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Abstract:  Organizing data into sensible groupings is one of the most fundamental 
modes of understanding and learning. As an example, a common scheme of scientific 
classification puts organisms into taxonomic ranks: domain, kingdom, phylum, class, 
etc.). Cluster analysis is the formal study of algorithms and methods for grouping, or 
clustering, objects according to measured or perceived intrinsic characteristics or 
similarity. Cluster analysis does not use category labels that tag objects with prior 
identifiers, i.e., class labels. The absence of category information distinguishes data 
clustering (unsupervised learning) from classification or discriminant analysis 
(supervised learning). The aim of clustering is exploratory in nature to find structure in 
data. Clustering has a long and rich history in a variety of scientific fields. One of the 
most popular and simple clustering algorithms, K-means, was first published in 1955. In 
spite of the fact that K-means was proposed over 50 years ago and thousands of 
clustering algorithms have been published since then, K-means is still widely used. This 
speaks to the difficulty of designing a general purpose clustering algorithm and the ill-
posed problem of clustering. We provide a brief overview of clustering, summarize well 
known clustering methods, discuss the major challenges and key issues in designing 
clustering algorithms, and point out some of the emerging and useful research directions, 
including semi-supervised clustering, ensemble clustering, simultaneous feature 
selection, and data clustering and large scale data clustering. 
 
 
1. Introduction 
 
Advances in sensing and storage technology and dramatic growth in applications such as 
Internet search, digital imaging, and video surveillance have created many high-volume, 
high-dimensional data sets. It is estimated that the digital universe was approximately 
281 exabytes in 2007, and it is projected to be 10 times the size by 2011. (One exabyte is 
~1018 bytes or 1,000,000 terabytes) [Gantz, 2008]. Most of this data is stored digitally in 
electronic media, thus providing huge potential for the development of automatic data 
analysis, classification, and retrieval techniques. In addition to the growth in the amount 
of data, the variety of available data (text, image, and video) has also increased. 
Inexpensive digital and video cameras have made available huge archives of images and 
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videos. The prevalence of RFID tags or transponders due to their low cost and small size 
has resulted in the deployment of millions of sensors that transmit data regularly. E-
mails, blogs, transaction data, and billions of Web pages create terabytes of new data 
every day. Many of these data streams are unstructured, adding to the difficulty in 
analyzing them.  
 
This increase in both the volume and the variety of data requires advances in 
methodology to automatically understand, process, and summarize the data. Data analysis 
techniques can be broadly classified into two major types [Tukey, 1977]: (i) exploratory 
or descriptive, meaning that the investigator does not have pre-specified models or 
hypotheses but wants to understand the general characteristics or structure of the high-
dimensional data, and (ii) confirmatory or inferential, meaning that the investigator wants 
to confirm the validity of a hypothesis or model or a set of assumptions given the 
available data. Many statistical techniques have been proposed to analyze the data, such 
as analysis of variance, linear regression, discriminant analysis, canonical correlation 
analysis, multidimensional scaling, factor analysis, principal component analysis, and 
cluster analysis to name a few. A useful overview is given in [Sungur, 2008]. 
 
In pattern recognition, data analysis is concerned with predictive modeling: given some 
training data, we want to predict the behavior of the unseen test data. This task is also 
referred to as learning. Often, a clear distinction is made between learning problems that 
are (i) supervised (classification) or (ii) unsupervised (clustering), the first involving only 
labeled data (training patterns with known category labels) while the latter involving 
only unlabeled data [Duda et al. , 2001]. Clustering is a more difficult and challenging 
problem than classification. There is a growing interest in a hybrid setting, called semi-
supervised learning [Chapelle et al. , 2006]; in semi-supervised classification, the labels 
of only a small portion of the training data set are available. The unlabeled data, instead 
of being discarded, are also used in the learning process. In semi-supervised clustering, 
instead of specifying the class labels, pair-wise constraints are specified, which is a 
weaker way of encoding the prior knowledge A pair-wise must-link constraint 
corresponds to the requirement that two objects should be assigned the same cluster label, 
whereas the cluster labels of two objects participating in a cannot-link constraint should 
be different. Constraints can be particularly beneficial in data clustering [Lange et al. , 
2005, Basu et al. , 2008], where precise definitions of underlying clusters are absent. In 
the search for good models, one would like to include all the available information, no 
matter whether it is unlabeled data, data with constraints, or labeled data. Figure 1 
illustrates this spectrum of different types of learning problems of interest in pattern 
recognition and machine learning. 
 
 
 
 
 
 
 
 



 
 
 
 

 
Figure 1 Learning problems: dots correspond to points without any labels. Points with labels are denoted 
by plus signs, asterisks, and crosses. In (c), the must-link and cannot-link constraints are denoted by solid 
and dashed lines, respectively (figure taken from [Lange et al. , 2005]). 

 
2. Data clustering 
 
The goal of data clustering, also known as cluster analysis, is to discover the natural 
grouping(s) of a set of patterns, points, or objects. Webster [Merriam-Webster Online 
Dictionary, 2008] defines cluster analysis as “a statistical classification technique for 
discovering whether the individuals of a population fall into different groups by making 
quantitative comparisons of multiple characteristics.” An example of clustering is shown 
in Figure 2. The objective is to develop an automatic algorithm that will discover the 
natural groupings (Figure 2 (b)) in the unlabeled data (Figure 2 (a)).  
 
An operational definition of clustering can be stated as follows: Given a representation of 
n objects, find K groups based on a measure of similarity such that objects within the 
same group are alike but the objects in different groups are not alike. But, what is the 
notion of similarity? What is the definition of a cluster? Figure 2 shows that clusters can 
differ in terms of their shape, size, and density. The presence of noise in the data makes 
the detection of the clusters even more difficult. An ideal cluster can be defined as a set 
of points that is compact and isolated. In reality, a cluster is a subjective entity that is in 
the eye of the beholder and whose significance and interpretation requires domain 
knowledge. But, while humans are excellent cluster seekers in two and possibly three 
dimensions, we need automatic algorithms for high dimensional data. It is this challenge 
along with the unknown number of clusters in the given data that has resulted in 
thousands of clustering algorithms that have been published and that continue to appear 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
                       (a) Input data                                         (b) Desired clustering 

 
 
 
 
 
 
2.1 Why clustering? 
 
Cluster analysis is prevalent in any discipline that involves analysis of multivariate data. 
A search via Google Scholar [gsc, 2009] found 1,660 entries with the words data 
clustering that appeared in 2007 alone. This vast literature speaks to the importance of 
clustering in data analysis. It is difficult to exhaustively list the numerous scientific fields 
and applications that have utilized clustering techniques. Image segmentation, an 
important problem in computer vision, can be formulated as a clustering problem [Frigui 
& Krishnapuram, 1999, Jain & Flynn, 1996, Shi & Malik, 2000]. Documents can be 
clustered [Iwayama & Tokunaga, 1995] to generate topical hierarchies for efficient 
information access [Sahami, 1998] or retrieval [Bhatia & Deogun, 1998]. Clustering is 
also used to group customers into different types for efficient marketing [Arabie & 
Hubert, 1994], to group services delivery engagements for workforce management and 
planning [Hu et al. , 2007] as well as to study genome data [Baldi & Hatfield, 2002] in 
biology. 
 
