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Abstract

This paper presents a new method for obtaining a rotation and translation-invariant scale

signature of an image, a scale and translation-invariant rotation signature, and a technique for

recovering the rotation, translation and scale transformation parameters that relate two images

of similar scenes using these signatures. The transformation parameters can be used to coregister

the subbands of a composite image or to register time-series images for further analysis, common

tasks in both satellite imagery and radiology research. In the �nite discrete case where the

invariances do not hold completely, compared to previous techniques the technique is extremely

robust in the presence of occlusion due to alignment (image data moving in and out of the

frame), resampling, linear and constant luminance changes, and noise. This robustness comes

from the use of �lters that minimize transformation artifacts in the Fourier-Mellin domain. The

algorithm to implement the technique is O((nsN logN)=4k + Nk) where N is the area of the

image in pixels, k is the order of the wavelet transform employed, and ns is a small, image

dependent integer factor that emerges during the scale phase of registration. A naive algorithm

would take O(N3) operations to recover the same information. Previous algorithms commonly

operate between these bounds and have lower peak correlation values than we report.

In selected experiments on actual natural photographs, medical images, aerial photographs,

and remote sensor images, our algorithm successfully recovered the parameters of arbitrary

Rotation-Scale-Translation transformations. In these trials, the rotation parameter varied by

up to 31 degrees, the enlargement factor varied from 0.70 to 1.40, and translation parameters

varied up to approximately 10% percent of the dimensions of the image. Actual registration

problems tend to be less extreme than these trials. Across the experiments, the normalized

correlation values for recovered transformation parameters were between 0.31 and 1.00 with a

mean value of 0.76. The RMS error between corresponding pixels after registration was between

0.00 and 3.95 pixels with a mean value of 1.92.

Keywords

Image registration, Coregistration, Rotation invariance, Scale invariance, Translation in-

variance, Scale signature, Rotation signature, Correlation, Masked correlation, Fourier-Mellin,
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Wavelet transform.

I. Introduction

Registration algorithms attempt to align a pattern image over a reference image so that

pixels present in both images are in the same location. This process is useful in the

alignment of an acquired image over a template, a time series of images of the same scene,

or the separate bands of a composite image (coregistration). Two practical applications

of this process are the alignment of radiology images in medical imaging and alignment of

satellite images for environmental study.

For typical image registration problems, the sources of di�erences between two images

fall into four categories:

1. Di�erences of alignment between images are caused by a spatial mapping from

one image to the other. Typical mappings involve translation, rotation, warping, and

scaling. For in�nite continuous domain images, these di�erences are a result of a

spatial mapping from one image to the other. Changing the orientation or parameters

of the imaging sensor can cause di�erences of alignment.

2. Di�erences from occlusion occur when part of a �nite image moves out of the

image frame or new data enters the image frame of a �nite image due to an alignment

di�erence, when sensor errors produce identi�ably invalid data in an image, or when

an obstruction comes between the imaging sensor and the object being imaged. For

example, in satellite images, clouds frequently occlude the earth.

3. Di�erences from noise occur from sampling error and background noise in the

sensor, and from unidenti�ably invalid data introduced by sensor error.

4. Di�erences due to change are actual di�erences between the objects or scenes
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being imaged. In satellite images, lighting, erosion, construction, and deforestation

are examples of di�erences due to change. It may be impossible to distinguish between

change and noise.

Because images are registered in order to detect the changes in a scene, successful reg-

istration detects and undoes or accounts for di�erences due to alignment, occlusion, and

noise while preserving di�erence due to change. Registration algorithms must assume that

change is small with respect to the content of the image; that is, the images being regis-

tered are assumed to be \visibly similar" after accounting for di�erences due to alignment,

occlusion, and noise. In addition, a su�cient amount of the object or scene must be visible

in both images. We assume that at least 50% of the content of the reference image is also

present in the pattern to be registered against it. In practice, medical and satellite sensors

can usually be oriented with enough precision for images to share 90% or more of their

content.

In this paper we present an algorithm for recovering transformation parameters from two

images that di�er by a Rotation-Scale-Translation (RST) transformation in the presence

of noise and occlusion from alignment. Any RST transformation may be expressed as a

combination of a single translation, single rotation, and single scale factor, all operating

in the plane of the image. We express such a transformation as a pixel-mapping function,

M , that maps a reference image into a pattern image. In practice these functions operate

on �nite images and can only account for data that does not leave or enter the frame of

the image during transformation. If a two-dimensional in�nite continuous reference image

r and pattern image p are related by an RST transformation such that p = M(r), then

each point r(xr; yr) in r maps to a corresponding point p(xp; yp) according to the matrix
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equation 2666666664

xp

yp

1

3777777775
=

2666666664

s cos� �s sin� �x

s sin� s cos� �y

0 0 1

3777777775

2666666664

xr

yr

1

3777777775
: (1)

Equivalently, for any pixel p(x; y) it is true that:

r(x; y) = p(�x + s � (x cos�� y sin�);�y + s � (x sin�+ y cos �)) (2)

In this notation, �, s, �x, and �y are the parameters of the transformation, where �

is the angle of rotation in a counter clockwise direction, s is the scale factor, and (�x,

�y) is the translation. For �nite discrete r and p, assume r and p are square with pixel

area N (size
p
N �p

N). Note that an RST transformation of a �nite image introduces

di�erences due to occlusions as some data moves into or out of the image frame.

