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Abstract

Many ways exist to measure and model financial asset volatility. In principle, as the

frequency of the data increases, the quality of forecasts should improve. Yet, there is no

consensus about a ‘‘true’’ or ‘‘best’’ measure of volatility. In this paper we propose to jointly

consider absolute daily returns, daily high–low range and daily realized volatility to develop a

forecasting model based on their conditional dynamics. As all are non-negative series, we

develop a multiplicative error model that is consistent and asymptotically normal under a wide

range of specifications for the error density function. The estimation results show significant

interactions between the indicators. We also show that one-month-ahead forecasts match well

(both in and out of sample) the market-based volatility measure provided by the VIX index as

recently redefined by the CBOE.
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1. Introduction

Models to describe and predict financial asset volatility abound. In practice, in
addition to a model’s capability to reproduce stylized facts in observed time series
and exhibit desirable statistical properties, the ultimate way to evaluate a model is its
usefulness as a tool in many areas such as derivative products pricing, risk evaluation
and hedging, portfolio allocation, and the derivation of value at risk measures.

Yet, the concept of volatility itself is somewhat elusive, as many ways exist to
measure it and hence to model it (cf. the survey by Andersen et al., 2002). In recent
times, the availability of ultra-high frequency data and the work done on them has
shed new light on the concept of volatility: as a matter of fact, data sampled at
regular intra-daily intervals can be summarized into a measure called realized
volatility which under some assumptions is a consistent estimator of the quadratic
variation of the underlying diffusion process. Such a measure was widely adopted as
a target of forecast accuracy, but the dependence of the measure upon the frequency
of observation of the data makes it difficult to come to clear conclusions. Moreover,
as shown by Oomen (2002) such a measure may be biased if returns used to compute
it are serially correlated. In principle, the volatility measures derived from ultra-high
frequency data should prove to be more accurate, hence allowing for forecast
efficiency gains. Nevertheless, the measures that make more intensive use of such
data are prone to all sorts of microstructure problems. Bid-ask bounce (Roll, 1984),
screen fighting (Zhou, 1996), price discreteness, irregular spacing of quotes and
transactions can all bias volatility estimates.

Even if the growing literature on realized volatility has delivered promising results
(Andersen et al., 2000; Barndorff-Nielsen and Shephard, 2002), what is of interest is
the appropriate way to provide accurate forecasts in the medium-to-long run, and
the problem remains open as to whether daily or intra-daily models deliver the most
successful answer. In the first category one can mention those models favoring the
existence of long memory or high persistence in the process of volatility, such as the
daily component model by Engle and Lee (1999), or the fractionally integrated
GARCH (FIGARCH—Baillie et al., 1996; or FIEGARCH, Bollerslev and
Mikkelsen, 1996) or long memory stochastic volatility models (LMSV—Breidt et
al., 1998; Deo and Hurvich, 1999). Intra-daily models are more recent: Ghose and
Kroner (1996) adopt a signal plus noise model to estimate a persistent component as
in Engle and Lee (1999); Andersen and Bollerslev (1997) show how accuracy of
volatility forecasts can be improved if one moves to analyzing five-min returns; Engle
(2000) derives a measure of volatility from transaction data.

The approach which we will pursue here is one in which several measures of
volatility can be jointly used to see whether different features of observed time series
can deliver an enrichment of volatility forecasting for the medium run. As a matter
of fact, next to the traditional volatility modelling from daily returns measured as the
log-difference of closing prices, we can consider absolute returns on which
considerable modeling effort is present in the literature (Taylor, 1986; Ding et al.,
1993; Granger and Sin, 2000) and, with the already mentioned provisos, realized
volatility as the standard deviation of intra-daily returns observed at regular
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intervals. Furthermore, it has long been recognized that the spread between the
highest recorded daily price and the lowest recorded daily price is a function of the
volatility during the day and, as such, can lead to an improvement of the volatility
estimates. Many authors (Taylor, 1987; Rogers and Satchell, 1991; Gallant et al.,
1999; Chou, 2001; Alizadeh et al., 2002; Brandt and Jones, 2002; Brandt and
Diebold, 2003) have devoted considerable attention to the informational content of
range data extending the relationship it has to the volatility parameter in a geometric
Brownian motion context (cf. the early papers by Parkinson, 1980; Garman and
Klass, 1980; Beckers, 1983), and comparing its persistence characteristics with the
ones of daily returns (Brunetti and Lildholdt, 2003).

It should be stressed that the three variables have different features relative to one
another: the main difference is that the daily return uses information about the
closing price of the previous trading day, while the high–low spread and the realized
volatility are measured on the basis of what is observed during the day, the former
taking all trade information into account, the latter being built on the basis of quotes
sampled at discrete intervals. Thus, a zero return is not necessarily informative about
what happened during the day, and, by the same token, a high return may signal
high volatility during the day while it may just be due to an opening price much
different from the closing price the previous day but very close to the closing price of
the same trading day, with a small high–low spread. Also, note that the same value
of realized volatility may correspond to different values of the range since we could
have recorded both high and low values fairly far apart during the day with a smooth
transition of price movements between the two, or some vivacious price swings
concentrated in a short period of time. For these reasons, they are all potentially
useful and it becomes an empirical question whether they are indeed relevant and
which interactions one may expect among them.