Data clustering has been used for the following three main purposes.  
 
 

• Underlying structure: to gain insight into data, generate hypotheses, detect 
anomalies, and identify salient features. 

• Natural classification: to identify the degree of similarity among forms or 
organisms (phylogenetic relationship). 

Figure 2 Diversity of clusters. The seven clusters in (a) (denoted by seven different colors in 1(b)) differ 
in shape, size, and density. Although these clusters are apparent to a data analyst, none of the available 
clustering algorithms can detect all these clusters. 



• Compression: as a method for organizing the data and summarizing it through 
cluster prototypes.  

 
An example of class discovery is shown in Figure 3. Here, clustering was used to 
discover subclasses in an online handwritten character recognition application [Connell & 
Jain, 2002]. Different users write the same digits in different ways, thereby increasing the 
within-class variance. Clustering the training pattern from a class can discover new 
subclasses, called the lexemes in handwritten characters. Instead of using a single model 
for each character, multiple models based on the number of subclasses are used to 
improve the recognition accuracy.  
 
Given the large number of Web pages on the Internet, most search queries typically result 
in an extremely large number of hits. This creates the need for search results to be 
organized. Search engines like Clusty (www.clusty.org) cluster the search results and 
present them in a more organized way to the user. 
 
 

 
Figure 3 Finding subclasses using data clustering. (a) and (b) show two different ways of writing the digit 
2; (c) three different subclasses for the character ‘f’; (d) three different subclasses for the letter ‘y’. 

 
 
2.2 Historical developments 
 
The development of clustering methodology has been a truly interdisciplinary endeavor. 
Taxonomists, social scientists, psychologists, biologists, statisticians, mathematicians, 
engineers, computer scientists, medical researchers, and others who collect and process 
real data have all contributed to clustering methodology. According to JSTOR [jst, n.d.], 
data clustering first appeared in the title of a 1954 article dealing with anthropological 
data. Data clustering is also known as Q-analysis, typology, clumping, and taxonomy 
[Jain & Dubes, 1988] depending on the field where it is applied. There are several books 

(a) (b) 

(d) (c) 



published on data clustering; classic ones are by Sokal and Sneath [Sokal & Sneath, 
1963], Anderberg [Anderberg, 1973], Hartigan [Hartigan, 1975], Jain and Dubes [Jain & 
Dubes, 1988] and Duda et al. [Duda et al. , 2001]. Clustering algorithms have also been 
extensively studied in data mining (see books by Han and Kamber [Han & Kamber, 
2000] and Tan et al. [Tan et al. , 2005]) and machine learning [Bishop, 2006].  
 
Clustering algorithms can be broadly divided into two groups: hierarchical and 
partitional. Hierarchical clustering algorithms recursively find nested clusters either in 
agglomerative mode (starting with each data point in its own cluster, merge the most 
similar pair of clusters successively to form a cluster hierarchy) or in divisive (top-down) 
mode (starting with all the data points in one cluster, recursively divide the cluster into 
smaller clusters). Partitional clustering algorithms find all the clusters simultaneously as a 
partition of the data and do not impose a hierarchical structure. Input to a hierarchical 
algorithm is an n x n similarity matrix, where n is the number of objects to be clustered. 
On the other hand, a partitional algorithm can use either an n x d pattern matrix (K-
means), where n points are embedded in a d-dimensional feature space, or an n x n 
similarity matrix (Spectral clustering). Note that a similarity matrix can be easily derived 
from a pattern matrix, but ordination methods such as multi-dimensional scaling (MDS) 
are needed to derive a pattern matrix from a similarity matrix. 
 
The most well-known hierarchical algorithms are single-link and complete-link; the most 
popular and the simplest partitional algorithm is K-means. Since partitional algorithms 
are preferred in pattern recognition due to the nature of available data, our coverage here 
is focused on these algorithms. K-means has a rich and diverse history as it was 
independently discovered in different scientific fields by Steinhaus (1955) [Steinhaus, 
1956], Lloyd (1957) [Lloyd, 1982], Ball & Hall (1965) [Ball & Hall, 1965] and McQueen 
(1967) [MacQueen, 1967]. Even though K-means was first proposed over 50 years ago, it 
is still one of the most widely used algorithms for clustering. Ease of implementation, 
simplicity, efficiency, and empirical success are the main reasons for its popularity. 
Details of K-means are summarized below. 
 
2.3 K-Means algorithm 
.  
Let }{ ixX = , ni ,...,1=  be the set of n d-dimensional points to be clustered into a set of 

K clusters,   { , 1,..., }kC c k K= = ,. K-means algorithm finds a partition such that the 

squared error between the empirical mean of a cluster and the points in the cluster is 
minimized. Let kµ be the mean of cluster kc . The squared error between kµ and the 

points in cluster kc is defined as 
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The goal of K-means is to minimize the sum of the squared error over all the K clusters, 
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Minimizing this objective function is known to be an NP-hard problem (even for K = 2) 
[Drineas et al. , 1999]. Thus K-means, which is a greedy algorithm, can only be expected 
to converge to a local minimum. K-means starts with an initial partition with K clusters 
and assign patterns to clusters so as to reduce the squared error. Since the squared error 
tends to decrease with an increase in the number of clusters K (with J(C) = 0 when K = 
n), it can be minimized only for a fixed number of clusters. The main steps of K-means 
algorithm are as follows [Jain & Dubes, 1988]. 
 

1. Select an initial partition with K clusters; repeat steps 2 and 3 until cluster 
membership stabilizes. 

2. Generate a new partition by assigning each pattern to its closest cluster center. 
3. Compute new cluster centers. 

 
 
 
 
 
 
 
 
 
 
               (a) Input data                   (b) Seed point selection                 (c) Iteration 2 
 
 
 
 
 
 
 
 
 
                                  (d) Iteration 3                          (e) Final clustering        
 
                               
 
 
 
 
Figure 4 shows an illustration of K-means algorithm on a 2-dimensional dataset with 
three clusters.  
 