In trials on actual images, an implementation of our algorithm was able to accurately

recover the rotation, scale, and translation parameters for a variety of RST transforma-

tions. A summary of selected trials is presented in Table 1. The images were selected from

remote sensor data, photography, and medical imaging. For these trials, peak normalized

correlations for rotation and translation varied from 0.58 to 1.00, with a mean of 0.87.

Peak correlations for scale varied from 0.31 to 0.83 with a mean of 0.53. The largest

registration error observed along any dimension was a 4-pixel RMS error across all image

pixels for a 128 � 128 pixel image. From this we conclude that the algorithm is su�cient

for solving RST registration problems with high accuracy and high signal-to-noise ratio.

However, the mean peak scale-correlation of 0.53 is still signi�cantly lower than the opti-

mal 1.00. Fine tuning of �lters used in the algorithm to a speci�c class of images might

improve correlations and accuracy at the expense of generality.
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The next section of this paper reviews the Fourier-Mellin invariant underlying our algo-

rithm. Section III demonstrates the error introduced by using Fourier-Mellin techniques

on �nite images. Section IV presents our coregistration algorithm, scale signature, rotation

signature, and �lters for reducing the error observed in Section III. Section V presents an

experimental analysis of the algorithm. Section VI discusses open research problems and

makes some concluding remarks about our registration algorithm.

II. The Fourier-Mellin Invariant

The Fourier transform has certain properties under RST transformations that make it

useful for registration problems. Let two two-dimensional in�nite continuous images r and

p obey the relationship given in Eq. (2). By the Fourier shift, scale, and rotation theorems,

the relationship between Fr and Fp, the Fourier transforms of r and p, is given by:

Fr(!x; !y) = ej2�(!x�x+!y�y)=ss2Fp((!x cos�+ !y sin�)=s; (�!x sin�+ !y cos�)=s) (3)

Note that the complex magnitude of a Fourier transform, Fp, is s
2 times the magnitude

of Fr and it is independent of �x and �y. Also the magnitude of Fp is derived from the

magnitude of Fr by rotating Fr by �� and shrinking its extent by a factor of s. This

enables us to recover the parameters of rotation and scale through separate operations on

the magnitude of Fp.

Equation (3) shows that rotating an image in the pixel domain by angle � is equivalent

to rotating the magnitude of its Fourier transform by ��. Expanding an image in the

pixel domain by a scale factor of s is equivalent to shrinking the extent of the magnitude of

its Fourier transform by s and multiplying the height (amplitude) of the magnitude of the

Fourier transform by s2. Translation in the pixel domain has no e�ect on the magnitude

of the Fourier transform. Because of this invariance, the magnitude of a Fourier transform
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is sometimes referred to as the Fourier-Mellin invariant, and the Fourier-magnitude space

is referred to as the Fourier-Mellin domain. The Fourier-Mellin transforms of r and p are

simply R = jFrj and P = jFpj.

Many registration techniques [1], [2], [3], [4], [5] operate on the translation-invariant

Fourier-Mellin space, then convert to polar-logarithmic coordinates so that rotation and

scale e�ects appear as translational shifts along orthogonal � and log � axes. In polar-log

space, the normalized correlation coe�cient of R and P as a function of shift along these

axes is maximized at coordinate (��, �s). The 1D normalized correlation coe�cient at

shift j is given by:

C(R;P )j = PN�1

i=0
R(i+j)P (i)�( 1

N )(
PN�1

i=0
R(i+j))(

PN�1

i=0
P (i))r�PN�1

i=0
R(i+j)2�( 1

N )(
PN�1

i=0
R(i+j))

2
��PM�1

i=0
P (i)2�( 1

N )(
PN�1

i=0
P (i))

2
� : (4)

This extends simply to two dimensional polar-log space.

Equation (3) holds for in�nite images but not for �nite images. If it were true for

�nite images, it would cost O(N logN) operations to obtain the Fourier-Mellin polar-log

coe�cients, and O(N logN) operations to calculate the normalized correlation coe�cient

(by the Convolution theorem) for all cyclic shifts of the coe�cients. Rotation and scale

could thus be detected in O(N logN) time. Using discrete images instead of continuous

ones causes some sampling error between the two images and in the calculation of the polar-

log representation. In practice, using high-resolution images and inter-pixel interpolation

can minimize these errors, so the theory holds for discrete �nite images. Unfortunately,

the theory does not hold for �nite images for two reasons.

