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Abstract

We consider a scene, containing many objects moving with constant velocity along straight

line paths, seen from three reference viewpoints at three di�erent times. The scene may even

consist only of moving objects with no static features. We wish to create a new image sequence

showing the scene from any arbitrary viewing position. We make use of a newly discovered

tool, the \dual Htensor"[1], that connects together three views of a coplanar con�guration of

(unlabeled) static and moving points. Using the dual Htensor we show how to factor out the

viewing transformation and create a new sequence in which the static features are stable and

the moving features are synthesized as if moving with constant velocity. The constant velocity

is achieved by introducing a 1D collineation that transforms the positions of the objects in the

three views into their positions at new times.

The support of this research by the O�ce of Naval Research under contract N00014-95-1-0521, is gratefully

acknowledged, as is the help of Sara Larson in preparing this paper.



1 Introduction

Consider the following dynamic image stabilization problem. We are given a coplanar con-

�guration of static and moving objects (along straight line paths) seen in three di�erent views,

each taken at a di�erent time. Alternatively, the scene is 3D but the cameras' optical centers

are aligned, or the cameras are a�ne | in other words, the image to image transformations are

3�3 homography matrices. The number of moving objects can be very large | at the extreme,

the entire scene may consist of moving objects | and we are not given prior information about

which object is static and which objects are moving. The only information is the three views,

and we assume we can �nd dense correspondences between them by means of image correlation,

for example.

We wish to stabilize the sequence, i.e., factor out the viewing transformation, and create a

new sequence in which the static features are stable whereas the moving features are synthesized

at new time steps as if they had been moving at constant velocities. The synthesis can take

the form of interpolation or extrapolation.

This type of dynamic synthesis problem is useful for creating representations, such as an

image mosaic [11, 12], that contain a temporal dimension in addition to the spatial dimensions.

Also of interest are graphics applications like view-morphing or the more recent dynamic view

morphing [6]. Other applications include collision analysis between a moving vision platform

and approaching vehicles, and image sequence compression. Our approach is most useful to

these applications in situations where the scene is mostly planar, or the camera is undergoing

mostly rotational motion, and the scene is rich in dynamic information.

The major challenges in this task are twofold. First, the process of factoring out the viewing

transformation boils down to recovering the image-to-image transformations, i.e., the pairwise

homography matrices. However, the features are not necessarily static in space, and moreover,

there may be no static features at all , i.e., all the matching triplets arise from moving features

in space. In other words, we must use a technique that can treat the measurements (matching

triplets) arising from static and moving points alike. To this end, we adopt the \dual Htensor"

recently introduced in [1], described in Section 2, and modify it to our needs. During the

synthesis process the objects on the world plane should be moving with constant velocity, but

because of perspective e�ects the constant velocity is not necessarily conserved in the image

coordinate system. We show that constant velocity in the world plane can be generated by

constructing a 1D projective transformation between the time function and the the warping

transformation. In this manner, physically correct interpolation and extrapolation can both

be achieved during the synthesis process. It is then also possible to use the transformation for

collision analysis or for any other application that requires us to predict the positions of moving

features, assuming constant-velocity motion, at any time step.

A relatively large body of research exists on the synthesis of physically correct new views

from a small number of reference views (cf. [2, 8, 9, 5]), but none of these apply directly

to dynamic scenes. Recently, the problem of reconstruction (using known camera-to-camera

transformations) of moving points along straight line and conic paths was introduced in [3, 7].

However, this method assumes that �ve or more views are available (nine, for conics). More

closely related to our work is the dynamic view interpolation between pairs of views introduced

in [6]. As in our case, the camera-to-camera transformation is modeled by a homography ma-

trix, but it is assumed to be known (or recoverable by matching static points). Each moving

object must somehow be segmented out (by forming layers, one per object) and a number of

matching points must be identi�ed on each object for the purpose of recovering its relative mo-

tion (object fundamental matrix) and computing a pre-warping transformation for the object.
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In our approach, it is not required to segment the scene into static and moving points, and

there is no requirement for separate pre-warping of each moving object in order to create a

constant-velocity synthesis. Furthermore, the synthesis process is physically correct at all time

steps, not only for those between (interpolation) the original reference views but also for time

steps beyond them (extrapolation).

