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Abstract

Autoregressive integrated moving average (ARIMA) is one of the popular linear models in
time series forecasting during the past three decades. Recent research activities in forecasting with
arti/cial neural networks (ANNs) suggest that ANNs can be a promising alternative to the tra-
ditional linear methods. ARIMA models and ANNs are often compared with mixed conclusions
in terms of the superiority in forecasting performance. In this paper, a hybrid methodology that
combines both ARIMA and ANN models is proposed to take advantage of the unique strength of
ARIMA and ANN models in linear and nonlinear modeling. Experimental results with real data
sets indicate that the combined model can be an e5ective way to improve forecasting accuracy
achieved by either of the models used separately.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Time series forecasting is an important area of forecasting in which past observations
of the same variable are collected and analyzed to develop a model describing the
underlying relationship. The model is then used to extrapolate the time series into the
future. This modeling approach is particularly useful when little knowledge is available
on the underlying data generating process or when there is no satisfactory explanatory
model that relates the prediction variable to other explanatory variables. Much e5ort
has been devoted over the past several decades to the development and improvement
of time series forecasting models.
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One of the most important and widely used time series models is the autoregressive
integrated moving average (ARIMA) model. The popularity of the ARIMA model is
due to its statistical properties as well as the well-known Box–Jenkins methodology [2]
in the model building process. In addition, various exponential smoothing models can
be implemented by ARIMA models [26]. Although ARIMA models are quite Dexible
in that they can represent several di5erent types of time series, i.e., pure autoregressive
(AR), pure moving average (MA) and combined AR and MA (ARMA) series, their
major limitation is the pre-assumed linear form of the model. That is, a linear corre-
lation structure is assumed among the time series values and therefore, no nonlinear
patterns can be captured by the ARIMA model. The approximation of linear models
to complex real-world problem is not always satisfactory.
Recently, arti/cial neural networks (ANNs) have been extensively studied and

used in time series forecasting. Zhang et al. [43] presented a recent review in this
area. The major advantage of neural networks is their Dexible nonlinear modeling
capability. With ANNs, there is no need to specify a particular model form.
Rather, the model is adaptively formed based on the features presented from the
data. This data-driven approach is suitable for many empirical data sets where no
theoretical guidance is available to suggest an appropriate data generating
process.
In this paper, we propose a hybrid approach to time series forecasting using both

ARIMA and ANN models. The motivation of the hybrid model comes from the follow-
ing perspectives. First, it is often diHcult in practice to determine whether a time series
under study is generated from a linear or nonlinear underlying process or whether one
particular method is more e5ective than the other in out-of-sample forecasting. Thus, it
is diHcult for forecasters to choose the right technique for their unique situations. Typ-
ically, a number of di5erent models are tried and the one with the most accurate result
is selected. However, the /nal selected model is not necessarily the best for future
uses due to many potential inDuencing factors such as sampling variation, model un-
certainty, and structure change. By combining di5erent methods, the problem of model
selection can be eased with little extra e5ort. Second, real-world time series are rarely
pure linear or nonlinear. They often contain both linear and nonlinear patterns. If this
is the case, then neither ARIMA nor NNs can be adequate in modeling and forecasting
time series since the ARIMA model cannot deal with nonlinear relationships while the
neural network model alone is not able to handle both linear and nonlinear patterns
equally well. Hence, by combining ARIMA with ANN models, complex autocorrelation
structures in the data can be modeled more accurately. Third, it is almost universally
agreed in the forecasting literature that no single method is best in every situation
[4,19,23]. This is largely due to the fact that a real-world problem is often complex
in nature and any single model may not be able to capture di5erent patterns equally
well. For example, in the literature of time series forecasting with neural networks,
most studies [34,36,37,44–47] use the ARIMA models as the benchmark to test the
e5ectiveness of the ANN model with mixed results. Many empirical studies including
several large-scale forecasting competitions suggest that by combining several di5erent
models, forecasting accuracy can often be improved over the individual model without
the need to /nd the “true” or “best” model [6,23,24,28]. Therefore, combining di5erent
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models can increase the chance to capture di5erent patterns in the data and improve
forecasting performance. Several empirical studies have already suggested that by com-
bining several di5erent models, forecasting accuracy can often be improved over the
individual model. In addition, the combined model is more robust with regard to the
possible structure change in the data.
Using hybrid model or combining several models has become a common practice to

