based

MPC over the standard tracking MPC, we define the following performance measure

G =
PT,eco − PT,track

TPs
× 100%

where PT,eco and PT,track are the cumulative profits over T time steps, of the closed loop

systems under the economics and tracking MPC respectively, and Ps is the steady state
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profit.

7.2 Evaporation process

We first consider an evaporation process that removes a volatile liquid from a nonvolatile

solute, thus concentrating the solution. It consists of a heat exchange vessel with a recir-

culating pump. The overhead vapor is condensed by the use of a process heat exchanger.

The details of the mathematical model can be found in Newell and Lee (1989, Ch. 2). We

use the following modified process model

Feed
F1, X1, T1

F5

Condensate

L2

Separator

Evaporator

Condensate

F3

F4, T3

T201

Condenser

water
Cooling

T200

F200

P100

LC

LT

Product
X2, T2

F2

T100
F100

Steam

Figure 7.1: Evaporator system
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Differential equations:

M
dX2

dt
= F1X1 − F2X2

C
dP2

dt
= F4 − F5

Process liquid energy balance

T2 = 0.5616P2 + 0.3126X2 + 48.43

T3 = 0.507P2 + 55

F4 = (Q100 − F1Cp(T2 − T1))/λ

Heat steam jacket

T100 = 0.1538P100 + 90

Q100 = UA1(T100 − T2)

UA1 = 0.16(F1 + F3)

F100 = Q100/λs

Condenser

Q200 =
UA2(T3 − T200)

1 + UA2/(2CpF200)

F5 = Q200/λ
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Level controller

F2 = F1 − F4

In the above equations, M = 20 kg/m is the liquid holdup in the evaporator, C = 4

kg/kPa is a constant, UA1 and UA2 = 6.84 kW/K are the products of the heat transfer

coefficients and the heat transfer area in the evaporator and condenser respectively, Cp =

0.07 kW/kg·min is the heat capacity of water, λ = 38.5 kW/kg·min is the latent heat of

evaporation of water and λs = 36.6 kW/kg·min is the latent heat of steam at saturated

conditions.

The economic objective of the evaporator process is to minimize the following op-

erating cost (in 10−3 $/h ), which consists of the cost of electricity, steam and cooling water

(Wang and Cameron, 1994; Govatsmark and Skogestad, 2001).

J = 1.009(F2 + F3) + 600F100 + 0.6F200

The product composition X2 and the operating pressure P2 are the state variables as well

as the available measurements, and the steam pressure P100 and the cooling water flow

rate F200 are the manipulated variables. The following variables are the source of distur-

bances in the system. The following bounds are imposed.

X2 ≥ 25% 40 kPa ≤ P2 ≤ 80 kPa

P100 ≤ 400 kPa F200 ≤ 400 kg/min

At the best steady state under nominal conditions, the input and output variables have
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Variable Description Value

F1 Feed flow rate 10 kg/min

C1 Feed composition 5 %

F3 Circulating flowrate 50 kg/min

T1 Feed temperature 40 C

T200 Cooling water inlet temperature 25 C

Table 7.1: Disturbance variables in the evaporator system and their nominal values

the following values

X2 = 25 P2 = 50.57 P100 = 193.45 F200 = 207.33

We set up the dynamic MPC problems with a sample time of ∆ = 1 min and a control hori-

zon of N = 200. The economic MPC problem is set up with the operating cost as the stage

cost and the tracking problem uses ` = |x− xs|Q+ |u− us|R, whereQ =diag(0.92, 0.3) and

R =diag(1, 1), as the stage cost. Both controllers are implemented with a terminal state

constraint.

We first subject the system to a disturbance in the operating pressure P2. A peri-

odic drop in the pressure was injected into the system and the performance of the two

controllers was compared. Figure 7.2 shows the input and state profiles as well as the

corresponding instantaneous operating costs of the two closed loop systems. A pressure

drop of 8 kPa was injected with a repetition period of 20 mins. A drop in the operating

pressure decreases the instantaneous operating cost and hence the system under eco-
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nomic MPC tends to stay at a lower pressure as compared to the tracking MPC during its

transient back to the optimal steady state. The corrective control action resulting from this

disturbance also increases the product composition, which in turn, increases the operat-

ing cost. Hence the economic MPC drives the system back to the steady state composition

faster than tracking MPC. The benefit obtained from economic MPC as compared to the

tracking controller is G = 6.15% of the steady state operating cost.

