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Summary 

Advances in high throughput sequencing technology have enabled the identification of 
transcription factor (TF) binding sites in genome scale. TF binding studies are important 
for medical applications and stem cell research. Somatic cells can be reprogrammed to a 
pluripotent state by the combined introduction of factors such as Oct4, Sox2, c-Myc, 
Klf4. These reprogrammed cells share many characteristics with embryonic stem cells 
(ESCs) and are known as induced pluripotent stem cells (iPSCs). The signaling 
requirements for maintenance of human and murine embryonic stem cells (ESCs) differ 
considerably. Genome wide ChIP-seq TF binding maps in mouse stem cells include Oct4, 
Sox2, Nanog, Tbx3, Smad2 as well as group of other factors. ChIP-seq allows study of 
new candidate transcription factors for reprogramming. It was shown that Nr5a2 could 
replace Oct4 for reprogramming. Epigenetic modifications play important role in 
regulation of gene expression adding additional complexity to transcription network 
functioning. We have studied associations between different histone modification using 
published data together with RNA Pol II sites. We found strong associations between 
activation marks and TF binding sites and present it qualitatively. To meet issues of 
statistical analysis of genome ChIP-sequencing maps we developed computer program to 
filter out noise signals and find significant association between binding site affinity and 
number of sequence reads. The data provide new insights into the function of chromatin 
organization and regulation in stem cells. 

1 Introduction 

Combination of chromatin immune precipitation and high throughput sequencing (ChIP-seq) 
has been used extensively to determine chromosome binding patterns of DNA-associated 
proteins as well as chromatin epigenetics modification marks [1-4]. The new generation of 
sequencing platforms provides orders of magnitude increase in the number of generated 
sequences and also raises challenges in the analysis and integration of genome scale data 
[5,6]. Such ChIP-seq genome wide TF binding maps in human include Oct4, Sox2 and Nanog 
in stem cells and related transcription factors in human (OCT4, MYC) [1-4,7]. Key problem 
of gene expression regulation analysis is detection of functional binding sites responsible for 
gene activation. TF binds in vivo to only a small fraction of sequence motifs or eligible 
(computationally predicted) binding sites in the genome to be defined experimentally. 
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Stem cell research is important application for molecular genetics, genomics and fundamental 
medicine. Embryonic stem cells (ESCs) were first derived from the mouse blastocysts [8]. 
These cells have the capacity for extensive self-renewal under in vitro culture conditions. 
Another hallmark of these cells is the ability to undergo lineage-specific differentiation to 
give rise to all somatic cell-types [1]. Mouse ESCs (mESCs) are able to maintain genetic 
stability, show high rate of homologous recombination and do not exhibit senescence. These 
properties allow them to be used for gene targeting for the production of genetically modified 
animals. Human embryonic stem cells (hESCs) provide the opportunities to study processes 
implicated in human developmental biology. [9]. Like mESCs, the hESCs can be propagated 
stably in culture and they can also differentiate into all three germ lineages. Robust self-
renewal capability of these pluripotent hESCs makes them a renewable source for the 
generation of functional cells or tissues for future therapeutic applications and drug discovery. 
Although human and mouse embryonic stem cells (ESCs) share similar fundamental 
properties such as pluripotency and unique transcriptional network, they differ significantly in 
signalling pathways [1,7]. For example, LIF/STAT3 signaling that is critical for mESC self-
renewal is instead dispensable for self-renewal of undifferentiated hESCs. BMP4 together 
with LIF supports expansion of undifferentiated mESCs, while BMP4 induces trophoblastic 
differentiation of hESCs [10].  

 
Figure 1: ChIP-seq workflow and data analysis. 

Common scheme of ChIP-seq workflow and data analysis is given in Figure 1. For example, 
to gain insights into the transcriptional regulatory networks in embryonic stem (ES) cells, we 
used ChIP-seq to map the locations of 15 sequence specific TFs (Nanog, Oct4, STAT3 and 
others) [1-4] and transcription regulators (p300 and Suz12) in mouse [1]. These factors are 
known to play different roles in ES-cell biology as components of the cell development 
signaling pathways, self-renewal regulators, and key reprogramming factors [1,11]. The 
ChIP-seq data are available at http://t2g.bii.a-star.edu.sg, latest raw data are at GEO NCBI 
archive.  