We will start with a brief description of necessary background information about homogra-

phy matrices, tensor notations and dual Htensors, and will continue with our main subject in

Section 3.

2 Background: Homographies and Dual Htensors

The camera-to-camera (or image-to-image) transformation takes the form of a 3� 3 matrix

(called a homography matrix) under the following situations: (i) the scene is planar and is

viewed from a general collection of camera positions, (ii) the scene is general, but is viewed by

a collection of cameras whose camera projection centers are coincident (i.e., a purely rotating

camera), and (iii) the scene is general, the projection model is a�ne (orthographic), and the

image coordinate systems are centered (3D translation drops out). For convenience, we will

work from now on with interpretation (i), i.e., a planar scene and general camera positions.

However, our results apply to any situation in which the camera-to-camera transformation can

be modeled by a homography matrix (after some pre-processing like centering the image data).

Therefore, we will be working with the projective plane, i.e., the space P2. A point in P2

is de�ned by three numbers, not all zero, that form a coordinate vector de�ned up to a scale

factor. The dual projective plane represents the space of lines which are also de�ned by triplets

of numbers. A point p in the projective plane coincides with a line s if and only if p>s = 0,

i.e., the scalar product vanishes. In other words, the set of lines coincident with the point p are

represented by the coordinate vectors s that satisfy p>s = 0, and vice versa: a point represented

by the coordinate vector p can be thought of as the set of lines through it (a.k.a the pencil of

lines through p). A line s going through two points p1; p2 is represented by the cross product

s �= p1 � p2 where �= denotes equality up to scale. Likewise, the point of intersection p of the

lines s1; s2 is represented by p �= s1 � s2.

In the projective plane any four points in general position can be uniquely mapped into any

other four points. Such a mapping is called a collineation and is de�ned, up to scale, by a 3� 3

invertible matrix. Such matrices are sometimes referred to as homographies . A collineation is

de�ned by four pairs of matching points; each pair provides two linear constraints on the entries

of the homography matrix. If H is a homography matrix de�ned by four matching pairs of

points, then H�T (inverse transpose) is the dual homography that maps lines onto lines.

The projective plane is useful for modeling the image plane. Consider a collection of points

P1; :::; Pn in space lying on a plane � viewed from two viewpoints. The projections of Pi are

pi; p
0

i in views 1,2 respectively. Because the collineations form a group, there exists a unique

homography matrix H� that satis�es the relation H�pi �= p0i, i = 1; :::; n, and where H� is

uniquely determined by four matching pairs from the set of n matching pairs. Moreover,

H�T
� s �= s0 will map between matching lines s; s0 arising from 3D lines lying in the plane �.

Likewise, H>

� s
0 �= s will map between matching lines from view 2 to view 1.

Consider three views of a planar surface with the homography matrices A;B from views 2

to 1 and from 3 to 1 respectively. Let a point P be moving on the planar surface along some

straight line path simultaneously with the motion of the camera. Let the projection of P at

time t1 onto view 1 be p, the projection of P at time t2 onto view 2 be p0, and the projection

of P at time t3 onto view 3 be p00 | see Fig. 1). Because P traces a straight line path we must
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Figure 1: The dual homography tensor and moving points. The collineations A;B are from view

2 to 1 and 3 to 1 respectively. If the triplet p; p0; p00 are projections of a moving point along a

line on � then p; Ap0; Bp00 are collinear in view 1. Thus, p>(Ap0�Bp00) = 0, or pip0jp00kHijk = 0

where Hijk = �inua
n
j b

u
k .

have

p>(Ap0 � Bp00) = det(p; Ap0; Bp00) = 0

whether the point P did not move, i.e., the optical rays through p; p0; p00 intersect at a point, or P

did move (the optical rays intersect on a line). Therefore, the triplet of matching points p; p0; p00

contributes a measurement regardless of whether P is static or dynamic. The measurement is

towards the following object:

Hijk = �inua
n
j b

u
k : (1)

where �inu is the cross product tensor, and the measurement itself is simply pip0jp00kHijk = 0.