improve the forecasting accuracy since the well-known M-competition [23] in which
combination of forecasts from more than one model often leads to improved forecast-
ing performance. The literature on this topic has expanded dramatically since the early
work of Reid [32] and Bates and Granger [1]. Clemen [6] provided a comprehensive
review and annotated bibliography in this area. The basic idea of the model combina-
tion in forecasting is to use each model’s unique feature to capture di5erent patterns
in the data. Both theoretical and empirical /ndings suggest that combining di5erent
methods can be an e5ective and eHcient way to improve forecasts [22,28,29,40]. In
neural network forecasting research, a number of combining schemes have been pro-
posed. Wedding and Cios [39] described a combining methodology using radial basis
function networks and the Box–Jenkins models. Luxhoj et al. [21] presented a hybrid
econometric and ANN approach for sales forecasting. Pelikan et al. [30] and Ginzburg
and Horn [13] proposed to combine several feedforward neural networks to improve
time series forecasting accuracy.
The rest of the paper is organized as follows. In the next section, we review the

ARIMA and ANN modeling approaches to time series forecasting. The hybrid method-
ology is introduced in Section 3. Empirical results from three real data sets are reported
in Section 4. Section 5 contains the concluding remarks.

2. Time series forecasting models

There are several di5erent approaches to time series modeling. Traditional statisti-
cal models including moving average, exponential smoothing, and ARIMA are linear
in that predictions of the future values are constrained to be linear functions of past
observations. Because of their relative simplicity in understanding and implementation,
linear models have been the main research focuses and applied tools during the past
few decades. To overcome the restriction of the linear models and to account for certain
nonlinear patterns observed in real problems, several classes of nonlinear models have
been proposed in the literature. These include the bilinear model [14], the threshold
autoregressive (TAR) model [38], and the autoregressive conditional heteroscedastic
(ARCH) model [11]. Although some improvement has been noticed with these non-
linear models, the gain of using them to general forecasting problems is limited [8].
Because these models are developed for speci/c nonlinear patterns, they are not ca-
pable of modeling other types of nonlinearity in time series. More recently, arti/cial
neural networks have been suggested as an alternative to time series forecasting. The
main strength of the ANNs is their Dexible nonlinear modeling capability. In this sec-
tion, we focus on the basic principles and modeling process of the ARIMA and ANN
models.
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2.1. The ARIMA model

In an autoregressive integrated moving average model, the future value of a variable
is assumed to be a linear function of several past observations and random errors. That
is, the underlying process that generate the time series has the form

yt = �0 + �1yt−1 + �2yt−2 + · · ·+ �pyt−p
+ �t − �1�t−1 − �2�t−2 − · · · − �q�t−q; (1)

where yt and �t are the actual value and random error at time period t, respectively;
�i (i=1; 2; : : : ; p) and �j (j=0; 1; 2; : : : ; q) are model parameters. p and q are integers
and often referred to as orders of the model. Random errors, �t , are assumed to be inde-
pendently and identically distributed with a mean of zero and a constant variance of �2.

Eq. (1) entails several important special cases of the ARIMA family of models. If
q = 0, then (1) becomes an AR model of order p. When p = 0, the model reduces
to an MA model of order q. One central task of the ARIMA model building is to
determine the appropriate model order (p; q).
Based on the earlier work of Yule [42] and Wold [41], Box and Jenkins [2] de-

veloped a practical approach to building ARIMA models, which has the fundamen-
tal impact on the time series analysis and forecasting applications. The Box–Jenkins
methodology includes three iterative steps of model identi/cation, parameter estimation
and diagnostic checking. The basic idea of model identi/cation is that if a time series
is generated from an ARIMA process, it should have some theoretical autocorrelation
properties. By matching the empirical autocorrelation patterns with the theoretical ones,
it is often possible to identify one or several potential models for the given time se-
ries. Box and Jenkins [2] proposed to use the autocorrelation function and the partial
autocorrelation function of the sample data as the basic tools to identify the order of
the ARIMA model.
In the identi/cation step, data transformation is often needed to make the time series

