

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2, Issue-3, July 2012

237



Abstract—The paper presents the basics of mobile application

creation for smartphones using the visual programming tool,

‘App Inventor for Android (AIA)’. The AIA was developed by

Google to enable non-programmers to easily build mobile

applications by dragging and dropping the block-based

interfaces, like blocks of Lego, instead of writing lines and lines

of code. It allows users to immediately build applications (e.g.,

location services and games) that interface with mobile

technologies.

Index Terms—App Inventor, Mobile App, Smartphones,

Designer, Block Editor

I. INTRODUCTION

With the popularity of smartphones, mobile applications are

increasingly gaining interest to younger generations as well as

students who are interested in computer science [1]. App

Inventor for Android [2, 3, 4] has great potential because

individuals without any prior programming skills can easily

build their own applications with real-world impact. Students

can become excited to learn by tinkering with their most

beloved devices (e.g., smartphones)

The main objective of this project is to build the smart

parking management system to solve current parking

problems on the university campus. It aims to provide

real-time parking information as well as support a more

sustainable campus by reducing the amount of carbon

dioxide. In this paper, we will introduce the mobile app design

tool, AIA, and then attempt to design a mobile application for

campus parking management.

II. WHAT IS APP INVENTOR

App Inventor [3] is a mobile applications design tool

consisted of two major parts; Component Designer and Block

Editor. It allow users without prior programming experience

to develop mobile applications. App Inventor [4] lets users

develop applications for Android phones using a web browser

and either a connected phone/tablet or an emulator .

Figure 1 shows the architecture of App Inventor. The App

Inventor Server stores a developer‟s work and help him/her

keep track of a project. The App Inventor Designer [5] is

mainly used to create the interface of a user‟s own apps and

put them together from its functional components, such as

Hak Ju Kim, Department of Information Technology and Quantitative

Methods, Hofstra University, Hempstead, NY 11549, USA,

1.516.463-4529..

Jonathan Modell, Department of Information Technology and

Quantitative Methods, Hofstra University, Hempstead, NY 11549, USA,

1.516.463-4529.,.

Basic, Media, Animation, Social, and Sensor. It is

implemented as a web application, so you load it just like a

normal website into your browser by entering the appropriate

web address. After finishing the design of applications, the

App Inventor Block Editor should be used to specify how the

components of App Inventor Designer [3] should behave. The

more detail process will xplained next session.

Instead of the traditional method of debugging, your app

appears on the phone as you add pieces to it, so you can test

your work as you build. When you're done, you can package

your app and produce a stand-alone application to install. If

you don't have an Android phone, you can build your apps

using the Android emulator [4], software that runs on your

computer and behaves (with a few exceptions) just like the

phone.

Figure 1: the Architecture of App Inventor

III. DEVELOPMENT ENVIRONEMENT

The App Inventor development environment [5] is

supported for Mac OS X, GNU/Linux, and Windows

operating systems, and several popular Android phone

models. Applications created with App Inventor can be

installed on any Android phone.

A. Objects

An object represents an instance of a class such

as Form, Control, or Component. An everyday object such as

an automobile also has properties, methods, and events.

B. Property

A property is an attribute of an object that defines one of

the object's characteristics. Examples of properties are the

size, color, or screen location of the object. Other properties

could include aspects of the object‟s behavior, such as

whether it is enabled or visible.

C. Method

A method is an action that an object can perform. For

example, Add is a method of the ListPicker object, because it

adds a new entry into the list.

Mobile App Design Tool for Smartphones:

A Tutorial

Hak. J. Kim and Jonathan Modell

Mobile App Design Tool for Smartphones: A Tutorial

238

D. Event

An event is an action recognized by an object, such as

clicking the mouse or pressing a key, and for which you can

write code to respond. Events can occur as a result of a user

action or program code, or they can be triggered by the

system.

E. Example

Figure 2 shows an example of automobile. An object

(Autombile) has properties (Color, Length, and Height),

responds to events (Collide with object), and can perform

methods (Drive). An automobile also has known methods or

actions that it can perform. For example, a „Fill her up‟

method (filling it with gasoline). A „drive‟ method (expelling

its contents such as gasoline, oil, winshield wiper fluid). An

automobile‟s properties include visible attributes such as its

length, model, and color. Other properties describe its state

(running, idle, off), or attributes that are not visible, such as its

age.

Figure 2: Objects, Properties, Events, and

Methods of Automobile

IV. COMPONENTS OF APP INVENTOR

As addressed in the above, the App Inventor consists of two

components - the „Component Designer‟ for specifying the

visual components of an application and the „Blocks Editor‟

for creating behaviors for the components [9].

1. Component Designer

The Component Designer provides the components to

design your application, such as Basic, Media, Animation,

Social, Sensor, Arrangement, and Other. Each component can

have methods, events, and properties. Figure 3 shows a screen

shot of App Inventor Designer.