1. Occlusion error. Rotating, scaling, or translating a �nite image causes some of the

pixel data to move out of the image frame or some new pixel data to enter the frame.
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2. Tiling error. The FFT of a �nite image is taken by tiling the image in�nitely in the

plane. Rotation and scale do not commute with tiling.

If an image depicts a feature against a uniform and su�ciently large background, as

in Fig. 1(a), only uniform background pixels enter and leave the image frame during

transformation, so no data are lost. This is the case for some medical imaging tasks such

as MRI, where the images under examination depict cross-sections of anatomy with a

uniform background outside the anatomy. For images with nonuniform backgrounds or

insu�cient padding such as Fig. 2(a), transformations introduce occlusion error and the

correlation peak may shift to a di�erent location or su�er signi�cant degradation.

As noted by Stone, Tao, and McGuire [6] for rotation and scale and Alliney and Morandi

[7] for translation, the tiling error is unavoidable when taking the FFT of a tiled image,

except for rotations that are an integer multiple of 90 degrees and for small translations of

padded images. The Fourier transform of a discrete �nite image contains a high frequency

border between tiles that manifests itself in the Fourier-Mellin space as a high intensity

\+" shape. (See Fig. 2(b)) This artifact is more signi�cant than the coe�cients from the

remainder of the image content. DeCastro and Morandi [3] recommend using a rotationally

symmetric image frame to avoid seeing this artifact in the Fourier-Mellin space. In Section

IV of this paper, we present a more e�ective approach and present the results of an

experiment comparing both methods to the the naive approach of using an unprocessed

square image.

Despite all of the sources of error, the in�nite and �nite cases are related closely enough

for Fourier-Mellin techniques to work successfully on �nite images. However techniques

reported in the literature have low peak correlations and low signal-to-noise ratio in the

correlation function [1], [8]. In Section IV we derive a method that achieves near unity
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peaks and a high signal-to-noise ratio in the correlation function, which together greatly

improve the accuracy of registration.

III. Fourier-Mellin Techniques on Finite Images

In this section we show that the cumulative error from all sources can be small for

idealized images with speci�c characteristics when using naive Fourier-Mellin techniques.

However the error is large for nonideal images.

The �rst experiment examines a member of the class of ideal images that behave much

like an in�nite-image Fourier-Mellin space. The high contrast, simple images with uniform

background shown in Fig. 1(a) are representative of the class of ideal images with speci�c

characteristics. The second experiment examines a member of the class of realistic satellite

images in Fourier-Mellin space after the same transformations. The low-contrast, detailed

images that �ll the image frames shown in Fig. 2(a) are typical of satellite and some

medical imaging and are representative of the class of realistic, nonideal images for which

the error is nonnegligible.

Figure 1(a) shows four images arranged horizontally: a 64 � 64 idealized �nite discrete

reference image and rotated, scaled, and translated versions of that image. To minimize

the error introduced by rotating and scaling discrete images, linear interpolation was used

in calculating the pixel values for the rotated and scaled images. Figure 1(b) shows a

contour plot of the nonzero Fourier-Mellin coe�cients of the four images, where the e�ects

of the transformations can be observed. Note that for this image, rotation by angle �

in the pixel domain is approximately equivalent to rotation by �� in the Fourier-Mellin

domain. Expanding by s in the pixel domain is approximately equivalent to shrinking by

s and multiplying the amplitude by s2 in the Fourier-Mellin domain. Translation has no
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e�ect.

By inspection, it is clear that the Fourier-Mellin transforms in Fig. 1(b) exhibit proper-

ties that are close to those of transforms of in�nite images to recover rotation and scale

parameters. Figure 2 depicts the results of the same experiment performed on an actual

satellite image. Figure 2(a) shows the satellite image in the same alignments as the sim-

ple image in Fig. 1(a). Figure 2(b) shows the corresponding Fourier-Mellin transforms.

Note that the \+" shaped artifact obscures the movement of the coe�cients that are

rotated or scaled. The Fourier-Mellin transform of the translated image is not identical

to the transform of the original image, so the Fourier-Mellin domain is not invariant to

translation.

When the pixel-level transformation,M , is a combination of rotation, scaling, and trans-

lation, the di�erences from the ideal (in�nite case) and the actual (�nite case) coe�cients

in Fourier-Mellin space are cumulative, hence the poor performance of Fourier-Mellin based

techniques in the literature.