To understand what this means we must make a detour into tensor notation.

When working with tensor objects it matters whether the coordinate vectors stand for

points or lines. A point is an object whose coordinates are speci�ed with superscripts, i.e.,

pi = (p1; p2; p3). These are called contravariant vectors. A line in P2 is called a covariant

vector and is represented by subscripts, i.e., sj = (s1; s2; s3). Indices repeated in covariant

and contravariant forms are summed over, i.e., pisi = p1s1 + p2s2 + p3s3. This is known as a

contraction. For example, if p is a point incident to (i.e., lying on) a line s in P2, then pisi = 0.

Vectors are also called tensors of valence 1. 2-valent tensors (matrices) have two indices

and the transformation they represent depends on the covariant-contravariant positioning of

the indices. For example, aji is a mapping from points to points (a collineation, for example),

and hyperplanes (lines in P2) to hyperplanes, because aji p
i = qj and a

j
isj = ri (in matrix form:

Ap = q and A>s = r); aij maps points to hyperplanes; and aij maps hyperplanes to points.

When viewed as a matrix the row and column positions are determined accordingly: in a
j
i and

aji the index i runs over the columns and j runs over the rows; thus bkja
j
i = cki is BA = C

in matrix form. An outer product of two 1-valent tensors (vectors), aib
j , is a 2-valent tensor

c
j
i whose i; j entries are aib

j ; note that in matrix form C = ba>. A 3-valent tensor has three

indices, say H
jk
i . The positioning of the indices reveals the geometric nature of the mapping:

for example, pisjH
jk
i must be a point because the i,j indices drop out in the contraction process

and we are left with a contravariant vector (the index k is a superscript). Thus Hjk
i maps a
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point in the �rst coordinate frame and a line in the second coordinate frame into a point in the

third coordinate frame. A single contraction, say piH
jk
i , of a 3-valent tensor leaves us with a

matrix. Note that when p is (1; 0; 0) or (0; 1; 0), or (0; 0; 1) the result is a \slice" of the tensor.

The cross product (vector product) operation c = a�b is de�ned for vectors in P2. The

product operation can also be represented as the product c = [a]�b where [a]x is called the

\skew-symmetric matrix of a" and has the form

[a]� =

0
B@ 0 �a3 a2

a3 0 �a1
�a2 a1 0

1
CA

In tensor form we have �ijka
ibj = ck, representing the cross product of two points (contravariant

vectors) resulting in the line (covariant vector) ck. Similarly, �ijkaibj = ck represents the point

intersection of the two lines ai and bj . The tensor � is de�ned such that �ijka
i produces the

matrix [a]� (i.e., � contains 0;�1; 1 in its entries such that its operation on a single vector

produces the skew-symmetric matrix of that vector).

The tensor Hijk de�ned above was introduced in [1] and referred to as a \dual homography

tensor" or dual Htensor in short. We see that each matching triplet p; p0; p00 contributes one

linear equation

pip0jp00kHijk = 0

to the 27 entries of the dual Htensor, regardless of whether the matches arose from a static

or moving point (along a straight-line path). Furthermore, in [1] it was shown that if among

the measurements, x triplets are known to arise from static points, then the minimal number

of moving points in the total set of measurements should be at least 16� 4x. In other words,

in an completely unsegmented situation, i.e., it is not known whether a matching triplet has

arisen from a static or moving point, one needs at least 26 matching triplets, out of which 16

must arise from moving points. At the other extreme, if four matching triplets are known to

arise from static points, then these four matching triplets are all one needs to solve for Hijk.

