International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2, Issue-3, July 2012

Mobile App Design Tool for Smartphones:
A Tutorial

Hak. J. Kim and Jonathan Modell

Abstract—The paper presents the basics of mobile application
creation for smartphones using the visual programming tool,
‘App Inventor for Android (AlA)’. The AIA was developed by
Google to enable non-programmers to easily build mobile
applications by dragging and dropping the block-based
interfaces, like blocks of Lego, instead of writing lines and lines
of code. It allows users to immediately build applications (e.g.,
location services and games) that interface with mobile
technologies.

Index Terms—App Inventor, Mobile App, Smartphones,
Designer, Block Editor

I. INTRODUCTION

With the popularity of smartphones, mobile applications are
increasingly gaining interest to younger generations as well as
students who are interested in computer science [1]. App
Inventor for Android [2, 3, 4] has great potential because
individuals without any prior programming skills can easily
build their own applications with real-world impact. Students
can become excited to learn by tinkering with their most
beloved devices (e.g., smartphones)

The main objective of this project is to build the smart
parking management system to solve current parking
problems on the university campus. It aims to provide
real-time parking information as well as support a more
sustainable campus by reducing the amount of carbon
dioxide. In this paper, we will introduce the mobile app design
tool, AlA, and then attempt to design a mobile application for
campus parking management.

Il. WHAT IS APP INVENTOR

App Inventor [3] is a mobile applications design tool
consisted of two major parts; Component Designer and Block
Editor. It allow users without prior programming experience
to develop mobile applications. App Inventor [4] lets users
develop applications for Android phones using a web browser
and either a connected phone/tablet or an emulator .

Figure 1 shows the architecture of App Inventor. The App
Inventor Server stores a developer’s work and help him/her
keep track of a project. The App Inventor Designer [5] is
mainly used to create the interface of a user’s own apps and
put them together from its functional components, such as

Hak Ju Kim, Department of Information Technology and Quantitative
Methods, Hofstra University, Hempstead, NY 11549, USA,
1.516.463-4529..

Jonathan Modell, Department of Information Technology and
Quantitative Methods, Hofstra University, Hempstead, NY 11549, USA,
1.516.463-4529.,.

237

Basic, Media, Animation, Social, and Sensor. It is
implemented as a web application, so you load it just like a
normal website into your browser by entering the appropriate
web address. After finishing the design of applications, the
App Inventor Block Editor should be used to specify how the
components of App Inventor Designer [3] should behave. The
more detail process will xplained next session.

Instead of the traditional method of debugging, your app
appears on the phone as you add pieces to it, so you can test
your work as you build. When you're done, you can package
your app and produce a stand-alone application to install. If
you don't have an Android phone, you can build your apps
using the Android emulator [4], software that runs on your
computer and behaves (with a few exceptions) just like the
phone.

App Inventor
Server

Android
Emulator

App Inventor
Designer

App Inventor
Block Editor

Figure 1: the Architecture of App Inventor

I1l. DEVELOPMENT ENVIRONEMENT

The App Inventor development environment [5] is
supported for Mac OS X, GNU/Linux, and Windows
operating systems, and several popular Android phone
models. Applications created with App Inventor can be
installed on any Android phone.

A. Objects

An object represents an instance of a class such
as Form, Control, or Component. An everyday object such as
an automobile also has properties, methods, and events.

B. Property

A property is an attribute of an object that defines one of
the object's characteristics. Examples of properties are the
size, color, or screen location of the object. Other properties
could include aspects of the object’s behavior, such as
whether it is enabled or visible.

C. Method

A method is an action that an object can perform. For
example, Add is a method of the ListPicker object, because it
adds a new entry into the list.

Mobile App Design Tool for Smartphones: A Tutorial

D. Event

An event is an action recognized by an object, such as
clicking the mouse or pressing a key, and for which you can
write code to respond. Events can occur as a result of a user
action or program code, or they can be triggered by the
system.

