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Abstract 

Protein-protein interactions (PPI) play a key role in many biological systems. Over the 
past few years, an explosion in availability of functional biological data obtained from 
high-throughput technologies to infer PPI has been observed. However, results obtained 
from such experiments show high rates of false positives and false negatives predictions 
as well as systematic predictive bias. Recent research has revealed that several machine 
and statistical learning methods applied to integrate relatively weak, diverse sources of 
large-scale functional data may provide improved predictive accuracy and coverage of 
PPI. In this paper we describe the effects of applying different computational, integrative 
methods to predict PPI in Saccharomyces cerevisiae. We investigated the predictive 
ability of combining different sets of relatively strong and weak predictive datasets. We 
analysed several genomic datasets ranging from mRNA co-expression to marginal 
essentiality. Moreover, we expanded an existing multi-source dataset from S. cerevisiae 
by constructing a new set of putative interactions extracted from Gene Ontology (GO)-
driven annotations in the Saccharomyces Genome Database. Different classification 
techniques: Simple Naive Bayesian (SNB), Multilayer Perceptron (MLP) and K-Nearest 
Neighbors (KNN) were evaluated. Relatively simple classification methods (i.e. less 
computing intensive and mathematically complex), such as SNB, have been proven to be 
proficient at predicting PPI.  SNB produced the “highest” predictive quality obtaining an 
area under Receiver Operating Characteristic (ROC) curve (AUC) value of 0.99. The 
lowest AUC value of 0.90 was obtained by the KNN classifier. This assessment also 
demonstrates the strong predictive power of GO-driven models, which offered predictive 
performance above 0.90 using the different machine learning and statistical techniques. 
As the predictive power of single-source datasets became weaker MLP and SNB 
performed better than KNN. Moreover, predictive performance saturation may be reached 
independently of the classification models applied, which may be explained by predictive 
bias and incompleteness of existing “Gold Standards”.  More comprehensive and accurate 
PPI maps will be produced for S. cerevisiae and beyond with the emergence of large-
scale datasets of better predictive quality and the integration of intelligent classification 
methods.  
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1 Introduction 

Most proteins perform their functions by interacting with other proteins. Information about 
the networks of interactions within a cell can greatly increase our understanding of protein 
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function and cellular processes. Notwithstanding the advances of post-genome biology and 
bioinformatics, there is a need to improve our knowledge of protein-protein interactions (PPI). 
This has inspired efforts to map interactions on a proteome-wide scale. Several large-scale 
PPI maps have been produced for Saccharomyces cerevisiae and other organisms, such as 
Drosophila melanogaster and Homo sapiens from experimental high-throughput methods [1-
6].  

The completion of genome sequencing projects followed by the development of high- 
throughput technologies has accelerated the pace of discovery of PPI. This has resulted in an 
enormous accumulation of biological data. Common experimental methods include the yeast-
two hybrid screen, tandem affinity purification, mass spectrometry and protein chips [1-7]. 
However, the data obtained by these methods are often noisy, incomplete and contradictory 
[7] (i.e. weak predictive data sources) with thousands or tens of thousands interactions yet 
unknown. Experimental methods can only identify a subset of the interactions that occur in an 
organism, therefore coverage (i.e. the area of the genome covered by protein pairs) of the 
interactome (the collection of all the PPI that occur within a cell.) is limited. Methods such as 
the yeast-two hybrid system exhibit high false positive and false negative interaction rates. 

Traditional data integration methods for PPI prediction produce more accurate results 
compared to single source high-throughput methods. Due to the inadequacies exhibited by 
both the traditional, experimental and computational methods, we and others argue that more 
advanced computational integrative methods are essential to predict PPI [12,15,16]. 

Integration of diverse genomic datasets has been proven to improve the prediction of PPI [8-
9]. By integrating different datasets the coverage of the interactome increases with possible 
overlapping of datasets. When the same PPI prediction is agreed on by two or more different 
datasets the predictions may be considered to be more reliable. Datasets that do not directly 
measure PPI, such as sequence, structural and diverse functional genomic information, can 
also be used to predict PPI. For example, the application of gene co-expression to infer PPI is 
based on the hypothesis that proteins found in the same complex often interact, and proteins 
in the same complex are often co-expressed. Therefore, dataset selection is crucial for the 
prediction of PPI in order to improve interactome coverage and accuracy.   