Next we subject the system to a measured disturbance in the feed flow rate (F1), the

feed temperature (T1) and the coolant water inlet temperature (T100). Figure 7.3 shows the

input and state profiles as well as the corresponding instantaneous operating costs of the

two closed loop systems. An increase in the feed flow rate drops the product concentra-

tion. To counter this disturbance both controllers raise the steam pressure and the cooling

water flow rate raising the the product concentration and the operating pressure, increas-

ing the operating cost. The economic controller keeps the system at a lower concentration

and pressure as compared to the tracking controller. In order to drop the instantaneous

operating cost, the economic controller drops the inlet water flow rate when there is a

disturbance in the cooling water inlet temperature causing it to rise. The economic con-

troller drops the water flow more than the tracking controller making higher instanta-

neous profit. In this scenario the benefit obtained from economic MPC as compared to

the tracking controller is G = 2.2% of the steady state operating cost.

Table 7.2 shows the average operating cost of the evaporator process under the two

controllers in the two disturbance scenarios discussed above. The economic MPC’s bene-
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Figure 7.2: Closed-loop input (c),(d) and state (e),(f) profiles, and the instantaneous profit

(b) of the evaporator process under unmeasured disturbance (a) in the operating pressure.
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Figure 7.3: Closed-loop input (c),(d) and state (e),(f) profiles, and the instantaneous profit

(b) of the evaporator process under measured disturbances (a)
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fit is seen to be 6.15% of the nominal steady state profit under unmeasured disturbances.

Disturbance Avg. operating cost (eco-MPC) Avg. operating cost (track-MPC) G

Measured 5894.3 5965.5 2.2 %

Unmeasured 5804.1 6154.8 6.15 %

Table 7.2: Performance comparison of the evaporator process under economic and track-

ing MPC

7.3 Williams-Otto reactor

The Williams-Otto reactor is one unit of the Williams-Otto plant model (Williams and

Otto, 1960). The reactor is a CSTR with mass holdup 2104.7 kg and temperature TR. The

reactor is fed with two pure component reactant streams FA and FB. The following three

simultaneous reactions involving 6 components occur inside the reactor.

A + B −→ C k1 = 1.6599× 106e
−6666.7

TR s−1

B + C −→ P + E k2 = 7.2117× 108e
−8333.3

TR s−1

C + P −→ G k3 = 2.6745× 1012e
−11111

TR s−1
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the following dynamic mass balances represent the plant behavior

W
dXA

dt
= FA − (FA + FB)XA − r1

W
dXB

dt
= FB − (FA + FB)XB − r1 − r2

W
dXC

dt
= −(FA + FB)XC + 2r1 − 2r2 − r3

W
dXE

dt
= −(FA + FB)XE + r2

W
dXG

dt
= −(FA + FB)XG + 1.5r3

W
dXP

dt
= −(FA + FB)XP + r2 − 0.5r3

where XA, XB, XC , XE , XG and XP are the mass fractions of the respective components

and r1 = k1XAXBW , r2 = k2XBXCW and r1 = k3XCXPW are the three reaction rates.

The economic objective of the process is to maximize the profit, which is the difference

between the sales of the products E and P and the costs of raw materials A and B (Xiong

and Jutan, 2003).

P = 5554.1(FA + FB)XP + 125.91(FA + FB)XE − 370.3FA − 555.42FB

The mass fractions of all the components are the state variables as well as the avail-

able measurements and the input flow rate of component B (FB) and the reactor temper-

ature (TR) are the control variables. The flow rate of component A (FA) is the source of

disturbance with a nominal value 1.8 kg/sec.

We first subject the system to periodic step changes in the feed flow rate of A (FA).

The economic controller tries to extract more profit from the disturbance by raising the

product concentrations (XP and XE) more than the tracking controller. Figure 7.4 shows
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Figure 7.4: Closed-loop input (c),(d) and state (e),(f) profiles, and the instantaneous profit

(b) of the Williams-Otto reactor under step disturbance in the feed flow rate of A (a)
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Figure 7.5: Closed-loop input (c),(d) and state (e),(f) profiles, and the instantaneous profit

(b) of the Williams-Otto reactor under large random disturbances in the feed flow rate of

A (a)
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the control moves and the mass fractions of the product P and E of the two closed loop

systems.

To simulate more transient behavior, FA, which is a measured disturbance vari-

able, is disturbed with large variations. Figure 7.5 shows the control moves and the mass

fractions of the product P and E of the two closed loop systems.

Table 7.3 shows the average operating cost of the Williams-Otto reactor under the

two controllers in the two disturbance scenarios discussed above. The economic MPC’s

benefit is seen to be 5.8% of the nominal steady state profit under large random measured

disturbances.