In the present paper we exploit the fact that absolute returns, daily range and
realized volatility are variables evolving as functions of the underlying time-varying
volatility and all exhibit the usual conditional persistence of financial time series.
They can each be considered as indicators of volatility and since they are all non-
negative-valued they can be modelled with a multivariate extension of the
multiplicative error model suggested by Engle (2002). Each indicator is modeled
as a GARCH-type process possibly augmented with weakly exogenous variables.
The derived estimator is robust to a range of error distribution assumptions. We
show that this three-variable model possesses interesting properties in that the
forecasts for each indicator are augmented by the presence of the other indicators
lagged and by asymmetric effects from the direction of price movements. The model
can be solved dynamically for multi-period forecasts and the dynamic interdepen-
dence accounts for a substantial departure from the standard GARCH profile of
dynamic forecasts. We can use our three equation model to predict multi-step
volatility.

The model is estimated with daily data for the S&P500 stock index over a
relatively long sample period. A careful specification search selects models for each
equation. We calculate 22-step volatility forecasts and compare these with one
month option-implied volatilities as measured by the volatility index VIX (in its new
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definition). We examine the incremental explanatory power of our forecasts (both in
and out of sample) over a simple autoregressive specification of VIX. The motivation
for such an approach is to provide evidence of the relevance of model based forecasts
such as the ones derived in our framework in explaining the behavior of a market
based volatility measure such as the volatility index. One may argue that the
volatility index should also be inserted as a weakly exogenous variable in the
conditional variance equation for the corresponding index as done by Blair et al.
(2001), or that even VIX should be seen as an indicator and a model for it added; in
either case one would lose the evidence of model based forecasts being able to track a
series that was not inserted in the information set at the estimation stage which is
what we want to focus on.

The reader should expect the following: in Section 2 we discuss the Multiplicative
Error Model, with some general considerations about the estimator and its
properties, and about the specifications of the three models adopted. Data issues
and model selection procedures are described in detail in Section 3. Model
performance is analyzed in Section 4 focusing on the characteristics of the model in
multi-step-ahead forecasting. In order to show the usefulness of our forecasts when
compared to a measure based on implied volatilities representing market evaluation
of volatility, in Section 5 we build multi-step-ahead volatility forecasts and we use
them as additional regressors over a simple autoregressive specification for the
volatility index VIX. Simple significance testing assesses the relevance of the
regressors in their incremental explanatory power. Concluding remarks follow.
2. The model

2.1. General discussion

We assume that the evolution of a non-negative valued process xt, can be
described by a multiplicative error model (MEM, as discussed by Engle, 2002). That
is, xt is the product of a time varying scale factor (which depends upon the recent
past of the series) and a standard positive valued random variable. Such a
specification was adopted in Engle and Russell (1998) for durations, Manganelli
(2002) for volume transaction data and Chou (2001) for high–low range. The scale
factor is identified as the conditional mean if the error distribution is assumed to
have unit mean. In general, therefore,

xt ¼ mt�t; �tjIt�1 � i:i:d:Dð1;jÞ, (1)

where mt can be rather flexibly specified as

mt ¼ oþ
Xp

i¼1

aixt�i þ
Xq

j¼1

bjmt�j þ c0zt. (2)

Further terms can signal the dependence of the series on weakly exogenous variables
(summarized in the vector zt) included in the information set available at time t�1.
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The conditions to ensure stationarity and positive means for all possible realizations
have been discussed in Engle (2002).

The density of the error term �t was left unspecified thus far. While in general one
should specify the true DGP, it may be possible to find robust specifications. We now
consider the family of gamma densities that have been used for ACD models.

f ð�tjIt�1Þ ¼
1

GðaÞba �
a�1
t exp �

�t

b

� �
.

The property of unit mean1 implies that b ¼ 1=a; namely,

f ð�tjIt�1Þ ¼
1

GðaÞ
aa�a�1

t exp �a�tð Þ ) f ðxtjIt�1Þ ¼
1

GðaÞ
aaxa�1

t m�a
t exp �a

xt

mt

� �
.

(3)

The process would have conditional expectation Eðxt It�1j Þ ¼ mt and conditional
variance VarðxtjIt�1Þ ¼ m2t =a: A comparison between various densities correspond-
ing to different choices of a subject to the constraint is reported in Fig. 1. As well
known, the choice of a ¼ 1=2; gives the pdf of a chi-square with one degree of
freedom, while a ¼ 1 yields the unit exponential. In general, values of ao1 amount
to attributing more weight to extremely small or large values of the random variable
1Such a condition is not restrictive at all: consider that if �t were to be such that Eð�tÞ ¼ aba1; it could
be written as b���t with Eð��t Þ ¼ 1 and b* would be a multiplicative constant to be absorbed by mt.
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while values of a41 generate a hump shaped density which approaches the normal
distribution for large values of a.