In this study we apply computational techniques to integrate diverse sources of information to 
infer PPI.  When predicting PPI using computational methods, a number of factors have been 
taken into account. These include choosing a Gold Standard (GSTD) and different predictive 
(classification) techniques. A GSTD is a dataset consisting of a number of known interacting 
and non-interacting protein pairs, which are used to train classifiers and estimate their 
predictive ability. Careful consideration is required when choosing datasets and the GSTD as 
they will affect the validity and reliability of the predictions. Selecting a GSTD can be 
problematic. For example, what does a GSTD specifically measure? In this study the GSTD 
include “positive” cases representing pairs of proteins found in the same complex. Another 
problem is to select a GSTD that has an adequate coverage of the interactome. The specific 
task of selecting a negative GSTD (i.e. non-interacting protein pairs) also represents a 
significant challenge. In this study, non-interacting proteins are based on the assumption that 
protein pairs assigned to different cellular compartments are unlikely to become interacting 
pairs. The difficulty in defining a negative class (i.e. non-interacting proteins) for a GSTD is 
one of the root causes for the poor or, in some cases, overestimated performance of machine 
learning algorithms in the prediction of PPI [10-11]. There are no universal GSTD available 
within the field of functional genomics and systems biology. The quality of the statistical and 
machine learning methods will depend on the relevance and validity of the GSTD to the 
prediction problem under study.  
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The selection of classification techniques is also a critical task. Moreover, some classifiers 
that perform well in other problem domains may not perform as well within the realm of PPI. 
This is due to the type of data a classifier can handle. Classifiers exhibit systematic bias (i.e. a 
method produces solutions that highly favour a limited number of specific situations or 
circumstances) or logical assumptions (for example, independence between datasets which 
can lead to systematic errors). Therefore, it is essential to rigorously assess available 
classification models for correctly inferring PPI. 

Numerous statistical and machine learning methods have been used to integrate diverse 
sources of data for PPI prediction. Jansen et al. [8] and Troyanskaya et al. [9], for instance, 
applied a Bayesian networks (BN) approach to predicting PPI by integrating genomic data. 
These studies produced accurate PPI networks providing a comprehensive view of the S. 
cerevisiae interactome. Barutcuoglu et al. [15] have recently developed a probabilistic, query-
based system to discover pathway-specific networks by integrating diverse genome-wide data. 
This system is based on BN and was validated by accurately recovering networks for 31 
known biological processes in S. cerevisiae. Research by Jansen et al. [8] was consequently 
extended by Lu et al. [12]. Lu et al. [12] focused on assessing the predictive limits of genomic 
data integration. Simple Naïve Bayesian (SNB) was used to integrate sixteen diverse datasets. 
As with a previous study [8], relatively high predictive accuracies were obtained. However, 
the addition of relatively weaker datasets only marginally improved the predictive power of 
the models. The Random Forest (RF) machine learning method has been applied in studies by 
Chen et al. [13] and Qi et al. [24]. The RF classifier used in [13] this study predicted PPI with 
an average sensitivity of around 80% and specificity below 65% [13].  Support Vector 
Machines (SVM) [14] have also become a powerful approach for PPI prediction. Using a 
number of classifiers (RF, RF integrated with K-Nearest neighbor (KNN), Naive Bays, 
Decision Tree, Logistic Regression and SVM), Qi et al. [16] showed the effect of dataset 
selection and encoding on the PPI predictive performance. Despite the relative success of 
these methods, predictive variability and potential systematic bias indicate that there is still a 
need for improvement in terms of predictive quality and computational efficiency. Moreover, 
with regard to predictive performance, it has been suggested that relatively simple 
classification methods (e.g. KNN) may achieve high predictive performance in comparison to 
more sophisticated approaches, such as SVM.  

It is difficult to compare and contrast the results of these particular studies as each 
investigation uses different GSTD and datasets. Recent empirical assessments include 
research by Lu et al. [12], for instance, who focused on integrating diverse sources of 
information based on the application of SNB. However, it is crucial to perform more rigorous 
and comprehensive empirical assessments to determine the differences between other 
computational integrative prediction methods in well-studied organisms such as S. cerevisiae. 
This is an essential step toward the design, adaptation and integration of prediction strategies 
in relatively more complex organisms.  

In this research, three classification models from the field of machine and statistical learning 
have been assessed. These classifiers range in terms of computational complexity and learning 
approaches. Some of these classifiers have been previously applied to predict PPI, whereas 
other classifiers have never been individually applied. Thus, this study will provide a 
comprehensive assessment of representative prediction models. Neural Networks were 
implemented by Lee et al. [25] to predict PPI. In their study, using 10-fold cross-validation, a 
classifier accuracy of 96%, a sensitivity of 98%, and specificity of 96% were on average 
achieved [25]. To the best of our knowledge the KNN has not been assessed in the prediction 
of PPI. We investigated the predictive ability of combining different sets of relatively strong 
and weak datasets. Unlike the assessment reported by Qui et al. [16], our study analyses and 
integrates eight different datasets (including a new dataset constructed by the authors) using 
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different machine and statistical learning techniques. Our work will focus on PPI prediction in 
S. cervisiae and integrates a wide range of datasets, consisting of physical, genetic and 
biological content of genes. Current research on integrating relatively weaker, high-
throughput data sources has shown that these datasets only marginally increase the predictive 
power when different datasets are integrated together [12]. This paper also shows how a 
relatively strong, functional annotation-driven dataset affects the predictive power of the 
models when integrated with other large-scale datasets. Such a new set of putative 
interactions inferred from functional similarity information extracted from a database 
annotated to the Gene Ontology (GO) was constructed to implement predictive integration 
with other datasets using different prediction models. The GO-driven PPI dataset, which from 
now on is referred to as GOSEM, was also compared with another GO-driven PPI prediction 
method proposed in [12]. These GO-driven PPI prediction methods differ in terms of the way 
they estimate similarity between GO terms and between genes to predict PPI associations.  