stationary. Stationarity is a necessary condition in building an ARIMA model that
is useful for forecasting. A stationary time series has the property that its statistical
characteristics such as the mean and the autocorrelation structure are constant over
time. When the observed time series presents trend and heteroscedasticity, di5erencing
and power transformation are often applied to the data to remove the trend and stabilize
the variance before an ARIMA model can be /tted.
Once a tentative model is speci/ed, estimation of the model parameters is straightfor-

ward. The parameters are estimated such that an overall measure of errors is minimized.
This can be done with a nonlinear optimization procedure.
The last step of model building is the diagnostic checking of model adequacy. This

is basically to check if the model assumptions about the errors, �t , are satis/ed. Several
diagnostic statistics and plots of the residuals can be used to examine the goodness
of /t of the tentatively entertained model to the historical data. If the model is not
adequate, a new tentative model should be identi/ed, which is again followed by the
steps of parameter estimation and model veri/cation. Diagnostic information may help
suggest alternative model(s).
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This three-step model building process is typically repeated several times until a
satisfactory model is /nally selected. The /nal selected model can then be used for
prediction purposes.

2.2. The ANN approach to time series modeling

When the linear restriction of the model form is relaxed, the possible number of non-
linear structures that can be used to describe and forecasting a time series is enormous.
A good nonlinear model should be “general enough to capture some of the nonlinear
phenomena in the data” [8]. Arti/cial neural networks are one of such models that are
able to approximate various nonlinearities in the data.
ANNs are Dexible computing frameworks for modeling a broad range of nonlinear

problems. One signi/cant advantage of the ANN models over other classes of nonlinear
model is that ANNs are universal approximators which can approximate a large class
of functions with a high degree of accuracy. Their power comes from the parallel
processing of the information from the data. No prior assumption of the model form is
required in the model building process. Instead, the network model is largely determined
by the characteristics of the data.
Single hidden layer feedforward network is the most widely used model form for time

series modeling and forecasting [43]. The model is characterized by a network of three
layers of simple processing units connected by acyclic links. The relationship between
the output (yt) and the inputs (yt−1; yt−2; : : : ; yt−p) has the following mathematical
representation:

yt = 
0 +
q∑
j=1


jg

(
�0j +

p∑
i=1

�ijyt−i

)
+ �t ; (2)

where 
j (j = 0; 1; 2; : : : ; q) and �ij (i = 0; 1; 2; : : : ; p; j = 1; 2; : : : ; q) are the model
parameters often called the connection weights; p is the number of input nodes and q
is the number of hidden nodes. The logistic function is often used as the hidden layer
transfer function, that is,

g(x) =
1

1 + exp(−x) : (3)

Hence, the ANN model of (2) in fact performs a nonlinear functional mapping from
the past observations (yt−1; yt−2; : : : ; yt−p) to the future value yt , i.e.,

yt = f(yt−1; yt−2; : : : ; yt−p; w) + �t ; (4)

where w is a vector of all parameters and f is a function determined by the network
structure and connection weights. Thus, the neural network is equivalent to a nonlinear
autoregressive model. Note that expression (2) implies one output node in the output
layer which is typically used for one-step-ahead forecasting.
The simple network given by (2) is surprisingly powerful in that it is able to ap-

proximate arbitrary function as the number of hidden nodes q is suHciently large [17].
In practice, simple network structure that has a small number of hidden nodes often
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works well in out-of-sample forecasting. This may be due to the over/tting e5ect typ-
ically found in neural network modeling process. An over/tted model has a good /t
to the sample used for model building but has poor generalization ability for data out
of the sample. The choice of q is data dependent and there is no systematic rule in
deciding this parameter.
In addition to choosing an appropriate number of hidden nodes, another important

task of ANN modeling of a time series is the selection of the number of lagged ob-
servations, p, the dimension of the input vector. This is perhaps the most important
parameter to be estimated in an ANN model because it plays a major role in deter-
mining the (nonlinear) autocorrelation structure of the time series. However, there is
no theory that can be used to guide the selection of p. Hence, experiments are often
conducted to select an appropriate p as well as q.
Once a network structure (p; q) is speci/ed, the network is ready for training—a