Disturbance Avg. Profit (eco-MPC) Avg. Profit (track-MPC) G

Step 986.60 966.47 2 %

Random 827.64 622.26 5.8 %

Table 7.3: Performance comparison of the Williams-Otto reactor under economic and

tracking MPC

7.4 Consecutive-competitive reactions

We consider next the control of a nonlinear isothermal chemical reactor with consecutive-

competitive reactions (Lee and Bailey, 1980). Such networks arise in many chemical and

biological applications such as polymerizations, and are characterized by a set of reactions
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of the following form:

Pi−1 +B → Pi

i ∈ {1, 2, . . . , R}. (7.1)

Typically a desirable distribution of products in the effluent is a primary objective in the

reactor design for these processes. For simplicity we consider the case of two reactions:

P0 +B −→ P1

P1 +B −→ P2

The dimensionless mass balances for this problem are:

x1 = u1 − x1 − σ1x1x2

x2 = u2 − x2 + σ1x1x2 − σ2x2x3

x3 = −x3 + σ1x1x2 − σ2x2x3

x4 = −x4 + σ2x2x3

where x1, x2, x3 and x4 are the concentrations of P0, B, P1, and P2 respectively, while u1

and u2 are inflow rates of P0 and B and are the manipulated variables. The parameters σ1

and σ2 have values 1 and 0.4 respectively. The time average value of u1 is constrained to

lie between 0 and 1.

Av[u1] ⊆ [0, 1].

The primary objective for this system is to maximize the average amount of P1 in the

effluent flow (`(x, u) = −x3). Previous analysis has clearly highlighted that periodic op-
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eration can outperform steady-state operation (Lee and Bailey, 1980). The steady-state

problem has a solution xs =

[
0.3874 1.5811 0.3752 0.2373

]′
with the optimal input

us =

[
1 2.4310

]′
.

We solve the dynamic regulation problem using the simultaneous approach (Flores-

Tlacuahuac, Moreno, and Biegler, 2008). The state space is divided into a fixed number

of finite elements. The input is parametrized according to zero order hold with the input

value constant across a finite element. An additional upper bound of 10 is imposed on

u1(t). A terminal state constraint is used in all the simulations.

The system is first initialized at the steady state to check suboptimality of steady-

state operation. A horizon of 100 is chosen with a sample time Ts = 0.1. The steady-state

solution is used as the initial guess for the nonlinear solver. The solution of the dynamic

problem is seen to be unstable (Figure 7.6). The solution returned by the optimizer shows

the inputs jumping between the upper and lower bounds. Different initial guesses gave

different locations of these jumps suggesting that these solutions are local optima, with a

negligible cost difference.

In order to stabilize the system a convex term is added to the objective and the

penalties are varied.

`(x, u) = −x3 + (1/2)
(
|x− xs|2Q + |u− us|2R

)
Next the R penalty is tuned up to 0.04. The optimal solution now converges to

the steady state. The system is initialized at a random initial state, and three different

simulations are carried out under the influence of three different controllers: the purely



132

0

3

6

9

0 2 4 6 8 10

u1

(a)

0

20

40

60

0 2 4 6 8 10

u2

eco-MPC
steady state

(b)

0

0.4

0.8

1.2

1.6

0 2 4 6 8 10

x1

(c)

0

1

2

3

4

0 2 4 6 8 10

x2

(d)

0.4

0.8

1.2

0 2 4 6 8 10

x3

Time (t)

(e)

0.2

0.4

0 2 4 6 8 10

x4

Time (t)

(f)
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at the steady state
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economic controller, the regularized controller with R = 0.04 and a tracking type con-

troller with Q = 0.36I4 and R = 0.002I2. The closed loop solutions are compared in

Figure 7.7.

Controller Avg. Profit (eco-MPC) Avg. profit (track-MPC) G

Economic 0.44 0.38 15 %

Economic-stable 0.39 0.38 2 %

Table 7.4: Performance comparison of the CSTR with consecutive competitive reactions

under economic and tracking MPC

Table 7.4 lists the performance comparison for the two economic controllers pre-

sented. It is seen that unsteady operation gains significant profit over steady operation

and the purely economic MPC scores 15% of the steady state benefit as compared to the

tracking controller. When convergence is forced, this benefit it reduced to 2% of the steady

state profit.
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Chapter 8

Conclusions and future work

In this chapter we conclude the thesis by highlighting the contributions and suggest fu-

ture research directions in the topic.

