
Scalable Gradient-Based Tuning of
Continuous Regularization Hyperparameters

Jelena Luketina1 JELENA.LUKETINA@AALTO.FI
Mathias Berglund1 MATHIAS.BERGLUND@AALTO.FI
Klaus Greff2 KLAUS@IDSIA.CH
Tapani Raiko1 TAPANI.RAIKO@AALTO.FI
1Department of Computer Science, Aalto University, Finland

2IDSIA, Dalle Molle Institute for Artificial Intelligence, USI-SUPSI, Manno-Lugano, Switzerland

Abstract
Hyperparameter selection generally relies on run-
ning multiple full training trials, with selection
based on validation set performance. We pro-
pose a gradient-based approach for locally ad-
justing hyperparameters during training of the
model. Hyperparameters are adjusted so as to
make the model parameter gradients, and hence
updates, more advantageous for the validation
cost. We explore the approach for tuning regular-
ization hyperparameters and find that in experi-
ments on MNIST, SVHN and CIFAR-10, the re-
sulting regularization levels are within the optimal
regions. The additional computational cost de-
pends on how frequently the hyperparameters are
trained, but the tested scheme adds only 30% com-
putational overhead regardless of the model size.
Since the method is significantly less computa-
tionally demanding compared to similar gradient-
based approaches to hyperparameter optimization,
and consistently finds good hyperparameter val-
ues, it can be a useful tool for training neural
network models.

1. Introduction
Specifying and training artificial neural networks require
several design choices that are often not trivial to make.
Many of these design choices boil down to selection of
hyperparameters. The process of hyperparameter selection
is in practice often based on trial-and-error or search with
a grid or by randomly sampling from an initial guess on

Proceedings of the 33 rd International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume 48.
Copyright 2016 by the author(s).

possible hyperparameter values (Bergstra and Bengio, 2012).
There is also a number of automated methods (Bergstra
et al., 2011; Snoek et al., 2012), all of which rely on multiple
complete training runs with varied fixed hyperparameters,
with the hyperparameter selection based on the validation
set performance.

Although effective, these methods are expensive as the user
needs to run multiple full training runs. In the worst case,
the number of needed runs also increases exponentially
with the number of hyperparameters to tune, if an extensive
exploration is desired. In many practical applications such
an approach is too tedious and time-consuming, and it would
be useful if a method existed that could automatically find
decent hyperparameter values in one training run even if the
user did not have a strong intuition on good values to try for
the hyperparameters.

In contrast to these methods, we consider treating hyper-
parameters as elementary1 parameters during training, and
simultaneously update both sets of parameters using stochas-
tic gradient descent. The gradient of elementary parameters
is computed as in usual training from the cost of the reg-
ularized model on the training set, while the gradient of
hyperparameters (hypergradient) comes from the cost of the
unregularized model on the validation set. For simplicity,
we will refer to the training set as T1 and to the validation
set (or any other data set used exclusively for training the
hyperparameters) as T2. The method itself will be called
T1 − T2, referring to the two simultaneous optimization
processes.

Similar approaches have been proposed since the late 1990s;
however, these methods either require computation of the

1Borrowing the expression from Maclaurin et al. (2015),
we refer to the model parameters customary trained with back-
propagation as elementary parameters, and to all other parameters
as hyperparameters

Scalable Gradient-Based Tuning of Continuous Regularization Hyperparameters

inverse Hessian (Larsen et al., 1998; Bengio, 2000; Chen
and Hagan, 1999; Foo et al., 2008), or propagating up-
dates through the whole history of entire parameter updates
Maclaurin et al. (2015). Moreover, these methods make
changes to the hyperparameter only once the elementary pa-
rameter training has ended. This makes them too expensive
for the use in modern neural networks, which often require
millions of parameters and large data sets.

