Collective dynamics of 'small-world' networks

Duncan J. Watts \& Steven H. Strogatz

Department of Theoretical and Applied Mechanics, Kimball Hall, Cornell University, Ithaca, New York 14853, USA

ABSTRACT Networks of coupled dynamical systems have been used to model biological oscillators, Josephson junction arrays, excitable media, neural networks, spatial games, genetic control networks and many other self-organizing systems. Ordinarily, the connection topology is assumed to be either completely regular or completely random. But many biological, technological and social networks lie somewhere between these two extremes

Here we explore simple models of networks that can be tuned through this middle ground: regular networks 'rewired' to introduce increasing amounts of disorder. We find that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs. We call them 'small-world' networks, by analogy with the small-world phenomenon (popularly known as six degrees of separation). The neural network of the worm Caenorhabditis elegans, the power grid of the western United States, and the collaboration graph of film actors are shown to be small-world networks.

Models of dynamical systems with small-world coupling display enhanced signal-propagation speed, computational power, and synchronizability. In particular, infectious diseases spread more easily in small-world networks than in regular lattices.

ALGORITHM
To interpolate between regular and random networks, we consider the following random rewiring procedure.

We start with a
ring of n vertices
where each vertex is connected to its k nearest neighbors
like so.

Next, we consider the edges that connect vertices to their second-nearest neighbours clockwise.

As before, we randomly rewire each of these edges with probability p.

We choose a vertex, and the edge to its nearest clockwise neighbour.

With probability p, we reconnect this edge to a vertex chosen uniformly at random over the
entire ring, with duplicate edges forbidden. Otherwise, we leave the edge in place

We repeat this process by moving clockwise around the ring, considering each

This construction allows us to 'tune' the graph between regularity $(\mathrm{p}=0)$ and disorder $(\mathrm{p}=1)$, and thereby to probe the intermediate region $0<p<1$ about which little is known.

METRICS We quantify the structural properties of these graphs by their characteristic path length $\boldsymbol{L}(\boldsymbol{p})$ and clustering coefficient $\boldsymbol{C}(\boldsymbol{p})$. $L(p)$ measures the typical separation between two vertices (a global property). $C(p)$ measures the cliquishness of a typical neighbourhood (a local property).

L is defined as the number of edges in the shortest path between two vertices	averaged over all pairs of vertices.	C is defined as follows. Suppose that a vertex v has k_{V} neighbours.	Then at most $k_{v}\left(k_{v}-1\right) / 2$ edges can exist between them. (This occurs when every neighbor of	Let C_{V} denote the fraction of these allowable edges that actually exist. Define C as the
			v is connected to every other neighbour of v.)	average of C_{v} over all vertices.
shortest path shortest path		$k_{v}=4$ neighbours	at most 6 edges between 4 neighbours	4 out of 6 edges exist. $C_{v}=4 / 6=0.67$

For friendship networks, these statistics have intuitive meanings: L is the average number of friendships in the shortest chain connecting two people. C_{v} reflects the extent to which friends of v are also friends of each other; and thus C measures the cliquishness of a typical friendship circle.

SMALL

 WORLDSThe regular lattice at $p=0$ is a highly clustered, large world where L grows linearly with n.

The random network at $p=1$ is a poorly clustered, small world where L grows only logarithmically with n.

These limiting cases might lead one to suspect that large C is always associated with large L, and small C with small L. On the contrary, we find that there is a broad interval of p over which $L(p)$ is almost as small as $L_{\text {random }}$ yet $C_{p} \gg C_{\text {random }}$.

The data shown in the figure are averages over 20 random realizations of the rewiring process, and have been normalized by the values $L(0), C(0)$ for a regular lattice. All the graphs have $n=$ 1000 vertices and an average degree of $k=10$ edges per vertex. We note that a logarithmic the small-world phenomenon. During this drop, $C(p)$ remains almost constant at its value for the regular lattice, indicating that the transition to a small world is almost undetectable at the local level.

By contrast, an edge removed from a clustered neighbourhood to make a short cut has, at most, a linear effect on C hence $C(p)$ remains practically unchanged for small p even though $L(p)$ drops rapidly. The important implication here is
 that at the local level (as reflected by $C(p)$), the transition to a small world is
almost undetectable.

We continue this process, circulating around the ring and proceeding outward to more chbours after each lap, until each original edge

As there are $n k / 2$ edges in As entire graph, edges in process stops after $k / 2$ laps.

For $p=0$, the ring is unchanged.	As p increases, the graph becomes increasingly disordered.	At $p=1$, all edges are re- wired randomly.
$p=0.15$		

These small-world networks result from the immediate drop in $L(p)$ caused by the introduction of a few long-range edges Such 'short cuts' connect vertices that would otherwise be much farther apart than $L_{\text {random. }}$. For small p, each short
 cut has a highly nonlinear
effect on L, contracting the distance not just between the pair of vertices that it connects, but between their immediate neighbourhoods, neighbourhoods of neighbourhoods and so on.