Parameters of K-means  

Figure 4 Illustration of K-means algorithm. (a) Two-dimensional input data with three clusters; (b) three 
seed points selected as cluster centers and initial assignment of the data points to clusters; (c) & (d) 
intermediate iterations updating cluster labels and their centers; (e) final clustering obtained by K-means 
algorithm at convergence. 



 
K-means algorithm requires three user-specified parameters: number of clusters K, 
cluster initialization, and distance metric. The most critical choice is K. While no 
mathematical criterion exists, a number of heuristics are available for choosing K. 
Typically, K-means is run independently for different values of K and the partition that 
appears the most meaningful to the domain expert is selected. Different initializations can 
lead to different final clustering because K-means only converges to local minima. One 
way to overcome the local minima is to run the K-means algorithm, for a given K, with 
several different initial partitions and choose the partition with the smallest value of the 
squared error.  
 
K-means is typically used with the Euclidean metric for computing the distance between 
points and cluster centers. As a result, K-means finds spherical or ball-shaped clusters in 
data. K-means with Mahalanobis distance metric has been used to detect hyper-
ellipsoidal clusters [Mao & Jain, 1996], but this comes at the expense of higher 
computation cost. A variant of K-means using the Itakura-Saito distance has been used 
for vector quantization in speech processing [Linde et al. , 1980] and K-means with L1 
distance was proposed in [Kashima et al. , 2008]. Banerjee et al.  [Banerjee et al. , 2004] 
showed that K-means algorithm will have some salient properties (e.g., convergence to 
local minima, linear separation of classes, linear in number of data points per iteration, 
etc.) if and only if a  Bregman divergence is used as a distance measure. 
 
Extensions of K-means  
 
The basic K-means algorithm has been extended in many different ways. Some of these 
extensions deal with additional heuristics involving the minimum cluster size and 
merging and splitting clusters. Two well-known variants of K-means in pattern 
recognition literature are Isodata [Ball & Hall, 1965] and Forgy [Forgy, 1965]. In K-
means, each data point is assigned to a single cluster (called hard assignment). Fuzzy c-
means, proposed by Dunn [Dunn, 1973]  and later improved by Bezdek [Bezdek, 1981], 
is an extension of K-means where each data point can be a member of multiple clusters 
with a membership value (soft assignment). A good overview of fuzzy set based 
clustering is available in Backer (1978) [Backer, 1978]. Some of the other significant 
modifications are summarized below. Steinbach et al. [Steinbach et al. , 2000] proposed a 
hierarchical divisive version of K-means, called bisecting K-means, that recursively 
partitions the data into two clusters at each step. A significant speed up of the K-means 
pass [Jain & Dubes, 1988] in the algorithm (computation of distances from all the points 
to all the cluster centers) involves representing the data using a kd-tree and updating 
cluster means with groups of points instead of a single point [Pelleg & Moore, 1999]. 
Bradley et al. [Bradley et al. , 1998] presented a fast scalable and single-pass version of 
K-means that does not require all the data to be fit in the memory at the same time. X-
means [Pelleg & Moore, 2000] automatically finds K by optimizing a criterion such as 
Akaike Information Criterion (AIC) or Bayesian Information Criterion (BIC). In K-
medoid [Kaufman & Rousseeuw, 2005], clusters are represented using the median of the 
data instead of the mean. Kernel K-means [Scholkopf et al. , 1998] was proposed to 
detect arbitrary shaped clusters, with an appropriate choice of the kernel similarity 



function. Note that all these extensions introduce some additional algorithmic parameters 
that must be specified by the user. 
 
2.4 Major approaches to clustering 
 
As mentioned before, thousands of clustering algorithms have been proposed in the 
literature in many different scientific disciplines. This makes it extremely difficult to 
review all the published approaches. Nevertheless, clustering methods differ on the 
choice of the objective function, probabilistic generative models, and heuristics. We will 
briefly review some of the major approaches. 
 
Clusters can be defined as high density regions in the feature space separated by low 
density regions. Algorithms following this notion of clusters directly search for connected 
dense regions in the feature space. Different algorithms use different definitions of 
connectedness. The Jarvis-Patrick algorithm defines the similarity between a pair of 
points as the number of common neighbors they share, where neighbors are the points 
present in a region of pre-specified radius around the point [Frank & Todeschini, 1994]. 
Ester et al. [Ester et al. , 1996] proposed the DBSCAN clustering algorithm, which is 
similar to the Jarvis-Patrick algorithm. It directly searches for connected dense regions in 
the feature space by estimating the density using the Parzen window method. 
Performance of Jarvis Patrick algorithm and DBSCAN depend on two parameters: 
neighborhood size in terms of distance, and the minimum number of points in a 
neighborhood for its inclusion in a cluster. While non-parametric density based methods 
are attractive because of their inherent ability to deal with arbitrary shaped clusters, they 
have limitations in handling high-dimensional data. In addition, a number of probabilistic 
models have been developed for data clustering. The most well known ones are 
Probabilistic Latent Semantic Analysis (PLSA) [Hofmann & Puzicha, 1998] and Latent 
Dirichlet Allocation (LDA) [Blei et al. , 2003]. 
 
When the data is high-dimensional, the feature space is usually sparse, making it difficult 
to distinguish high-density regions from low-density regions. Subspace clustering 
algorithms overcome this limitation by finding clusters embedded in low-dimensional 
subspaces of the given high-dimensional data. CLIQUE [Agrawal et al. , 1998] is a 
scalable clustering algorithm designed to find subspaces in the data with high-density 
clusters. Although CLIQUE is a non-parametric clustering algorithm, it does not suffer 
from the dimensionality problem as it estimates the density only in a low dimensional 
subspace. 
 