Induced pluripotent stem (iPS) cells can be obtained through the introduction of defined 
factors into somatic cells [11]. The reversion of somatic cells to pluripotent cells is commonly 
referred to as reprogramming. The combination of Oct4, Sox2 and Klf4 constitutes the 
minimal requirement for generating iPS cells from mouse embryonic fibroblasts (MEF). 
These cells are thought to resemble embryonic stem cells based on global gene expression 
analyses. So, ChIP-seq binding profiles and microarray expression experiments are necessary 
to reveal transcription regulation network and found candidate genes for reprogramming [1-
4]. The ability to self-renew and differentiate is common for hESCs and mESCs. Both express 
genes which are associated with pluripotency. POU5F1 (encoding for OCT4) and NANOG 
are specifically up-regulated in undifferentiated ESCs. Upon differentiation, the expression of 
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these genes is down-regulated. OCT4 and NANOG are key components of the core 
transcriptional regulatory network in both mESCs and hESCs. These and other transcription 
regulators, including co-activator p300, show extensive co-binding at genomic sites and this 
binding configuration may be important for the expression of pluripotency-specific genes [1].  

As example of candidate genes that have roles in pluripotency and fusion-mediated somatic 
cell reprogramming, Tbx3 was identified as a transcription factor that significantly improves 
the quality of iPS cells [4]. Genome-wide ChIP-seq analysis of Tbx3 binding sites in ESCs 
shows that Tbx3 regulates pluripotency-associated and reprogramming factors, in addition to 
sharing many common downstream regulatory targets with Oct4, Sox2, Nanog and Smad1. 
The study [4] underscores the intrinsic qualitative differences between iPS cells generated by 
different methods. 

Extensive efforts were made in the identification of regulators for mESCs through the use of 
loss-of-function genetic approach. The profound effect of transcription factors is exemplified 
by the conversion of somatic cells into induced pluripotent stem cells (iPSCs) through the co-
expression of four transcription factors, OCT4, SOX2, KLF4 and c-MYC [1]. 
Reprogramming of somatic cells provide unique opportunities for generating patient-specific 
pluripotent cells which may be used as in vitro models for studying and treating human 
diseases [7].  

Using genome-wide RNAi screen to identify candidates required for self-renewing of hESCs 
PRDM14 was identified as a novel regulator of hESC and it is required to maintain the 
expression of POU5F1 [7]. Prdm14 is essential for the germ cell specification in mouse. 
Genome-wide location analysis revealed that PRMD14 binds to the proximal enhancer of 
POU5F1. In a gain-of-function assay, it was found that PRDM14 can enhance the efficiency 
of generating human iPSCs.  

In general, close family members of reprogramming factors are also capable of replacing their 
counterparts, for example, Klf2 and Klf5 can replace Klf4, Sox1 and Sox5 can substitute for 
Sox2 while c-Myc can be replaced by N-myc and L-myc. Similarly, Esrrg can replace Esrrb 
in the reprogramming of MEFs [12]. However, Oct4 remains irreplaceable by other 
transcription factors including its close family members such as Oct1 and Oct6 [13]. 
Regulatory targeting of TFs could help in candidate selection for reprogramming genes. Close 
network connection was shown for key regulators in mESC (Figure 1) [1]. 

 

Figure 2: Example of TF regulatory events defined by ChIP-seq data (gene targeting by TF 
binding in promoter regions). 

Protein kinases are key elements for intracellular signalling networks that can modulate gene 
expression in response to specific extracellular signals. An apparently interaction between the 
protein kinase and chromatin has been detected by Chromatin immunoprecipitation (ChIP) 
analysis. ERK2 is reported to act as a transcriptional repressor regulating interferon gamma 
signaling in mammalian cells [14]. The best-characterized transcription factor substrates of 
ERKs might be ternary complex factors (TCFs), including ELK1.  

Epigenetic modifications play important role in regulation of gene expression adding 
additional complexity to transcription network functioning. We have studied associations 
between different histone modification using data for activation histone marks H3K4me3, 

Journal of Integrative Bioinformatics, 9(2):211, 2012 http://journal.imbio.de

doi:10.2390/biecoll-jib-2012-211 3

C
op

yr
ig

ht
 2

01
2 

Th
e 

A
ut

ho
r(

s)
. P

ub
lis

he
d 

by
 J

ou
rn

al
 o

f I
nt

eg
ra

tiv
e 

B
io

in
fo

rm
at

ic
s.

 
Th

is
 a

rti
cl

e 
is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

-N
oD

er
iv

s 
3.

0 
U

np
or

te
d 

Li
ce

ns
e 

(h
ttp

://
cr

ea
tiv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

-n
c-

nd
/3

.0
/).



H3K4me1, H3K9ac and repressive histone marks H3K27me3 and H3K9me3 together with 
RNA Pol II sites in human [15]. We found strong associations between activation marks and 
TF binding sites and present it qualitatively, both for mouse [1] and human ChIP-seq data 
[15]. To meet issues of statistical analysis of genome ChIP-sequencing maps we developed 
computer program to filter out noise signals and find significant association between binding 
affinity and number of sequence tags. Moreover, TF regulation may have dose dependent 
effect targeting different group of genes, as it was shown on example of Smad2 binding in 
mouse [16]. 