Elements distinguishing our approach are:

1. By making some very rough approximations, our
method for modifying hyperparameters avoids using
computationally expensive terms, including the compu-
tation of the Hessian or inverting the Hessian. This is
because with the T1 − T2 method, hyperparameter up-
dates are based on stochastic gradient descent, instead
of Newton’s method. Furthermore, any dependency
of elementary parameters on hyperparameters beyond
the last update is disregarded. The resulting additional
computational and memory cost therefore becomes
comparable to back-propagation.

2. Hyperparameters are trained simultaneously with ele-
mentary parameters. Feedback and feedforward passes
can be computed simultaneously for the training and
validation set, further reducing the computational cost.

3. Adding batch normalization (Ioffe and Szegedy, 2015)
and adaptive learning rates (Kingma and Ba, 2015) to
the process of hyperparameter training, which dimin-
ishes some of the problems of gradient-based hyper-
parameter optimization. Through batch normalization,
we can counter internal covariate shifts. This elimi-
nates the need for different learning rates at each layer,
as well as speeding up adjustment of the elementary
parameters to the changes in hyperparameters. This is
particularly relevant when parametrizing each of the
layers with a separate hyperparameter.

A common assumption is that the choice of hyperparameters
affects the whole training trajectory, i.e. changing a hyperpa-
rameter on the fly during training has a significant effect on
the training trajectory. This “hysteresis effect” implies that
in order to measure how a hyperparameter combination in-
fluences the validation set performance, the hyperparameters
need to be kept fixed during the whole training procedure.
However, to our knowledge this has not been systematically
studied. If the hysteresis effect is weak enough and the
largest changes to the hyperparameter happen early on, it
would be possible to train the model while tuning the hyper-
parameters on the fly during training, and then use the final
hyperparameter values to retrain the model if a fixed set of
hyperparameters is desired. We also explore this approach.

An important design choice when training neural network

models is which regularization strategy to use in order to
ensure that the model generalizes to data not included in
the training set. Common regularization strategies involve
adding explicit terms to the model or the cost function dur-
ing training, such as penalty terms on the model weights
or injecting noise to inputs or neuron activations. Injecting
noise is particularly relevant for denoising autoencoders and
related models (Vincent et al., 2010; Rasmus et al., 2015),
where performance strongly depends on the level of noise.

Although the proposed method could work in principle for
any continuous hyperparameter, we have specifically fo-
cused on studying tuning of regularization hyperparame-
ters. We have chosen to use Gaussian noise added to the
inputs and hidden layer activations, in addition to L2 weight
penalty. A third, often used, regularization method that
involves a hyperparameter choice is dropout (Srivastava
et al., 2014). However, we have omitted studying dropout
as it is not trivial to compute a gradient on the dropout
rate. Moreover, dropout can be seen as a form of multiplica-
tive Gaussian noise (Wang and Manning, 2013). We also
omit study adapting the learning rate, since we suspect that
the local gradient information is not sufficient to determine
optimal learning rates.

In Section 2 we present details on the proposed method.
The method is tested with multiple MLP and CNN network
structures and regularization schemes, detailed in Section 3.
The results of the experiments are presented in Section 3.1.

2. Proposed Method
We propose a method, T1−T2, for tuning continuous hyper-
parameters of a model using the gradient of the performance
of the model on a separate validation set T2. In essence, we
train a neural network model on a training set T1 as usual.
However, for each update of the network weights and biases,
i.e. the elementary parameters of the network, we tune the
hyperparameters so as to make the direction of the weight
update as beneficial as possible for the validation cost on a
separate dataset T2.