IV. A New Registration Technique

Our registration technique operates in three phases, one for each transformation pa-

rameter: scale, rotation, and translation vector. The scale and rotation phases are in-

dependent and may be performed in parallel. The translation phase can proceed only

after the rotation and scale are known. The following discussion describes how to use �l-

ters, transformations and correlations to recover the transformation parameters for in�nite

continuous images. The reasons why the theory does not hold for �nite discrete images

are presented together with methods that produce reasonable approximations. Section V

presents experimental results that con�rm show our technique has high accuracy and a
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high signal-to-noise ratio.

A. Scale Signatures and Scale Phase of Registration

The goal of the scale phase is to recover the scale factor, s, in Eq. (2). To recover

this parameter in the presence of a translation and rotation, we map the images into a

translation and rotation invariant space. In this new space we compute a scale signature

for the image. It changes with scale and is invariant to rotation or translation for �nite

images. For the �nite discrete case, our experiments show that the scale signature is

resistant to translational and rotational changes, and can be used to e�ectively recover

the scale factor s.

As for previous approaches [1], [2], [3], [4], our mapping transform S relies fundamen-

tally on the Fourier-Mellin translation-invariance property. In a log-polar mapping of the

Fourier-Mellin domain, pixel scale and rotation operations act along orthogonal axes. In-

tegrating along the � axis and dividing by the product of the radius and the total image

energy produces a one-dimensional function, Sr(log �), that is invariant to image rotation.

This one-dimensional function is the scale signature. For in�nite images, the scale signa-

ture has the property that expanding or scaling the reference image by a factor of s is

equivalent to translating Sr by � log s. Because we perform normalized correlations on the

scale signature, the normalization factor is irrelevant, as it does not a�ect the location of

correlation peaks. Ignoring the normalization, the transformation from r(x; y) to Sr(log �)

is given by:

R(� cos �; � sin �) = R(!x; !y) =
����Z Z

G(r(x; y))e�j2�(!xx+!yy)dxdy
���� (5)

S(r) = Sr(log �) =
1

�

�Z
0

R(� cos �; � sin �)d� (6)
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where G is a nonlinear �lter used to correct for artifacts in the �nite case. For the

in�nite case, G is the identity �lter. Note that the Fourier transform of a real image has

a 180o rotational symmetry, so the integration bounds can be reduced by a factor of 2.

Because any RST transformation in the pixel domain is equivalent to a translation (shift)

in the S domain by � log s, the normalized (noncircular) 1D correlation coe�cient between

the scale signatures of two images will be 1.0 at � log s. This means that a simple 1D

correlation can be used to recover the scale parameter.

For discrete images, the continuous function Sr is a discrete function whose coe�cients

represent a summation with respect to � over interpolated points in log-polar Fourier-

Mellin space. (Alliney [4] gives a direct Cartesian-image to polar-Fourier transform that

can be used to minimize the error introduced by interpolation.) In the �nite case, the S

domain shift resulting from a scaling operation in the image domain may move coe�cients

outside of the original extent of Sr. The scale operation may also move some image pixels in

or out of the original image frame, changing the overall amplitude of the Fourier transform

as well as the individual components. The discontinuities produced by the implicit titling

of the image during the �nite Fourier transform add a high-amplitude scale-invariant \+"

shaped feature to the Fourier-Mellin coe�cients, which will be more signi�cant than the

scaling of the image-speci�c coe�cients and make it di�cult to observe any scale change.

Although it is not always possible to recover the scale factor by examining the scale

signatures of two �nite discrete images, in practice an overall shift is often visible in the

scale signatures if G is chosen to minimize the artifacts introduced by the �nite transform.

The scale phase of our registration technique, depicted in the left half of the system diagram

given by Figure 5, uses this observation to attempt to recover the scale parameter.

The steps preceding the correlation implement the �ltered S transform. W is a wavelet
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decomposition used to reduce the computation bounds. The normalized correlation fol-

lowed by the peak detector returns a list of S domain shifts for which the normalized

correlation coe�cient is a local maximum. By raising the inverse of the logarithm base

used in the polar-log mapping to the power of each of these shifts, we obtain a vector of

scale factors. Each of these scale factors is a likely value for the scale factor relating r

and p. To determine the actual scale factor, recover the rotation parameter as described

later in this section, and undo the rotation on the images, then choose the scale factor for

which the translation correlation is maximized. In cases where an upper or lower bound is

known on the scale factor, all candidates outside that range may be eliminated, reducing

the computations required.