Figure 3: App Inventor Designer

A. Basic Component

Figure 4 shows the list of Basic Component. Each

component is briefly described as follows:

 Button is a component that users touch to perform some

action in your application.

 Canvas is a two-dimensional rectangular panel on which

drawing can be done and sprites can be moved.

 CheckBox can detect user taps and can change their

Boolean state in response.

 Clock is used to create a timer that signals events at

regular intervals.

 Image is to represent images that users select and

manipulate.

 Label is a component used to show text.

 ListPicker is that users tap a list picker component to

select one item from a list of text strings.

 PasswordTextBox is that users enter passwords in a

password text box component, which hides the text

that has been typed in it.

 TextBox is to enter text in a text box.

 TinyDB is to store data that will be available each time

the app runs.

Figure 4: Basic Component

B. Media Component

Figure 5 shows the list of Media Component. Each

component is briefly described as follows:

 Camera is used to take a picture on the phone.

 ImagePicker is used to choose an image from your

image gallery.

 Player is used to play an audio or video file, or to vibrate

the phone.

 Sound is used to play an audio file, or to vibrate the

phone.

 VideoPlayer is used to play a video file.

Figure 5: Media Component

C. Animation Component

Figure 6 shows the list of Animation Component. Each

component is briefly described as follows:

 Ball is a particular kind of sprite (animated object) that

looks like a ball.

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2, Issue-3, July 2012

239

 Image Sprite is an animated object that can interact with

a canvas, balls, and other image sprites.

Figure 6: Animation Component

D. Social Component

Figure 7 shows the list of Social Component. Each

component is briefly described as follows:

 ContactPicker is used to let the user choose an entry

from the Android contact list.

 EmailPicker is used to let the user enter a user's email

address from the Android contact list.

 PhoneCall is used to dial the phone and make a call.

 PhoneNumberPicker is used to allow users to choose a

phone number from a list of Android contacts' phone

numbers.

 Texting is used to allow users to send and receive text

messages.

 Twitter is a non-visible component to enable

communication with Twitter.

Figure 7: Social Component

E. Sensors Component

Figure 8 shows the list of Sensors Component. Each

component is briefly described as follows:

 AccelerometerSensor senses the Android device's

accelerometer, which detects shaking and measures

acceleration in three dimensions.

 LocationSensor provides the Android device's location,

using GPS if available and an alternative method

otherwise, such as cellular towers or known wireless

networks.

 OrientationSensor uses an orientation sensor

component to determine the phone's spatial

orientation.

Figure 8: Sensors Component

F. Screen Arrangement Component

Figure 9 shows the list of Screen Arrangement Component.

Each component is briefly described as follows:

 HorizontalArrangement uses a horizontal arrangement

component to display a group of components laid out

from left to right.

 TableArrangement uses a table arrangement

component to display a group of components in a

tabular fashion.

 VerticalArrangement uses a vertical arrangement

component to display a group of components laid out

from top to bottom, left-aligned.

Figure 9: Screen Arrangement Component

G. Other Stuff

Figure 10 shows the list of Other Stuff. Each component is

briefly described as follows:

 ActivityStarter launches another activity from your

application.

 BarcodeScanner reads a 1-dimensional barcode or

2-dimensional barcode (QR code). In order for this

component to work, the Barcode scanner application

from ZXing must be installed on the phone.

 Notifier uses a notifier to display notices and alerts to

users of your app, and also to log information that can

help you debug your application.

 SpeechRecognizer listens to the user speaking and

convert the spoken sound into text using Android's

speech recognition feature.

 TextToSpeech uses a text-to-speech component to have

the device speak text audibly.

 TinyWebDB is a non-visible component that

communicates with a Web service to store and retrieve

information.

 Web is a non-visible component that provides functions

for HTTP GET and POST requests.

Figure 10: Other Stuff Component

2. Block Editor

The Blocks Editor is used to assign behavior to the

components. It is where you indicate what events should

cause action in the app and what the resulting algorithm is

after the event occurs. It allows a user to set of different

properties. It can make a reference to a component via a

variable/argument and manipulate dynamically. Figure 11

shows a screen shot of Block Editor.

Mobile App Design Tool for Smartphones: A Tutorial

240

The Block Editor, where you assemble program blocks,

specifies how the components should behave. You assemble

programs visually, fitting pieces together like pieces of a

puzzle. There are seven block categories, not including the

My Blocks section.

Figure 11: Block Editor

A. Definition Blocks

There are four Definition Blocks: procedure,

procedureWithResult, name, and variable, as shown Figure

12. These blocks allow user to automatically generate blocks

definitions related to App Inventor components.

Figure 12: Definition Blocks

B. Text Blocks

Figure 13 shows the list of Text Blocks and each component

is briefly described. These blocks create, manipulate, and

destroy text. Text is usually used as a user interface. Currently

there are 20 text block types.

Figure 13: Text Blocks

C. List Blocks

List blocks are used for creating and manipulating lists

which can be combined with the for each block to do a set

series of operations on every value in the list. Figure 14 shows

the list of List Blocks and each component is briefly described.