Let us suppose for the moment that the only parameters of interest are the ones
defining mt (let us call them y), and let us look at the corresponding log-likelihood
function: the relevant object for estimation is given by

log L ¼ constant� a
XT

t¼1

log mt þ
xt

mt

� �
, (4)

where the constant depends only on the xt’s and a. It is clear that in maximizing this
function with respect to y; the value assumed by a is irrelevant, as the first order
conditions must obeyXT

t¼1

xt � mt

m2t

� �
@mt

@y
¼ 0. (5)

Even from a numerical point of view, an iterative procedure is unaffected (in a
Newton-type method the a terms present in the inverse Hessian and gradient would
cancel each other) resulting in exactly the same estimates (apart from rounding off
errors when numerical derivatives are used). Furthermore, these first order
conditions coincide with the ones derived from an auxiliary model that specifies
the square root of the variable of interest,

ffiffiffiffiffi
xt
p

; as the product of the square root of
the scale factor

ffiffiffiffiffi
mt

p
and a half Gaussian error term nt; namely,ffiffiffiffiffi

xt

p
¼

ffiffiffiffiffi
mt

p
nt ntjIt�1 � half Gaussian ðstandardÞ: (6)

Notice that this corresponds to the Gaussian GARCH model where xt is the squared
return, mt is the conditional variance, and the error term nt is a chi square with one
degree of freedom.

This model has the clear advantage of being able to exploit any GARCH software
which can estimate the parameters y in mt from a model for

ffiffiffiffiffi
xt
p

with no equation for
the mean (as done for the ACD model by Engle and Russell, 1998; cf. also Engle,
2002).

Clearly, the second order conditions would differ, since the Hessian will be
proportional to a (e.g. for the exponential case it would be twice the Hessian for the
chi-square), and, correspondingly, the estimated parameter variance–covariance
matrices. Note, however, that (exploiting the results of Bollerslev and Wooldridge,
1992; Lee and Hansen, 1994) the robust variance–covariance matrix, computed as
the productd

VarðbWÞ ¼ bH�1 dOPG bH�1
(with H the Hessian matrix and OPG the matrix of the outer products of the
gradients) provides the obvious benefit of making this discrepancy irrelevant since
the a’s cancel out:d

VarðbWÞ ¼ 1

a
bH�1a¼1a

2 dOPGa¼1
1

a
bH�1a¼1 ¼

bH�1exp
dOPGexp

bH�1exp. (7)
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In the absence of justifications for the most appropriate distribution to adopt for the
error term in an MEM, the strong lesson we learn from this discussion is that the
most straightforward way of deriving its parameter values is to estimate an auxiliary
variance equation for the positive square root of the variable of interest2 with a
GARCH specification and normally distributed errors. The estimators are quasi
maximum likelihood estimators, hence consistent and asymptotically normal as
discussed by Engle (2002), building on results by Lee and Hansen (1994). However, if
we know that a Gamma distribution assumption for �t is appropriate, then the same
procedure delivers consistency and efficiency for the estimators if a is known. Even if
a is not known, using robust standard errors shields against the specific shape of the
Gamma distribution. Introducing a among the parameters to be estimated would
provide information on the shape of the distribution of the error term �t (some
empirical results are discussed by Engle, 2002) which would be useful for simulating
future values or scenario analysis but would not have any impact on the values of the
estimates of y; nor on their standard errors as Covðby;baÞ ¼ 0:
2.2. Model specification for the volatility indicators

More specifically for the case at hand here, let us indicate the daily closing price as
Ct, and calculate the daily returns as rt ¼ logðCt=Ct�1Þ: Let us thus consider squared
returns r2t ; modeled as an MEM

r2t ¼ hr
t�t; �tjI � i:i:d:Dð1; xr

Þ; (8)

where hr
t is the conditional mean of r2t : The square, hl2t ; of the high–low range is

defined as hlt ¼ logðHt=LtÞ; where Ht and Lt are the highest, respectively, the lowest
recorded prices during the day, and is modeled as:

hl2t ¼ hh
t Zt; ZtjIt�1 � i:i:d:Dð1; xh

Þ; (9)

and the square of the realized volatility, vt; defined as the square root of the sum of
squared returns over J subperiods within the day, between market opening time and
market closing time,3

v2t ¼ hv
tzt; ztjIt�1 � i:i:d:Dð1; xv

Þ. (10)
2As established by Ding et al. (1993), absolute returns exhibit high levels of serial correlation and can

themselves be adopted as the first indicator of volatility. We prefer to think of the square root of r2t as

absolute returns even if the choice between writing (6) for absolute returns or for returns (with Gaussian

innovations) is irrelevant from a numerical point of view, since the first-order conditions would not

change.
3The merits of the choice of the appropriate J to balance estimation accuracy and microstructure pitfalls

are discussed in Andersen et al. (2000): empirically, 5min intervals ‘‘work’’ in a foreign exchange

framework (Andersen et al., 2001), 15min intervals are adopted by Schwert (1998), but we still lack a

theory of what is the optimal length to choose. In this context we choose J ¼ 78 and we adopted the

method discussed by Zhou (1996) on raw data to purge bid-ask bounce effects.
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Put together, we can write this trivariate MEM as a system of equations

r2t

hl2t

v2t

0BB@
1CCA ¼

hr
t

hh
t

hv
t

0B@
1CA� �t

Zt

zt

0B@
1CA; �t

Zt

zt

�������
0B@ It�1

1CA � i:i:d:Dði;XÞ (11)

where � indicates the Hadamard product, i is a unit (3� 1) mean vector, and X is a
3� 3 variance–covariance matrix of the innovation terms. The multivariate
estimation problem becomes a series of univariate problems when it is assumed
that the covariance matrix is diagonal. There is no loss of consistency if this
assumption is false but there can be a loss of efficiency.