Computer models of transcription factor binding based on chromatin modification sequencing 
allows better prediction of TF binding sites in genome scale. For example of ERalpha TF 
binding prediction with high accuracy could be done using chromatin modification data [15]. 
Our data and studies provide new insights into the function of chromatin organization in 
human genome. Recent works on special contacts of chromosome in nucleus confirmed 
interplay between chromatin modification and transcription factor binding in general in 
genome scale [17]. 

2 Analysis of TF binding in stem cells by ChIP-seq 

2.1 ChIP-seq technology and data analysis 

ChIP-seq technology provides a new powerful technique for localization of the most 
physically specific mammalian TF binding regions at a resolution of up to a few base pairs 
[1]. Immunoprecipitated DNA fragments could be sequenced directly using Roche 454, 
Illumina Solexa or SOLiD technologies. Disregarding the technological platform one can see 
set of statistical problems to be solved in the process of data analysis [5]. Most unexpectedly, 
all studies using this method have shown that TFs bind specifically to a surprisingly large 
number of genomic regions (extrapolated to 3,000-40,000 depending on the protein) [1]. The 
major fraction of these BS would not be validated by traditional methods. The application of 
this technology to mammalian genomes have been described in growing number of 
publications; and new statistical problems of peak calling and signal intensity normalization 
have been issued [5,6].  

Typically, the extracted DNA (in [1-4]) are quantified and subjected to Illumina Solexa 
sequencing according to the manufacturer’s instruction. The processed ChIP or FAIRE-
enriched DNA fragments then are used for single read sequencing analysis. We used 
manufacture's software and in-house computational tools for mapping the sequence tags to the 
reference genome and clustering short sequences. In order to avoid potential PCR 
amplification bias, tags that shared the same mapping location on the same strand were 
removed. The uniquely-mapped reads with at most 2-mismatched were kept for further 
processing. The oriented 25-36 bp DNA reads (depending on sequencing library) were then 
extended to 200 bp regions to count clusters of overlapping sequences [1-4, 7, 15, 16]. The 
identified peaks were filtered in three steps (Figure 3).  

First, an estimated false discovery rate (FDR) based on a random distribution of tags over the 
genome was used to remove random low-intensity peaks. Next, we further filtered the peaks 
based on the fold-change of peak intensity against an input DNA control library for same cell 
line. Downstream analysis of peak location relative to genes was fulfilled using custom-made 
software (Figure 3, bottom). 
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Figure 3: (top panels): Construction of binding profiles (piled DNA fragments) on chromosome 
coordinates and peak selection. (bottom): Peak location analysis. Selection of closest (nearest) 
gene for every cluster either to 5’ or to 3’-end. 

Co-occurrence analysis to study overlap of PRDM14 with other transcription factors binding 
sites was performed as described previously [1,7]. CTCF, OCT4 and NANOG ChIP-seq data 
sets were generated at GIS; KLF4, MYC, p300 and SOX2 ChIP-seq data were obtained from 
GEO (GSE18292 and GSE17917). We have processed external ChIP-seq data by MACS [18] 
program with the same parameters using control sequencing data. Heatmaps for co-
localization were obtained from table data using R program environment. 

Gene ontology analysis was done using PANTHER DB [19]. Extended GO categories were 
analyzed by DAVID (http://david.abcc.ncifcrf.gov/) and PANTHER software (data not 
shown). 

2.2 Multiple binding of TFs in mESC 

Analysis of TF binding peaks revealed close (in +/- 100 bp) co-localization of binding peaks 
from different factors. Such co-localization has preferences related to nature of TFs [1]. 

To address the problem of data integration in course of gene expression regulation we 
developed software for definition of potential target genes having TF binding sites in 
proximity of the transcription start site. Algorithm defines location of nearest RefSeq gene in 
the genome (either to 5’ or 3’ end), intronic/exonic location if inside gene borders and 
distance to from the TSS (transcription start site) for each TF binding site. The same approach 
was applied for classification of MTL (multiple binding loci) (Figure 4, 5) [1].  
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Figure 4: Distribution of TFBS in multiple regulatory loci relative to RefSeq genes depending on 
number of sites in the cluster. 

Significant fractions of MTL are located in proximal promoter (2.5Kb upstream to TSS, or 
0.5Kb downstream) depending on size of MTL (Figure 4). In MTL we have selected two 
groups associated preferably to Nanog/Oct4/Sox2 or Myc-related TF [1]. Relative location of 
Nanog-like MTL tend to be in distal regions from TSS indicating distal regulation enhancer, 
while MTL containing Myc TF tend to be in proximal gene promoters. 