E. Example

Figure 2 shows an example of automobile. An object
(Autombile) has properties (Color, Length, and Height),
responds to events (Collide with object), and can perform
methods (Drive). An automobile also has known methods or
actions that it can perform. For example, a ‘Fill her up’
method (filling it with gasoline). A ‘drive’ method (expelling
its contents such as gasoline, oil, winshield wiper fluid). An
automobile’s properties include visible attributes such as its
length, model, and color. Other properties describe its state
(running, idle, off), or attributes that are not visible, such as its

iy Sy

Car.Drive()

Ca r.Co_Ior

WSisH4ed

|
" ~Car.Collision
'| Car.MakeNoise”Bang”

Car.Length

Figure 2: Objects, Properties, Events, and
Methods of Automobile

1V. COMPONENTS OF APP INVENTOR

As addressed in the above, the App Inventor consists of two
components - the ‘Component Designer’ for specifying the
visual components of an application and the ‘Blocks Editor’
for creating behaviors for the components [9].

1. Component Designer

The Component Designer provides the components to
design your application, such as Basic, Media, Animation,
Social, Sensor, Arrangement, and Other. Each component can
have methods, events, and properties. Figure 3 shows a screen
shot of App Inventor Designer.

| App Inventor

Medla

Figure 3: App Inventor Designer

A. Basic Component

Figure 4 shows the list of Basic Component. Each

component is briefly described as follows:

238

e Button is a component that users touch to perform some
action in your application.

Canvas is a two-dimensional rectangular panel on which
drawing can be done and sprites can be moved.

CheckBox can detect user taps and can change their
Boolean state in response.

Clock is used to create a timer that signals events at
regular intervals.

Image is to represent images that users select and
manipulate.

Label is a component used to show text.

ListPicker is that users tap a list picker component to
select one item from a list of text strings.

PasswordTextBox is that users enter passwords in a
password text box component, which hides the text
that has been typed in it.

TextBox is to enter text in a text box.

TinyDB is to store data that will be available each time
the app runs.

Basic

Buttomn

anvas
heckBox

ook

Irmiso e

Labe=l

Li=tFicker
FasswwordTextB oz
TextBEoxx

Tiny[B

Figure 4: Basic Component

B. Media Component
Figure 5 shows the list of Media Component. Each
component is briefly described as follows:
Camera is used to take a picture on the phone.
ImagePicker is used to choose an image from your
image gallery.
Player is used to play an audio or video file, or to vibrate
the phone.
Sound is used to play an audio file, or to vibrate the
phone.
VideoPlayer is used to play a video file.

Media

(7=

Zamera
ImageFickar
Flaver

Sound

i

T
1]

WideoPFlaver

Figure 5: Media Component

C. Animation Component
Figure 6 shows the list of Animation Component. Each
component is briefly described as follows:
o Ball is a particular kind of sprite (animated object) that
looks like a ball.

International Journal of Soft Computing and Engineering (IJSCE)

o Image Sprite is an animated object that can interact with
a canvas, balls, and other image sprites.

Animation
Ball
— ImagesSprite

Figure 6: Animation Component

D. Social Component
Figure 7 shows the list of Social Component. Each

component is briefly described as follows:
e ContactPicker is used to let the user choose an entry
from the Android contact list.

EmailPicker is used to let the user enter a user's email
address from the Android contact list.

PhoneCall is used to dial the phone and make a call.

PhoneNumberPicker is used to allow users to choose a
phone number from a list of Android contacts' phone
numbers.

Texting is used to allow users to send and receive text
messages.

Twitter is a non-visible component to enable
communication with Twitter.

Social

ZontactPicker
EmailFicker
FhioneZall
FhonerdumberPicker
Texting

Twwitter

fl

Figure 7: Social Component

E. Sensors Component

Figure 8 shows the list of Sensors Component. Each

component is briefly described as follows:

o AccelerometerSensor senses the Android device's
accelerometer, which detects shaking and measures
acceleration in three dimensions.

¢ LocationSensor provides the Android device's location,
using GPS if available and an alternative method
otherwise, such as cellular towers or known wireless
networks.

e OrientationSensor
component to
orientation.

uses an orientation
determine the phone's

sensor
spatial

Sensors

AccelerametersSensar
vy LocationESensoar

7 OrientationSensor

Figure 8: Sensors Component

F. Screen Arrangement Component

Figure 9 shows the list of Screen Arrangement Component.
Each component is briefly described as follows:

o HorizontalArrangement uses a horizontal arrangement

239

ISSN: 2231-2307, Volume-2, Issue-3, July 2012

component to display a group of components laid out
from left to right.

e TableArrangement uses a table arrangement
component to display a group of components in a
tabular fashion.

e VerticalArrangement uses a vertical arrangement
component to display a group of components laid out
from top to bottom, left-aligned.