Throughout this paper datasets may be referred to as being strong and weak. We define a 
strong dataset as a predictive resource that contains a relatively small number of false positive 
predictions and false negative putative interacting pairs in relation to the GSTD. This type of 
datasets covers a larger proportion of the interactome compared to a “weaker” dataset. A 
weak dataset contains more false positive and false negative predictions and is more limited in 
coverage compared to a stronger dataset in relation to the GSTD. An analysis of how different 
classifiers differ in predicting PPI when integrating diverse data sources was also 
implemented. This paper discusses the results and reasons for the differences and similarities 
between the techniques.  We compare the results of these classifiers to determine if relatively 
simpler classifiers may outperform more complex classifiers. We determine and discuss the 
most effective and reliable prediction models and assess different optimal combinations of 
datasets (features). A discussion on the impact individual predictive features have on 
prediction accuracy is presented. Finally, we conclude the paper with some recommendations 
for the design and application of PPI prediction approaches and outline current and future 
work.  

2 Data sources and gold standard 

Seven different functional datasets obtained from Lu et al. [12] along with our GO-driven PPI 
dataset were analysed and integrated to predict PPI (see description below). Each of the seven 
datasets has been used in studies previously performed by Lu et al. [12] and Jansen et al. [8]. 
In the study performed by Lu et al. [12] sixteen different datasets were analysed. Based on 
their study we chose the “top” seven datasets. These datasets were defined as “top” as they 
cover at least half a million (~20%) Opening Read Frame (ORF) pairs in the Gold Standard 
(derived from the MIPS complex catalogue database). Moreover, these datasets showed the 
highest overall predictive performances in Lu et al. [12]. Our study differs from these 
contributions [8, 12] by assessing different classification models (KNN and MLP), and by 
introducing a new set of putative PPI. A brief description on how these datasets were 
obtained, along with the rationale for applying them are presented below. The dataset names 
have been shortened for easier representation within the paper. Table 1 provides a brief 
summary of functional datasets that were assessed for PPI integrative prediction. 

2.1 MRNA co-expression (COE) 

This dataset is based on the assumption that proteins found in the same complex interact, and 
proteins belonging to the same complex are often co-expressed. This dataset has been 
constructed from publicly-available expression data [17]. It represents the time course of 
expression fluctuations during the yeast cell cycle and the Rosetta compendium, consisting of 
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the expression profiles of 300 deletion mutants and cells under different chemical treatments 
[17]. Pearson’s correlation values were calculated for each gene pair. The results range from 0 
to 1.  

2.2 MIPS functional catalogue (FunCat)  

It is assumed that two proteins acting in the same biological process are more likely to interact 
than two proteins involved in different processes. Therefore, two proteins are defined to be 
interacting if they belong to the same biological process. Non-interaction proteins are defined 
as two proteins that do belong to the same biological process as defined by the Functional 
Catalogue of MIPS (FunCat) [18]. The FunCat is an annotation scheme that contains data on 
the functional description of proteins from prokaryotes, unicellular eukaryotes, plants and 
animals [18]. The FunCat is separate from the MIPS complex catalogue, which represents the 
GSTD in this study. Mews et al. [18] provide additional information on the FunCat annotation 
database. The calculation of similarity between gene pairs for the FunCat dataset and the 
traditional GO-driven frequency-based similarity dataset are the same. Section 2.3 outlines 
this similarity estimation procedure. The results within this dataset range from 0 to 7. 

2.3 Traditional GO-driven frequency-based similarity (GOFREQ) 

Using the same hypothesis as outlined in FunCat, information on the involvement of pairs of 
proteins in specific biological process was extracted from a GO-driven annotation database: 
Saccharomyces Genome Database (SGD). The GO aims to deliver a shared, structured and 
controlled vocabulary that can be applied to any organism. GO consists of three independent 
hierarchies: molecular function, biological process, cellular component. Within these 
hierarchies, terms are interrelated forming a directed acyclic graph. Ashburner et al. [19] 
provide a detailed description of the GO construction and applications. The values generated 
by this dataset range from 0 to 7. 

The GOFREQ and FunCat datasets were both constructed by calculating the similarity values 
between gene products annotated in the GO biological process hierarchy and FunCat 
respectively. Outlined below are the steps involved in quantifying the functional similarity 
between two gene products using similarity information extracted from FunCat and SGD. 

2.3.1 Traditional method for calculating similarity values from SGD and FunCat 

Given two proteins that share a specific set of lowest common ancestor nodes in the 
classification structure, one can count the total number of protein pairs, n, that share the same 
set of annotation terms. For all the protein pairs in S. cerevisiae (~18 million), it was counted 
how many of these pairs share the exact functional terms. This resulted in a count ranging 
between 0 and 18 million. A smaller count reflects a more specific functional description of 
the two proteins, which suggests a higher functional similarity and more chance of belonging 
in the same cellular complex. A larger count indicates a less specific functional relationship 
between the proteins; therefore, there is less chance that the proteins belong to the same 
cellular complex. These datasets were divided into four frequency-based similarity bins 1-9, 
10-99, 100-1000, 1000-10000 to 10000-infinity [12].  