Pattern of TF binding location relative to gene correlates also with preferences to 
promoter/distal binding. Nanog and Oct4 locate preferably in distal sites [1], that later was 
confirmed by co-localization studies from independent experiments [2-4]. 

 
Figure 5: Pattern of promoter location of MTL depending on type of transcription factors in the 
cluster – Myc and Nanog groups. 

To validate potential target we used microarray expression data. We have shown enrichment 
of differentially expressed genes in sets of target genes. We analyzed the chromosomal profile 
of tags and found correlation with chromatin structure and histone methylation patterns [1]. 
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Figure 6: Binding motifs (logo) found in ChIP-seq peaks. 

Figure 6 contains example of binding motifs obtained by sequence analysis of over-
represented oligonucleotides in ChIP-seq data in mESC. Large samples of experimentally 
verified genome sequences from ChIP-seq experiments allow confirm and update known 
binding matrices and reveal some features characterising for in vivo binding. Important 
feature is symmetry of motifs for some TFs known to bind as dimmers. At the same time 
motifs in genome regions may not overlap and form ordered arrays named MTL (multiple 
binding loci) [1]. 

 
Figure 7: Co-occurrence of transcription factor groups in mESCs. 
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Figure 7 shows combined figure of co-localization of TF binding using ChIP-seq data in 
mESC from different experiments [1-4] including unrelated TF such as REST and CTCF (GIS 
sequencing data). TFs have been clustered along both axes based on the similarity in their co-
localization with other factors. Colours in the heat map reflect the co-localization frequency 
of each pair of TFs (bright means more frequently co-localized, dark means less). 

2.3 Key TFs for maintenance and reprogramming of ESC 

2.3.1 Genome-wide binding analysis of Nr5a2 in ESC 

Nuclear receptors Nr5a2 is important for reprogramming [3]. It was shown via mutation 
analysis that the DNA-binding capability of Nr5a2 is important for proper binding of the 
nuclear receptor to promoter/enhancer regions of target genes to initiate the reprogramming 
process in MEFs [3]. Unlike most nuclear receptors which function as dimers, Nr5a2 is able 
to bind DNA in its monomeric state The DNA binding is crucial for the reprogramming 
function of Nr5a2 while ligand binding is dispensable for its role in reprogramming.  

Peak calling of the Nr5a2 ChIP-seq data (8,023 427 uniquely mapped tags) was carried out 
using MACS with a p value cut-off of 1e-9 and 3,346 peaks were generated. The control anti-
HA ChIP-seq library contained 13,001,272 uniquely mapped tags. Enriched motifs were 
identified by the de novo motif discovery tool MEME using 200-bp sequences centered on the 
ChIP-seq peaks. Co-occurrence analysis to study overlap of Nr5a2 binding sites with binding 
sites of other important transcription factors was performed with Nr5a2 ChIP-seq data and 
data set generated from previous study [1] (see  Figure 7).  

We used a de novo motif discovery algorithm MEME and uncovered a known Nr5a2 motif 
enriched in the dataset. More importantly, from our pairwise co-occurrence analyses we find 
that Nr5a2 tends to co-localize with Nanog, Oct4, Sox2, Smad1 and Esrrb (Figure 7). This 
result associates Nr5a2 with the previously reported Nanog-Oct4-Sox2 cluster [1,3]. In 
addition, this high degree of co-localizations suggests that Nr5a2 share many common target 
genes with important pluripotent and self-renewal factors Oct4, Sox2 and Nanog [3]. 
Combining Nr5a2 ChIP-seq data with microarray analysis of Nr5a2 knockdown shows that 
several genes bound by Nr5a2, such as Nanog, were also regulated by it [3].  

 
Table 1: Number of genes-Nr5a2 targets depending on distance to TSS. 

Distance to TSS, bp #Nr5a2 targets gene 
symbols 

# confirmed by microarray 
(knockdown) 

Fraction of targets 
confirmed by microarray 

<50000 3507 247 0.070 
<40000 2989 229 0.077 
<30000 2397 190 0.079 
<20000 1740 144 0.083 
<10000 1035 82 0.079 
<5000 600 49 0.082 
<1000 181 13 0.072 

 

Using Table 1 we can see that reasonable number of gene-targets of Nr5a2 binding could be 
selected using 50Kbp or 20Kbp threshold. Number of genes confirmed by microarray is up to 
2 hundreds. Relative fraction of confirmed targets is not big, about 7%. But all gene numbers 
confirmed by the microarray are statistically significant. 
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2.3.2 Interplay between TF binding: ERK2 ChIP-Seq identified ELK1 as a 
functionally important co-motif in hESC 