Also, in [1] it was shown how to extract the constituent homography matrices A;B from the

dual Htensor, but we will not need this here and instead show later how one can make direct

use of Hijk in image-to-image mappings.

3 Synthesis of Dynamic Scenes

Suppose we are given a dense set of matching triplets p; p0; p00 in views 1,2,3 respectively.

The reason we require a dense matching is simply for convenience of implementing the basic

synthesis engine using point-wise image forward warping. There are other methods of image

warping, for example using a series of sparse line segment correspondences of [10], but these

will not be considered here. The matching triplets may arise from static or from moving points.

In the completely unlabeled con�guration, i.e., when there is no prior information as to what

measurement is static and what is dynamic, we will need at least 26 measurements of matching

triplets (out of which at least 16 arise from dynamic points) for a linear solution for the dual

Htensor from pip0jp00kHijk = 0. If some of the measurements are labeled as arising from static

points, fewer matching triplets are necessary (see the previous section).

Once Hijk is recovered from the image measurements we can factor out the viewing trans-

formation between pairs of images using the image-to-image mapping induced by the planar

surface. Suppose we would like to map view 1 onto view 3, i.e., for every point p in view 1

we back-project the intersection of the optical ray through p and the planar surface onto p00 in

view 3. This is done as follows (see Fig. 2):
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Figure 2: The dual Htensor can form a direct image-to-image mapping (a collineation) between

pairs of views. (a) Consider a point �0 in view 2 and its matching points �; �00 in views 1,3.

The matrix �0jHijk maps between two pencils of lines, one through � in view 1 and the other

through �00 in view 3. Thus, pi�0jHijk is a line through the matching point p00. (b) We can

therefore represent p00 as the intersection of two lines (piejHijk)� (pi�ejHijk) where e; �e are any

two vectors, say the standard basis e = (1; 0; 0) and �e = (0; 1; 0).

The double contraction of pip0jHijk is the projection of the straight line path of the scene

point onto view 3. If the pair p; p0 arise from a static point then pip0jHijk vanishes. Let p
0 range

over the two unit vectors e = (1; 0; 0) and �e = (0; 1; 0); then

p00 �= (piejHijk)� (pi�ejHijk)

Hence every point in one view can be mapped directly onto its matching point in any of the

remaining two views, for example

p0 �= (piekHijk)� (pi�ekHijk)

p �= (p0jekHijk)� (p0j�ekHijk)

Therefore, once the dual Htensor is recovered from any con�guration of static and dynamic

points it can be used to stabilize the static portion of the scene by warping the views onto

a canonical coordinate frame | which could be any one of the original three frames (the

reference view). The warping process brings the static regions in the scene into alignment with

the reference view, whereas the dynamic regions are shifted along the projection of the straight-

line path onto the reference view. We will now describe (i) the warping process, (ii) constant

velocity synthesis, and (iii) collision analysis of dynamic features.

3.1 Dynamic Warping

Suppose we wish to synthesize the scene from the viewing position of view 1 (t = 1) at the

time steps 1 � t � 2. Let pt be the position of point p at time t. Let p0h the back-projected

matching point p0 onto view 1, i.e.,

p0h
�= (p0jekHijk)� (p0j�ekHijk):

Let �(p) denote the non-homogeneous coordinates of a vector p created by normalizing by the

third coordinate: �(p) = (p1=p3; p2=p3) which will be denoted by (x; y)| the image coordinates.

Let U12 denote the image displacement from view 2 to view 1, i.e., U12 = �(p)� �(p0). Then

the 
ow (dx; dy) needed to \forward warp" view 2 onto the reference view at time t, i.e.,
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Figure 3: The point p0 is forward-warped to position pt in the reference frame (view 1). The

back-projection of p0 onto view 1 is p0h which coincides with p if p; p0 arise from a static point

in space.

