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Abstract

This paper aims at constructing a two-phase iterative numerical algorithm for the improved approximation of a continuous
function by the ‘Modified Szasz’ operator. The algorithm uses a ‘statistical perspective’ to more fully expoit the infor-
mation about the unknown function f . The improvement occurs iteratively. A typical iteration uses the twin statistical
concepts of ‘Mean Square Error’ (MSE) and ‘Bias’; the application of the latter concept being preceded by that of the
former in the algorithm. At any iteration, the statistical concept of ‘MSE’ is used in “Phase II”, after that of the ‘Bias’ in
“Phase I”. The procedure is like a sandwich. The top and bottom slices are the operations of ‘Bias-Reduction’ in “Phase
I” of the algorithm, and the operation of ‘MSE-Reduction’ in “Phase II” is the stuffing in the sandwich. The improvement
acheived by this algorithm is evaluated by means of a simulation study using known functions. The simulation has been
confined to three iterations only, for the sake of simplicity.
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1. Introduction

Szasz(1950) proposed the following generalization of the well-known Bernstein polynomial approximation operator ex-
tending it to an infinite interval.

S ( f ; x) = exp (−nx)
k=∞∑
k=0

(nx)k

k!
. f

(
k

n

)
∀ f εC[0,∞) (1)

Heinz-Gerd Lehnhoff (1981) proposed the “Modified Szasz-Mirakjan Operator” as follows:

S n ( f ; x) =

∑k=n
k=0 Tk (x) f

(
k
n

)
∑k=∞

k=0 Tk (x)
.∀xεC [0, 1] and f εC [0, 1] (2)

In which,

Tk (x) =
(nx)k

k!
for all non-negative integer values of ′k′. Motivated by the above, we propose the following modification of the Szasz
operator:

MS n ( f ; x) =

∑k=n
k=0 Tk (x) . f

(
k
n

)
∑k=n

k=0 Tk (x)
. ∀xεC [0, 1] and f εC [0, 1] (3)
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This modification is a more appropriate one inasmuch as“MS n( f ; x)” may be interpreted as the weighted average of the
(n + 1) known values of the unknown function f (x) , namely ‘ f (k/n)′;k = 0(1)n; “Weights” being “Tk(x)”. In fact, the
Tk(x)s could be interpreted as “proportional to probabilities” [“Tk(x) ≥ 0”]. Using this interpretation, therefore,

MS n ( f ; x) = E ( f (x)) (4)

Incidentally, as we could use a suitable transformation (translation and change of scale) of the variable x, we could assume,
without any loss of generality, that we are interested in the approximation of a function in C[0, 1], even if the original
function of interest was actually in C[a, b].

2. The Two-Phase Iterative Improvement Algorithm for Modified Szasz Operators MSn(f; x)

In this section we propose the “Two-Phase Iterative Improvement Algorithm for Modified Szasz Operators MS n( f ; x)”
using the ‘TWIN’ statistical perspectives of ‘Bias’ & ‘MSE’. In the statistical sense, MS n( f ; x) is an estimate of the
unknown function f (x)’. Now, we use our ‘estimator’ (the modified Szasz Operators MS n( f ; x)) to ‘estimate’ the values
of the unknown function f (x) at the knots (k/n),say Et f (k/n), k = 0(1)n, and compare these values with the values of
the unknown function “ f (x)”, namely ‘ f (k/n)’; k = 0(1)n. Hence the error at the nth knot ”, say Er f (k/n) ≡ Et f (k/n) −
f (k/n), k = 0(1)n could be generated enabling us to construct the “Bias Polynomial Function”, say

ErS n ( f ; x) =

∑k=n
k=o Tk (x) Er f

(
k
n

)
∑k=n

k=0 Tk (x)
(5)

On the other hand the “Modified Szasz Polynomial” approximation/estimator of the unknown function ‘ f (x)’ is “MS n( f ; x)”,
as per the equation (3) in the preceding section. This enables us to achieve per our “Phase I” of the iterative algorithm, the
“Reduced-Bias Polynomial” approximation / estimator of the unknown function “ f (x)” just by subtracting the “Estimated
Bias Polynomial” per (5) above to get:

On ( f ; x) = MS n ( f ; x) − ErS n ( f ; x) (6)

Now, we embark upon the “Phase II” of our proposed ‘Iterative Algorithm’. The concept “Minimum Mean Square Error
Estimator (MMSEE)”of Searles(1964) is seminal to this phase of our algorithm. As per (1.4), our “Modified Szasz
Polynomial” estimator is analogous to the sample-mean ’x̄’. Searles(1964) considered the class of estimators k.x̄ , and
chose the “Optimal” value say “k0” by minimizing the MSE (kx̄ ) to lead to the MMSEE (k0.x̄). Similarly, we consider
the perturbed ‘Polynomial’, say b. On( f ; x), and hence determine the estimated values of the unknown function ‘ f (x)’
at the knots ‘(k/n)’, say Et f (k/n), k = 0(1)n, vis-à-vis known values of the unknown function “ f (x)”, namely ‘ f (k/n)’;
k = 0(1)n. Hence the “Knot-Wise Squared-Error”, sayE2r f (k/n) ≡ [Et f (k/n) − f (k/n)]2, k = 0(1)n could be generated
to lead to the construction of the “Squared-Error Polynomial Function”,

E2r =

k=n∑
k=0

E2r f

(
k

n

)
(7)

This will be a “Quadratic Polynomial in b”, say Q(b) ≡ A.b(2) + B.b +C. To avoid any complex solution to Q(b) = 0, we
chose b0 = −(B/2.A) to minimize the value of MSE, leading to a ‘Reduced-MSE Polynomial’ estimator “b0.On( f ; x)”.