List is a necessity in almost every applications regardless of

what programming language is used. This is the easiest way

to create and manipulate a set of values, items, and elements

in an ordered fashion.

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2, Issue-3, July 2012

241

Figure 14: List Blocks

D. Logic Blocks

Figure 16 shows the list of Logic Blocks and each

component is briefly described.

Figure 16: Logic Blocks

E. Control Blocks

Figure 17 shows the list of Control Blocks and each

component is briefly described.

Figure 17: Control Blocks

F. Math Blocks

The math blocks handle mathematical functions suitable

for calculator applications. Figure 18 shows the list of Math

Blocks and each component is briefly described.

Mobile App Design Tool for Smartphones: A Tutorial

242

Figure 18: Math Blocks

G. Color Blocks

The Color Blocks contain several blocks corresponding to

commonly used colors. Figure 19 shows the list of Color

Blocks and each component is briefly described. These blocks

have two types one is the text color setting and the other is the

background color setting. These same colors can also be

selected from the color dropdown lists in the Designer's

properties panel.

Figure 19: Color Blocks

V. AN EXAMPLE: DESIGNING CAMPUS PARKING SYSTEM

In this project, we designed a test-bed for performance

evaluation of the RFID-enabled and mobile app-based

parking management system in a controlled and repeatable

laboratory environment. The test-bed consists of a real-time

RF channel simulator, Wi-Fi 802.11 access points, RFID tags,

and a laptop loaded with the positioning algorithm and its

associated user interface (i.e., mobile app) [6].

The parking management platform consists of four systems

[7]; RFID system, Wi-Fi systems, database management

system (DBMS), and mobile systems loaded with our mobile

app. The web-based mobile app will use the University Wi-Fi

network to triangulate the position of the user‟s smart phone.

It will provide a view of the University‟s parking lot layout

and the user‟s location on the smart phone (combining the

GPS guidance system and the RFID technology).

The mobile app will provide real-time parking information

(e.g., available parking spaces) and also guide the user giving

them turn by turn directions to the destination.

Using the mobile app for android, the preliminary test-bed

for integrating the RFID system, wireless network, and

mobile devices. The methodology for this test-bed will be a

lab-based approach (experiment). This pilot study will be

carried out in the University‟s computer networking lab and

use some facilities (power source, database server, wireless

access points, and PCs). The additional equipment for a

test-bed includes RFID Tags, RFID Readers, and RFID

software. Figure 20 shows web-based mobile app prototype

which provides a map with parking information like available

parking lots and spaces.

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2, Issue-3, July 2012

243

Figure 20: A Test-Bed Architecture

VI. CONCLUDING REMARKS

This paper introduces the App Inventor for Android as a

tool to develop mobile applications, including its definitions,

components, and architecture. The benefit of this software is

that there is no prior experience in programming, but

improvement in the knowledge of computer programming.

Using this mobile app design tool, we plan to build the campus

parking management system for solving current parking problems in

university campus by providing the real-time parking information

and also for supporting more sustainable campus by reducing the

amount of carbon dioxide. This system also will be applied to many

fields, such as central business districts, airports, transit stations,

and shopping centers.

REFERENCES

[1] Cook, D., and Das, S. (2012) Pervasive Computing at Scale:

Transforming the State of the Art, Pervasive and Mobile Computing,

vol. 8, issue 1, pp. 22-35.

[2] MIT, “App Inventor for Android”, http://appinventoredu.mit.edu/

(accessed February 20, 2012).

[3] Tyler, J. (2012) App Inventor for Android: Build Your Own Apps-No

Experience Required !, Wiley Inc.

[4] Wolber, D., Abelson, H., Spertus, E., and Looney, L. (2011) App

Inventor: Create Your Own Android Apps, O‟Reilly.

[5] Kloss, J. (2012) Android Apps with App Inventor, Pearson Education,

Inc.

[6] Castro, L. & Fosso Wamba, S. (2007). An inside look at RFID

technology. Journal of Technology Management & Innovation, 2(1),

pp. 128-140.

[7] Roussos G. and Kostakos V. (2009) RFID in Pervasive Computing:

State-of-the-art and Outlook, Pervasive and Mobile Computing, Vol.

5(1), pp.110-131.

Hak J. Kim is an Associate Professor of Information Technology and

Quantitative Methods at the Hofstra University. He is a Director of

Computer and Network Lab in the Zarb School of Business. His current

research interests include mobile computing & ubiquitous business, social

networking services & social media, and cyber space & cyber security. In

this workshop, he is interested in applying mobile computing technologies to

smartphones and analyzing how his research interests are incorporated in the

real-world businesses.

Jonathan Modell is currently an MBA graduate student at the Zarb

School Of Business/Hofstra University with a focus on Information

Technology. With over fifteen years of industry experience, he currently

owns and operates a small computer consulting firm focusing on the needs of

smaller emerging businesses on Long Island.