Graph theoretic clustering represents the data points as nodes in a weighted graph. The 
edges connecting the nodes are weighted by their pair-wise similarity. The central idea is 
to partition the nodes into two subsets A and B such that the cut size, i.e., the sum of the 
weights assigned to the edges connecting between nodes in A and B, is minimized. Initial 
algorithms solved this problem using the minimum cut algorithm. But, the minimum cut 
often results in degenerate clusters, as removing an outlier point also minimizes the cut 
size. A cluster size (number of data points in a cluster) constraint was later adopted by the 
Ratio cut algorithm [Hagen & Kahng, 1992]). An efficient approximate graph-cut based 



clustering algorithm with cluster size (volume of the cluster, or sum of edge weights 
within a cluster) constraint, called Normalized Cut, was proposed by Shi and Malik [Shi 
& Malik, 2000]. A multiclass spectral clustering algorithm was proposed by Yu and Shi 
[Yu & Shi, 2003]. Meila and Shi [Meila & Shi, 2001] presented a Markov Random Walk 
approach to spectral clustering and proposed the Modified Normalized Cut (MNCut) 
algorithm that can handle an arbitrary number of clusters. Another variant of spectral 
clustering algorithm is proposed by Ng et al. [Ng et al. , 2001], where normalized 
eigenvectors of a kernel matrix are used as a new data representation, that are clustered 
using an algorithm like K-means. Dimensionality reduction from high-dimensional 
representation of the data to a low dimension using the Laplacian Eigenmap [Belkin & 
Niyogi, 2002] is another approach to induce clustering in the data. 
 
Several clustering algorithms have information theoretic formulation. For example, the 
minimum entropy methods approach presented in [Roberts et al. , 2001] assumes that the 
data is generated using a mixture model and each cluster is modeled using a semi-
parametric probability density. The parameters are estimated by maximizing the KL-
divergence between the unconditional density and the conditional density of a data points 
conditioned over the cluster. This minimizes the overlap between the conditional and 
unconditional densities, thereby separating the clusters from each other. In other words, 
this formulation results in an approach that minimizes the expected entropy of the 
partitions over the observed data. Information bottleneck method [Tishby et al. , 1999] 
was proposed as a generalization to the rate-distortion theory and adopts a lossy data 
compression view. In simple words, given a joint distribution over two random variables, 
Information Bottleneck compresses one of the variables while retaining the maximum 
amount of mutual information with respect to the other variable. An application of this to 
document clustering is shown in [Slonim & Tishby, 2000] where the two random 
variables are words and documents. The words are clustered first, such that the mutual 
information with respect to documents is maximally retained, and using the clustered 
words, the documents are clustered such that the mutual information between clustered 
words and clustered documents is maximally retained. 
 
 
3. User’s dilemma 
 
In spite of the prevalence of such a large number of clustering algorithms, and its success 
in a number of different application domains, clustering remains a difficult problem. This 
can be attributed to the inherent vagueness in the definition of a cluster, and the difficulty 
in defining an appropriate similarity measure and objective function. 
 
The following fundamental challenges associated with clustering were highlighted in 
[Jain & Dubes, 1988], which are relevant even to this date. 
 

(a) What is a cluster? 
(b) What features should be used? 
(c) Should the data be normalized? 
(d) Does the data contain any outliers? 



(e) How do we define the pair-wise similarity? 
(f) How many clusters are present in the data? 
(g) Which clustering method should be used? 
(h) Does the data have any clustering tendency? 
(i) Are the discovered clusters and partition valid? 

 
We will highlight and illustrate some of these challenges below. 

 
3.1 Data representation  
 
Data representation is one of the most important factors that influence the performance 
of the clustering algorithm. If the representation (choice of features) is good, the clusters 
are likely to be compact and isolated and even a simple clustering algorithm such as K-
means will find them. Unfortunately, there is no universally good representation; the 
choice of representation must be guided by the domain knowledge. Figure 5(a) shows a 
dataset where K-means fails to partition it into the two “natural” clusters. The partition 
obtained by K-means is shown by a dotted line separating in Figure 5(a). However, when 
the same data points in (a) are represented using the top two eigenvectors of the RBF 
similarity matrix computed from the data in Figure 5(b), they become well separated, 
making it trivial for K-means to cluster the data [Ng et al. , 2001]. 
  

 
 
 
 
 
3.2 Purpose of grouping 
 
The representation of the data is closely tied with the purpose of grouping. The 
representation must go hand in hand with the end goal of the user. An example dataset of 
16 animals represented using 13 Boolean features was used in [Pampalk et al. , 2003] to 

                                   (a)                    (b)  

Figure 5 Importance of a good representation. (a) “Two rings” dataset where K-means fails to find the two 
“natural” clusters; the dashed line shows the linear cluster separation boundary obtained by running K-
means with K = 2. (b) a new representation of the data in (a) based on the top 2 eigenvectors of the graph 
Laplacian of the data, computed using an RBF kernel; K-means now can easily detect the two clusters 



demonstrate how the representation affects the grouping. The animals are represented 
using 13 Boolean features related to their appearance and activity. When a large weight is 
placed on the appearance features compared to the activity features, the animals were 
clustered into mammals vs. birds. On the other hand, a large weight on the activity 
features clustered the dataset into predators vs. non-predators. Both these partitioning 
shown in Figure 6 are equally valid, and uncover meaningful structures in the data. It is 
up to the user to carefully choose his representation to obtain a desired clustering. 
 
 
 

  
                 (a)                                                                                                   (b) 

Figure 6 Different weights on features result in different partitioning of the data. Sixteen animals are 
represented based on 13 Boolean features related to appearance and activity. (a) partitioning with large 
weights assigned to appearance based features; (b) a partitioning with large weights assigned to the activity 
 features (figure reproduced from [Pampalk et al. , 2003]). 

 
3.3 Number of Clusters 
 
Automatically determining the number of clusters has been one of the most difficult 
problems in data clustering. Usually, clustering algorithms are run with different values 
of K; the best value of K is then chosen based on a criterion function. Figueiredo and Jain 
[Figueiredo & Jain, 2002] used the minimum message length (MML) criteria in 
conjunction with the Gaussian mixture model (GMM) to estimate K. Their approach 
starts with a large number of clusters, and gradually merges the clusters if this leads to a 
decrease in the MML criterion. Gap statistics [Tibshirani et al. , 2001] is another 
commonly used approach for deciding the number of clusters. The key assumption is that 
when dividing data into an optimal number of clusters, the resulting partition is most 
resilient to the random perturbation. Dirichlet Process (DP) [Rasmussen, 2000, Ferguson, 
1973] introduces a non-parametric prior for the number of clusters. It is often used by 



probabilistic models to derive a posterior distribution for the number of clusters, from 
which the most likely number of clusters can be computed.. Its key idea is to introduce a 
non-parametric Bayesian prior for the number of clusters. In spite of these objective 
criteria, it is not easy to decide which value of K leads to more meaningful clusters. 7(a) 
shows a 2-dimensional synthetic dataset generated from a mixture of six Gaussian 
components. The true labels of the points are shown in 7(e). When a mixture of 
Gaussians is fit to the data with 2, 5 and 6 components, shown in 7(b)-(d), respectively, 
each one of them seems to be a reasonable fit. This data is 2-dimensional, so we can 
easily visualize and assess how many clusters are good. But, this cannot be done when 
the data is high dimensional. 
 