Assuming G is chosen such that it is O(N logN), the Fourier-Mellin transform and

polar-logarithmic mapping requires O(N logN) computations. The projection onto the

log � axis (integration by �) requires N�pN additions. Thus the total computational cost

for obtaining the scale signatures Sr and Sp is O(N logN). The 1D normalized correlation

and peak detection can be performed in an additional O(
p
N logN) operations. The

entire computation can be increased in speed by a factor of 4k by performing a wavelet

decomposition of order k on r and p and using the low-low (thumbnail) subbands as

the input to the Fourier-Mellin transform. The low-low subband of a kth order wavelet

decomposition is essentially the original image reduced in resolution by a factor of k along

each dimension [9]. Because scaling transformations are independent of resolution, using

a wavelet decomposition does not substantially a�ect the results of registration so long as

k is not so large that a majority of the features in the images fall beneath the sampling

resolution. By incorporating the use of wavelets, the total cost of the scale phase of

registration is O((N logN)=4k).
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B. Rotation Signatures and Rotation Phase of Registration

The goal of the rotation phase is to recover the rotation parameter, �, which relates r and

p in Eq. (2). Just as scale signatures can be used to recover scale information in a rotation

and translation-invariant domain, a similar approach can be employed for rotation. Let

� be the transform function such that �r = �(r) is the translation and scale invariant

rotation signature of in�nite continuous r. For �nite discrete images, our experiments

show that � is resistant to translation and scaling of the original image, although overall

changes in magnitude may occur.

Integrating polar Fourier-Mellin coe�cients along the � axis produces a one-dimensional

function of angle that is translation and scale invariant. Although � is not normalized for

total image energy, this will not a�ect the normalized correlation. �(r) is given by:

�(r) = �r(�) =
Z
J(R(� cos �; � sin �))d� (7)

where J is a pointwise weighting function to be applied in the �nite case when it is known

that there is no scale factor (s = 1). Assume J is 1 otherwise.

For the in�nite continuous case, a rotation by angle � in the image domain corresponds

to a shift by �� in the � domain. This means the normalized circular correlation of �r

and �p will be unity at ��. Note that rotation signatures, like Fourier coe�cients, have

180 degree rotational symmetry (�r(�) = �r(� + ��) where � is an integer). Thus, from

the rotation signatures it is possible to determine the rotation parameter modulo 180o.

If it is not known whether the rotation is larger than �90o, it is necessary to perform a

single pixel-level inverse rotation and image correlation to eliminate one of the choices.

For rotationally symmetric images, the rotation signature is uniform and it is impossible

to recover rotation.
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The discussion of scale signatures for discrete and �nite images holds for rotation sig-

natures as well. The largest discrepancy observed between the in�nite continuous and

�nite discrete cases is usually the \+" shaped artifact in the Fourier-Mellin coe�cients.

An appropriate choice of G reduces this artifact. In addition to the pixel-domain �lter

with G, we use J to weight Fourier-Mellin coe�cients from edges in the image texture

more strongly. Unlike the scale signatures, the correlations of rotation signatures fre-

quently achieve a narrow peak with value near unity near the actual rotation parameter,

and exhibit high signal-to-noise ratio. Because of this, it is often possible to determine

the rotation parameter accurately modulo 180o using only a single peak of the normalized

correlation of the rotation signatures.

The Fourier-Mellin transform for the rotation phase of registration is identical to the one

used for the scale phase, so the O(N logN) computation need only be performed once. For

rotation, the J weighting factor requires N additional multiplications if used. Projection

onto the � axis requires N �pN additions. Thus the rotation signatures can be obtained

in O(N logN) operations. The 1D circular correlation costs an additional O(
p
N logN)

operations. As with scale, rotation can be detected at any reasonable resolution of the

image, so that the kth-order wavelet transform of the input images allows recovery of the

rotation parameter in O((N logN)=4k) operations. If the same �ltered Fourier-Mellin-

Wavelet transforms are used for the scale and rotation phases, the rotation phase requires

only O(N=4k) independent operations after performing the scale phase.

C. Translation Phase of Registration

The goal of the translation phase is to determine the translation parameters �x and �y,

given the rotation and scale parameters. If there are data that are known to be invalid
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in the images, these occluded areas can be ignored during the translation phase at no

additional cost by using masks m and h for r and p respectively. These masks contain

value 1 where the corresponding image pixel is valid and 0 where the corresponding pixel

is invalid. We will allow these masks to take on fractional values produced by interpolation

and wavelet decomposition. We derive the case where the scale factor is known and then

show how it is extended to the case where there are a number of possible scale factors.

The latter case matches the actual output of the scale phase of registration.

Let r and p be in�nite continuous images. Let p0 be the image p after undoing the e�ects

of rotation and scale. Let h0 be the mask h after undoing the e�ects of rotation and scale.

If the � and s are accurately recovered then p0 di�ers from r by only a translational shift.

For the �nite case, p0 and r may also di�er by occlusions introduced when data moves into

or out of the image frame. These occlusions are automatically taken into account by h0.