Formally, when training a neural network model, we try to
minimize an objective function that depends on the training
set, model weights and hyperparameters that determine the
strength of possible regularization terms. When using gradi-
ent descent, we denote the optimization objective function
C̃1(·) and the corresponding weight update as:

C̃1(θ|λ, T1) = C1(θ|λ, T1) + Ω(θ,λ), (1)
θt+1 = θt + η1∇θF1(θt|λt, T1), (2)

where C̃1(·) and Ω(·) are cost and regularization penalty
terms, T1 = {(xi, yi)} is the training data set, θ =
{Wl, bl} a set of elementary parameters including weights
and biases of each layer, λ denotes various hyperparameters

Scalable Gradient-Based Tuning of Continuous Regularization Hyperparameters

0.0 0.2 0.4 0.6 0.8 1.0
input noise

5.0

4.5

4.0

3.5

3.0

lo
g

(l
2

)

Test NLL (MNIST)

3.2

4.0

4.8

5.6

6.4

7.2

8.0

8.8

9.6

0.0 0.2 0.4 0.6 0.8 1.0
input noise

0.0

0.2

0.4

0.6

0.8

1.0

h
id

d
e

n
 n

o
is

e

Test NLL (MNIST)

3.2

4.0

4.8

5.6

6.4

7.2

8.0

8.8

9.6

Figure 1. Left: Values of additive input noise and L2 penalty (n0, log(l2)) during training using the T1 − T2 method for hyperparameter
tuning. Trajectories are plotted over the grid search result for the same regularization pair. Initial hyperparameter values are denoted with
a square, final hyperparameter values are denoted with a star. Right: Similarly constructed trajectories, on a model regularized with input
and hidden layer additive noise (n0, n1).

that determine the strength of regularization, while η1 is a
learning rate. Subscript t refers to the iteration number.

Assuming T2 = {(xi, yi)} is a separate validation data set,
the generalization performance of the model is measured
with a validation cost C2(θt+1, T2), which is usually a func-
tion of the unregularized model. Hence the value of the cost
function of the actual performance of the model does not
depend on the regularizer directly, but only on the elemen-
tary parameter updates. The gradient of the validation cost
with respect to λ is:

∇λC2 = (∇θC2)(∇λθt+1)

We only consider the influence of the regularization hy-
perparameter on the current elementary parameter update,
∇λθt+1 = η1∇λ∇θC̃1 based on Eq. (2). The hyperparam-
eter update is therefore:

λt+1 = λt + η2(∇θC2)(∇λ∇θC̃1) (3)

where η2 is a learning rate.

The method is greedy in the sense that it only depends on
one parameter update, and hence rests on the assumption
that a good hyperparameter choice can be evaluated based on
the local information within only one elementary parameter
update.

2.1. Motivation and analysis

The most similar previously proposed model is the incre-
mental gradient version of the hyperparameter update from
(Chen and Hagan, 1999). However their derivation of the
hypergradient assumes a Gauss-Newton update of the ele-
mentary parameters, making computation of the gradient
and the hypergradient significantly more expensive.

A well justified closed form for the term ∇λθ is available
once the elementary gradient has converged (Foo et al.,
2008), with the update of the form (4). Comparing this ex-
pression with the T1 − T2 update, (3) can be considered as
approximating (4) in the case when gradient is near conver-
gence and the Hessian can be well approximated by identity
∇2

θC̃1 = I:

λt+1 = λt + (∇θC2)(∇2
θC̃1)−1(∇λ∇θC̃1). (4)

Another approach to hypergradient computation is given
in Maclaurin et al. (2015). There, the term ∇λθT (T de-
noting the final iteration number) considers effect of the
hyperparameter on the entire history of updates:

θT = θ0 +
∑

0<k<T

4θk,k+1(θk(λt), λt, ηk), (5)

λt+1 = λt + (∇θC2)(∇λθT). (6)

In the simplest case where the update is formed only with the
current gradient4θk,k+1 = −η1,k∇θC̃1, i.e. not including

Scalable Gradient-Based Tuning of Continuous Regularization Hyperparameters

Figure 2. Evolution of classification error and cross-entropy over
the course of training, for a single SVHN experiment. Top: evo-
lution of the classification error and costs with a fixed choice of
hyperparameters (n0, l2). Bottom: classification error and costs
during training with T1 − T2, using (n0, l2) as initial hyperparam-
eter values. T1 − T2 prevents otherwise strong overfitting.

the momentum term or adaptive learning rates, the update
of a hyperparameter is formed by collecting the elements
from the entire training procedure:

λt+1 = λt + η2∇θC2

∑
0<k<T

η1∇λ∇θC̃1,k. (7)

Eq. (3) can therefore be considered as an approximation of
(7), where we consider only the last update instead of back-
propagating through the whole weight update history and
updating the hyperparameters without resetting the weights.