2.4 GO-driven semantic similarity (GOSEM) 

The Lin’s semantic similarity technique [20] was also used to compute the similarity between 
GO terms and gene products annotated in the SGD. The gene-pair similarity values provide 
the PPI predictions in the GOSEM dataset. This similarity method uses both the information 
content of shared GO term parents, and that of the query GO terms used to annotate a gene. 
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This similarity is based on the number of times each term, or any child term, occurs in the GO 
corpus (SGD) and is expressed as a probability. Lin’s technique estimates the similarity 
between two terms as the ratio between the information content of the minimum subsumer. 
Pairs of genes described by more general (less specific) GO terms, will tend to show 
similarity values closer to zero. The value produced is a normalised similarity value between 
0 and 1. A more detailed description of Lin’s semantic similarity technique and their 
relationship with other functional properties can be found in [19,20]. The Lin’s formula for 
estimating between-term similarity is: 
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Where S represents the set of parental terms shared by terms ic and jc ; max  represents the 

maximum operator, ( )P c  represents the probability of finding c or any of its parents in the 
SGD [20].  

Between-gene similarity was calculated by aggregating the similarity values obtained between 
the annotation terms of the genes. Given a pair of gene products, kg  and pg , sets of 
annotations kA  and pA comprising of m and n terms, the between-gene similarity, 
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Where ( ),i jsim c c  can be calculated using equation (1) [20].  

2.5 Co-essentiality (ESS) 

This dataset is derived from the MIPS complex catalogue and also from transposon and gene 
deletion experiments [18]. The hypothesis is that proteins can be experimentally characterised 
as either essential (EE) or non-essential (NN), which may be used an indicator that the 
proteins are both members of the same complex. If two proteins exist in the same complex 
they are either essential or non-essential but not both. This is because a deletion mutant of 
either one protein should produce the same phenotype, and their mutual deletion would impair 
the function of the same complex. In this dataset if both protein pairs are EE or NN then they 
are assumed to interact together. However, if they are a mixture of essential and non-essential 
proteins then the protein pair is said not to interact. In this dataset, NN, are represented by 0, 
mixture of NN and EE are represented by 1 and EE are represented by 2. Mews et al. [18] 
provide more detailed information about this dataset.  

2.6 Marginal essentiality (MES) 

This is a quantitative measure of the importance of a non-essential gene to a cell. It is based 
on the ‘marginal benefit’ hypothesis that many non-essential genes make significant but small 
contributions to the fitness (i.e. health and performance of a cell) of a cell. This dataset was 
obtained through quantitatively combining the results from four large-scale phenotypic 
experiments (e.g. growth rate inhibition from knockouts), that examined different aspects of 
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the impact of a protein on cell fitness [21]. Marginal essentiality relates to many of the 
topological characteristics of PPI networks. In particular, proteins with a greater degree of 
marginal essentiality tend to be network hubs (i.e. with many interactions) and tend to have a 
shorter characteristic path length to their neighbors [21]. Protein pairs are defined as 
interacting if two proteins have a higher combined marginal essentiality. It has been suggested 
that essential proteins have an average degree (number of links per protein) of 18.7, a 
clustering co-efficient of 0.182, a characteristic path length (average distance between 
proteins) of 3.84 and a diameter (maximum inter-protein distance) of 10 [21]. Non-essential 
proteins are defined as having an average degree of 7.4, a clustering co-efficient of 0.095, a 
characteristic path of 4.49 and a diameter of 11 [21]. Yu et al. [21] provide information on the 
genomic analysis of essentiality within PPI networks. The values generated by this dataset 
range from -0.9 to – 27.  

2.7 Absolute protein abundance (APA)  

APA datasets have been scaled and merged from available yeast protein-abundance datasets. 
Protein abundance was obtained through a number of experimental methods: gel 
electrophoresis and several mass spectrometry approaches with varying degrees of accuracy. 
These datasets were merged and made available by [22]. Protein abundance can be calculated 
by counting the number of proteins within a cell. If the concentration of protein and their 
interactions are true contributory forces in the cell then it is important to know the 
corresponding protein quantities. The hypothesis applied to this dataset states that two 
proteins interacting should be present in stoichiometrically (the calculation of the quantities of 
reactants and products in a chemical reaction) similar amounts. Greenbaum et al. [22] detail 
the relationship between of mRNA expression and protein abundance data. The values 
generated by this dataset range from 0 to 20 

2.8 Absolute mRNA expression (EXP) 

For PPI, EXP uses a similar assumption as in Section 2.7. EXP has often been used as a 
surrogate for APA. Substantial agreement between these two datasets has been found [22]. 
EXP is an approximation of absolute expression levels of mRNA within a cell. The values 
generated by this dataset range from 0 to 10. 