Screen Arrangement

HaorizontalArrangerment
TablefArrangement

articalfrrangement

Figure 9: Screen Arrangement Component

G. Other Stuff

Figure 10 shows the list of Other Stuff. Each component is
briefly described as follows:

o ActivityStarter launches another activity from your

application.

BarcodeScanner reads a 1-dimensional barcode or
2-dimensional barcode (QR code). In order for this
component to work, the Barcode scanner application
from ZXing must be installed on the phone.

Notifier uses a notifier to display notices and alerts to
users of your app, and also to log information that can
help you debug your application.

SpeechRecognizer listens to the user speaking and
convert the spoken sound into text using Android's
speech recognition feature.

TextToSpeech uses a text-to-speech component to have
the device speak text audibly.

TinyWebDB is a non-visible component that
communicates with a Web service to store and retrieve
information.

Web is a non-visible component that provides functions
for HTTP GET and POST requests.

DOther stuff

ActiviteStarter
BarcodeScanner
Blustaoth & lient
BlustoothServer
rlatifier
SpeechRecognizer
TextToSpeech
TinywweblhB

LRTE=1]
Figure 10: Other Stuff Component

2. Block Editor

The Blocks Editor is used to assign behavior to the
components. It is where you indicate what events should
cause action in the app and what the resulting algorithm is
after the event occurs. It allows a user to set of different
properties. It can make a reference to a component via a
variable/argument and manipulate dynamically. Figure 11
shows a screen shot of Block Editor.

Mobile App Design Tool for Smartphones: A Tutorial

The Block Editor, where you assemble program blocks, text Contains AText String |
specifies how the components should behave. You assemble
H S H H H equals Tests whether two given values areequal
programs visually, fitting pieces together like pieces of a Ll - o
puzzle. There are seven block categories, not including the -~ — .
join Appends the second given stringto the first ﬁ
My Blocks section.
make text Joinsall givenvaluesinto onetext string ——————
n length Returns the length of the given string _—
Builtn | My Blacks — ¢ H * call text
Cefinition ﬂ’lﬂl length .
et o (o > text< Reports whether the firsttext stringargument is alphabetically less | —
Wity gRunring - than the second text string text< o
when cClack.Timer
Math ifelse st (s _ -
G2 gruming | = tew. fr—)
Logic x ghunring text= Reports whether the text strings are identical i.e, have the same e
Sentrol characters inthe same order hees rJ
taxaz
Colors B e —
text» Reports whether the firsttext stringargument is alphabetically - et [
greater than the second text string text> a2
When caccel AccelerationChanged xécsel (! name . upcase Returns a copy of its text stringargument converted to uppercase text r‘
-~
o = lupcase
- rccel
pP— J downcase Returns a copy of itstext stringargument converted to lowercase e r‘
downcase
J @ trim Returns a copy of its text stringargument with any leading or
trailing spaces removed » tri text r‘
rnm
= —
——— starts at Returns the character position where the firstcharacter
- . - of piece firstappears intext, or 0 if not present ﬁ
Figure 11: Block Editor
.. contains Returns true if piece appears intext; otherwise, returns false
A. Definition Blocks s
There are four Deflnltlon BIOCkS procedure, split at first Dividesthe given text intotwo pieces usingthe location of the first
H H H occurrence of atas the dividing point
procedureWithResult, name, and variable, as shown Figure
12. These bIOCkS al IOW user tO automatical Iy generate bIOCkS split at first | Divides the given text intoa two-item list, usingthe location of any
. e of any item inthe listatas the dividing peint splitatfirstofany
definitions related to App Inventor components.
procedllre Collects 2 sequence of blocks tozether nto a aroup split D\\fides text into pieces usingat asthe dividing points and produces
= = alistofthe results
procedure\VithResult Same asa procedure block, butcalling the procedure i procedureWithResult splft at any D_W_'d_gs thg_gmn et infoa I'.St‘ usingany ofthe ftems inat asthe =T o
dividing point, and returns a list of the results SR L RV at
retums a result. After the procedure executes, the result
is retumed to the block connectedto theretum socket.
split at Divides the given text atany occurrence of a space, producinga list
spaces of the pieces = cal split at spaces toxt
name Creates a named argument youcan usewhen calling a
procedure. segment Extracts part of the text starting at start position and continuing for
length characters
varible Creates a value that can be changed while an app is e
running, and gives that value a name. replace all Returns a new text string obtained by replacing all occurrences of |
the substringwiththe replacement replace at