In theory, approximating the Hessian with identity might
cause difficulties. From Equation (3), it follows that the
method converges when (∇θC2)(∇λ∇θC̃1) = 0, or in
other words, for all components i of the hyperparameter
vector λ, ∇θC2 is orthogonal to ∂∇θC̃1

∂λi
. This is in contrast

to the standard optimization processes that converge when
the gradient is zero. In fact, we cannot guarantee conver-
gence at all. Furthermore, if we replace the global (scalar)
learning rate η1 in Equation (2) with individual learning
rates η1,j for each elementary-parameter θj,t, the point of
convergence could change.

It is clear that the identity Hessian assumption is an approx-
imation that will not hold strictly. However, arguably, batch
normalization (Ioffe and Szegedy, 2015) is eliminating part
of the problem, by making the Hessian closer to identity
(Vatanen et al., 2013; Raiko et al., 2012), making the ap-
proximation more justified. Another step towards making

Figure 3. Evolution of the hyperparameters for the same SVHN
experiment as in Figure 2 bottom. The green curve at the top shows
the standard deviation of the input noise. The red curves at the
bottom demonstrate values of L2 regularization of each layer on
a log scale. The solid line refers to the input layer and least solid
one to the top layer. The Figure illustrates two common patterns
we observed for SVHN: firstly the noise level tends to increase in
the beginning and decrease later during training, and secondly the
L2 decay always ends up stronger for the higher layers.

even closer approximation are transformations that further
whiten the hidden representations (Desjardins et al., 2015).

2.2. Computational cost

The most computationally expensive term of the proposed
method is (∇θC2)(∇λ∇θC̃1), where the exact complex-
ity depends on the details of the implementation and the
hyperparameter. When training L2 penalty regularizers
Ω(θ) =

∑
j
λj

2 θ
2
j , the additional cost is negligible, as

∂2C̃1

∂λj∂θk
= θjδj,k, where δ is the indicator function.

The gradient of the cost with respect to a noise hyper-
parameter σl at layer l, can be computed as ∂C̃1

∂σl
=

(∇hl
C̃1)

(
∂hl

∂σl

)>
, where hl is hidden layer l activation. In

case of additive Gaussian noise, where noise is added as
hl → hl + σLe, where e is a random vector sampled from
the standard normal distribution with the same dimension-
ality as hl, the derivative becomes ∂C̃1

∂σl
= ∂C̃1

∂hl
e>. It can

be shown that the cost of computing this term scales com-
parably to backpropagation, due to the properties of R and
L-operators (Pearlmutter, 1994; Schraudolph, 2002).

For our implementation, the cost of computing the hyper-
gradients of a model with additive noise in each layer, was
around 3 times that of backpropagation. We reduced this
cost further by making one hyperparameter update per each
10 elementary parameter updates. While it did not change
performance of the method, it reduced the additional cost
to about only 30% that of backpropagation. The cost could
be possibly reduced even further by making hyperparameter
updates even less frequently, though we have not explored
this further.

Scalable Gradient-Based Tuning of Continuous Regularization Hyperparameters

Figure 4. Comparison of test performances when training with fixed hyperparameters before and after tuning them with T1 − T2. Results
for MNIST are shown on the left, SVHN in the middle, CIFAR-10 on the right. Points are generated on a variety of network configurations,
where equal symbols mark equal setup.

3. Experiments
The goal of the experimental section is to address the fol-
lowing questions:

• Will the method find new hyperparameters which im-
prove the performance of the model, compared to the
initial set of hyperparameters?

• Can we observe hysteresis effects, i.e. will the model
obtained, while simultaneously modifying parameters
and hyperparameters, perform the same as a model
trained with a hyperparameter fixed to the final value?