2.9 Gold standard (GSTD) 

To validate PPI computational predictions, it is essential to have a reference dataset that 
contains known positive (proteins that are both in the same complex) and negative (non-
interacting) protein pair cases. Such a knowledge reference is known as a Gold Standard and 
is used to label the protein pairs in the prediction model construction and evaluation. The 
GSTD used in this study is constructed under the assumption that if two proteins are known to 
be in the same complex then they can be defined as interacting pairs. There is no direct 
information on proteins that do not interact. However, one may assume that pairs of proteins 
belonging to different cellular compartments are less likely to interact than those belonging to 
the same compartment. In this study non-interacting protein pairs were derived from pairing 
proteins from different subcellular complexes as described in [8]. Both the positive (i.e. 
interacting) and negative (i.e. non-interacting) sets were obtained from the MIPS complex 
catalogue. This catalogue was chosen as it contains lists of known protein complexes based 
on data collected from validated, small-scale studies obtained from biomedical literature [12]. 
There are 8250 protein pairs in the positive GSTD and 2,708,622 in the negative GSTD. Only 
protein pairs that were contained in a single complex were selected (minimum size of 
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complex: 5 proteins). We assume that protein pairs that are found within these sub-classes 
interact. This GSTD was also used in [8, 12]. 
 

Table 1 - Summary of functional datasets assessed for PPI integrative prediction 

Dataset Source Assumption No, Of Protein Pairs Reference 

COE Microarrays  Proteins in the same complex are 
often co-expressed 

Num / Total: 
2,682,887/18,773,128 
Ovlp  + / -: 
7,614/2,675,273 

[17] 

FunCat MIP FunCat  Proteins acting in the same biological 
process are more likely to interact 
than two proteins involved in 
different processes 

Num / Total: 
1,321,629/6,161,805 
Ovlp  + / -: 
 8,051/1,313,579 

[18] 

GOSEM GO-driven 
annotations 
(SGD) 

Proteins acting in the same biological 
process are likely to interact together. 

Num / Total: 
655,417/2,878,800 
Ovlp  + / -: 
 7,520/647,060 

[19] 

GOFREQ GO-driven 
annotations 
(SGD) 

Proteins acting in the same biological 
process are likely to interact together. 

Num / Total: 
655,417/2,878,800 
Ovlp  + / -: 
 7,520/647,060 

[19] 

ESS MIPS complex 
database, 
transposon and 
gene deletion 
experiments 

Protein can be experimentally 
characterised as either essential or 
non-essential. An indicator that the 
proteins are both members of the 
same complex. 

Num / Total: 
649,210/8,130,528 
Ovlp  + / -: 
 2,150/647,060 

[18] 

MES Large-scale 
phenotypic 
experiments 

With a higher combined marginal 
essentiality, proteins are more likely 
to interact 

Num / Total: 
2,595,937/17,775,703 
Ovlp  + / -: 
 7,738/2,588,199 

[21] 

EXP Microarrays, 
Affymetrix chips 

Two proteins interacting should be 
present in stoichiometrically similar 
amounts 

Num / Total: 
2,703,788/19,303,791 
Ovlp  + / -: 
 7,786/2,696,002 

[22] 

APA  Gel 
electrophoresis 
and mass 
spectrometry  

Two proteins interacting should be 
present in stoichiometrically similar 
amounts. 
 

Num / Total: 
1,519,747/7474,911 
Ovlp  + / -: 
 5,192/1,514,555 

[22] 

GSTDS MIPS complex 
database 

Protein complex membership. GSTD+  8,250 
GSTD- 2,708,622 

[8] 

Num / Total – Overlap of Gene pairs from dataset with GSTD / Total Number of Gene Pairs in dataset. 
Ovlp +/- Number of overlaps with GSTD+/GSTD- 

3 Methods 

Three different machine and statistical learning methods were chosen to integrate the eight 
diverse datasets. These classifiers range in complexity and type. We built several SNB, KNN 
and MLP prediction models. The aim is to show how these methods differ in predictive 
accuracy when integrating the different datasets. Below we briefly outline the different 
machine and statistical learning methods. Each classifier was obtained from the WEKA 
toolbox [23] and a 10-fold cross-validation was performed to estimate the predictive 
performance (i.e. specificity and sensitivity). The values in the datasets were linearly 
normalised between 0 and 1, which represented the inputs to the prediction models. The 
predictive performance of the classifiers was measured using the known class assignments 
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derived from the GSTD. Such estimations were summarised and validated with Receiver 
Operating Characteristic curves (Section 3.4). 
  

3.1 KNN  

In terms of mathematical complexity we regard traditional KNN as the simplest method 
assessed in this investigation. KNN has previously been used in the prediction of PPI by Qi et 
al. [16, 24]. Although in these investigations KNN was combined with RF. However, this 
classifier has not been evaluated individually to predict PPI. In this investigation, KNN 
classified gene pairs as interacting or non-interacting by taking each new instance (test 
dataset) and comparing it with existing instances (in training dataset) using the Euclidean 
distance metric. An empirical analysis was carried out to determine the optimal number of 
nearest neighbours. K was set to 1, 3, 5 and 10. When K was set at 3, this produced the best 
predictive quality results.  