Figure 12: Definition Blocks

B. Text Blocks

Figure 13 shows the list of Text Blocks and each component
is briefly described. These blocks create, manipulate, and
destroy text. Text is usually used as a user interface. Currently
there are 20 text block types.

240

Figure 13: Text Blocks

C. List Blocks

List blocks are used for creating and manipulating lists
which can be combined with the for each block to do a set
series of operations on every value in the list. Figure 14 shows
the list of List Blocks and each component is briefly described.
List is a necessity in almost every applications regardless of
what programming language is used. This is the easiest way
to create and manipulate a set of values, items, and elements
in an ordered fashion.

International Journal of Soft Computing and Engineering (IJSCE)
ISSN: 2231-2307, Volume-2, Issue-3, July 2012

make a list Creates alistfromthe given blocks. Ifyou don't supplyany S (i If Tests a gi\.‘en condition. If the
arguments, this creates anempty list, whichyoucanadd) 2 . . .
ftom [condition is true, performs the actions
elements to later ' N A £ block
In a given sequence o OCKS;
select list item ._StelecF t:t.! |;emlatthe given index inthe given list. The firstlist e i otherwise, the blocks are ignored
fiem Is &t index select listitem ., [- - — - —
ifelse Tests a given condition. If the resultis ftelse
replace list Inserts replacement into the given listat position index. The iy wat true, performs the actions in the then- | S
item previous item at that position is removed = - do sequence of blocks; otherwise,
repiacement [- .
L " performs the actions in the else-do
remove list Removes the item at the specified position fromthe list i = sequence of blocks.
item remove list tem .. - —
choose Tests a given condition. If the ¥ hoos
insert listitem | Insertsanitem intoa listatthe specified position “a B ;; condition is true, pen‘orms the actions
westastRem 7= G in the then-do sequence and returns

L] -
the then-returnvalue; otherwise,
length of list Returns the number of items in the list call gt rJ performs the actions in the else-do
M length of list
_— sequence of blocks and returns the
append tolist | Adds the items inthe second listtothe end of the first list eall ust1 else-return value.
appendtolist . [- "
oreac uns e OCKS In e do section Tor
fi h R the block the d tion f
add items to Adds the given items to the end of the list il E.EICh Iten—! in the list in list. Use the
st [DT o given variable name to refer to the
is in list? Ifthing is one of the elements of the list, returnstrue; g wing 7 currentlist item.
otherwise, returns false e R = 'J‘ ; -
orrange unsthe blockin e ao section ror
fi Runs the blockin the d tion f
position in list | Returns the position of thing inthe list, or Qifit's not inthe list — each numeric value in the range from
positioninlist ., startto end, stepping the value each
time. Use the given variable name to
::l;:lrandom Picks an item at random from the list o ek vandom e ¥ r refer to the current value.
is list empty? Iflisthas noitems, returns trug; otherwise, returns false i - while Tests the test cor.1d|t|o.n. ”_true’
g o] performs the action given in do, then
copy list Makes a copyof a list, including copying all sublists Il o tests again. When testis false, the
s copylist block ends.
is alist? Ifthing isa list, returnstrue; otherwise, returns false — o r« get start text Returns the text passed to this app
g (LD when the app was started, if any. getSiariiext
list tocsv row | Interprets the listas a rowof atable and returns & CSV (comma- r, close screen Closes the app __
separated value) text representing the row 0 sttocsviow T
fst tocsv table gsai;:f::;f:i:;:::';'bnlgc""’“ma“m'mata”””““'"” % st 1o caviable ist [* closescreen | Closes the app and sets the variable
with result APP_INVENTOR_RESULT to the given | Sy
list from csv Parses atext asa CSV (comma-separated value) formatted row rq value
row to produce a listof fields ol list from csvrow =t
list from csv Parses atext asa CSV formatted tableto produce a listof rows, r; CIQS? R Closes the current appllcatlon
table each of whichisa list of fields » list from csvtahle text appllcatlon
. . Open another | Opens another screen. Takesthe
Figure 14: List Blocks
g screen screen name as the argument
Openanother | Opens another screen and passes the
D Logic Blocks screen with starttext to it. Takesthe screenname
. i i start text and the start text to pass asthe
Figure 16 shows the list of Logic Blocks and each arguments
component is briefly described. -
Figure 17: Control Blocks
True This block represents the constant valuetrue. Use it for setting Boolean property