• Can we observe overfitting on the validation set T2?
When hyperparameters are tuned for validation perfor-
mance, is the performance on the validation set still
indicative of the performance on the test set?

We test the method on various configurations of multilayer
perceptrons (MLPs) with ReLU activation functions (Dahl
et al., 2013) trained on the MNIST (LeCun et al., 1998) and
SVHN (Netzer et al., 2011) data set. We also test the method
on two convolutional architectures (CNNs) using CIFAR-
10 (Krizhevsky, 2009). The CNN architectures used were
modified versions of model All-CNN-C from (Springenberg
et al., 2014) and a baseline model from (Rasmus et al.,
2015), using ReLU and leakyReLU activations (Xu et al.,
2015). The models were implemented with the Theano
package (Team, 2016). All the code, as well as the exact
configurations used in the experiments can be found in the
project’s Github repository2.

For MNIST we tried various network sizes: shallow 1000×
1000 × 1000 to deep 4000 × 2000 × 1000 × 500 × 250.
Training set T1 had 55 000 samples, and validation T2 had 5

2https://github.com/jelennal/t1t2

000 samples. The split between T1 and T2 was made using
a different random seed in each of the experiments to avoid
overfitting to a particular subset of the training set. Data
preprocessing consisted of only centering each feature.

In experiments with SVHN we tried 2000× 2000× 2000
and 4000× 2000× 1000× 500× 250 architectures. Global
contrast normalization was used as the only preprocessing
step. Out of 73257 training samples, we picked a random
65 000 samples for T1 and the remaining 8 257 samples
for T2. None of the SVHN experiments used tied hyperpa-
rameters, i.e. each layer was parametrized with a separate
hyperparameter, which was tuned independently.

To test on CIFAR-10 with convolutional networks, we used
45 000 samples for T1 and 5 000 samples for T2. The data
was preprocessed using global contrast normalization and
whitening.

We regularized the models with additive Gaussian noise
to the input with standard deviation n0 and each hidden
layer with standard deviation n1; or a combination of addi-
tive noise to the input layer and L2 penalty with strength
multiplier l2 for weights in each of the layers. Because L2
penalty matters less in models using batch normalization,
in experiments using L2 penalty we did not use batch nor-
malization. We tried both tied regularization levels (one
hyperparameter for all hidden layers) and having separate
regularization parameters for each layer. As a cost function,
we use cross-entropy for both T1 and T2.

Each of the experiments were run with 200-300 epochs, us-
ing batch size 100 for both elementary and hyperparameter
training. To speed up elementary parameter training, we
use an annealed ADAM learning rate schedule (Kingma and
Ba, 2015) with a step size of 10−3 (MLPs) or 2 × 10−3
(CNNs). For tuning noise hyperparameters, we use vanilla
gradient descent with a step size 10−1; while for L2 hyper-

Scalable Gradient-Based Tuning of Continuous Regularization Hyperparameters

Figure 5. Test error after one run with T1 − T2 compared to a rerun where we use the final values of the hyperparameters at the end of
T1 − T2 training as fixed hyperparameters for a new run (left: MNIST, middle: SVHN, right: CIFAR-10). Th correlation indicates that
T1 − T2 is useful also for finding approximate hyperparameter values for training without an adaptive hyperparameter method.

parameters, step sizes were significantly smaller, 10−4. In
experiments on larger networks we also use ADAM for tun-
ing hyperparameters, with the step size 10−3 for noise and
10−6 for L2. We found that while the learning rate did not
significantly influence the general area of convergence for a
hyperparameter, too high learning rates did cause too noisy
and sudden hyperparameter changes, while too low learning
rates resulted in no significant changes of hyperparameters.
A rule of thumb is to use a learning rate corresponding
to the expected order of magnitude of the hyperparameter.
Moreover, if the hyperparameter updates are utilized less
frequently, the learning rate should be higher.