process of parameter estimation. As in ARIMA model building, the parameters are
estimated such that an overall accuracy criterion such as the mean squared error is
minimized. This is again done with some eHcient nonlinear optimization algorithms
other than the basic backpropagation training algorithm. One of these is generalized
reduced gradient (GRG2), a general purpose nonlinear optimizer [18]. A GRG2-based
training system is used in this study [35].
The estimated model is usually evaluated using a separate hold-out sample that is not

exposed to the training process. This practice is di5erent from that in ARIMA model
building where one sample is typically used for model identi/cation, estimation and
evaluation. The reason lies in the fact that the general (linear) form of the ARIMA
model is pre-speci/ed and then the order of the model is estimated from the data. The
standard statistical paradigm assumes that under stationary condition, the model best
/tted to the historical data is also the optimum model for forecasting [12]. With ANNs,
the (nonlinear) model form as well as the order of the model must be estimated from
the data. It is, therefore, more likely for an ANN model to over/t the data.
There are some similarities between ARIMA and ANN models. Both of them in-

clude a rich class of di5erent models with di5erent model orders. Data transformation
is often necessary to get best results. A relatively large sample is required in order to
build a successful model. The iterative experimental nature is common to their model-
ing processes and the subjective judgement is sometimes needed in implementing the
model. Because of the potential over/tting e5ect with both models, parsimony is often
a guiding principle in choosing an appropriate model for forecasting.

3. The hybrid methodology

Both ARIMA and ANN models have achieved successes in their own linear or
nonlinear domains. However, none of them is a universal model that is suitable for all
circumstances. The approximation of ARIMA models to complex nonlinear problems
may not be adequate. On the other hand, using ANNs to model linear problems have
yielded mixed results. For example, using simulated data, Denton [10] showed that
when there are outliers or multicollinearity in the data, neural networks can signi/cantly
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outperform linear regression models. Markham and Rakes [25] also found that the
performance of ANNs for linear regression problems depends on the sample size and
noise level. Hence, it is not wise to apply ANNs blindly to any type of data. Since
it is diHcult to completely know the characteristics of the data in a real problem,
hybrid methodology that has both linear and nonlinear modeling capabilities can be a
good strategy for practical use. By combining di5erent models, di5erent aspects of the
underlying patterns may be captured.
It may be reasonable to consider a time series to be composed of a linear autocor-

relation structure and a nonlinear component. That is,

yt = Lt + Nt; (5)

where Lt denotes the linear component and Nt denotes the nonlinear component. These
two components have to be estimated from the data. First, we let ARIMA to model
the linear component, then the residuals from the linear model will contain only the
nonlinear relationship. Let et denote the residual at time t from the linear model, then

et = yt − L̂t ; (6)

where L̂t is the forecast value for time t from the estimated relationship (2). Residuals
are important in diagnosis of the suHciency of linear models. A linear model is not
suHcient if there are still linear correlation structures left in the residuals. However,
residual analysis is not able to detect any nonlinear patterns in the data. In fact, there
is currently no general diagnostic statistics for nonlinear autocorrelation relationships.
Therefore, even if a model has passed diagnostic checking, the model may still not
be adequate in that nonlinear relationships have not been appropriately modeled. Any
signi/cant nonlinear pattern in the residuals will indicate the limitation of the ARIMA.
By modeling residuals using ANNs, nonlinear relationships can be discovered. With n
input nodes, the ANN model for the residuals will be

et = f(et−1; et−2; : : : ; et−n) + �t ; (7)

where f is a nonlinear function determined by the neural network and �t is the ran-
dom error. Note that if the model f is not an appropriate one, the error term is not
necessarily random. Therefore, the correct model identi/cation is critical. Denote the
forecast from (7) as N̂ t , the combined forecast will be

ŷ t = L̂t + N̂ t : (8)