8.1 Contributions

Stability theory for nonlinear MPC: The stability theory for model predictive control

was extended to generic nonlinear systems and costs in Chapter 3. For general nonlinear

problems, the stability of the closed loop system cannot be always expected. Chapter 3

identifies a class of systems: strictly dissipative systems, for which closed-loop stability

is guaranteed. The two standard MPC formulations, namely the terminal constraint and

the terminal control/penalty formulations, are extended to the economic MPC frame-

work. Asymptotic stability is established for both the formulations by proposing Lya-

punov functions based on a modified cost. A third formulation, which does not have any

constraint on the terminal state, is also proposed and asymptotic stability is established.
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These results were extended to suboptimal MPC algorithm in Chapter 4, which relaxes

the requirement of global optimality of the dynamic optimization problem to maintain

asymptotic closed-loop stability. This fits the simulation studies into the developed theo-

retical framework as numerical NLP solvers do not guarantee global optimality.

Theory and algorithms supporting non-steady operation: It is established that opti-

mizing economic performance may prescribe non-steady operation. In Chapter 5 it is es-

tablished that irrespective of the nature of operation, optimizing economic performance

always performs better in time average as compared to the best steady state solution.

For non-steady operation, a MPC algorithm is presented that ensures satisfaction of con-

straints on average quantities during the closed-loop operation. To characterize non-

steady operation, the concept of periodic/cyclic operation is introduced and an algorithm

to enforce periodic operation in closed-loop is also presented. For cases where conver-

gence to an equilibrium is a requirement that cannot be sacrificed by trading it off with

economics, methods to enforce convergence are presented and demonstrated my means

of a chemical process example from literature.

Solution methods and software tools for implementation: The economic regulation

problems discussed in the thesis are usually nonlinear and nonconvex in nature and

hence numerical solution of these problems poses a challenge. Chapter 6 reviews the

various solution methods for dynamic optimization problems and describes the direct

NLP approaches in detail. Collocation simultaneous strategy described in Chapter 6 is
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implemented in C and interfaced with GNU Octave to provide a tool for numerically

solving economics optimizing dynamic regulation problems. Open source NLP solvers

and differentiation packages were used and the software allows to solve the optimiza-

tion problem in compiled executable form for efficient memory management and higher

computational speed.

Demonstration of economic benefit: The motivation behind developing theory and nu-

merical solution tools for economic dynamic optimization is the potential economic ben-

efit during the process transients, that is ignored by the standard tracking approach. A

number of case studies are presented in Chapter 7, which demonstrate how optimiz-

ing process economics in the dynamic regulation, exploits this potential to provide eco-

nomic benefits. Performance comparison between the economic MPC and tracking type

MPC is computed with respect to the steady state profit. The examples also demonstrate

non-steady operation and methods to enforce convergence. The drop in performance is

demonstrated for these examples when we move from the economic non-steady regime

to the stable converging regime.

8.2 Future work

Distributed economic MPC: An industrial plant is usually composed of a number of

interacting subsystems. In distributed control, the subsystems are controlled indepen-

dently. Stewart (2010); Stewart, Wright, and Rawlings (2011); Stewart, Venkat, Rawlings,
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Wright, and Pannocchia (2010) have developed theory and strategies for plantwide dis-

tributed control. The results are based on standard tracking objectives and can be ex-

tended to handle economic objectives. The theory developed in this thesis can be inte-

grated with the theory of distributed control to optimize economics directly in distributed

control systems.

Dial between economic and control performance: Chapter 5 describes ways to enforce

convergence in systems where optimizing economics dictates non-steady behavior. As

discussed in Section 5.4, adding convex terms and enforcing zero variance constraints are

two ways of dialing between economic and control performance in such systems. These

methods open a wide range of operation regimes of processes, ranging from maximal

economic performance to maximal control performance. The possibility of these wide

variety of operations motivates research on ways to dial between the two extremes and

study the characteristics of all these regimes. The results will have the potential to offer

industrial practitioners to to rethink some of their operational strategies.

Storage function for dissipative systems: The new tools developed in this thesis to ad-

dress stability theory involves the strict dissipativity assumption. Section 3.4.4 prescribes

a terminal cost which depends on the storage function. The approach to remove termi-

nal constraints in Section 3.5 also assumes that the storage function is known. Dissipative

systems have been the focus of many research studies in the past (Appendix A). However,

there is no generic way to determine the analytical expression for the storage function of
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dissipative systems. Appendix A discusses some of the fundamental approaches to for-

mulating these functions. These methods address the case of quadratic supply rates and

linear systems. However, most of the process systems are nonlinear in nature and hence

ways to derive these storage functions for a wider class of systems are required and a

subject for future research.
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Appendix A

Dissipativity

In this Appendix we review the dissipativity literature and compile some results to get

a better understanding of dissipative systems. The notion of dissipativity in the physical

sciences, dissipativity is closely related to the notion of energy. A dissipative system is

characterized by the property that at any time the amount of energy which the system can

conceivably supply to its environment can not exceed the amount of energy that has been

supplied to it. Theory of dissipative systems have been extensively studied by Lozano,

Brogliato, Egeland, and Maschke (2000) and the references therein. We now briefly review

some of these concepts.