In most experiments, we first measure the performance of
the model trained using some fixed, random hyperparam-
eters sampled from a reasonable interval. Next, we train
the model with T1 − T2 from that random hyperparameter
initialization, measuring the final performance. Finally, we
rerun the training procedure with the fixed hyperparameter
set to the final hyperparameter values found by T1 − T2.
Note that in all the scatter plots, points with the same color
indicate the same model configuration: same number of
neurons and layers, learning rates, use of batch normaliza-
tion, and the same types of hyperparameters tuned just with
different initializations.

3.1. Results

Figure 1 illustrates resulting hyperparameters changes dur-
ing T1−T2 training. To see how the T1−T2 method behaves,
we visualized trajectories of hyperparameter values during
training in the hyperparameter cost space. For each point
in the two-dimensional hyperparameter space, we compute
the corresponding test cost without T1− T2. In other words,
the background of the figures corresponds to grid search on
the two-dimensional hyperparameter interval. The initial
regularization hyperparameter value is denoted with a star,

while the final value is marked with a square.

As can be seen from the figure, all runs converge to a reason-
able set of hyperparameters irrespective of the starting value,
gradually moving to the point with lower log-likelihood.
Note that because the optimal values of learning rates for
each hyperparameter direction are unknown, hyperparame-
ters will change the most along the direction corresponding
to either the local gradient or the higher relative learning
rate.

One way to use the proposed method is to tune the hyper-
parameters, and then rerun the training from the beginning
using fixed values for the hyperparameters set to the final
values acquired at the end of T1 − T2 training. Figure 4
illustrates how much T1 − T2 can improve initial hyper-
parameters. Each point in the grid corresponds to the test
performance of a model fully trained with two different fixed
hyperparameters: one is the initial hyperparameter before
being tuned with T1 − T2 (x-axis), the other is final hyper-
parameter found after tuning the initial hyperparameter with
T1 − T2 (y-axis). As can be seen from the plot, none of
the models trained with hyperparameters found by T1 − T2
performed poorly, regardless of how poor the performance
was with the initial hyperparameters.

Next we explore the strength of the hysteresis effect, i.e.
how the performance of a model with a different hyperpa-
rameter history compares to the performance of a model
with a fixed hyperparameter. In Figure 5 we plot the er-
ror after a run using T1 − T2, compared to the test error if
the model is rerun with the hyperparameters fixed to the
values at the end of T1 − T2 training. The results indicate
that there is a strong correlation, with in most cases, reruns
performing somewhat better. The method can be used for
training models with fixed hyperparameters, or as a baseline
for further hyperparameter finetuning. The hysteresis ef-

Scalable Gradient-Based Tuning of Continuous Regularization Hyperparameters

Figure 6. Classification error of validation set vs test set, at the end of T1 − T2 training for MNIST (left), SVHN (middle), and CIFAR-10
(right). The results correlate strongly indicating that validation set performance is still indicative of test set performance.

fect was stronger on CIFAR-10, where retraining produced
significant improvements.

We explore the possibility of overfitting on the validation
set. Figure 6 (right) shows the validation error compared to
the final test error of a model trained with T1 − T2. While
the results indicate some overfitting with the validation set
performing mostly better, the two are still strongly corre-
lated. Better validation performance strongly indicates bet-
ter test performance. It should be noted though, that in these
experiments we had at most 20 hyperparameters, making
overfitting to validation set unlikely.

4. Discussion and Conclusion
We have proposed a method called T1 − T2 for gradient-
based automatic tuning of continuous hyperparameters dur-
ing training, based on the performance of the model on a
separate validation set. We experimented on tuning regular-
ization hyperparameters when training different model struc-
tures on the MNIST and SVHN datasets.The T1−T2 model
consistently managed to find levels of additive noise and
L2 weight penalty that yielded decent test set performance
even if the initial guess of the regularization hyperparameter
values was orders of magnitudes from the optimal value.