Stone [10] shows how to compute the normalized correlation coe�cient in the Fourier

domain using binary validity masks for the case where the extent of the pattern mask is

smaller than the extent of the image mask. The normalized correlation coe�cient as a

function of translation of the pattern will have a near unity value at the shift that aligns

the images properly. McGuire and Stone [11] extend this technique to use fractional

validity masks for reduced resolution representations of images. The normalized circular

correlation coe�cient for all translational shifts of images r and p0, with validity masks m

and h0 is:

C (r; p0)x;y =

(~r� ~p0)
x;y

�

 
1

(m�h0)
x;y

!
(~r�h0)x;y(m� ~p0)

x;yvuut �fr(2)�h0�
x;y

�

 
1

(m�h0)
x;y

!
(~r�h0)2x;y

! �
m�

gp0(2)�
x;y

�

 
1

(m�h)
x;y

!
(m� ~p0)

2

x;y

! (8)
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where � denotes circular correlation, ex = r: � m, and gr(2) = r: � r: � m, (where :� is

point-by-point array multiplication). By the Convolution Theorem, this process can be

e�ciently computed in O(N logN) time for �nite images.

Note that for �nite images, Eq. (8) assumes that the pattern-mask nonzero extent is

less than one half of the image mask size along any one dimension. If this assumption is

violated, cyclic shifts are no longer equivalent to translations and the computation cannot

be performed in the Fourier domain. Computing the correlations in the pixel domain

costs O(N2) operations. To avoid incurring this cost when the images are of similar size,

the correlations can be computed for versions of the images and masks that are padded

to double their size in each dimension. Even with this padding, Fourier techniques are

usually faster than pixel techniques on unpadded images.

The translation phase of our registration technique uses the recovered parameters � and

s to undo the rotation and scale on the pattern, producing p0 and h0. The normalized

correlation coe�cient for all translations is then computed by Eq. (8). The location of

this peak is directly related to the translation di�erence between r and p. If the peak

occurs at a shift of (Dx;Dy), then the translation parameters for Eq. (2) are:2666666664

�x

�y

1

3777777775

2666666664

s cos� �s sin� 0

s sin� s cos� 0

0 0 1

3777777775
=

2666666664

Dx

Dy

1

3777777775
(9)

Some care must be taken in handling the translations for which only a small portion of p0

overlaps r, as these translations have very few pixels participating in the correlation, and

can produce misleading results.

The translation phase requires O(N) operations to undo the scale and rotation and

O(N logN) operations to perform the normalized correlation. We recommend performing
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registration using a kth order wavelet to determine a coarse estimate of translation. A

kth order wavelet decomposition resolves the registration point to within �2k�1 pixels

along any dimension. Given this coarse estimate, a re�ned search for the exact translation

can be performed at the full resolution over the 4k possible �ne translations that map

to the same coarse translation. Under the assumption that the correlation function is

smooth near the peak value, this can be reduced to examining only 2k translations with a

binary search algorithm. This property is image dependent, and generally holds for images

that display continuity. Using this procedure, the total cost for the translation phase is

O((N logN)=4k +Nk).

The above discussion considered the case where the scale factor is known. The scale

phase of the algorithm does not produce a single scale factor, however. It produces a list

of likely scale factors. To determine which of the scale factors is correct, the translation

phase is repeated for each of the scale factors, and the scale factor that produces the

highest translation correlation peak is selected. The �ne resolution search need only be

applied to the scale factor that produces the highest peak in the coarse resolution search.

If ns is the number of scale factors returned by the scale phase of registration, then the

true cost of the translation phase is O((nsN logN)=4k+Nk). The total cost of recovering

rotation, scale and translation is O((nsN logN)=4k +Nk).

D. Choosing Filters G, H and J

Filter G is used to minimize the e�ects of the implicit tiling of �nite images when the

Fourier transform is computed for the rotation and scale phases of registration. Figure 3(a)

shows an un�ltered image. Figure 4(a) shows the nonzero coe�cients of the Fourier-Mellin

transform of this image. Note the \+" shaped artifact superimposed over the central
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coe�cients which actually represent the texture of the image.

DeCastro and Morandi [3] recommend using a rotationally symmetric image frame to

avoid seeing this artifact. A simple experiment con�rms that this is e�ective. Figure 3(b)

shows an image after a rotationally symmetric image frame has been applied. In this

case G is a mask shaped like a disk, which zeros out pixels outside a certain radius.

Figure 4(b) shows that the Fourier-Mellin transform of this �ltered image does not bear

the \+" shaped artifact. However, remaining coe�cients do not exactly match the ones

from the original image after removing the \+" from the transform. Comparing Figs. 3(a)

and 3(b), note that Fig. 3(b) has a large circular edge and approximately 25% fewer pixels.

Correspondingly, there is some radially distributed noise and a general change of shape

in Fig. 4(b), compared to Fig. 4(a). This reduces the correlation peak and may a�ect

accuracy, but it is superior to the un�ltered version because the \+" artifact is removed.