values of components, or as the vahue of a vaniable that represents a condition

\true]
H_l F. Math Blocks
False | This block represents the constant valuefalse m" The math blocks handle mathematical functions suitable
S
=

for calculator applications. Figure 18 shows the list of Math
Blocks and each component is briefly described.

Not This block petforms logical negation, retuming false if the input is true, and true if
the input s false

Equals This black tests whetherits arzuments are equal

-
And This block testswhetherall of 2 setof logical conditions are true. The resultis true if i ‘and, C)UJF‘
and only if all the tasted conditions are true = ==t
Or This black tests whetherany of a set of logical conditions are true. The resultis truedf | s m(a
one ormore of the tested conditions are true \'1 & J

Figure 16: Logic Blocks

E. Control Blocks

Figure 17 shows the list of Control Blocks and each
component is briefly described.

241

Mobile App Design Tool for Smartphones: A Tutorial

number Specifies a numeric value
> Compares two given numbers. If the firstis larger, returns m
true; otherwise, returns false
< Compares two given numbers. If the firstis smaller, returns ﬁ
true; otherwise, returns false
< Compares two given numbers. If the firstis smaller than or ﬁ
equal to the second, returns true; otherwise, returns false
E Compares two given numbers. If the firstis greater than or ﬁ
equal to the second, returns true; otherwise, returns false
= Tests whether two given values are equal. If so, returnstrue; | § = (J'u
otherwise, returns false L
+ Returns the sum of two given numbers m
Returns the result of subtracting the second number from the m
first
x Returns the product of two given numbers m
/ Returns the result of dividing the first number by the second m
sqrt Returns the square root of the given number. ﬁ
random Returns a random value between 0 and 1
fraction
random Returns a random integer value between the given values,
integer inclusive.
random Use this block to generate repeatable sequences of random W
setseed numbers
negate Returns the negative of the given number =1 nogato
Min Returns the smallest of a given set of numbers W
Max Returns the largest of a given set of numbers ﬁ
quotient Returns the result of dividing the first number by the second
and discarding any fractional part of the result
remainder | Remainder(a,b) returns the result of dividing a by b and w
taking the remainder
modulo ﬁ
abs Returns the absolute value of the given number W
round Rounds the given number to the nearest integer and returns v
<l round
the result
floor Calculates the greatestinteger that's less than orequal tothe | sem p—
given number -
ceiling Returns the smallest integer that's greater than or equal to ¥ 1l caiting
the given number
expt Raises the first given number to the power of the second and lﬁ
returns the result
exp Returns e (2.71828...) raised to the power of the given Vol o
xp W
number and returns the result -
log Returns the natural logarithm of the given number Vol tog
sin Returns the sine of the given numberin degrees
sin W
cos Returns the cosine of the given number in degrees N rsillcos
tan Returns the tangent of the given numberin degrees .ﬁ
asin Returns the arcsine of the given number in degrees W
acos Returns the arccosine of the given number in degrees
sl acos. N
atan Returns the arctangent of the given number in degrees
call atan, M
atan2 Returns the arctangent of y/x, given y and x ﬁ
formatas | Formata number as a decimal with a given number of places | =T
decimal after the decimal point.
isa Returns true if the given object is a number, and false
number? | otherwise ST

Figure 18: Math Blocks

242

G. Color Blocks

The Color Blocks contain several blocks corresponding to
commonly used colors. Figure 19 shows the list of Color
Blocks and each component is briefly described. These blocks
have two types one is the text color setting and the other is the
background color setting. These same colors can also be
selected from the color dropdown lists in the Designer's
properties panel.