The self-renewal of pluripotent human ES cells has been shown to require extrinsic 
stimulation by the FGF, Activin and IGF signaling pathways and the expression of the 
transcription factors Oct4 and NANOG. However, the network of interactions among 
extrinsic and intrinsic determinants of ES cell pluripotency is currently poorly understood. 
ERK activity has been shown to be required for the maintenance of pluripotency.  
Furthermore, ERK kinase was recently shown to occupy gene promoters suggesting that 
ERK2 may be frequent occupants of signal-regulated gene promoters [20]. To gain insights 
into how signaling control the transcriptional regulatory networks in hES cells, we performed 
chromatin immuneprecipitation combined with high-throughput sequencing (ChIP-Seq) to 
map the locations of ERK2 in the ES-cell genome using chromatin prepared from H1 hESCs 
cultured in CM. Interesting that genome-wide screen for binding sites for ERK2 in hESC 
reveals that ERK2 binds to pluripotency genes and lineage specific transcription factors 
besides cell proliferation control genes. Phosphorylated ERK can activate a number of 
transcription factors, including ETS, AP-1, MYC and CREB. Consistent with this, 
bioinformatics analysis of ERK2 binding peak regions revealed the presence of multiple 
conserved transcription factor-binding sites, including binding sites for ELK1, CREB, E2F1, 
SP1 and TEAD1.  

2.3.3 Tbx3 analysis 

To better understand how Tbx3 may contribute to improving iPS cell quality, we performed 
Solexa ChIP-sequencing to uncover the direct regulatory targets of Tbx3 in mouse ESCs [4]. 
Strikingly, hierarchical clustering of Tbx3 with the previously mapped ESC factors revealed 
that it shares a large number of common binding sites with the classic pluripotency-associated 
transcription factors Oct4, Sox2, Nanog and Smad1 (Figure 7). Tbx3 is also found to target 
the ESC factors Oct4, Sox2, Sall4, Lefty1, Lefty2, Zfp42, as well as reprogramming factors 
Klf2, Klf4,  n-Myc and c-Myc [4].  

2.3.4 Eset ChIP-seq studies 

Peak calling based on the Eset ChIP-seq data [2] was performed using MACS [18] with a p-
value cutoff of 1e-12 resulted in 4,633 peaks. To determine regions that are marked by 
H3K9me3 and significantly affected by Eset knockdown, we search for regions that were 
significantly depleted in H3K9me3 after Eset RNAi. The program is suitable for histone 
modification enriched regions which detects changes over broader genomic regions, rather 
than the localized peaks detected by most peak caller programs. To define target genes we 
counted all the RefSeq genes having at least one ChIP-seq peak in +/-50Kbp from TSS. In 
order to define a core set of genes regulated by Eset, we selected all RefSeq genes that had at 
least one Eset binding peak as well as an Eset-dependent H3K9me3-enriched region. This 
resulted in a list of 1283 genes [2]. If Eset binding sites was not overlap directly with 
H3K9me regions, but resided in same gene promoter, then gene was considered as target 
gene.  

We assessed the overlap of the Eset ChIP-seq peaks with other transcription factors (Oct4, 
Sox2, Nanog, Suz12) in mouse ES cells by intersecting the peak list with data from a previous 
study [1,2] (Figure 7). We allowed up to 200 bp between the borders of two peaks. Instead of 
assessing overrepresentation by comparing the observed overlaps to overlaps with random 
regions, we used a control library generated from sequencing input DNA. To construct control 
sites we used low threshold in the MACS program, and then select randomly 40,000 sites in 
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total. This was done to partially correct possible bias due to uneven fragmentation and read 
mapping. The observed number of overlaps between TFs and Eset was then compared to this 
baseline, and statistical significance of Eset enrichment for each TF was estimated (Table 1). 

 
Table 2: Binding of Eset and histone methylation targets by ChIP-seq data. 

 Eset H3K9me3 Core Eset+H3K9me3 
ChIP-seq peaks 4633 10798 1890 
Gene Targets 2353 4169 1283 

2.3.5 Co-binding analysis of TFs in human genome 

Using available ChIP-seq libraries we compared co-occupation of binding sites in genome. 
We did it for mouse ESC previously and extended the work to new available TFs [7,13]. 

Figure 8 shows co-localization of TF binding in hESC in genome scale. The same observation 
for distinct clusters of OCT4-related and MYC-related groups is true for both mouse and 
human ESC. 

 
Figure 8: Co-occupation map of TF in hESC. 

Note similar clustering of TF binding in mouse and human ESCs (Figure 7 and 8).  

De novo computational method identified an over-represented PRDM14 motif [7]. 
Interestingly, PRDM14 shows co-binding with OCT4, SOX2, NANOG and co-activator 
p300, indicating that the PRDM14 circuitry is integrated to the core hESC transcriptional 
regulatory network. 