We can now turn to the details of the MEM specification. Let us consider the first
MEM and write the basic form of the model for the scale factor hr

t as

hr
t ¼ or þ arr

2
t�1 þ brh

r
t�1. (12)

In what follows, we will refer to this as the base specification, which is maintained
even if individual coefficients turn out to be not significant in order to maintain
identifiability of the parameters.

In order to take asymmetric reactions to shocks, this base model can be expanded,
either by writing a threshold-type model involving the customary dummy variable
for negative returns dt ¼ Iðrto0Þ;

hr
t ¼ or þ arr

2
t�1 þ brh

r
t�1 þ grr

2
t�1dt�1 (13)

or even adding lagged returns rt�1 as a different way of accounting for asymmetry (as
in the APARCH model, Ding et al., 1993) given that they maintain their sign,

hr
t ¼ or þ arr

2
t�1 þ brh

r
t�1 þ grr

2
t�1dt�1 þ drrt�1. (14)

The main question we want to address at this stage is whether the inclusion of the
lagged variables hl2t�1 and v2t�1; which are part of the information set It�1; adds
significant explanatory power to the specification for hr

t : If so, then some of the
information contained in these indicators relates to a variability in returns which
cannot be accounted for by considering just squared returns and possible asymmetric
effects. By the same token, a way to account for further asymmetric effects when
returns in the previous day are negative is to include also the product of the
indicators by the same dummy variable dt�1. A model which would take all these
effects into account can be written as

hr
t ¼ ðor þ arr

2
t�1 þ brh

r
t�1Þ þ grr

2
t�1dt�1 þ drrt�1

þ jrhl2t�1 þ Wrhl2t�1dt�1 þ crv
2
t�1 þ lrv

2
t�1dt�1, ð15Þ

where a subscript ‘‘r’’ was added to the coefficients indicating that they refer to the
specification for returns. The augmentation of the GARCH(1,1) model in this case
includes the six variables rt�1; r2t�1dt�1; hl2t�1; hl2t�1dt�1; v2t�1; v2t�1dt�1which are all
known at time t�1. In what follows we will refer to this general form as the system

specification (with whatever variables the chosen model selection will retain, see
below).
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A similar approach can be followed for the other two indicators. Considering
again hl2t ¼ hh

t Zt; and picking six relevant variables from It�1; namely, rt�1; hl2t�1dt�1;
r2t�1; r2t�1dt�1; v2t�1; v2t�1dt�1; one can write a full specification for hh

t as

hh
t ¼ ðoh þ ahhl2t�1 þ bhhh

t�1Þ þ dhrt�1 þ ghhl2t�1dt�1 þ jhr2t�1

þ Whr2t�1dt�1 þ chv2t�1 þ lhv2t�1dt�1. ð16Þ

Analogously, for the realized daily volatility indicator we start from v2t ¼ hv
tzt and

add the corresponding six variables, v2t�1dt�1; rt�1; r2t�1; r2t�1dt�1; hl2t�1; hl2t�1dt�1; to
the base specification of a GARCH(1,1) to get

hv
t ¼ ðov þ avv2t�1 þ bvh

v
t�1Þ þ dvrt�1 þ gvv

2
t�1dt�1 þ jdr2t�1

þ Wvr
2
t�1dt�1 þ cvhl2t�1 þ ldhl2t�1dt�1. ð17Þ

The question that we will discuss in the following section is based on the
characteristics of the data at hand, namely, whether the system specification is
substantially different from the base specification, i.e. whether adding the lagged
indicators adds substantial explanatory power. In fact, it may happen that the MEM
for one indicator does not require the information set to be augmented, while there
may be significant effects for another.
3. The data, parameter estimation and model selection

For our empirical models, we will use data on the Standard and Poor 500 index
from January 4, 1988 to December 14, 1998 (2730 observations); we leave the last
217 observations for out-of-sample comparison purposes. We build series for
absolute returns, high–low range and realized volatility (on five minute intervals) for
this period: since the constructed variables have quite different scales relative to one
another, we rescale all three variables so that they are all expressed in annual
percentage terms and they share the in-sample quadratic mean of observed returns.
Some descriptive statistics are reported in Table 1 and suggest that the absolute
returns and the daily range have more characteristics in common with one another
than each of them does with realized volatility. However, a more complete picture is
obtained if one looks also at the correlation coefficients between the three series
reported in the last lines of Table 1 and the scatter-plots in Fig. 2.

The absolute returns lie almost invariably below the daily range, signaling that the
days in which the previous day closing price is lower (higher) than the lowest
(highest) intradaily price are infrequent. A more dispersed pattern is shown between
the absolute returns and the realized volatility as reflected also by the correlation
coefficient of 0.51. The fact that the correlations are relatively high but not nearly
unity signifies that the indicators are different from one another. These preliminary
stylized facts coupled with the characteristics of persistence exhibited by the absolute
return, the daily range and the realized volatility series (cf. Fig. 3), mean that an
effort aimed at modeling the interactions between these three variables in a
conditional context seems promising. In-sample there is a date, October 28, 1997,
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Fig. 2. The S&P500 index. Scatter-plots between absolute returns, daily range and realized volatility.

Sample period: January 4, 1988–December 31, 1997.