We recommend using a �lter that blurs the borders of an image against the opposite

borders. Very few pixels need be altered by this �lter. Figure 3(c) shows an image treated

by such a �lter. Note that within a few pixels of each border there is no e�ect, so that a

majority of pixels are unchanged. Figure 4(c) shows the nonzero Fourier-mellin coe�cients

of this image. Like the round mask, this �lter successfully removes the \+" artifact. Note

that Figure 4c is almost identical to Figure 4a without the \+". From this we conclude

that a �lter G that blurs edges cyclically around an image is excellent for removing the

\+" artifact without signi�cantly altering the Fourier-Mellin coe�cients.

The H �lter is used during the scale phase to increase the signal to noise ratio of the

scale signatures before correlation. The content of a �nite image may change signi�cantly

under a scale transformation, so H is necessary to stabilize the scale signature. A �lter

that removes the �rst-order trend from the scale signature by subtracting a moving average
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achieves this goal.

Filter J is used to selectively weight the Fourier-Mellin coe�cients that correspond to

edges in the image. It is best to apply J only if there is no scale factor because expansion

in the pixel domain shrinks the Fourier-Mellin coe�cients, and they will be weighted

improperly. In a polar representation of the Fourier-Mellin transform, the coe�cients that

correspond to image texture edges lie near the center of the � axis, parallel to the � axis.

The coe�cients where � is small encode the DC o�set and low frequencies in the image,

and the coe�cients where � is large represent very high frequency information and noise.

A gaussian weighting that emphasizes the edge coe�cients while minimizing the DC and

noise components will suppress the remains of the \+" artifact, intensity shifts in the

image, and noise while emphasising the edges of features. J may be tuned to a speci�c

class of images to enhance performance, or eliminated for the general case of arbitrary

images with arbitrary scale transformations.

V. Experimental results

Table 1 shows the results of six selected experiments. The �rst column lists the name

of the �le used. The \suburban" image is an aerial photograph of a suburban area at

approximately 4 meter resolution. The \�sh" image is a photograph of a school of �sh.

The \mammogram" image is a mammogram. The \essai" image is a Landsat thematic

mapper image of Washington state. The �, s, and (�x;�y) columns display the actual

transformation parameter, the parameter predicted by the algorithm (\Recovered"), and

the value of the peak correlation corresponding to that parameter. The choice of the image

and values for the actual parameters are the input to a trial, the recovered parameters are

the output and the peak correlation is a measure of how well the parameters account for
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the di�erences in the reference and pattern images. Table 2 reports the root mean square

(RMS) error along any one dimension for each of the trials listed in Table 1. The 1D

RMS error is an estimate of the distance between a pixel transformed using the actual and

recovered parameters. A good result has recovered parameters that accurately predict the

actual parameters, peak correlation values near unity, and RMS error near zero.

For each trial, a reference and pattern image were created from a common source image.

The center 256 � 256 pixel subimage from the 768 � 768 pixel source image was cropped

then subsampled by a factor of 2 to form the reference image. The pattern image was

created by transforming the source image by the actual parameters, then cropping the

center 256 � 256 image and subsampling by a factor of two. For moderate transformation

parameters, this process creates test images that accurately represent the registration

problem because they have the following properties:

1. Data that move out of the image frame after transformation are lost (occluded).

Other data that move into the image frame correspond to parts of the image that

were previously occluded by the frame, and are not uniform.

2. An enlarged image has approximately the same frequency range as the original image.

These properties can be observed in images used in real-world registration. If these

properties are not maintained, the registration problem is signi�cantly easier, so it is

important to model them in the test images.

Trials 1-3 demonstrate the performance of the algorithm on rotation-only, scale-only, and

translation-only transformations. Table 1 shows that the algorithm was able to recover the

transformation parameters within reasonable tolerance. For trials 1 and 2, the recovered

parameters were exactly equal to the actual parameters. In trial 2, the scale-only case,

there was a slight error in the estimated parameters. This error corresponds to a 2.164-
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pixel RMS displacement as shown in Table 2. Throughout all testing, estimation of the

scale factor was the most di�cult and error prone phase of the algorithm. Unfortunately,

the algorithm uses the recovered scale factor to recover the translation parameters, so an

error in the scale factor usually resulted in an error in the translation as well. For trials

1-3, the rotation and translation parameters were recovered with high correlation values.

The scale correlation values were signi�cantly lower than desired.

Trials 4-6 are selected RST transformations where all parameters vary, and are applied

to images from di�erent disciplines. These are relatively extreme with respect to the di�er-

ences that are actually observed in practice. The algorithm recovered the transformation

parameters with very small error in all cases. As with trials 1-3, the rotation and transla-

tion parameters were recovered with high correlations, and the scale correlation was lower

than desired.

VI. Summary and Conclusions

The new technique performs well on the di�cult case of realistic image pairs and extreme

transformations. Separating the detection of rotation, scale, and translation reduces the

size of the search space. The use of progressive wavelet search and the calculation of

correlations in the Fourier domain make all of the computations very e�cient. During

testing, the time to produce test image pairs was longer than the time the algorithm used

to register them. By introducing pixel and Fourier-Mellin �lters, we reduce the artifacts

of �nite discrete Fourier transforms and achieve accurate registration.