�(pt) = �(p0) + (dx; dy), is  
dx

dy

!
= U12 + (t� 1)(�(p0h)� �(p)) (2)

Note that if p; p0 arise from a static point, then p0h
�= p, i.e., �(p0h) = �(p); therefore we have

U12 + (t� 1)0 = U12 for all values of t, so that pt will remain �xed at p regardless of the value

of t. A dynamic point, on the other hand, will move along the line connecting �(p) and �(p0h).

See Fig. 3 for an illustration.

Next, we wish to determine the time step t that conforms to constant-velocity motion in

world coordinates, i.e., in the scene coordinate system. This will enable us to synthesize both

interpolated and extrapolated motion of the dynamic regions.

We want to produce physically valid images, so we need to preserve the correct speeds of the

objects. Note that an object moving at constant speed in the world can produce a point moving

at varying speed on the image. Since the projection process is a projective transformation, we

know that the cross ratio must be preserved. When converting T into t, we want to preserve

this cross ratio.

We will use the fact that we have three images at our disposal and create a 1D collineation

between the progression of time T in world coordinates and the term t in equation (2). A

constant velocity in world coordinates is a succession 1; 2; 3; T where 1; 2; 3 correspond to the

times of taking the three original images, respectively. We wish to �nd for every choice of T

the corresponding value of t. Let p00h be the back-projected matching point p00 onto view 1, i.e.

p00h
�= (p00kejHijk)� (p00k�ejHijk):

Then at time T = 3 we should have

t =
k�(p00h)� �(p)k

k�(p0h)� �(p)k
+ 1

Hence we have a 1D collineation A that maps the basis (1; 1); (2; 1); (3; 1) onto the basis

(1; 1); (2; 1); (k�(p00h)� �(p)k+ k�(p0h)� �(p)k; k�(p0h)� �(p)k) For every chosen value of T we

have  
t

1

!
�= A

 
T

1

!
:

Because three points uniquely determine a 1D collineation, we can determine in this way the

synthesized position pt for any time T , not necessarily between 1 and 3.
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To handle problems arising from occlusion we note that when 1 � t � 2, pt can be gener-

ated by forward-warping p0 as described above or by forward-warping p | the result of which

should be the same except in areas under occlusion. We characterize the regions that have less

information (due to occlusion) by measuring a \dilation" factor from the dense correspondence

�eld. A region which is revealed during the camera motion or object motion will stretch or

shrink depending on the direction of 
ow measurement (view 1 to 2 or 2 to 1). It is always

preferable to take a region from the direction that results in a shrinkage rather than an expan-

sion. Therefore, we consider the 
ow in both directions U12 and U21, and for each pixel we

choose the source image from which to perform forward-warping that results in the smallest ex-

pansion, as measured by the perimeter of the triangle de�ned by forward-warping the neighbors

in directions (N,SW,SE) using either U12 or U21.

4 Experiments

We have conducted a number of experiments in synthesizing new images at extrapolated

time steps, i.e., T > 3 and T < 1, and also from novel viewing positions. We have also used the

concepts above to determine time to collision in moving vehicle situations. Regarding synthesis

of novel images, consider Fig. 4, depicting images of a road sequence. The motion of the camera

was mostly rotational, as can be seen from the overlay of the �rst and last images in Fig. 4c.

The dual Htensor was recovered from a dense 
ow �eld that was computed in a coarse-to-�ne

framework [4]. Fig. 4d shows a synthesized image extrapolated backwards in time to T = �4.
The overlay of a portion of this image onto the reference image is shown in Fig. 4g. Likewise,

Figs. 4e,h show an image extrapolated forward in time to T = 6 and its overlay onto the

reference image. Finally, Figs. 4f,i show a synthesized top view of the two time-extrapolated

scenes of Figs. 4d,e.

Fig. 5 depicts another situation involving three images of a mostly planar scene with moving

toy vehicles. Fig. 5d shows an overlay of two out of the three views, and in Fig. 5e,f an time-

extrapolated image is synthesized overlayed on the reference image. Note that the static features

are aligned and the dynamic features are displaced as a function of time.