To complete the “FIRST Iteration” we again apply the details of the ‘Phase I’ to treat our ‘Reduced-MSE Polynomial’
estimator “b0.On( f ; x)”, to achieve the improved [at Iteration # 1] ‘Modified Szasz Polynomial’ Operator/Estimator:

I[#1]MS n( f ; x) ≡ [Reduced − BiasVersionUsing‘PhaseI′(Iteration#1)on“b0.On( f ; x)”] (8)

Thus operations defining “FIRST Iteration” could well be characterized as a “Sandwich”! The top and bottom slices are
the operations of ‘Bias-Reduction’ per the “Phase I” of our algorithm, and the operation of ‘MSE-Reduction’ per the
“Phase II” is the stuffing in the sandwich. The algorithm is an iterative one amounting to a stacked pile of sandwiches of
desired height with the bottom slice of the first iteration serving as the top slice for the second-iteration sandwich, and so
on.

At any iteration, the improvements will begin and end with the “Phase I” operation of the ‘Bias-Reduction’ of the im-
provement algorithm, sandwiching its “Phase II” operation of ‘MSE-Reduction’. As such, at any iteration, we will have
two improvement-operations only, namely that of ‘Phase II’ followed by that of “Phase I” borrowing the last operation
of the preceding iteration. Only the “First Iteration” will, therefore be an exception using three improvement-operations
Phase I –Phase II – Phase I.
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3. The empirical simulation study

To illustrate the gain in efficiency of the “Modified Szasz Operators” by using our proposed “Sandwich-Iterative Algorithm
of Improvement of Polynomial Approximation, we have carried out an empirical study. We have taken the cases of
n = 2, 3, and 4(i.e.n + 1 = 3, 4, and 5, knots) in the empirical study to numerically illustrate the relative gain in efficiency
in using the Algorithm vis-à-vis the Original Modified Szasz Polynomial Operator in each example-case of the n-values.
Essentially, the empirical study is a simulation one in which we assume that the function to be approximated, namely
f (x), is known to us. Once again we have confined ourselves to illustrating the relative gain in efficiency by the Iterative
Improvement for the following four functions:

f (x) = exp(x), ln(1 + x), sin(1 + x), 5x

.

To illustrate the potential improvement with our proposed Algorithm, we have considered THREE Iterations, and the nu-
merical values of seven quantities - three Percentage Relative Errors (PREs) corresponding to Improvement Iteration (# =
1, or 2, or 3) (PRE I(#)MS n( f ; x)[n]), Original Modified Szasz Polynomial Operator (PRE MS n( f ; x)[n]), and the three
corresponding Percentage Relative Gains (PRG) in using our Iterative Algorithmic Modified Szasz Polynomial Operators
in place of the Original Modified Szasz Polynomial Operators MS n( f ; x)[n], namely PRG I(#)MS n( f ; x)[n]; # = 1(1)3).
These quantities are defined as follows. The PRE using (original) Modified Szasz (Polynomial) using n intervals in [0, 1],
i.e. [(k − 1)/n, k/n]; k = 1(1)n :

PRE MS n ( f ; n) [n] =

∫ 1
0 f (x) dx − ∫ 1

0 MS n ( f ; x)∫ 1
0 f (x) dx

× 100

The PRE using the Improvement Iteration (I#1, or2, or3) on Bernstein (Polynomial) using n intervals in [0, 1], i.e. [(k −
1)/n, k/n]; k = 1(1)n :

PRE I (#) MS n ( f ; x) [n] =

∣∣∣∣∫ 1
0 f (x) dx − ∫ 1

0 I (#) MS n ( f ; x) dx
∣∣∣∣∫ 1

0 f (x) dx
× 100; where # = 1, 2 or 3

The PREs respective to the Original Modified Szasz Polynomial Operator and respective to the First, Second, and the
Third Sandwich-Algorithmic Improvement Iteration Polynomials, respectively, for each of for each of the example #′s
of approximation Knots/Intervals. And the Percentage Relative Gains (PRGs), defined exactly analogously to PRE, by
using the proposed Sandwich-Algorithmic Improvement Iteration: I#(e.g.1, 2 or3) Polynomials with the n intervals in
[0, 1] over using the (Original) Modified Szasz Polynomial Operator for the approximation of the (Targeted) function, f

are tabulated in the following four tables (Tables 1 to Table 4) in the Appendix.