Table 1

S&P500 absolute returns, daily range and realized volatility. Summary statistics

Absolute returns Daily range Realized volatility

Mean 9.35 11.27 7.74

Median 6.72 9.67 4.89

Maximum 112.92 84.83 241.53

Minimum 0.000 0.098 0.004

Std. Dev. 9.29 6.83 10.67

Quadratic mean 13.18 13.18 13.18

Skewness 2.93 2.90 7.60

Kurtosis 21.97 21.48 115.80

Correlations

With absolute returns 0.81 0.51

With daily range 0.80

All variables are expressed in terms of percentage annual terms and they share the same quadratic mean.

Sample period: January 4, 1988–December 30, 1997.

R.F. Engle, G.M. Gallo / Journal of Econometrics 131 (2006) 3–2712
which serves well as an example of what different indicators may record.4 At the
height of the turmoil period following the Asian currency crisis, on that day the
S&P500 opened at 873.10, from a previous close of 876.98, and closed at 921.25 after
having recorded a low at 855.31 and a high at 923.09. It is not surprising that the
realized volatility in such a day turned out to be so high: one may think of a limit
case in which the index bounces between the daily high and the daily low every 5min;
the realized volatility would be much higher than the daily range, and this gives
account also of the puzzling evidence that the kurtosis of the realized volatility is so
high.
4Just to make sure that the results would not be driven by such an abnormal observation, we rerun the

estimation substituting the in-sample average to the observation for that day: the results changed only

marginally.
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As discussed in Section 2, for each indicator we envisage the introduction of any of
up to six weakly exogenous variables in addition to the GARCH(1,1)-type base
specification. We are thus estimating 26 ¼ 64 models ranging from the most general
forms (15)–(17) down to the base specification kept as a benchmark; although in the
latter some coefficients may not be significant, they will be kept in order for the
model to be identified.

The two model selection strategies that we will adopt and compare are:
1.
 a general-to-specific strategy whereby we start pruning the coefficients that appear
to be statistically insignificant (using Bollerslev and Wooldridge robust standard
errors) in the most general expressions and go on to search down to the level
where all coefficients are significant and
2.
 the smallest value of the Schwartz information criteria (BIC) among the 64
models.

The chosen models from the general-to-specific selection procedure are reported in
Table 2.

The results show that, when evaluated in terms of coefficient significance, the
inclusion of other variables in the information set appears to add explanatory power
in each of the expressions. The model for absolute returns includes an asymmetric
effect captured by rt�1 (the term r2t�1dt�1 seems to be less important), and both the
squared daily range and the squared daily volatility. The model for the high–low
range seems to be the most parsimonious with the presence of just an asymmetric
response of hh

t to lagged values of the returns. Interestingly, the one model which
attracts the highest number of significant variables is the model for the daily realized
volatility in which there appear to be asymmetric effects from all variables, as well as
lagged squared returns and lagged squared daily range. Some diagnostics (reported
in the top panel of Table 3) show that there are no major specification problems: for
reference we give the values of the BIC and the estimated log-likelihood, as well as
the results of an ARCH(2) test (5% critical value ¼ 5:99) and the Ljung–Box test
Q(12) for the squared residuals (5% critical value ¼ 21:03).

The specification search guided by the lowest value of the BIC gives the results we
present in Table 4. The model selected for the daily range is the same as before. For
absolute returns, the model selected here does not contain lagged square daily
volatility; the values of the coefficients do not change much, so the profile of
forecasts between the two models will differ mainly because of the impact of this
variable. The model for the daily volatility here does not include the terms involving
the daily range, and the values of the coefficients are fairly different. Again (bottom
panel of Table 3) no major problems are signaled by the residual diagnostics.
4. Model performance

The three models thus estimated could be used separately for one-step-ahead
predictions using the estimated coefficients and the actual value of the right-hand
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Table 3

S&P500—diagnostics on selected models

BIC ARCH(2) Q(12) LOGLIK

General-to-specific model selection

Absolute returns 7.8693 1.770 4.016 �9868.28

Daily range 7.8622 2.25 5.86 �9867.127

Realized volatility 7.2581 0.425 15.248 �9092.116

Smallest BIC model selection

Absolute returns 7.8682 1.272 4.174 �9870.81

Daily range 7.8622 2.25 5.86 �9867.127

Realized volatility 7.2561 0.470 12.136 �9097.375

Sample period January 4, 1988–December 30, 1997.

Table 4

S&P500—smallest BIC model selection

hr
t ¼ 5:026

2:805
� 0:030

1:068
r2t�1 þ 0:901

43:432
hr

t�1 � 0:745
3:293

rt�1 þ 0:101
2:328

hl2t�1

hh
t ¼ 7:622

4:885
þ 0:109

5:407
hl2t�1 þ 0:850

32:713
hh

t�1 � 0:878
3:608

rt�1

hv
t ¼ 2:123

8:061
þ 0:035

2:366
v2t�1 þ 0:736

91:479
hv

t�1 � 1:183
28:350

rt�1 þ 0:122
6:688

vt�1dt�1 þ 0:123
23:911

r2t�1

Equations for the square of the time-varying component in absolute returns, high–low range, and daily

realized volatility. Sample period January 4, 1988–December 30, 1997 (robust t-statistics in small font

under the parameter value).
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side variables: the performance of these single-equation models could be individually
evaluated in relationship to the performance of the corresponding GARCH models.
The interest of what is being done here, though, lies in the fact that the three
equations together can be seen as a system which can be used as a tool for multi-step
forecasting for medium horizons. Let us consider the left-hand side as a three
dimensional vector ht; and consider that at time T þ 1 we have

hTþ1jT ¼

hr
Tþ1jT

hh
Tþ1jT

hv
Tþ1jT

0BB@
1CCA ¼

or

oh

ov

0B@
1CAþ A�ðrT ; r

2
T ; hl2T ; hl2T dT ; v

2
T ; v

2
T dT ; h

r
T ; h

h
T ; h

v
T Þ
0,

(18)

where A* is a 3� 9 matrix which includes the coefficients on the variables the value
of which is known at time T. To forecast the various future second-order moments
conditional on information at time T for maturities greater than 1, we need to
substitute the right-hand side variables with their conditional expectation as of time
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T. For a generic horizon k, we will have