 
Figure 7 Automatic selection of number of clusters, K. (a) Input data generated from a mixture of six 
Gaussian distributions; (b)-(d) Gaussian mixture model (GMM) fit to the data with 2, 5 and 6 components, 
respectively; (e) true labels of the data. 

 
 
3.4 Cluster validity 
 
Clustering algorithms tend to find clusters in the data irrespective of whether or not any 
clusters are present. Figure 8(a) shows a dataset with no natural clustering; the points 
here were generated uniformly in a unit square. However, when the K-means algorithm is 
run on this data with K = 3, three clusters are identified as shown in Figure 8(b)! Cluster 
validity refers to formal procedures that evaluate the results of cluster analysis in a 

(e) True labels, K = 6 

 (c) GMM (K=5) 

 (d) GMM (K=6) 

 (b) GMM (K=2) (a) Input data 



quantitative and objective fashion [Jain & Dubes, 1988]. In fact, even before a clustering 
algorithm is applied to the data, the user should determine if the data even has a 
clustering tendency [Smith & Jain, 1984]. 
 

 
                          (a)                                                                                                  (b) 

 

Figure 8 Cluster validity. (a) A dataset with no “natural” clustering; (b) K-means partition with K = 3.  

 
Cluster validity indices can be defined based on three different criteria: internal, relative, 
and external [Jain & Dubes, 1988]. Indices based on internal criteria assess the fit 
between the structure imposed by the clustering algorithm (clustering) and the data using 
the data alone. Indices based on relative criteria compare multiple structures (generated 
by different algorithms, for example) and decide which of them is better in some sense. 
External indices measure the performance by matching cluster structure to the a priori 
information, namely the “true” class labels (often referred to as ground truth). Typically, 
clustering results are evaluated using the external criterion, but if the true labels are 
available, why even bother with clustering? The notion of cluster stability [Lange et al. , 
2004] is appealing as an internal stability measure. Cluster stability is measured as the 
amount of variation in the clustering solution over different sub-samples drawn from the 
input data.  Different measures of variation can be used to obtain different stability 
measures. In [Lange et al. , 2004], a supervised classifier is trained on one of the 
subsamples of the data, by using the cluster labels obtained by clustering the subsample, 
as the true labels. The performance of this classifier on the testing subset(s) indicates the 
stability of the clustering algorithm. In model based algorithms (e.g., centroid based 
representation of clusters in K-means, or Gaussian Mixture Models), the distance 
between the models found for different subsamples can be used to measure the stability 
[von Luxburg & David, 2005]. Shamir and Tishby [Shamir & Tishby, 2008] define 
stability as the generalization ability of a clustering algorithm (in PAC-Bayesian sense). 
They argue that since many algorithms can be shown to be asymptotically stable, the rate 
at which the asymptotic stability is reached with respect to the number of samples is a 
more useful measure of cluster stability. 
 
 

        



 
3.5 Comparing clustering algorithms 
 
 
Different clustering algorithms often result in entirely different partitions even on the 
same data; see Figure 9. Seven different algorithms were applied to cluster the 15 two-
dimensional points in 9(a). FORGY, ISODATA, CLUSTER, and WISH are partitional 
algorithms that minimize the squared error criterion (they are variants of the basic K-
means algorithm). Of the remaining three algorithms, MST (minimum spanning tree) can 
be viewed as a single-link hierarchical algorithm, and JP is a nearest neighbor clustering 
algorithm. Note that a hierarchical algorithm can be used to generate a partition by 
specifying a threshold on the similarity. It is evident that none of the clustering is superior 
to the other, but some are similar to the other.  
 
An interesting question is to identify algorithms that generate similar partitions 
irrespective of the data. In other words, can we cluster the clustering algorithms? Jain et 
al. [Jain et al. , 2004] clustered 35 different clustering algorithms into 5 groups based on 
their partitions on 12 different datasets. The similarity between the clustering algorithms 
is measured as the averaged similarity between the partitions obtained on the 12 datasets. 
The similarity between a pair of partitions is measured using the Adjusted Rand Index 
(ARI). A hierarchical clustering of the 35 clustering algorithms is shown in Figure 10(a). 
It is not surprising to see that the related algorithms are clustered together. For a 
visualization of the similarity between the algorithms, the 35 algorithms are also 
embedded in a two-dimensional space; this is achieved by applying the Sammon’s 
projection algorithm [J. W. Sammon, 1969] to the 35x35 similarity matrix. Figure 10(b) 
shows that all the CHAMELEON variations (6, 8-10) are clustered into a single cluster. 
This plot suggests that the clustering algorithms following the same clustering strategy 
result in similar clustering in spite of minor variations in the parameters or objective 
functions involved.  
 



 
Figure 9 Several clustering of fifteen patterns in two dimensions: (a) fifteen patterns; (b) minimum 
spanning tree of the fifteen patterns; (c) clusters from FORGY; (d) clusters from ISODATA; (e) clusters 
from WISH; (f) clusters from CLUSTER; (g) clusters from complete-link hierarchical clustering; and (h) 
clusters from Jarvis-Patrick clustering algorithm.  (Figure reproduced from [Dubes & Jain, 1976]). 

 
 

 
 

Figure 10 Clustering of clustering algorithms. (a) Hierarchical clustering of 35 different algorithms; (b) 
Sammon’s mapping of the 35 algorithms into a two-dimensional space, with the clusters highlighted for 
visualization. The algorithms in the group (4, 29, 31-35) correspond to K-means, spectral clustering, 
Gaussian mixture models, and Ward’s linkage. The algorithms in group (6, 8-10) correspond to 
CHAMELEON algorithm with different objective functions. 

 
Clustering algorithms can also be compared at the theoretical level based on their 
objective functions. In order to perform such a comparison, a distinction should be made 
between a clustering method and a clustering algorithm [Jain & Dubes, 1988]. A 
clustering method is a general strategy employed to solve a clustering problem. A 

(a) 15 points in 2D (b) MST  (c) FORGY (d) ISODATA 

(e) WISH (h) JP (f) CLUSTER (g) Complete-link 



clustering algorithm, on the other hand, is simply an instance of a method. For instance, 
minimizing the squared error is a clustering method, and there are many different 
clustering algorithms, including K-means, that implement the minimum squared error 
method. Some equivalence relationships even between different clustering methods have 
been shown. For example, Dhillon et al. [Dhillon et al. , 2004] show that spectral 
methods and kernel K-means are equivalent; for a choice of kernel in spectral clustering, 
there exists a kernel for which the objective functions of Kernel K-means and spectral 
clustering are the same. The equivalence between non-negative matrix factorization for 
clustering and kernel K-means algorithm is shown in [Ding et al. , 2005]. All these 
methods are directly related to the analysis of eigenvectors of the similarity matrix. 
 