A.1 Definitions

Consider a continuous time dynamical system

x = f(x(t), u(t)), x(0) = x0 (A.1)
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where x ∈ X ⊆ Rn and u ∈ U ⊆ Rm. We also assume X to be forward invariant.

Definition A.1 (Dissipativity). A nonlinear dynamical system x = f(x(t), u(t)) is said to be

dissipative with respect to a real valued function s(x, u), called as the supply rate, if there exists

a function λ(x) : X→ R, called as the storage, such that the following holds:

λ(x(t))− λ(x(0)) ≤
∫ t

0

s(x(t), u(t))dt (A.2)

for all x(0), u(t) and t > 0.

Definition A.2 (Strict Dissipativity). A nonlinear dynamical system x = f(x(t), u(t)) is said

to be strictly dissipative with respect to the supply rate s(x, u), if there exists a storage function

λ(x) and an ε > 0, such that the following holds:

λ(x(t))− λ(x(0)) ≤
∫ t

0

s(x(t), u(t))dt− ε2
∫ t

0

|x(t)|2 dt (A.3)

for all x(0), u(t) and t > 0.

A.1.1 Storage functions

Consider the system (A.1). Let xs ∈ X be a fixed reference point in the state space. This

is usually the optimum steady state minimizing some performance criterion. Contrary to

the definition in classical papers (Willems, 1972), we do not require the storage function

λ(x) to be non-negative. Next we assume that for all x ∈ X, there exists a u(t), t ≥ 0, such

that x(t) = xs for t sufficiently large, i.e. each state can be reached from and steered to

the equilibrium state. We define two functions, the available storage, λa(x), and the required
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supply, λr(x), as following (Willems, 1972)

λa(x) := sup

{
−
∫ t

0

s(x(t), u(t))dt | t ≥ 0, x(0) = x, x(t) = xs

}
λr(x) := inf

{∫ 0

−t
s(x(t), u(t))dt | t ≥ 0, x(0) = x, x(−t) = xs

}

λa(x) is the maximum amount of energy which can be extracted from the system and

λr(x) is the minimum required amount of energy to be injected into the system (Lozano

et al., 2000). Without the loss of generality we assume that λ(xs) = 0 i.e. xs is a state of

neutral storage. Next we state the necessary and sufficient conditions for dissipativity as

established by Willems (1972).

Theorem A.3 (Willems (1972)). The following are equivalent

1. There system is dissipative

2. λa(x) <∞, i.e. λa(x) is finite for all x ∈ X

3. −∞ < λr(x), i.e. λr(x) is finite for all x ∈ X

Moreover, if one of these equivalent statements hold, then

1. λa(x) ≤ λ(x) ≤ λr(x), for all x ∈ X

2. λ(x) = αλa(x) + (1− α)λr(x), for all α ∈ [0, 1]

Proof. Let the system (A.1) be dissipative. Assume that for t−1 ≤ 0 ≤ t1, there exists

u(t) ∈ U such that for x(0) = x, x(t−1) = x(t1) = xs, i.e. the state x can be reached from
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and steered to the equilibrium state. From (A.2) we have

−
∫ t1

0

s(x(t), u(t))dt ≤λ(x) <∞ (A.4a)

−∞ <λ(x) ≤
∫ 0

t−1

s(x(t), u(t))dt (A.4b)

Taking supremum over all t1 ≥ 0 and u(t) ∈ U such that x(t1) = xs, we get λa(x) <∞ for

all x ∈ X. Similarly taking infimum over all t−1 ≤ 0 and u(t) ∈ U such that x(t−1) = xs,

we get −∞ < λr(x) for all x ∈ X.

To prove the converse, it suffices to show that λa(x) and λr(x) are storage functions

for the system (A.1). Consider 0 ≤ t1 ≤ t2, such that x(t2) = xs. Then

λa(x) = sup

{
−
∫ t2

0

s(x(t), u(t))dt

}
≥ −

∫ t2

0

s(x(t), u(t))dt, x(t) ∈ X, u(t) ∈ U, t ≥ 0

= −
∫ t1

0

s(x(t), u(t))dt−
∫ t2

t1

s(x(t), u(t))dt

= −
∫ t1

0

s(x(t), u(t))dt+ λa(x(t1))

Hence λa(x) satisfies (A.2). Similarly we can show λr(x) also satisfies (A.2).