ET ðrTþk�1Þ ¼ 0,

ET ðr
2
Tþk�1Þ ¼ hr

Tþk�1jT ,

ET ðhl2Tþk�1Þ ¼ hh
Tþk�1jT

ET ðhl2Tþk�1dTþk�1Þ ¼
1

2
hh

Tþk�1jT

ET ðv
2
Tþk�1Þ ¼ hv

Tþk�1jT

ET ðv
2
Tþk�1dTþk�1Þ ¼

1

2
hv

Tþk�1jT

and, therefore expression (18) is substituted by

hTþkjT ¼

hr
TþkjT

hh
TþkjT

hv
TþkjT

0BB@
1CCA ¼

or

oh

ov

0B@
1CAþ A

hr
Tþk�1jT

hh
Tþk�1jT

hv
Tþk�1jT

0BB@
1CCA ¼ oþ AhTþk�1jT . (19)

The dynamic properties of the estimated system can therefore be evaluated by
examining the characteristic roots of the matrix A. In principle, there could be stable
complex conjugate roots that would give the system some dampened cyclicality in
the forecasting. For the case at hand the roots for the two sets of estimates are given
as in Table 5.

The roots are fairly similar across the two selection procedures: one can therefore
expect that the two multi-equation models will provide different forecasting profiles
for the short horizon, while they will tend to be very similar in the medium to long
run. For this reason we will report the graphs just for the models selected according
to the smallest BIC criterion.

We will evaluate the performance of the models by first considering the profile of
the out-of-sample forecasts generated by the system. Let us start on the first day after
the estimation sample (January 2, 1998), and let us take the observations recorded on
December 30, 1997 as the starting values for the dynamic forecasts 132 periods ahead
(hence from January 2, 1998 to July 13, 1998). Then let us move the starting date five
days ahead (i.e. January 8, 1998), and collect the forecasts for the same 132 days
horizon. We will keep on moving ahead by five days and we will repeat the procedure
until the last considered starting value corresponds to March 6, 1998 (forecasting
horizon from March 9, 1998 to September 14, 1998). What we obtain are different
profiles which can be superimposed as in Fig. 4: the different lines start progressively
Table 5

Characteristic roots of the matrix A

Model selection

General-to-specific 0.958 0.860 0.833

Smallest BIC 0.958 0.870 0.832
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Fig. 4. The S&P500 index: out-of-sample volatility forecasts: abs. returns, high–low, daily volatility.

Various starting dates.
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at later and later periods, they last 132 periods and converge to the same value
(unconditional variance). The forecasts for the daily range indicator exhibit the
typical monotonic profile of a GARCH(1,1) model, since the model is the closest to
the base specification. This is not the case for the curves corresponding to forecasts
obtained from the other two indicators: it is interesting to note that the forecasts
produced by our model may have a non-monotonic behavior with over- (or under-)
shooting of their long term (unconditional) values at intermediate horizons.
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Let us now consider the volatility for an asset (or an index) at a given maturity T+
k as the square root of the cumulated sum of j-step-ahead forecasts generated by
expression (18), when j ¼ 1; or (19), when j is between 2 and k (cf. Engle and Patton,
2001). This corresponds to evaluating the square root of the cumulated sum of the
expected values of each volatility indicator at any time between 1 and k. As k

increases the terms of the sum will tend to repeat themselves. We thus have

va
TþkjT

vh
TþkjT

vv
TþkjT

0BB@
1CCA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk
j¼1

hr
TþjjT

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk
j¼1

hh
TþjjT

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk
j¼1

hv
TþjjT

s

0BBBBBBBBBBB@

1CCCCCCCCCCCA
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk
j¼1

ET r2Tþj

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk
j¼1

ET hl2Tþj

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk
j¼1

ET v2Tþj

s

0BBBBBBBBBBB@

1CCCCCCCCCCCA
. (20)

For reasons that will be clearer in the next section when we discuss the comparison of
these forecasts with the VIX volatility index, we choose a horizon k equal to 22, that
is, a one-month ahead forecasts. In Fig. 5 we report the values of the cumulative
volatility forecast as the (square root of the) average of 1-step, 2-steps, . . . ; 22-steps
ahead out-of-sample forecasts obtained by the general-to-specific three-equation
system (18) and (19) relative to the standard GARCH(1,1) specification. As one
would expect, for the equation for the range indicator, the values obtained with our
model and with the standard base specification are quite similar since the system
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Fig. 5. The S&P500 index: one month-ahead forecasts of volatility: abs. returns, high–low, realized

volatility. Out of sample—January 2, 1998–November 10, 1998.
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specification contains just lagged returns on top of the base specification. The results
show that the estimates obtained with the system specification are generally higher
and more persistent than the estimates obtained with the base specification in the
case of the absolute returns whereas the reverse is true for the daily realized volatility
results. A remarkable difference is observed for estimates on or about August 31,
1998 for which the base specification provides much higher estimates. Whether this
signals excessive volatility forecasts by the latter set of models is an issue that
requires a more specific type of evaluation. What we need is an overall comparison of
the two sets of forecasts gauged in reference to a market-based volatility measure
such as the volatility index VIX. We turn to this in the next section.
5. Model based and market based volatility