The above discussion underscores one of the important facts about clustering; there is no 
best clustering algorithm. Each clustering algorithm imposes a structure on the data 
either explicitly or implicitly. When there is a good match between the model and the 
data, good partitions are obtained. Since the structure of the data is not known a priori, 
one needs to try competing and diverse approaches to determine an appropriate algorithm 
for the clustering task at hand. This idea of no best clustering algorithm is partially 
captured by the impossibility theorem [Kleinberg, 2002], which states that no single 
clustering algorithm simultaneously satisfies the three basic axioms of data clustering, 
i.e., scale invariance, consistency, and richness. 
 
3.6 Admissibility analysis of clustering algorithms 
 
Fisher and Van Ness [Fisher & vanNess, 1971] formally analyzed clustering algorithms 
with the objective of comparing them and providing guidance in choosing a clustering 
procedure. They defined a set of admissibility criteria for clustering algorithms that test 
the sensitivity of clustering algorithms with respect to the changes that do not alter the 
essential structure of the data. A clustering is called A-admissible if it satisfies criterion A. 
Example criteria include convex, point and cluster proportion, cluster omission, and 
monotone. They are briefly described below. 
 

� Convex: A clustering algorithm is convex-admissible if it results in a clustering 
where the convex hulls of clusters do not intersect. 

� Cluster proportion: A clustering algorithm is cluster-proportion admissible if the 
cluster boundaries do not alter even if some of the clusters are duplicated an 
arbitrary number of times. 

• Cluster omission: A clustering algorithm is omission-admissible if by removing 
one of the clusters from the data and re-running the algorithm, the clustering on 
the remaining K-1 clusters is identical to the one obtained on them with K 
clusters. 

• Monotone: A clustering algorithm is monotone-admissible if the clustering results 
do not change when a monotone transformation is applied to the elements of the 
similarity matrix. 

 



Fisher and Van Ness proved that one cannot construct algorithms that satisfy certain 
admissibility criteria. For example, if an algorithm is monotone-admissible, it cannot be a 
hierarchical clustering algorithm. 
 
Kleinberg [Kleinberg, 2002] addressed a similar problem, where he defined three criteria:  
 

• Scale invariance: An arbitrary scaling of the similarity metric must not change the 
clustering results. 

• Richness: The clustering algorithm must be able to achieve all possible partitions 
on the data. 

• Consistency: By shrinking within-cluster distances and stretching between-cluster 
distances, the clustering results must not change. 

 
Kleinberg also provides results similar to that of [Fisher & vanNess, 1971], showing that 
it is impossible to construct an algorithm that satisfies all these properties hence the title 
of his paper “An Impossibility Theorem for Clustering”. Further discussions in 
[Kleinberg, 2002] reveal that a clustering algorithm can indeed be designed by relaxing 
the definition of satisfying a criterion to nearly-satisfying the criterion. 
 
4 Trends in data clustering 
 
Information explosion is not only creating large amounts of data but also a diverse set of 
data, both structured and unstructured. Unstructured data is a collection of objects that 
do not follow a specific format. For example, images, text, audio, video etc. On the other 
hand, in structured data, there are semantic relationships within each object that are 
important.  Most clustering approaches ignore the structure in the objects to be clustered 
and use a feature vector based representation for both structured and unstructured data. 
The traditional view of data partitioning based on vector-based feature representation 
does not always serve as an adequate framework. Examples include objects represented 
using sets of points [Lowe, 2004], consumer purchase records [Guha et al. , 2000], data 
collected from questionnaires and rankings [Critchlow, 1985], social networks 
[Wasserman & Faust, 1994], and data streams [Guha et al. , 2003b]. Models and 
algorithms are being developed to process huge volumes of heterogeneous data. A brief 
summary of some of the recent trends in data clustering is presented below. 

4.1 Clustering ensembles 

The success of ensemble methods for supervised learning has motivated the development 
of ensemble methods for unsupervised learning [Fred & Jain, 2002]. The basic idea is 
that by taking multiple looks at the same data, one can generate multiple partitions 
(clustering ensemble) of the same data. By combining the resulting partitions, it is 
possible to obtain a good data partitioning even when the clusters are not compact and 
well separated. Fred and Jain used this approach by taking an ensemble of partitions 
obtained by K-means; the ensemble was obtained by changing the value of K and using 
random cluster initializations. These partitions were then combined using a co-occurrence 
matrix that resulted in a good separation of the clusters. An example of a clustering 



ensemble is shown in Figure 11 where a “two-spiral” dataset is used to demonstrate its 
effectiveness. K-means is run multiple, say N, times with varying values of the number of 
clusters K. The new similarity between a pair of points is defined as the number of times 
the two points co-occur in the same cluster in N runs of K-means. The final clustering is 
obtained by clustering the data based on the new pair-wise similarity. Strehl and Ghosh 
[Strehl & Ghosh, 2003] proposed several strategies for integrating multiple partitions. 

There are many different ways of generating a clustering ensemble and then combining 
the partitions. For example, multiple data partitions can be generated by: (i) applying 
different clustering algorithms, (ii) applying the same clustering algorithm with different 
values of parameters or initializations, and (iii) combining of different data 
representations (feature spaces) and clustering algorithms. The evidence accumulation 
step that combines the information provided by the different partitions can be viewed as 
learning the similarity measure among the data points. 