We suggest that superior results can be obtained by tuning the G, H, and J �lters

to images from a speci�c discipline. As shown in trials 1-3 from Tables 1 and 2, the

algorithm performs exceptionally if scale di�erences can be removed from images prior to
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registration.

In addition to RST transformations, the algorithm should perform well for constant or

linear luminance di�erences between the reference and pattern images. These luminance

changes are constant linear functions in the Fourier-Mellin domain, so they are ignored

by the normalized correlation function. It is well known that the value of the normalized

pixel correlations used to recover translation is invariant to linear and constant luminance

changes.

The use of realistic image pairs for testing is very important. If images are not modeled

as cropped subsampled portions of in�nite frequency, in�nite size signals, the registration

problem is dramatically simpler. For unrealistic test cases, rotation and translation can

be recovered by observing the movement of the edge between the image texture and the

background padding. Scale can be recovered by observing the radial shift of frequencies

in the Fourier-Mellin domain.

The correlation of scale signatures generally fails to produce a single optimal scale factor.

In practice, we �nd it is necessary to check 1 to 5 peaks to identify the scale factor. It is

an open challenge to identify a robust technique which can achieve high correlations and

accurately identify a single, optimal scale factor.

Fourier-Mellin approaches appear limited to the case of RST transformations on mostly

unoccluded images. Because the value of a single pixel in the pixel domain a�ects all of the

Fourier-Mellin coe�cients, it is improbable that a Fourier-Mellin technique like the one

we have presented will emerge that allows selective consideration of separate pixels. The

Fourier-Mellin invariances do not extend to arbitrary deformations, so it is also unlikely

that these techniques will be extended to handle non-RST transformations. New tech-

niques must be found that can achieve comparable results under arbitrary deformations.
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Table 1

Selected Results from Registration Problems

(Trial) Image � s (�x;�y)
(degrees) (pixels)

(1) suburban Actual 31.00 1.00 (0.00, 0.00)
Recovered 31.00 1.00 (0.00, 0.00)
Peak Corr. 0.90 0.48 0.97

(2) suburban Actual 0.00 1.40 (0.00, 0.00)
Recovered 0.25 1.37 (0.00, 0.00)
Peak Corr. 0.86 0.31 0.84

(3) suburban Actual 0.00 1.00 (10.00, -3.00)
Recovered 0.00 1.00 (10.00, -3.00)
Peak Corr. 0.91 0.83 1.00

(4) �sh Actual 24.00 0.70 (7.00, 12.00)
Recovered 25.00 0.72 (7.06, 11.99)
Peak Corr. 0.78 0.45 0.95

(5) mammogram Actual -10.00 1.20 (10.00, 9.00)
Recovered -10.25 1.15 (9.76, 8.75)
Peak Corr. 0.94 0.73 0.58

(6) essai Actual -15.00 1.50 (-10.00, -10.00)
Recovered -15.75 1.56 (-11.33, -11.40)
Peak Corr. 0.94 0.40 0.78

Table 2 RMS Error from Registration Problems

(Trial) Image RMS Error
in Pixels

(1) suburban 0.000
(2) suburban 2.164
(3) suburban 0.000
(4) �sh 1.501
(5) mammogram 3.947
(6) essai 3.923
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Figure 1.
a) 64x64 Idealized Reference image, Reference rotated by 45o, Reference scaled by 2.00,

Reference translated by  (-16, -16) b) Contour plot of magnitude of FFT’s of corresponding images
Linear interpolation was used in generation of the Rotated and Scaled images.

  Reference                         Rotated                               Scaled                          Translated

a) Pixel Domain

b) Fourier-Mellin Domain
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Figure 2.
a) 64x64 Reference image (thumbnail of actual satellite image of the coast of South Africa),

Reference rotated by 45o, Reference scaled by 2.00, Reference translated by  (-16, -16) b) Contour
plot of magnitude of FFT’s of corresponding images. For Rotated and Scaled versions of image,

transformations were applied at 2x resolution and thumbnails were constructed.

  Reference                         Rotated                               Scaled                          Translated

a) Pixel Domain

b) Fourier-Mellin Domain
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Figure 3.
a) No filter b) Round mask c) Cyclically blurred borders.  Black borders are
added for viewing purposes only-- they are not pixel data.

a. b. c.

a. b. c.

Figure 4.
Non-zero Fourier-Mellin coefficients of the images from Figure 3.
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Figure 5.
System diagram of the first two phases of the coregistration algorithm.  W

is the wavelet decomposition filter, G, H, and J are pre- and post-
processing filters to remove finite artifacts and improve accuracy.
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