The Chicago Board of Options Exchange (CBOE) is the world’s largest options
exchange where standardized stock and index options are traded.5 Starting in 1993,
CBOE has computed a volatility index called VIX with the aim of measuring market
expectations of short term volatility as implicit in stock index option prices.6

Originally computed as the weighted average of the implied volatilities from eight at-
the-money call and put options on the S&P100 index (OEX) which have an average
time to maturity of 30 days, in 2003 the VIX has been entirely revised by changing
the reference index to the S&P500, taking into account a wide range of strike prices
for the same 30 day maturity, and freeing its calculation from any specific option
pricing model.7 The behavior of the series from January 2, 1990 to December 14,
1998 is shown in Fig. 6. Standard Augmented Dickey Fuller tests show that the unit
root hypothesis is rejected, although the degree of persistence in the series is very
high.

For the purposes of this paper, the analysis of VIX in reference to volatility
estimates with a multiple indicator conditional model is relevant because we can use
the value of VIX as a reference for our volatility forecasts. Under several auxiliary
assumptions, the optimal forecast of volatility from past prices should match the
Black–Scholes at-the-money implied volatility; under even weaker conditions, the
VIX should also represent future volatility. However, information such as
forthcoming announcements known to traders but not to the econometricians may
lead to episodes of positive or negative discrepancies. The 22-period-ahead horizon
for the term structure of volatilities was chosen to ensure compatibility with the 30
calendar day horizon considered in the construction of the VIX.
5For more detailed information, cf. the CBOE web site www.cboe.com.
6The value of the index is reckoned to measure investors’ fears. A very high value signals bearishness as

downward risk is perceived to be higher than upward risk. Chartists look at VIX for possible trend

reversals.
7For more details, cf. www.cboe.com/micro/vix/introduction.aspx. VIX covers the period from January

2, 1990 to present while data for the old VIX are available from January 2, 1986 to present, supplied under

the name VXO.

http://www.cboe.com
http://www.cboe.com/micro/vix/introduction.aspx
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We will therefore examine two main issues related to the incremental explanatory
value of the forecasts obtained with the base and with the system specifications for
each indicator:
�
 looking at them by indicator, we will test whether the coefficients of the forecasts
are pairwise equal to zero in a regression of VIX on an AR(1) term and on the
volatility forecasts, both in and out of sample;

�
 looking at them by specification, we will test whether the three coefficients of the

forecasts of the base specification and the three coefficients of the system
specification are jointly equal to zero in the same regressions.

In order to answer these questions we ran two sets of regressions each over two
separate periods (estimation sample and out-of-sample). We use both the forecasts
provided by the models selected according to the smallest BIC criterion and to
general-to-specific model selection procedure, since they provide partially different
outcomes. Two models were estimated using VIX as the dependent variable: one is a
simple autoregressive representation and the second adds the one month-ahead
volatility forecasts according to the base and the system specifications for the MEMs
as independent variables. It is not surprising that there would be serial correlation in
the estimated residuals. Differences between the optimal econometric forecast of
volatility and implied volatilities would naturally arise from the reduced information
set used by the econometrician. For example, an upcoming election would be
incorporated in VIX but not GARCH and this would persist for many days. Yet, it
is of interest whether the model based forecasts can provide some incremental
explanatory enhancement in the evolution of the volatility index.
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The results are shown in Table 6 where we report the results of the in-sample and
out-of-sample analysis with the top panel referring to the smallest BIC selection
criterion and the bottom one to the results obtained with the general-to specific
approach. The results show that, with a few exceptions, all coefficients are
individually statistically significant. One notices that in most specifications the
constant term is highly significant: when this parameter is positive, the volatility
estimates would confirm a recorded feature of the volatility index to underestimate
the implied volatility level (it could be due to a volatility risk premium). The
contribution of various sets of forecasts is assessed by means of HAC Wald F-tests
and reported in the lower part of each panel. We test whether each forecast has an
impact by type of indicator (rows labeled absolute returns, daily range or realized
volatility) or by type of method (base specification or system specification). There is
no clear indication of a better in-sample model performance as a consequence of the
selection criterion adopted. In both sets of results one notices that negative
coefficients associated with the daily range forecasts appear: concentrating on the
high–low range, for example, other things being equal, an increase in the forecast of
the volatility value for the range is associated with a reduction in the value of VIX.
Table 6

Regression results for VIX with and without the 22-day-ahead forecasts of volatility obtained using the

base and the system specifications

In sample Out of sample

Lowest BIC

Constant 16.997�� �2.660� 26.121�� 11.093�

(19.61) (�2.33) (7.60) (2.24)

AR(1) 0.976�� 0.915�� 0.967�� 0.974��

(148.38) (57.45) (53.20) (48.49)

Multi-step average

volatility (base

specification)

Absolute return 1.037�� 0.364

(7.17) (0.95)