 

 

 

4.2 Semi-supervised clustering 

Clustering is inherently an ill-posed problem where the goal is to partition the data into 
some unknown number of clusters based on intrinsic information alone. Data driven 
nature of clustering makes it very difficult to design clustering algorithms that will 
correctly find clusters in the given data. Any external or side information available along 
with the n x d pattern matrix or the n x n similarity matrix can be extremely useful in 
finding a good partition of data. Clustering algorithms that utilize such side information 
are said to be operating in a semi-supervised mode [Chapelle et al. , 2006]. There are two 
open questions: (i) how should the side information be specified? and (ii) how is it 
obtained in practice? One of the most common methods of specifying the side 
information is in the form of pair-wise constraints. A must-link constraint specifies that 
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Figure 11 Clustering ensembles. Multiple runs of K-means are used to learn the pair-wise similarity 
using the “co-occurrence” of points in clusters. This similarity can be used to detect arbitrary shaped 
clusters. 



the point pair connected by the constraint belong to the same cluster. On the other hand, a 
cannot-link constraint specifies that the point pair connected by the constraint do not 
belong to the same cluster. It is generally assumed that the constraints are provided by the 
domain expert. There is limited work on automatically deriving constraints from the data. 
Some attempts to derive constraints from domain ontology and other external sources 
into clustering algorithms include the usage of WordNet ontology, gene ontology, 
Wikipedia, etc. to guide clustering solutions. However, these are mostly feature 
constraints and not constraints on the instances [Hotho et al. , 2003, Banerjee et al. , 
2007b, Liu et al. , 2004]. Other approaches for including side information include (i) 
“seeding”, where some labeled data is used along with large amount of unlabeled data for 
better clustering [Basu et al. , 2002] and (ii) methods that allow encouraging or 
discouraging some links [Law et al. , 2005, Figueiredo et al. , 2006]. 

Figure 12 illustrates the semi-supervised learning in an image segmentation application 
[6].  The textured image to be segmented (clustered) is shown in Figure 12 (a). In 
addition to the image, a set of user-specified pair-wise constraints on the pixel labels are 
also provided. Figure 12 (b) shows the clustering obtained when no constraints are used, 
while Figure 12 (c) shows improved clustering with the use of constraints. In both the 
cases, the number of clusters was assumed to be known (K = 5). 

 

 
 (a) Input image and constraints                  (b) No constraints                        (c) 10% pixels in constraints 

 

Figure 12 Semi-supervised learning. (a) Input image with must-link (solid blue lines) and must not link 
(broken red lines) constraints. (b) Clustering (segmentation) without constraints. (c) Improved clustering 
with 10% of the data points included in the pair-wise constraints [6]. 

Most approaches [Basu et al. , 2004, Lu & Leen, 2007, Chapelle et al. , 2006, A. Bar-
Hillel & Weinshall, 2003, Hofmann & Buhmann, 1997] to semi-supervised clustering 
modify the objective function of existing clustering algorithms to incorporate the pair-
wise constraints. It is desirable to have an approach to semi-supervised clustering that can 
improve the performance of an already existing clustering algorithm without modifying it. 
BoostCluster [Liu et al. , 2007] adopts this philosophy and follows a boosting framework 
to improve the performance of any given clustering algorithm using pair-wise constraints. 
It iteratively modifies the input to the clustering algorithm by generating new data 



representations (transforming the n x n similarity matrix) such that the pair-wise 
constraints are satisfied while also maintaining the integrity of the clustering output. 
Figure 13 shows the performance of BoostCluster evaluated on handwritten digit 
database in the UCI repository [Blake & Merz, 1998] with 4,000 points in 256-
dimensional feature space. BoostCluster is able to improve the performance of all the 
three commonly used clustering algorithms, K-means, single-link, and Spectral clustering 
as pair-wise constraints are added to the data. Only must-link constraints are specified 
here and the number of true clusters is assumed to be known (K=10). 
 

 

 

Figure 13 Performance of BoostCluster (measured using Normalized Mutual Information (NMI)) as the 
number of pair-wise constraints are increased. The three plots correspond to boosted performance of  K-
means, Single-Link (SLINK), and Spectral clustering (SPEC).  

 
 
4.3 Large scale clustering 
 
Large-scale data clustering addresses the challenge of clustering millions of data points 
that are represented in thousands of features. Table 1 shows a few examples of real-world 
applications for large-scale data clustering. Below, we review the application of large-
scale data clustering to content-based image retrieval. 
 
Application Description # Objects # Features 



document clustering group documents of similar topics 106 104 
gene clustering group genes with similar expression 

levels 
105 102 

content-based image 
retrieval 

quantize low-level image features 109 102 

clustering of earth 
science data 

derive climate indices 105 102 

 
Table 1: Example applications of large-scale data clustering 

 
 
 
 
 
 
 
 

 
 

Figure 14 Three tattoo images represented using SIFT key points.  (a) A pair with similar images has 370 
matching key points; (b) pair with different images has 64 matching key points. The green lines show the 
matching key-points between the images [Lee et al. , 2008]. 

 
The goal of Content Based Image Retrieval (CBIR) is to retrieve visually similar images 
to a given query image. Although the topic has been studied for the past 15 years or so, 
there has been only a limited success. Most early work on CBIR was based on computing 
color, shape, and texture based features and using them to define a similarity between the 
images. A 2008 survey on CBIR highlights the different approaches used for CBIR 

 
(a) 370 

 
(b) 64 



through time [Datta et al. , 2008]. Recent approaches for CBIR use point based features. 
For example, SIFT [Lowe, 2004] descriptors can be used to represent the images (see 
Figure 14). However, once the size of the image database increases (~10 million), and 
assuming 10 milliseconds to compute the matching score between an image pair, a linear 
search would take approximately 30 hours to answer one query. This clearly is 
unacceptable. 
 
On the other hand, text retrieval applications are much faster. It takes about one-tenth of a 
second to search 10 billion documents in Google. A novel approach for image retrieval is 
to convert the problem into a text retrieval problem. The key points from all the images 
are first clustered into a large number of clusters (which is still much less than the 
number of key points themselves). These are called as the visual words. An image is then 
represented using the number of key-points from the image that are in each word or each 
cluster. Now that a vector based representation (of size equal to the number of clusters) is 
obtained, searching becomes very efficient. One of the major challenges in quantizing 
key points is the number of objects to be clustered. For a collection of 1,000 images with 
an average of 1,000 key points and the target number of 5,000 visual words, it requires 
clustering 106 objects into 5,000 clusters. 
 
A large number of clustering algorithms have been developed to efficiently handle large-
size data sets. Most of these studies can be classified into four categories: 
 
� Efficient Nearest Neighbor (NN) Search. One of the basic operations in any data 

clustering algorithm is to decide the cluster membership of each data point, which 
requires NN search. Algorithms for efficient NN search are either tree-based (e.g. kd-
tree [Moore, 1998, Muja & Lowe, 2009]) or random projection based (e.g., Locality 
Sensitive Hash [Buhler, 2001]). 

� Data Summarization. Approaches in this category improve the clustering efficiency 
by first summarizing a large data set into a relatively small subset, and then applying 
the clustering algorithms to the summarized data set. Example algorithms include 
BIRCH [Zhang et al. , 1996], divide-and-conquer [Steinbach et al. , 2000], and 
coreset K-means [Har-peled & Mazumdar, 2004]. 