Although T1 − T2 is unlikely to find the best set of hyperpa-
rameters compared to an exhaustive search where the model
is trained repeatedly with a large number of hyperparameter
proposals, the property that it seems to find values fairly
close to the optimum is useful e.g. in situations where the
user does not have a prior knowledge on good intervals
for regularization selection; or the time to explore the full
hyperparameter space. The method could also be used in
combination with random search, redirecting the random
points to better regions.

While the T1 − T2 method does a decent job at minimizing

the objective function of validation set, as illustrated in Fig-
ure 7, hyperparameters minimizing a continuous objective
like cross-entropy, might not be optimal for the classifica-
tion error. It might be worthwhile trying objectives which
approximate the classification error better, as well as trying
the method on unsupervised objectives.

As a separate validation set is used for tuning of hyperpa-
rameters, it could be possible to overfit to the validation
set. However, our experiments indicated that this effect is
not practically significant in the settings tested in this paper,
which is at most 10-20 hyperparameters.

The method could be used to tune a much larger number
of hyperparameters than what was computationally feasi-
ble before. It could also be used to tune hyperparameters
other than continuous regularization hyperparameters, using
continuous versions of those hyperparameters. For example,
consider the following implementation of a continuously
parametrized number of layers: the final softmax layer takes
input from all the hidden layers, however the contribution
of each layer is weighted with a continuous function a(i),
such that one layer and its neighboring layers contribute the
most, e.g. output = softmax[

∑
i=1..L a(i)W̃ihi], where

L is the number of layers and a(i) = e(i−m)2/v. Which
layer contributes the most to the output layer, is set with
a differentiable function, and parameters of this function,
m and v in example, could in principle be trained using
T1− T2 method.

5. Acknowledgements
We are very thankful to many colleagues for the helpful
conversations and feedback, particularly Dario Amodei and
Harri Valpola. Special thanks to Antti Rasmus for the tech-
nical assistance. Also thanks to Olof Mogren and Mikael
Kageback, who provided detailed comments on the paper

Scalable Gradient-Based Tuning of Continuous Regularization Hyperparameters

0.0 0.2 0.4 0.6 0.8 1.0
n0

0.0

0.2

0.4

0.6

0.8

1.0

n1

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

0.0 0.2 0.4 0.6 0.8 1.0
n0

0.0

0.2

0.4

0.6

0.8

1.0

n1

test NNL

3.2

4.0

4.8

5.6

6.4

7.2

8.0

8.8

9.6

0.0 0.2 0.4 0.6 0.8 1.0
n0

5.0

4.5

4.0

3.5

3.0

lo
g(

l2
)

classification error %

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

0.0 0.2 0.4 0.6 0.8 1.0
n0

5.0

4.5

4.0

3.5

3.0

lo
g(

l2
)

3.2

4.0

4.8

5.6

6.4

7.2

8.0

8.8

9.6

Figure 7. Grid search results on a pair of hyperparameters (no tuning with T1 − T2). Figures on the right represent the test error at the end
of training as a function of hyperparameters. Figures on the left represent the test log-likelihood at the end of training as a function of
hyperparameters. We can see that the set of hyperparameters minimizing test log-likelihood is different from the set of hyperparameters
minimizing test classification error.

draft. Jelena Luketina and Tapani Raiko were funded by the
Academy of Finland. Mathias Berglund was funded by the
HICT doctoral education network.

References
Bengio, Y. (2000). Gradient-based optimization of hyperpa-

rameters. Neural computation, 12(8), 1889–1900.

Bergstra, J. and Bengio, Y. (2012). Random search for
hyper-parameter optimization. J. Mach. Learn. Res., 13,
281–305.

Bergstra, J. S., Bardenet, R., Bengio, Y., and Kégl, B. (2011).
Algorithms for hyper-parameter optimization. In Ad-
vances in Neural Information Processing Systems 24,
pages 2546–2554.

Chen, D. and Hagan, M. T. (1999). Optimal use of regular-
ization and cross-validation in neural network modeling.
In International Joint Conference on Neural Networks,
pages 1275–1289.