Daily range �1.400�� �2.314��

(�8.114) (�5.40)

Realized volatility �0.049�� �0.069

(�2.83) (�1.52)

Multi-step average

volatility (system

specification)

Absolute return 3.614�� 4.403��

(7.91) (11.09)

Daily range �1.865�� �1.555��

(�3.64) (�5.88)

Realized volatility 0.261�� 0.290�

(3.42) (2.37)

Diagnostics R-squared 0.9512 0.9714 0.9348 0.9777

TR2 for AR(4) 25.089�� 28.227�� 13.540�� 15.041��

TR2 for ARCH(4) 150.63�� 241.64�� 44.929�� 19.562��
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Table 6 (continued )

In sample Out of sample

Robust Wald tests of

joint zero coefficients

Abs. returns terms 65.040�� 70.919��

Daily range terms 50.989�� 26.027��

Realized volatility

terms

18.320�� 2.802

Base terms 43.382�� 30.855��

System terms 113.25�� 63.681��

General to specific

Constant 16.997�� �0.397 26.121�� 16.511�

(19.61) (�0.37) (7.60) (1.92)

AR(1) 0.976�� 0.916�� 0.967�� 0.981��

(148.38) (57.98) (53.20) (40.58)

Multi-step average

volatility (base

specification)

Absolute return 1.186�� 0.523

(8.62) (1.21)

Daily range �1.585�� �2.025��

(�9.59) (�3.85)

Realized volatility 0.065�� 0.132��

(3.07) (3.55)

Multi-step average

volatility (system

specification)

Absolute return 3.030�� 3.105��

(8.32) (5.84)

Daily range �1.731�� �1.580��

(�3.86) (�4.88)

Realized volatility 0.484�� 0.587��

(7.15) (9.91)

Diagnostics R-squared 0.9512 0.9713 0.9348 0.9758

TR2 for AR(4) 25.089�� 25.133�� 13.540�� 4.094�

TR2 for ARCH(4) 150.63�� 218.512�� 44.929�� 10.916��

Robust Wald tests of

joint zero coefficients

Abs. returns terms 63.288�� 32.922��

Daily range terms 57.933�� 11.954��

Realized volatility

terms

27.279�� 55.295��

Base terms 33.489�� 15.662��

System terms 105.97�� 53.551��

Robust t-values under the estimated coefficient values.
�
¼ significant at 5%.
��
¼ significant at 1%.
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This could be a sign of the daily range values being indicators of a trend reversal in
periods of high volatility, but the issue deserves further attention.

The same kind of analysis may be carried over to an out-of-sample combination of
forecasts exercised over the period January 2, 1998–December 14, 1998, in which the
same variable (VIX) is regressed on a constant and an AR(1) term and then the
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Fig. 7. The CBOE VIX index: out of sample combination of forecasts January 2, 1998–November 10,

1998—AR(1) model with MEM forecasts (smallest BIC—coefficients in Table 6, last column).
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22-day-ahead volatility forecasts obtained from the same models (keeping the
coefficients fixed at their estimated in-sample values) are added as regressors. The
results, again broken down between lowest BIC models and general-to-specific
models, are presented in the last columns under the heading out of sample. Once
again, the significance of each set of forecasts is maintained from what the F-tests are
signaling. The lowest BIC provides a slightly better performance: all parameters are
significant. Some features of this combination of forecasts can also be assessed
graphically (Fig. 7) since it seems that the highest variance appears to correspond to
periods in which the VIX index is higher and more volatile.
6. Conclusions

The motivation for this paper stems from the consideration that various volatility
indicators used in the literature (absolute daily returns, daily high–low range and
intra-daily realized volatility) may present features which should be jointly combined
in a dynamic model to enhance the information content of individual measures. We
have adopted a novel approach, called multiplicative error model (Engle, 2002),
which is suited to model the conditional behavior of positively valued variables
choosing a convenient GARCH-type structure to model persistence. It turns out
that a wide variety of error assumptions can be accommodated with a standard
easy-to-use procedure and inference conducted on the basis of the robust variance
covariance matrix. For the problem at hand the chosen specification for the MEM is
multivariate and is suitable to be dynamically solved for short to medium range
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forecasting horizons. For the data at hand (Standard and Poor 500), we show that
the approach is rewarding in that the retained specifications for each indicator are
augmented by the presence of lagged values of other indicators. In particular, we
obtain the result that daily range and returns have explanatory power for realized
volatility, and daily range is the indicator with the most parsimonious model.

We evaluate the performance of this model by producing 22-step-ahead volatility
forecasts for each of the three indicators and by using them in a regression
framework to detect their explanatory power for an index of market volatility such
as the VIX index. The results show that the model performs well, with significant
persistence of the VIX index being captured by this forecasts both individually and
grouped either by type of indicator and by type of specification adopted. We thus
provide evidence that model based forecasts have significant explanatory power in
tracking the value of a market based volatility measure.

The estimator thus derived is efficient when the choice of error distribution is
within the class of a Gamma distribution: it retains consistency when other more
flexible and time-varying density specifications may be more appropriate and
research is under way to identify such densities. By the same token, in the present
context we adopted a diagonal structure for the variance covariance matrix of the
error terms, and further efficiency gains could be achieved by considering more
complex structures of correlations among the error terms, paralleling the literature
on multivariate GARCH models.
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