3.2 Multilayer perceptron (MLP) 

Previous research by Lee et al. [25] applied MLP to predict PPI using three datasets and a 
GSTD derived from the MIPS complex database. This research produced high predictive 
effectiveness (96%) results (measured as the AUC, area under the receiver operating 
characteristic curve). In terms of mathematical complexity we regard, MLP as the most 
complex of the three classifiers. MLP is a non-linear classification approach and that is 
trained using the back propagation algorithm. In this investigation the network consists of 
three layers, an input layer –where the eight datasets are placed; a hidden layer -to which all 
input nodes are connected and an output layer.  The results reported in this paper were 
obtained by setting the learning rate at 0.3, and the momentum at 0.2. The number of training 
epochs was equal to 500. Within the hidden layer, the number of hidden nodes was the 
defined to be equal to the average value of the number of features and classes. Further 
information on the MLP model can be found in [26].   

3.3 SNB 

Several papers have reported the application of the Bayes rule for the prediction of PPI 
[8,9,12]. The classifier, SNB, has previously been used by Lu et al. [12] to combine diverse 
genomic features. Therefore, SNB is being used as a benchmark to compare the other 
classifiers of varying complexity. SNB offers a simple approach and is based on the Bayes 
rule of conditional probability. It is regarded “Naïve” as it “naively” assumes independence 
between features (datasets). However, due to this assumption, the predictive power of SNB 
may be reduced if a dataset is highly correlated with an existing dataset. SNB is considered 
simple as it uses the normal distribution to model numeric attributes by calculating the mean 
standard deviation for each class. This technique can handle diverse heterogeneous sources of 
data. Although this technique is relatively simple in terms of mathematical complexity, 
relatively high prediction accuracies have been obtained by several studies [27]. Detailed 
information on SNB can be found in [12, 28] 

3.4 ROC (receiver operating characteristic) curves 

ROC analysis investigates the accuracy of a model’s ability to separate the positive from 
negative cases. For this study, ROC curves were chosen to evaluate the predictive models as 
they capture in a single graph the trade off between sensitivity and specificity over its entire 
range of the dataset. The predictive quality of a classifier is assessed by measuring the 
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sensitivity and specificity. TP, TN, FP and FN are the counts of true positives, true negatives, 
false positives and false negatives obtained from the cross-validation analysis. The formula 
used to calculate sensitivity and specificity are detailed below: 

 

Sensitivity = TP
TP FN+

 (3) 

Specificity = TN
TN FP+

 (4) 

  
A predictive dataset will produce a ROC curve that rises steeply to the left hand side of the 
graph and has a large area under the curve. The threshold values of the ROC curves displayed 
within this study are dependant upon the dataset values, for example similarity values or co-
expression values.  In this paper the machine and statistical learning methods are ranked 
according to the AUC obtained. The AUC values are estimated from the 10-fold cross-
validation procedure. A perfect classifier will have an AUC value of 1.0. A prediction model 
based on random assignments of pairs of proteins to classes would give an AUC equal to 0.5.    

3.5 Analysis of statistical significance  

In this study, analysis of variance (ANOVA) and the paired samples Student t-test (two-
tailed) analysis were applied to determine if significant differences existed between the 
predictive models in terms of accuracy. ANOVA tells us whether the factors (e.g. 
classification techniques) significantly contribute to the variations observed in the prediction 
outcomes. The accuracy values obtained from the cross-validation procedures (10 values) 
were used in the ANOVA and t-test. ANOVA and the t-test were performed using the 
statistical package SPSS version 11.0 [29]. A significant difference is observed when the p 
value obtained is less than 0.05. 

4 Results and discussion 

In this section we present and discuss the results obtained from the assessment of the three 
representative predictive models using the individual S. cervisiae datasets. Firstly, we 
contrasted the results obtained from the three individual computational techniques to integrate 
diverse sources of information to infer PPI. Secondly, we focus on showing how a relatively 
strong, functional annotation-driven dataset, GOSEM, affects the predictive power when 
integrated with other large-scale experimental datasets. The classifiers were built using the 
measurements obtained from each dataset as the inputs to the models. The “true” 
categorisations for each input (i.e. protein pair) were obtained from the GSTD. 

4.1 Performance of machine and statistical learning methods: single source 
models  

The ROC curves in Figure 1 depict the predictive power of individual datasets using each 
machine and statistical learning technique. Table 2 exhibits the AUC values obtained by the 
predictive models for the individual datasets. By performing ANOVA analysis, significant 
differences were observed between the classification models in terms of their predictive 
accuracy based on different individual datasets (p < 0.001).  
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Figure 1. The panels a-c each represent the predictive power of individual features (datasets) 
using each predictive model. The results are displayed in a ROC curve where we plot Sensitivity 
against (1-Specificity). The predictive models are displayed as follows (a) KNN. (b) MLP. (c) 
SNB.  

 
Based on the AUC values from Table 2, it is observed that each predictive model ranks the 
FunCat dataset as the “strongest” dataset and the APA dataset as a relatively “weakest” 
dataset. The FunCat dataset may be defined as “strong” as it overlaps with 3000 more protein 
pairs in the positive GSTD compared to the APA dataset. The GSTD contains information on 
protein complex membership and the FunCat dataset encodes information on the similarity 
between gene pairs. Protein abundance is less related to the specific task of protein complex 
membership. These factors could help explain why APA was found to be a relatively “weak” 
performing dataset.  
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Table 2. The predictive AUC values obtained by each machine and statistical learning method 
using individual datasets. 
 