3 Discussion 

Important problem of biomedical studies is transcription networks governing stem cell 
maintenance. Despite the species-specific differences in the wiring of key transcription factors 
to the genome, certain ESC transcription factors can exert dominant effects on pluripotency-
associated cellular identity in both mouse and human cells [13]. Recently, the repertoire of 
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transcription factors associated with reprogramming was updated by Tbx3, a T-box factor that 
could significantly improve the germline competency of murine iPSCs [4]. 

Analysis of genomic sequences surrounding highest peaks (mapped ChIP-seq clusters) yields 
de novo motifs, sometimes not annotated in published manually curated databases. Some 
genomic regions have multiple TF occupancy (bound by several different transcription 
factors) challenging new bioinformatics problems. We found more than 3 thousands such 
multiple transcription loci (MTL) formed by 4 or more different TF sites in the mouse 
genome [1]. To distinguish regions enriched beyond random expectation from noise, we 
developed an algorithm that takes into account both the abundance of and the signal 
intensities of the bound regions for each transcription factor.  

The process of DNA reads mapping to the reference genome can bias the analysis toward 
genomic regions with unique and complex sequence patterns, requiring adjustment of the 
expected chance to observe moderate peaks in ChIP sequence density [6]. After mapping 
unique DNA sequence reads onto genome we have obtained 3-10 millions positions and 
3,000-50,000 peaks for each TF [1-4]. Difference in site numbers for TFs from different 
experiments demands development of new methods for statistical normalization and 
comparison of ChIP-seq peak calling. We made statistical estimates of genome coverage and 
false discovery rate of the total number of binding sites in genome based on ChIP-seq data 
that prove high quality of the data. Method of simulation backward from observed number of 
ChIP-seq clusters (peaks) and extrapolation forward to estimate total number of specific TF 
binding sites could be used for any TF sequencing data. Statistical estimations were proved by 
independent computer prediction methods and sequencing experiments [1]. We found strong 
correlations between binding motif and ChIP-seq peaks independently for ChIP-PET and 
ChIP-seq experiments [5,15].  

We developed statistical approaches for ChIP-seq transcription factor binding data and for 
definition of multiple TF binding events. Such combinations of different TFs on the same 
genome assembly (multiple transcription loci) allowed us to describe potential enhancers. 
Analysis of co-localization of transcription factor binding sites at genome scale revealed 
distinct patterns of sites related to proximal/distal location with respect to gene borders. Large 
fraction (up to 40%) of multiple TF binding loci are far from gene borders indicating to distal 
type of gene expression regulation.  

Integration of genome annotations of regulatory regions for TF binding and overlapping non-
coding transcripts allows define special classes of regulatory events [21] and looping of 
chromosome sequences. Tightly enclosed chromatin interaction centres could help achieve 
and maintain high local concentration of transcription components for efficient cycling of 
transcriptional machinery on target gene templates, as it suggested by expanded studies [17]. 

Acknowledgements 

The statistics of TF binding using publicly available ChIP-seq data was updated using high-
throughput computer cluster “Bioinformatics” SB RAS. The implementation of the programs 
for genomics data analysis was supported by the Russian Ministry of Education and Science 
(project No. 07.514.11.4003). Y.O. is grateful to RFBR (11-04-01888). 

References 

[1] X. Chen, H. Xu, P. Yuan, F. Fang, M. Huss, V.B. Vega, E. Wong, Y. L. Orlov, 
W. Zhang, J. Jiang, Y. H. Loh, H. C. Yeo, Z. X. Yeo, V. Narang, K. R. Govindarajan, 
B. Leong, A. Shahab, Y. Ruan, G. Bourque, W. K. Sung, N. D. Clarke, C. L. Wei and 

Journal of Integrative Bioinformatics, 9(2):211, 2012 http://journal.imbio.de

doi:10.2390/biecoll-jib-2012-211 11

C
op

yr
ig

ht
 2

01
2 

Th
e 

A
ut

ho
r(

s)
. P

ub
lis

he
d 

by
 J

ou
rn

al
 o

f I
nt

eg
ra

tiv
e 

B
io

in
fo

rm
at

ic
s.

 
Th

is
 a

rti
cl

e 
is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

-N
oD

er
iv

s 
3.

0 
U

np
or

te
d 

Li
ce

ns
e 

(h
ttp

://
cr

ea
tiv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

-n
c-

nd
/3

.0
/).



H. H. Ng. Integration of external signaling pathways with the core transcriptional 
network in embryonic stem cells. Cell, 133(6):1106-17, 2008.  