In the last experiment, shown in Fig. 7, we made use of the ability to correctly synthesize

the position of dynamic features across time to predict time to collision between a forward-

moving vision platform (on a vehicle) and neighboring vehicles. This is done as follows. We are

given three images of the scene when the camera is moving forward (along a straight line), and

the dual Htensor computed from the roadway (robust estimation picks out the roadway as the

dominant planar region in the scene). We pick a �xed location p = p0 = p00 = (x; y; 1) in the

three views corresponding to the center of the roadway. Because the vehicle is moving along a

straight line we are guaranteed that the corresponding object points trace a straight-line path

(see Fig. 6). Therefore, the dual Htensor will back-project p0; p00 onto view 1 and create three

collinear points p; p0h; p
00

h. Suppose, we have a moving vehicle tracked along the three views;

then its matching points q; q0; q00 also create a triplet of collinear points q; q0h; q
00

h in view 1. The

intersection of the two lines will predict the point of collision in view 1. The collision will

occur if there exist a time t such that pt �= qt using the 1D collineation framework de�ned in

the previous section. Alternatively, a collision will occur if the cross ratio of the quadruples

p; p0h; p
00

h; S and q; q0h; q
00

h; S are equal to one another, where S is the collision point in image 1.

Fig. 7 illustrates this idea by marking the collision point in (d) and the back-projected points

in (e).
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(a) First Image. (b) Last Image. (c) First and Last.

(d) Extrapolation,

time=-4.

(e) Extrapolation,

time=+6.

(f) Top view of (d)

(g) Zoom of (d) (h) Zoom of (e) (i) Top view of (d) and
(e) combined

Figure 4: Time-extrapolation experiments with a road sequence. (a,b) are the two extreme views,
and (c) is their overlay, demonstrating that the camera has undergone mostly rotational motion. (d)
Synthesized image extrapolated backwards in time to T = �4. (e) Image extrapolated forward in time
to T = 6. (g,h) Overlay of (d,e) with reference image. (f,i) Top view of images (d,e).

(a) First Image. (b) Second Image. (c) Third Image.

(d) Edges of the second

view overlayed on the
third view.

(e) Edges of the �rst

view overlayed on the
extrapolated image.

(f) Enlarged section of

5(e).

Figure 5: Time-extrapolation experiment. (a,b,c) are the original images, (d) displays the overlay of
two of the original images, and (e,f) are extrapolated views overlaid on top of the reference image; note
that the static features are aligned.
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1 2 3

p’ p"p

Figure 6: To �nd the point and time of collision between a moving platform (along a straight

line) and an approaching vehicle (also along a straight line) one can back-project a �xed image

location p = p0 = p00. The result is p; p0h; p
00

h which are collinear in view 1.

(a) First Image. (b) Second Image. (c) Third Image.

(d) Tracked points on
third image

(e) Third Image with
predicted motion lines.

(f) Predicted position
of camera and car.

Figure 7: Collision analysis. (a,b,c) Three original images of a visual platform moving along a straight-
line path and a vehicle on the left-hand side moving toward a collision course. (d) The points back-
projected onto view 3 (see text). (e) The point of collision. (f) The predicted position of the vehicles at
the point of collision; note that the vehicle approaching from the side will not collide with the moving
platform.
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5 Summary

We have presented a technique for synthesizing new images of dynamic scenes containing

many objects moving along straight-line paths. The method can handle any mixture of static

and dynamic features, including the extreme case in which all the measurements arise from

dynamic features. Our method is based on two principles: (i) the use of the dual Htensor as

an image-to-image mapping, and (ii) introducing a 1D collineation between the time steps in

the world coordinates and the time steps in the reference image coordinates. The latter allows

us to create interpolations and extrapolations in time and to predict the positions of dynamic

features, assuming constant-velocity motion, at any time step. We have implemented these idea

for two applications: (i) dynamic morphing, (ii) collision analysis. Other applications which

were not addressed here, that may bene�t from these results, include dynamic image mosaicking

and image sequence compression.
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