4. Conclusion

These seven numerical quantities have been computed using Maple Release 12, for all the four illustrative functions
(exp(x), ln(1 + x), sin(1 + x), and 5x) mentioned in Section 3, and for three values of n (n = 2, 3, 4), and are, respectively,
tabulated in Tables 1–4 [Appendix]. The PREs for our Algorithmic Sandwich-Iterative Polynomial Approximations are
PROGRESSIVELY lower on each subsequent iteration, as compared to that for the Original Modified Szasz Polynomial
Approximation, for all the illustrative functions. The PRGs due to the use of our proposed Algorithmic Sandwich-
Iterative Polynomial Approximations vis-a-vis the Original Modified Szasz Polynomial Approximation are also PRO-
GRESSIVELY increasing on each subsequent iteration, for all the illustrative functions. Lastly, it is very heartening to
note that when we use (n = 4) intervals, i.e. FIVE KNOTS for the polynomial approximation, the PRG becomes al-
most 100% for the third iteration in the function ln(1+x). Otherwise also, the speed of convergence is highly accelerated
by the Sandwich-Iterative Algorithmic improvement in the Modified Szasz Polynomial using the Statistical perspective.
In fact, the improvement attained by the third iteration is not very great. It could also be noted that this perspective
of the Sandwich-Iterative Improvement could be applied to any Polynomial Approximator, other than Modified Szasz
Polynomial; more particularly to those belonging to the class of Positive Linear Operators, as they admit to the Proba-
bilistic/Statistical perspective rather more readily!
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APPENDIX

Table 1. (Iterative) Algorithmic (In%) Relative (Absolute) Efficiency/Gain for f (x) = exp (x) .

Items↓ n → 2 3 4
PRE MS n ( f ; x) [n] 9.39739449 7.95647383 6.90804442

PRE I (1) MS n ( f ; x) [n] 3.83722333 1.45873986 0.81395291
PRE I (2) MS n ( f ; x) [n] 3.81174269 1.42485473 0.77875007
PRE I (3) MS n ( f ; x) [n] 3.19966674 1.19674169 0.73548674
PRG I (1) MS n ( f ; x) [n] 59.16715709 81.66600061 88.21731791
PRG I (2) MS n ( f ; x) [n] 59.43830285 82.09188183 88.72690987
PRG I (3) MS n ( f ; x) [n] 65.95155448 84.95889365 89.35318456

Table 2. (Iterative) Algorithmic (In%) Relative (Absolute) Efficiency/Gain for f (x) = ln (1 + x) .

Items↓ n → 2 3 4
PRE MS n ( f ; x) [n] 29.15997146 21.87280192 17.61951884

PRE I (1) MS n ( f ; x) [n] 3.55783342 1.47804100 0.77459701
PRE I (2) MS n ( f ; x) [n] 2.97431401 1.09840220 0.60508025
PRE I (3) MS n ( f ; x) [n] 2.45230985 0.81111180 0.49703697
PRG I (1) MS n ( f ; x) [n] 87.79891320 93.24256172 95.60375611
PRG I (2) MS n ( f ; x) [n] 89.80001056 94.97822801 96.56585259
PRG I (3) MS n ( f ; x) [n] 91.59015000 96.29168767 97.17905481

Table 3. (Iterative) Algorithmic (In%) Relative (Absolute) Efficiency/Gain for f (x) = sin (1 + x) .

Items↓ n → 2 3 4
PRE MS n ( f ; x) [n] 5.07268191 3.29085233 2.36884255

PRE I (1) MS n ( f ; x) [n] 1.70490640 0.65066116 0.33024595
PRE I (2) MS n ( f ; x) [n] 1.25881427 0.48450137 0.27943602
PRE I (3) MS n ( f ; x) [n] 0.98135020 0.41174432 0.27192705
PRG I (1) MS n ( f ; x) [n] 66.39043343 80.22818721 86.05876299
PRG I (2) MS n ( f ; x) [n] 75.18444304 85.27732875 88.20368925
PRG I (3) MS n ( f ; x) [n] 80.65421371 87.48821619 88.52067832

Table 4. (Iterative) Algorithmic (In%) Relative (Absolute) Efficiency/Gain for f (x) = 5x.

Items↓ n → 2 3 4
PRE MS n ( f ; x) [n] 11.37181326 10.38792657 9.38887683

PRE I (1) MS n ( f ; x) [n] 8.86903506 3.76606866 2.10583495
PRE I (2) MS n ( f ; x) [n] 8.01359809 3.36536766 2.00297630
PRE I (3) MS n ( f ; x) [n] 6.48771809 2.79971107 1.92047301
PRG I (1) MS n ( f ; x) [n] 22.00861142 63.74571350 77.57095984
PRG I (2) MS n ( f ; x) [n] 29.53104388 67.60308571 78.02744306
PRG I (3) MS n ( f ; x) [n] 42.94913267 73.04841289 79.54523158
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