[2] P. Yuan, J. Han, G. Guo, Y. L. Orlov, M. Huss, Y. H. Loh, L. P. Yaw, P. Robson, 
B. Lim and H. H. Ng. Eset partners with Oct4 to restrict extraembryonic trophoblast 
lineage potential in embryonic stem cells. Genes and development, 23(21):2507-20, 
2009.  

[3] J. C. Heng, B. Feng, J. Han, J. Jiang, P. Kraus, J. H. Ng, Y. L. Orlov, M. Huss, L. Yang, 
T. Lufkin, B. Lim and H.H. Ng. The nuclear receptor Nr5a2 can replace Oct4 in the 
reprogramming of murine somatic cells to pluripotent cells. Cell Stem Cell, 6(2):167-
74, 2010. 

[4] J. Han, P. Yuan, H. Yang, J. Zhang, B. S. Soh, P. Li, S. L. Lim, S. Cao, J. Tay, 
Y. L. Orlov, T. Lufkin, H. H. Ng, W. L. Tam and B. Lim. Tbx3 improves the germ-line 
competency of induced pluripotent stem cells. Nature, 463(7284):1096-100, 2010. 

[5] V. A. Kuznetsov, Y. L. Orlov, C. L. Wei and Y. Ruan. Computational analysis and 
modeling of genome-scale avidity distribution of transcription factor binding sites in 
chip-pet experiments. Genome informatics, 19:83-94, 2007. 

[6] Y. L. Orlov, M. E. Huss, R. Joseph, H. Xu, V. B. Vega, Y. K. Lee, W. S. Goh, 
J. S. Thomsen, E. C. Cheung, N. D. Clarke and H. H. Ng. Genome-wide statistical 
analysis of multiple transcription factor binding sites obtained by ChIP-seq 
technologies. In: Proceedings of the 1st ACM Workshop on Breaking Frontiers of 
Computational Biology (CompBio '09). ACM, New York, NY, 11-18, 2009. 

[7] N.-Y. Chia, Y.-S. Chan, B. Feng, X. Lu, Y. L. Orlov, D. Moreau, P. Kumar, L. Yang, 
J. Jiang, M.-S. Lau, M. Huss, B.-S. Soh, B.-S. Kraus, T. Lufkin, B. Lim, N. Clarke, 
F. Bard and H. H. Ng. A genome-wide RNAi screen identifies PRDM14 as a regulator 
of POU5F1 and human embryonic stem cell identity. Nature, 468(7321): 316-20, 2010. 

[8] A. G. Smith. Embryo-derived stem cells: of mice and men. Annual review of cell and 
developmental biology, 17, 435–462, 2001. 

[9] J. A. Thomson, J. Itskovitz-Eldor, S. S. Shapiro, M. A. Waknitz, J. J. Swiergiel, 
V. S. Marshall and J. M. Jones. Embryonic stem cell lines derived from human 
blastocysts. Science, 282, 1145-7, 1998. 

[10] R. H. Xu, T. L. Sampsell-Barron, F. Gu, S. Root, R. Peck M., G. Pan, J. Yu, 
J. Antosiewicz-Bourget, S. Tian, R. Stewart and J. A. Thomson. NANOG is a direct 
target of TGFbeta/activin-mediated SMAD signaling in human ESCs. Cell Stem Cell, 3, 
196-206, 2008. 

[11] K. Takahashi and S. Yamanaka. Induction of pluripotent stem cells from mouse 
embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676, 2006. 

[12] B. Feng, J. Jiang, P. Kraus, J. H. Ng, J. C. Heng, Y. S. Chan, L. P. Yaw, W. Zhang, 
Y. H. Loh, J. Han, V. B. Vega, V. Cacheux-Rataboul, B. Lim, T. Lufkin and H.H. Ng. 
Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear 
receptor Esrrb. Nature Cell Biology, 11: 197-203, 2009. 

[13] J. C. Heng, Y. L. Orlov and H. H. Ng. Transcription Factors for the Modulation of 
Pluripotency and Reprogramming. In: Cold Spring Harbor Symposia on Quantitative 
Biology, 75:237-44, 2010. 

[14] G. Hu, J. Kim, Q. Xu, Y. Leng, S. H. Orkin and S. J. Elledge. A genome-wide RNAi 
screen identifies a new transcriptional module required for self-renewal. Genes 
Development, 23, 837-48, 2009. 

Journal of Integrative Bioinformatics, 9(2):211, 2012 http://journal.imbio.de

doi:10.2390/biecoll-jib-2012-211 12

C
op

yr
ig

ht
 2

01
2 

Th
e 

A
ut

ho
r(

s)
. P

ub
lis

he
d 

by
 J

ou
rn

al
 o

f I
nt

eg
ra

tiv
e 

B
io

in
fo

rm
at

ic
s.