� Distributed Computing. Approaches in this category [Dhillon & Modha, 1999] 
divide each step of a data clustering algorithm into a number of procedures that can 
be computed independently. These independent computational procedures will then 
be carried out in parallel by different processors to reduce the overall computation 
time. 

� Incremental Clustering. Approaches in this category [Bradley et al. , 1998] are 
designed to operate in a single pass over data points to improve the efficiency of data 
clustering. This is in contrast to most clustering algorithms that require multiple 
passes over data points before identifying the cluster centers. 

� Sampling-based methods. Approaches in this category are algorithms like CURE 
[Guha et al. , 1998, Kollios et al. , 2003] that subsample a large dataset selectively, 
and perform clustering over the smaller set, which is later transferred to the larger 
dataset. 

 



 
 
4.4 Multi-way clustering 
 
Objects or entities to be clustered are often formed by a combination of related 
heterogeneous components. For example, a document is made of words, title, authors, 
citations, etc. While objects can be converted into a pooled feature vectors of its 
components prior to clustering, it is not a natural representation of the objects and may 
result in poor clustering performance.  
 
Co-clustering [Hartigan, 1972, Mirkin, 1996] aims to cluster both features and instances 
of the data (or both rows and columns of the n x d pattern matrix) simultaneously to 
identify the subset of features where the resulting clusters are meaningful according to 
certain evaluation criterion. This problem was first studied under the name direct 
clustering by Hartigan [Hartigan, 1972]. It is also called bi-dimensional clustering 
[Cheng & Church, 2000], double clustering, coupled clustering or bimodal clustering. 
This notion is also related to subspace clustering where all the clusters are identified in a 
common subspace. Co-clustering is most popular in the field of bioinformatics, especially 
in gene clustering, and has also been successfully applied to document clustering [Slonim 
& Tishby, 2000, Dhillon et al. , 2003].  
 
The co-clustering framework was extended to multi-way clustering in [Bekkerman et al. , 
2005] to cluster a set of objects by simultaneously clustering their heterogeneous 
components. Indeed, the problem is much more challenging because different pairs of 
components may participate in different types of similarity relationships. In addition, 
some relations may involve more than two components. Banerjee et al. [Banerjee et al. , 
2007a] present a family of multi-way clustering schemes that is applicable to a class of 
loss functions known as Bregman divergences. Sindhwani et al.[Sindhwani et al. , 2008] 
apply semi-supervised learning in the co-clustering framework. 
 
 
4.5 Heterogeneous data 
 
In traditional pattern recognition settings, a feature vector consists of measurements of 
different properties of an object. This representation of objects is not a natural 
representation for several types of data. Heterogeneous data refers to the data where the 
objects may not be naturally represented using a fixed length feature vector. 
 
Rank Data: Consider a dataset generated by ranking of a set of n movies by different 
people; only some of the n objects are ranked. The task is to cluster the users whose 
rankings are similar and also to identify the ‘representative rankings’ of each group 
[Mallows, 1957, Critchlow, 1985, Busse et al. , 2007]. 
 
Dynamic Data: Dynamic data, as opposed to static data, can change over the course of 
time e.g., blogs, Web pages, etc. As the data gets modified, clustering must be updated 
accordingly. A data stream is a kind of dynamic data that is transient in nature, and 



cannot be stored on a disk. Examples include network packets received by a router and 
stock market, retail chain, or credit card transaction streams. Characteristics of the data 
streams include their high volume and potentially unbounded size, sequential access and 
dynamically evolving nature. This imposes additional requirements to traditional 
clustering algorithms to rapidly process and summarize the massive amount of 
continuously arriving data. It also requires the ability to adapt to changes in the data 
distribution, the ability to detect emerging clusters and distinguish them from outliers in 
the data, and the ability to merge old clusters or discard expired ones. All of these 
requirements make data stream clustering a significant challenge since they are expected 
to be single-pass algorithms [Guha et al. , 2003b]. Because of the high-speed processing 
requirements, many of the data stream clustering methods [Guha et al. , 2003a, Aggarwal 
et al. , 2003, Cao et al. , 2006] are extensions of simple algorithms such as K-means, K-
medoid or density-based clustering, modified to work in a data stream environment 
setting.   
 
Graph Data: Several objects, such as chemical compounds, protein structures, etc. can 
be represented most naturally as graphs. Many of the initial efforts in graph clustering 
have focused on extracting graph features to allow existing clustering algorithms to be 
applied to the graph feature vectors [Tsuda & Kudo, 2006]. The features can be extracted 
based on patterns such as frequent subgraphs, shortest paths, cycles, and tree-based 
patterns. With the emergence of kernel learning, there have been growing efforts to 
develop kernel functions that are more suited for graph-based data [Kashima et al. , 
2003]. One way to determine the similarity between graphs is by aligning their 
corresponding adjacency matrix representations [Umeyama, 1988].  
 
Relational Data: Another area that has attracted considerable interest is clustering 
relational (network) data. Unlike the clustering of graph data, where the objective is to 
partition a collection of graphs into disjoint groups, the task here is to partition a large 
graph (i.e., network) into cohesive subgraphs based on their link structure and node 
attributes. The problem becomes even more complicated when the links (which represent 
relations between objects) are allowed to have diverse types. One of the key issues is to 
define an appropriate clustering criterion for relational data. Newman’s modularity 
function [Newman, 2006, White & Smyth, 2005] is a widely-used criterion for finding 
community structures in networks, but the measure considers only the link structure and 
ignores attribute similarities. Since real networks are often dynamic, another issue is to 
model the evolutionary behavior of networks, taking into account changes in the group 
membership and other characteristic features [L.Backstrom et al. , 2006].  
 
5.         Summary 

 
Organizing data into sensible groupings arises naturally in many scientific fields. It is, 
therefore, not surprising to see the continued popularity of data clustering. It is important 
to remember that cluster analysis is an exploratory tool; the output of clustering 
algorithms only suggest hypotheses. While thousands of clustering algorithms have been 
published and new ones continue to appear, there is no best algorithm. Most algorithms, 
including the popular K-means, are admissible algorithms. Indeed, the search for a best 



clustering algorithm is fruitless and contrary to the exploratory nature of clustering.  The 
challenge in data clustering is to (i) incorporate domain knowledge in the algorithm, (ii) 
find appropriate representation and measure of similarity, (iii) validate clustering, (iv) 
devise  a rational basis for comparing methods, (v) combine ‘multiple looks” of the same 
data, and (vi) develop efficient algorithms for clustering large datasets (billions of points 
in thousands of dimensions).  
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