We now prove the remaining claims.

1. From (A.4) we conclude

λa(x) = sup

{
−
∫ t1

0

s(x(t), u(t))dt

}
≤ λ(x) ≤ inf

{∫ 0

t−1

s(x(t), u(t))dt

}
= λr(x)

2. Using the fact that λa(x) and λr(x) are storage functions and satisfy (A.2), we can easily

see that λ(x) = αλa(x) + (1− α)λr(x) also satisfies (A.2).
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Next we state the dicrete time version of dissipativity equation and then formulate stor-

age functions for the standard class of MPC problems: linear systems with a quadratic

supply rate.

A.2 Discrete time systems

We consider discrete time systems x+ = F (x, u), where F = φ(x;u; ∆) is the solution to the

system (A.1) at time t = ∆ for x(0) = x ∈ X and u(t) = u ∈ U, t ∈ [0,∆). The supply rate

is also considered to be constant over the sample time ∆. s(x(t), u(t)) = (1/∆)s(x, u),∀t ∈

[0,∆)

In this scenario, (A.2) reduces to the following inequality

λ(F (x, u))− λ(x) ≤ s(x, u), ∀x ∈ X, u ∈ U (A.5)

For the remainder of the analysis, we will chose our supply rate to be the shifted stage

cost s(x, u) = `(x, u) − `(xs, us). To understand how dissipativity principles agree with

our existing control theory, we look at the following cases:

A.2.1 Unconstrained LQR

Consider a stable linear system x+ = Ax+Bu and a quadratic cost `(x, u) = 0.5(|x|Q+|u|R).

For this problem xs = us = 0. Consider the following cases
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• Linear Storage function: Assume λ(x) = K ′x. (A.5) gives

K ′(A− I)x+K ′Bu ≤ (1/2)(x′Qx+ u′Ru)

For Q ≥ 0 and R ≥ 0, the only K that satisfies the above inequality for all x ∈ X and

u ∈ U is K = 0. Hence there is no other linear storage function other than the trivial

zero function.

• Quadratic storage function: Assume λ(x) = (1/2)x′Kx. (A.5) givesA′KA−K −Q A′KB

B′KA B′KB −R

 ≤ 0 (A.6)

Next we note that

λa(x) = max
u

{
−
∞∑
k=0

`(x(k), u(k)), x(0) = x

}
= −(1/2)x′Πx <∞

where Π is the solution to the Riccati equation.

Π = Q+ A′ΠA− A′ΠB(B′ΠB +R)−1B′ΠA (A.7)

We see that K = −Π satisfies (A.6), and hence λa(x) is a storage function for the

system.

A.2.2 Inconsistent setpoints (Rawlings et al., 2008)

For this problem `(x, u) = 0.5(|x− xsp|Q + |u− usp|R), where xsp and usp are a pair of

inconsistent setpoints i.e. (xsp, usp) is not a steady state of the system. Hence xs and us are

both nonzero.
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• Linear Storage function: Assume λ(x) = K ′x. (A.5) gives

(K ′(A− I)− (xs − xsp)′Q) (x− xs) + (K ′B − (us − usp)′R) (u− us) ≤

(1/2)
(
|x− xs|Q + |u− us|R

)
(A.8)

Inequality (A.8) is fulfilled if the following is true

K ′(A− I)− (xs − xsp)′Q = 0 (A.9a)

K ′B − (us − usp)′R = 0 (A.9b)

Note that (A.9) are also the KKT conditions for the steady state optimization prob-

lem, with K representing the optimal Langrange multiplier.

• Quadratic storage function: Assume λ(x) = (1/2)x′Kx. (A.5) gives

[
x− xs u− us

]′ A′KA−K −Q A′KB

B′KA B′KB −R


x− xs
u− us

 ≤
[
(xs − xsp)′Q (us − usp)′R

]x− xs
u− us


The infinite horizon cost to go for this problem can be computed as following (Rawl-

ings and Amrit, 2008)

min

{
∞∑
k=0

`(x(k), u(k))− `(xs, us)

}
= (1/2)(x− xs)′Π(x− xs) + π′(x− xs)

in which Π satisfies the usual Lyapunov equation (A.7) and π is given by

π = (I − A′)−1 (Q(xsp − x∗) +K ′R(usp − u∗)) , A = (I −B(B′ΠB +R)−1B′Π)A

Hence for this problem λa(x) = −(1/2)(x− xs)′Π(x− xs)− π′(x− xs).
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Appendix B

NLMPC tool

In Section 6.6, we introduced a software tool: NLMPC tool, which was developed during

this thesis to solve nonlinear dynamic regulation problems.