 
Th

is
 a

rti
cl

e 
is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

-N
oD

er
iv

s 
3.

0 
U

np
or

te
d 

Li
ce

ns
e 

(h
ttp

://
cr

ea
tiv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

-n
c-

nd
/3

.0
/).



[15] R. Joseph, Y. L. Orlov, M. Huss, W. Sun, S. L. Kong, L. Ukil, Y. F. Pan, G. Li, M. Lim, 
J. S. Thomsen, Y. Ruan, N. D. Clarke, S. Prabhakar, E. Cheung and E. T. Liu. 
Integrative model of genomic factors for determining binding site selection by estrogen 
receptor α.  Molecular Systems Biology, 6:456, 2010. 

[16] K. L. Lee, S. K. Lim, Y. L. Orlov, Y. Yit le, H. Yang, L. T. Ang, L. Poellinger and 
B. Lim. Graded Nodal/Activin signaling titrates conversion of quantitative phospho-
Smad2 levels into qualitative embryonic stem cell fate decisions. PLoS Genetics, 
7(6):e1002130, 2011. 

[17] G. Li, X. Ruan, R. K. Auerbach, K. S. Sandhu, M. Zheng, P. Wang, H. M. Poh, Y. Goh, 
J. Lim, J. Zhang, H. S. Sim, S. Q. Peh, F. H. Mulawadi, C. T. Ong, Y. L. Orlov, 
S. Hong, Z. Zhang, S. Landt, D. Raha, G. Euskirchen, C. L. Wei, W. Ge, H. Wang, 
C. Davis, K. I. Fisher-Aylor, A. Mortazavi, M. Gerstein, T. Gingeras, B. Wold, Y. Sun, 
M. J. Fullwood, E. Cheung, E. Liu, W. K. Sung, M. Snyder and Y. Ruan. Extensive 
promoter-centered chromatin interactions provide a topological basis for transcription 
regulation. Cell, 148(1-2):84-98, 2012. 

[18] Y. Zhang, T. Liu, C. A. Meyer, J. Eeckhoute, D. S. Johnson, B. E. Bernstein, 
C. Nusbaum, R. M. Myers, M. Brown, W. Li and X. S. Liu. Model-based analysis of 
ChIP-Seq (MACS). Genome Biology, 9(9): R137, 2008. 

[19] H. Mi, B. Lazareva-Ulitsky, R. Loo, A. Kejariwal, J. Vandergriff, S. Rabkin, N. Guo, A. 
Muruganujan, O. Doremieux, M. J. Campbell, H. Kitano and P. D. Thomas. The 
PANTHER database of protein families, subfamilies, functions and pathways. Nucleic 
Acids Research, 31:334-341, 2005. 

[20] H. M. Zhang, L. Li, N. Papadopoulou, G. Hodgson, E. Evans, M. Galbraith, M. Dear, 
S. Vougier, J. Saxton and P. E. Shaw. Mitogen-induced recruitment of ERK and MSK 
to SRE promoter complexes by ternary complex factor Elk-1. Nucleic Acids Research, 
36, 2594-2607, 2008. 

[21] O. V. Grinchuk, P. Jenjaroenpun, Y. L. Orlov, J. Zhou and V. A. Kuznetsov. Integrative 
analysis of the human cis-antisense gene pairs, miRNAs and their transcription 
regulation patterns. Nucleic Acids Research, 38(2):534-47, 2010. 

Journal of Integrative Bioinformatics, 9(2):211, 2012 http://journal.imbio.de

doi:10.2390/biecoll-jib-2012-211 13

C
op

yr
ig

ht
 2

01
2 

Th
e 

A
ut

ho
r(

s)
. P

ub
lis

he
d 

by
 J

ou
rn

al
 o

f I
nt

eg
ra

tiv
e 

B
io

in
fo

rm
at

ic
s.

 
Th

is
 a

rti
cl

e 
is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

-N
oD

er
iv

s 
3.

0 
U

np
or

te
d 

Li
ce

ns
e 

(h
ttp

://
cr

ea
tiv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

-n
c-

nd
/3

.0
/).


	1 Introduction
	2 Analysis of TF binding in stem cells by ChIP-seq
	2.1 ChIP-seq technology and data analysis
	2.2 Multiple binding of TFs in mESC
	2.3 Key TFs for maintenance and reprogramming of ESC
	2.3.1 Genome-wide binding analysis of Nr5a2 in ESC
	2.3.2 Interplay between TF binding: ERK2 ChIP-Seq identified ELK1 as a functionally important co-motif in hESC
	2.3.3 Tbx3 analysis
	2.3.4 Eset ChIP-seq studies
	2.3.5 Co-binding analysis of TFs in human genome


	3 Discussion
	Acknowledgements
	References