Datasets SNB KNN MLP 
APA 0.56 0.54 0.55 
COE 0.85 0.79 0.82 
ESS 0.67 0.67 0.68 
EXP 0.71 0.74 0.70 
GOFREQ 0.91 0.98 0.92 
GOSEM 0.95 0.97 0.87 
MES 0.63 0.59 0.61 
FunCat 0.96 0.99 0.95 

 
From these individual dataset results we can conclude that KNN obtains marginally higher 
AUC values when the “strongest” datasets are used. For example, KNN achieves an AUC 
value of 0.99 using only the FunCat dataset. The predictive models SNB and MLP perform 
consistently throughout with all the datasets individually and obtain marginally higher AUC 
values when relatively weaker datasets such as MES, ESS and APA are used as inputs to the 
models.        

The next step to investigating the predictive quality of the models was to perform different 
integrations of the datasets. All the machine and statistical learning techniques produced 
relatively very high AUC values (between 0.95 and 0.99) when combining all the datasets as 
inputs to the prediction models. Table 3 summarises the different combination of datasets 
used in Table 4. Table 4 shows the AUC values for each machine and statistical learning 
method with different data integration schemes. Using these AUC values the three models can 
be ranked in order of effectiveness: SNB, MLP followed by KNN. By performing the 
ANOVA analysis we also found a significant difference between the predictive accuracies of 
these methods (p < 0.001).  

Interestingly from Table 4 it is observed that by combining relatively weaker datasets (APA, 
COE, ESS, EXP, MES) and applying MLP (which we regard as the most complex method 
within this paper in terms of mathematical complexity) and SNB produced the highest AUC 
values (0.90 and 0.88 respectively).  Significant differences between all the classifiers in 
terms of their overall accuracies were observed (ANOVA, p < 0.001).  

From the results in Table 2, the predictive model KNN obtains an AUC value equal to 0.99 
using only FunCat dataset. However, from Table 4, a decrease in predicative quality (i.e. an 
AUC value of 0.95 was obtained) is viewed when all the datasets were integrated using KNN. 
A significant difference in terms of predictive accuracy was observed between these two 
integrations (p = 0.002).  

Table 3. Datasets involved in integration type  

 
Description Datasets 

All datasets FunCat+GOFREQ+GOSEM+EXP+ESS+COE+APA 
Strong datasets I  FunCat +GOSEM+COE+ESS+GOFREQ 
Strong datasets II FunCat +COE+ESS 
Strong datasets III COE+ESS 
Weaker  datasets + Strong datasets III MES+EXP+ESS+APA+COE 
+ symbolizes the integration of the datasets 
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Table 4. AUC values for each machine and statistical learning method with different integrations 
of the datasets. 

Data integration scheme  SNB KNN MLP 
All datasets  0.99 0.95 0.99 
All datasets excluding GOSEM 0.98 0.93 0.96 
Strong datasets I 0.99 0.91 0.98 
Strongest datasets II  + GOFREQ  0.98 0.95 0.97 
Strongest datasets II+ GOSEM  0.99 0.95 0.99 
Strongest datasets II 0.97 0.97 0.93 
Strong datasets III + GOSEM 0.98 0.95 0.98 
Weaker  datasets + Strong datasets III 0.88 0.8 0.90 
Weaker  datasets + Strong datasets III + GOFREQ 0.96 0.83 0.96 
Weaker  datasets + Strong datasets III + GOSEM 0.98 0.96 0.98 
 

4.2 Performance of machine and statistical learning methods: multiple 
source models  

The relatively strong, functional annotation-driven dataset, GOSEM, was integrated with 
other datasets using different prediction models. Table 4 indicates that the addition of the 
GOSEM dataset has a positive impact on the AUC values obtained, for different integration 
schemes and different predictive models. When comparing the integration of all datasets 
before and after the integration of the GOSEM, a marginal increase in the predictive 
performance for the models SNB, MLP and KNN was achieved. For each classifier, a t-test 
was performed to determine if there was a significant difference due to the addition of the 
GOSEM dataset to the integration of all datasets. The incorporation of GOSEM did not 
significantly improve the predictive accuracy of MLP (t-test, p = 0.262) and KNN (t-test, p = 
0.509). However, the integration of GOSEM caused a significant improvement in the 
prediction accuracy of the SNB (t-test, p < 0.001). Significance differences in terms of 
accuracies were also detected between the three classification techniques when integrating all 
the datasets (ANOVA, p < 0.001). 

The integration of GOSEM improved the prediction performance (estimated as AUC values) 
with all the datasets (FunCat, GOFREQ, APA, COE, ESS, EXP, MES) under all the machine 
and statistical learning methods, in comparison to the models excluding GOSEM (Table 4). 
Interestingly SNB reaches the maximum AUC value (0.99) when relatively strong datasets 
(FunCat, GOSEM, COE, ESS, GOFREQ) are integrated only. The addition of relatively 
weaker datasets (APA and MES) do not have a significant impact (t-test, p = 0.136) on the 
AUC value when integrated with these relatively stronger datasets. This same trend was 
observed for MLP (t-test, p = 0.129) and KNN (t-test, p = 0.104). 