We now present some guidelines to use this tool.

B.1 Installing

NLMPC tool used Ipopt as the NLP solver and ADOL-C for derivative calculations. To

be able to use NLMPC, one must first install Ipopt and ADOLC separately. Ipopt is writ-

ten in C++ and is released as open source code under the Eclipse Public License (EPL). It

is available, along with installation instructions, from the COIN-OR initiative website 1.

ADOL-C is an open-source package for the automatic differentiation of C and C++ pro-

grams and is released as open source code under the GNU General Public License (GPL).

It is also available, along with installation instructions, from the COIN-OR initiative web-

1Ipopt: https://projects.coin-or.org/Ipopt
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site 2.

Once Ipopt and ADOL-C are installed, NLMPC can be checked out from the group

repository 3. After checking out the code, the user must edit the following fields in the

Makefile to specify Ipopt and ADOL-C installation paths:

IPOPT_BASE = /opt/ipopt/310/install ## IPOPT’s installation path

ADOLC_BASE = /opt/ADOLC/copy/trunk ## ADOL-C’s installation path

B.2 Simulation setup

Once the tool has been checked out and its dependencies have been successfully installed

and pointed to, the user can setup the dynamic regulation problem using the tool. As

pointed in Section 6.6, NLMPC tool has two plugs for interaction with the user. The first

one is a C++ file (problemfuncs.h), which is used to define the DAE definitions, the

stage cost and the constraints (other than hard bounds). The second interface is through

GNU Octave, which is used to pass the user parameters to the tool, invoke it and read the

results of the simulation.

We will first describe how to provide the DAE definitions, the stage cost and the

constraints. The NLMPC installation path contains the two sample files: problemfuncs.h

and examplep.m. The user should copy these to a custom location for simulations.

2ADOL-C: https://projects.coin-or.org/ADOL-C

3For the repository location, contact the author of this thesis
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B.2.1 Problem definitions (problemfuncs.h )

This file contains the problem definitions in the form of C++ subroutines. Each of these

subroutines pass the current state and input vectors in adouble data-type. This is to

enable NLMPC to use ADOL-C for derivative calculations. adouble data-type is identi-

cal to the double data-type in C++ and all operations can be performed identically. All

these subroutines have the following variables common, that pass information for user to

define their functions:

1. params: Contains all the standard problem parameters and the user passed param-

eters. Standard parameters include the control horizon/number of finite elements

(N ), the number of states n, the number of inputs m, the steady state vector xs, the

steady state input vector us and the initial state x0.

2. x: Current state vector, dimension n

3. u: Current input vector, dimension m

The three subroutines of interest in problemfuncs.h are as follows:

1. void oderhs(adouble* x, adouble* u, adouble* xdot, const double*

params)

This is the subroutine in which the DAE/ODE’s are declared. The vector xdot is

assigned the right hand side of the differential equations, which is computed using

the current values of state (x), input (u) and any user passed parameters.
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2. adouble stagecost(adouble* x, adouble* u, adouble* slacks, const

double* params)

The stage cost of the MPC dynamic regulation problem is defined in this subroutine.

ell is assigned the the value of the stage cost, which is computed using the current

values of state (x), input (u) and any user passed parameters.

3. void constraints(adouble** x, adouble** u, adouble* h, adouble*

slacks,

adouble* residual, const double* params)

All user constraints, excluding the hard bounds are defined in this subroutine. The

constraints should be of the form g(x, u, p) ≤ 0, where p are the user-passed param-

eters, if any. Unlike the previous subroutines, constraints passes x and u as two

dimentional arrays instead of single dimentional vectors. The dimentions of these

arrays are (N + 1)× n and N ×m respectively, and hence allows user to define con-

straints in terms of all the states at each time point in the prediction horizon and all

inputs at all time points in the control horizon. residual is asigned the values of

g(x, u, p).