» call

components r
|

color r‘

split color \

~ color None |
color

make color

call color

-, -

Light Gray |

~ °°" orange |
~ Ccolor Pink I

~ color

eol°" park Gray ~ %" \Amite
9 *"'" Gray ~ %" yellow |

Figure 19: Color Blocks

V. AN EXAMPLE: DESIGNING CAMPUS PARKING SYSTEM

In this project, we designed a test-bed for performance
evaluation of the RFID-enabled and mobile app-based
parking management system in a controlled and repeatable
laboratory environment. The test-bed consists of a real-time
RF channel simulator, Wi-Fi 802.11 access points, RFID tags,
and a laptop loaded with the positioning algorithm and its
associated user interface (i.e., mobile app) [6].

The parking management platform consists of four systems
[7]; RFID system, Wi-Fi systems, database management
system (DBMS), and mobile systems loaded with our mobile
app. The web-based mobile app will use the University Wi-Fi
network to triangulate the position of the user’s smart phone.
It will provide a view of the University’s parking lot layout
and the user’s location on the smart phone (combining the
GPS guidance system and the RFID technology).

The mobile app will provide real-time parking information
(e.g., available parking spaces) and also guide the user giving
them turn by turn directions to the destination.

Using the mobile app for android, the preliminary test-bed
for integrating the RFID system, wireless network, and
mobile devices. The methodology for this test-bed will be a
lab-based approach (experiment). This pilot study will be
carried out in the University’s computer networking lab and
use some facilities (power source, database server, wireless
access points, and PCs). The additional equipment for a
test-bed includes RFID Tags, RFID Readers, and RFID
software. Figure 20 shows web-based mobile app prototype
which provides a map with parking information like available
parking lots and spaces.

International Journal of Soft Computing and Engineering (IJSCE)

L By

Web Database

Server Server

Figure 20: A Test-Bed Architecture

O m

VI. CONCLUDING REMARKS

This paper introduces the App Inventor for Android as a
tool to develop mobile applications, including its definitions,
components, and architecture. The benefit of this software is
that there is no prior experience in programming, but
improvement in the knowledge of computer programming.

Using this mobile app design tool, we plan to build the campus
parking management system for solving current parking problems in
university campus by providing the real-time parking information
and also for supporting more sustainable campus by reducing the
amount of carbon dioxide. This system also will be applied to many
fields, such as central business districts, airports, transit stations,
and shopping centers.

REFERENCES

[1] Cook, D., and Das, S. (2012) Pervasive Computing at Scale:
Transforming the State of the Art, Pervasive and Mobile Computing,
vol. 8, issue 1, pp. 22-35.

[2] MIT, “App Inventor for Android”, http://appinventoredu.mit.edu/
(accessed February 20, 2012).

[3] Tyler, J. (2012) App Inventor for Android: Build Your Own Apps-No
Experience Required !, Wiley Inc.

[4] Wolber, D., Abelson, H., Spertus, E., and Looney, L. (2011) App
Inventor: Create Your Own Android Apps, O’Reilly.

[5] Kiloss,J. (2012) Android Apps with App Inventor, Pearson Education,
Inc.

[6] Castro, L. & Fosso Wamba, S. (2007). An inside look at RFID
technology. Journal of Technology Management & Innovation, 2(1),
pp. 128-140.

[71 Roussos G. and Kostakos V. (2009) RFID in Pervasive Computing:
State-of-the-art and Outlook, Pervasive and Mobile Computing, Vol.
5(1), pp.110-131.

Hak J. Kim is an Associate Professor of Information Technology and
Quantitative Methods at the Hofstra University. He is a Director of
Computer and Network Lab in the Zarb School of Business. His current
research interests include mobile computing & ubiquitous business, social
networking services & social media, and cyber space & cyber security. In
this workshop, he is interested in applying mobile computing technologies to
smartphones and analyzing how his research interests are incorporated in the
real-world businesses.

Jonathan Modell is currently an MBA graduate student at the Zarb
School Of Business/Hofstra University with a focus on Information
Technology. With over fifteen years of industry experience, he currently
owns and operates a small computer consulting firm focusing on the needs of
smaller emerging businesses on Long Island.

243

ISSN: 2231-2307, Volume-2, Issue-3, July 2012