Dahl, G. E., Sainath, T. N., and Hinton, G. E. (2013). Im-
proving deep neural networks for LVCSR using rectified
linear units and dropout. In ICASSP, pages 8609–8613.

Desjardins, G., Simonyan, K., Pascanu, R., and
Kavukcuoglu, K. (2015). Natural neural networks. In
Advances in Neural Information Processing Systems.

Foo, C.-s., Do, C. B., and Ng, A. (2008). Efficient multiple
hyperparameter learning for log-linear models. In Ad-
vances in neural information processing systems (NIPS),
pages 377–384.

Ioffe, S. and Szegedy, C. (2015). Batch normalization:
Accelerating deep network training by reducing internal
covariate shift. arXiv preprint arXiv:1502.03167.

Kingma, D. and Ba, J. (2015). Adam: A method for
stochastic optimization. In the International Confer-
ence on Learning Representations (ICLR), San Diego.
arXiv:1412.6980.

Scalable Gradient-Based Tuning of Continuous Regularization Hyperparameters

Krizhevsky, A. (2009). Learning multiple layers of features
from tiny images.

Larsen, J., Svarer, C., Andersen, L. N., and Hansen, L. K.
(1998). Adaptive regularization in neural network mod-
eling. In Neural Networks: Tricks of the Trade, pages
113–132. Springer.

LeCun, Y., Cortes, C., and Burges, C. J. (1998). The mnist
database of handwritten digits.

Maclaurin, D., Duvenaud, D., and Adams, R. P. (2015).
Gradient-based hyperparameter optimization through re-
versible learning. In International Conference on Ma-
chine Learning.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B.,
and Ng, A. Y. (2011). Reading digits in natural images
with unsupervised feature learning. In NIPS workshop on
deep learning and unsupervised feature learning, volume
2011, page 4. Granada, Spain.

Pearlmutter, B. A. (1994). Fast Exact Multiplication by the
Hessian. Neural Computation, pages 147–160.

Raiko, T., Valpola, H., and LeCun, Y. (2012). Deep learning
made easier by linear transformations in perceptrons. In
International Conference on Artificial Intelligence and
Statistics, pages 924–932.

Rasmus, A., Valpola, H., Honkala, M., Berglund, M., and
Raiko, T. (2015). Semi-supervised learning with ladder
network. Neural Information Processing Systems.

Schraudolph, N. N. (2002). Fast curvature matrix-vector
products for second-order gradient descent. Neural Com-
putation, 14(7), 1723–1738.

Snoek, J., Larochelle, H., and Adams, R. P. (2012). Practical
Bayesian Optimization of Machine Learning Algorithms.
ArXiv e-prints.

Springenberg, J. T., Dosovitskiy, A., Brox, T., and Ried-
miller, M. (2014). Striving for Simplicity: The All Con-
volutional Net. arXiv:1412.6806 [cs]. arXiv: 1412.6806.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. (2014). Dropout: A simple way to
prevent neural networks from overfitting. The Journal of
Machine Learning Research, 15(1), 1929–1958.

Team, T. T. D. (2016). Theano: A Python frame-
work for fast computation of mathematical expressions.
arXiv:1605.02688 [cs]. arXiv: 1605.02688.

Vatanen, T., Raiko, T., Valpola, H., and LeCun, Y.
(2013). Pushing stochastic gradient towards second-order
methods–backpropagation learning with transformations
in nonlinearities. In Neural Information Processing,
pages 442–449. Springer.

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and an-
toine Manzagol, P. (2010). Stacked denoising autoen-
coders: learning useful representations in a deep network
with a local denoising criterion. Journal of Machine
Learning Research.

Wang, S. I. and Manning, C. D. (2013). Fast dropout train-
ing. In In Proceedings of the 30th International Confer-
ence on Machine Learning (ICML.

Xu, B., Wang, N., Chen, T., and Li, M. (2015). Empir-
ical evaluation of rectified activations in convolutional
network. CoRR, abs/1505.00853.