These results confirm that the GOSEM dataset is a relatively strong dataset. Depending on 
predictive model, it ranks as the second or third “strongest” dataset in terms of AUC values 
obtained. GOSEM achieves these high AUC values due to the quality of the information it 
represents. GOSEM encodes relationships between gene pairs on the basis on their 
involvement in biological processes using a GO-driven annotation database. 

In Figure 2 each panel represents the predictive performance response of each classification 
method for two data integration schemes: a) all datasets, and b) the 5 top strongest datasets 
(FunCat, GOFREQ, GOSEM, ESS, COE). In relation to SNB, Figure 2 shows results that are 
consistent with the results obtained by Lu et al. [12]. In general an improvement in prediction 
performances of SNB and MLP were obtained when integrating all the datasets.  But in the 
case of KNN the integration of all datasets did not cause an improvement of the prediction 
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performance compared to the outcomes derived from the integration of the strongest datasets 
only.   

Figure 2. ROC curves obtained from integrating all eight features together, compared with 
integrating only the strongest 5 datasets. Each panel represents a different machine and 
statistical learning method (a)KNN, (b) MLP (c) SNB. 

5 Conclusions 

This paper presented a comprehensive assessment of representative predictive models for 
inferring PPI. It highlights the diversity of predictive responses depending on the 
classification technique and combination of inputs features (i.e. datasets). This focused on (1) 
a comparison of three different predictive models and the assessment of differences in their 
performance; (2) using seven existing datasets and constructing a new set of putative 
interactions (GOSEM) extracted from a GO-driven annotation database; and (3) a detailed 
comparison of different data integration schemes.  The classification techniques evaluated are 
representative approaches to PPI prediction.  SNB and MLP were previously evaluated in [12, 
25], but without incorporating the GOSEM dataset. To the best of our knowledge KNN has 
not been rigorously assessed and compared against SNB and MLP.    

This investigation has proven that the relatively strong, functional annotation-driven dataset, 
GOSEM, may support the improvement of the predictive power when integrated with other 
large-scale datasets. Table 4 suggests that GOSEM may improve PPI classification 
performance in comparison to GOFREQ, which is a traditional method for inferring PPI from 
GO-driven databases.  This was demonstrated in the case of SNB and MLP, but further 
investigations are required to assess potential predictive power differences between these two 
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GO-driven PPI prediction techniques.  Both GOSEM and GOFREQ are expected to be strong 
datasets because they encode functional relationships between gene pairs on the basis on their 
involvement in biological processes.  

Consistent with previous studies carried out by Lu et al. [12] we found that the integration of 
weak features and stronger features may not have significant impact on the predictive 
performance of all machine and statistical learning models.   

All classifiers showed high predictive quality (i.e. AUC values ranging from 0.90 to 0.99) 
when integrating all datasets. SNB and MLP were the best predictive methods in terms of 
AUC values. Both classifiers obtained an AUC value of 0.99 when all datasets were 
integrated. This could be due to ability of SNB to combine highly heterogeneous genomic 
features. MLP is known to be robust to noisy dataset. This was proven as MLP was the 
strongest prediction model when only the weak datasets were integrated together (AUC value 
equal to 0.90). These factors could contribute to the relatively high prediction quality results 
obtained by MLP.  

Previous research by Lee et al. [25] also concluded that MLP was a powerful predictor of PPI 
obtaining a classification accuracy value of 96%. Lee et al. [25] used a GSTD based on MIPS 
complex database and three different datasets containing information on functional similarity 
between genes (unrelated to GO-driven similarity method applied in this study), co-
localisation of gene pairs and topological properties of PPI networks. The results obtained 
from our investigation using the MLP in general agree with the results reported by Lee et al. 
[25]. However, in some cases (e.g. integration of all datasets) our results may represent an 
improvement in terms of prediction performance (higher AUC values).  

The classifier KNN produced satisfactory results when integrating all datasets (AUC values of 
0.95). However, it was observed that KNN was relatively slower and more processor 
intensive than the other methods when dealing with relatively large datasets, such as COE, 
which contains over 1 million gene pairs.  

This study also indicates that a predictive saturation could be reached by the prediction 
models available. This means that in this particular investigation the addition of more datasets 
may not necessarily improve the predicative performance of the machine and statistical 
learning methods.  However, this will strongly depend on the selection of the GSTD.  
Therefore, other assessments including alternative GSTDs, data sources (e.g. PPI extracted 
from the literature and other high-throughput experimental source) and model organisms are 
required.   

To improve the predictive quality and biological relevance of integrative prediction models, 
we aim to expand and improve the selection of input datasets, construction of GSTD and 
combination of predictive models.  Comparative assessments and alternative integrative 
prediction models (using for example, SVM classifiers and probabilistic models) will be 
extended to S. cerevisiae and more complex organisms, such as Drosophila melanogaster and 
Homo sapiens. Investigations of how noise and incompleteness of the interaction data could 
affect the different machine learning approaches will also be carried out as part of future 
work.  
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