B.2.2 Problem parameters and results using GNU Octave (examplep.m)

Once the problem definitions have been provided in problemfunc.h, GNU Octave’s

.oct interface allows us to compile the NLMPC tool along with the problem function

provided by the user and Ipopt and ADOL-C libraries, and call it from Octave’s interpret-
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ter. To call this NLMPC interface, we set up the problem’s parameters using structures in

Octave. The following Octave stuctures are initialized

1. bounds: Bounds for the variables

bounds.ulb, bounds.uub: Input lower and upper bounds

bounds.xlb, bounds.xub: State lower and upper bounds

2. data: Problem parameters:

data.N: Control horizon/Number of finite elements

data.m: Number of inputs

data.n: Number of states

data.T: Final time

data.numslacks: Number of slack variables (for soft constraints)

data.xs: Refference steady state values

data.us: Refference input values

data.params: Parameter vector (which includes the intial state)

Once the problem parameters are defined in the structures above, we are ready to

call the NLMPC tool to solve our optimal control problem. The NLP solver, and hence

NLMPC tool requires an initial guess to start. Once the user defines an initial input se-

quence, NLMPC package provides an Octave routine, gen ic, that generates the intial

values of all the variables in the direct collocation NLP problem. Hence this routine is

called and the return values are stored in the data structure defined above. Then the main

solver is called using the following syntax
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[outstat, u, x,t,tc,h,xc,xdot,eta] = nlmpc(x0,u0,bounds,data,options);

The following values are returned

1. outstat: Return status of Ipopt

2. u: Optimal input sequence

3. x: Optimal state sequence, values at the end of each finite element

4. t: time vector

5. tc: time values at all the collocation points in each of the finite elements

6. h: Length of each finite element (= sample time)

7. xc: Optimal state values at all the collocation points in each of the finite elements

8. xdot: Optimal values of dx/dt at all the collocation points in each of the finite ele-

ments

9. eta: Optimal value of the slack variables

B.3 Example

To aid the user manual in this appendix, we provide example code for the CSTR example

with consecutive competitve reactions discussed in Section 7.4. As discussed above the

problem definition is declared in the file
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void oderhs(adouble* x, adouble* u, adouble* xdot, const double* params)

{

int N = (int)params[0]; // Control horizon = Number of finite elements

int n = (int)params[1]; // Number of states

int m = (int)params[2]; // Number of inputs

int pcount = 6+n+m+n; // This the fixed number of required

// parameters. Counter starts from here for user

// passed parameters

/********** Begin user definintion ***********/

/*******************/

/* ODE definitions */

/*******************/

double sig41 = 1.0;

double sig42 = 0.4;

xdot[0] = (u[0]-x[0] - sig41*x[0]*x[1]);

xdot[1] = (u[1]-x[1]-sig41*x[0]*x[1]-sig42*x[1]*x[2]);

xdot[2] = (-x[2] + sig41*x[0]*x[1]-sig42*x[1]*x[2]);

xdot[3] = -x[3] + sig42*x[1]*x[2];

/********** End user definition ***********/
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}
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adouble stagecost(adouble* x, adouble* u, adouble* slacks,

const double* params)

{

adouble ell = 0.0;

int i;

int N = (int)params[0]; // Control horizon = Number of finite elements

int n = (int)params[1]; // Number of states

int m = (int)params[2]; // Number of inputs

double xc[n];

double uc[m];

double uprev;

/* Extract reference states */

for(i = 0; i<n; i++) // Extract x_s

xc[i] = params[6+n+m+i];

for(i = 0; i<m; i++) // Extract u_s

uc[i] = params[6+n+i];

int pcount = 6+n+m+n; // This the fixed number of required

// parameters. Counter starts from here for user

// passed parameters
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/********** Begin user definintion ***********/

ell = -x[2];

/********** End user definition ***********/

return ell;

}
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void constraints(adouble** x, adouble** u, adouble* h, adouble* slacks,

adouble* residual, const double* params)

{

int N = (int)params[0]; // Control horizon = Number of finite elements

int n = (int)params[1]; // Number of states

int m = (int)params[2]; // Number of inputs

int count = 0;

number_of_constraints = 9;

int i, j, k;

adouble sum = 0;

// Extract the refference steady states

double xs[n];

for(i = 0; i<n; i++)

xs[i] = params[6+n+m+i];

double u1s = params[6+n];

// Average constraint

for(i = 0; i<N; i++) /* For all finite elements */

for(j = 0; j<nce; j++) /* For all collocation points */

sum += h[i]*a[j][2]*u[i][0];

residual[count++] = sum - u1s; // Averaging constraint
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// Terminal Constraint //

residual[count++] = -x[N][0] + xs[0];

residual[count++] = -x[N][1] + xs[1];

residual[count++] = -x[N][2] + xs[2];

residual[count++] = -x[N][3] + xs[3];

residual[count++] = x[N][0] - xs[0];

residual[count++] = x[N][1] - xs[1];

residual[count++] = x[N][2] - xs[2];

residual[count++] = x[N][3] - xs[3];

}
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