In summary, the proposed methodology of the hybrid system consists of two steps.
In the /rst step, an ARIMA model is used to analyze the linear part of the problem.
In the second step, a neural network model is developed to model the residuals from
the ARIMA model. Since the ARIMA model cannot capture the nonlinear structure of
the data, the residuals of linear model will contain information about the nonlinearity.
The results from the neural network can be used as predictions of the error terms
for the ARIMA model. The hybrid model exploits the unique feature and strength of
ARIMA model as well as ANN model in determining di5erent patterns. Thus, it could
be advantageous to model linear and nonlinear patterns separately by using di5erent
models and then combine the forecasts to improve the overall modeling and forecasting
performance.
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As previously mentioned, in building ARIMA as well as ANN models, subjective
judgement of the model order as well as the model adequacy is often needed. It is
possible that suboptimal models may be used in the hybrid method. For example, the
current practice of Box–Jenkins methodology focuses on the low order autocorrelation.
A model is considered adequate if low order autocorrelations are not signi/cant even
though signi/cant autocorrelations of higher order still exist. This suboptimality may
not a5ect the usefulness of the hybrid model. Granger [15] has pointed out that for a
hybrid model to produce superior forecasts, the component model should be suboptimal.
In general, it has been observed that it is more e5ective to combine individual forecasts
that are based on di5erent information sets [15,31].

4. Empirical results

4.1. Data sets

Three well-known data sets—the Wolf’s sunspot data, the Canadian lynx data, and
the British pound=US dollar exchange rate data—are used in this study to demonstrate
the e5ectiveness of the hybrid method. These time series come from di5erent areas and
have di5erent statistical characteristics. They have been widely studied in the statistical
as well as the neural network literature. Both linear and nonlinear models have been
applied to these data sets, although more or less nonlinearities have been found in
these series.
The sunspot data we consider contains the annual number of sunspots from 1700 to

1987, giving a total of 288 observations. The study of sunspot activity has practical
importance to geophysicists, environment scientists, and climatologists [16]. The data
series is regarded as nonlinear and non-Gaussian and is often used to evaluate the ef-
fectiveness of nonlinear models. The plot of this time series (see Fig. 1) also suggests
that there is a cyclical pattern with a mean cycle of about 11 years. The sunspot data

Fig. 1. Sunspot series (1700–1987).
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Fig. 2. Canadian lynx data series (1821–1934).

Fig. 3. Weekly BP=USD exchange rate series (1980–1993).

have been extensively studied with a vast variety of linear and nonlinear time series
models including ARIMA and ANNs.
The lynx series contains the number of lynx trapped per year in the Mackenzie River

district of Northern Canada. The data are plotted in Fig. 2, which shows a periodicity
of approximately 10 years. The data set has 114 observations, corresponding to the
period of 1821–1934. It has also been extensively analyzed in the time series literature
with a focus on the nonlinear modeling. Following other studies [3,33], the logarithms
(to the base 10) of the data are used in the analysis.
The last data set is the exchange rate between British pound and US dollar. Predicting

exchange rate is an important yet diHcult task in international /nance. Various linear
and nonlinear theoretical models have been developed but few are more successful in
out-of-sample forecasting than a simple random walk model. Recent applications of
neural networks in this area have yielded mixed results. The data used in this paper
contain the weekly observations from 1980 to 1993, giving 731 data points in the time
series. The time series plot is given in Fig. 3, which shows numerous changing turning
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Table 1
Sample compositions in three data sets

Series Sample size Training set (size) Test set (size)

Sunspot 288 1700–1920 (221) 1921–1987 (67)
Lynx 114 1821–1920 (100) 1921–1934 (14)
Exchange rate 731 1980–1992 (679) 1993 (52)

Table 2
Forecasting comparison for sunspot data

35 points ahead 67 points ahead

MSE MAD MSE MAD

ARIMA 216.965 11.319 306.08217 13.033739
ANN 205.302 10.243 351.19366 13.544365
Hybrid 186.827 10.831 280.15956 12.780186

points in the series. Following Meese and Rogo5 [27], we use the natural logarithmic
transformed data in the modeling and forecasting analysis.
To assess the forecasting performance of di5erent models, each data set is divided

into two samples of training and testing. The training data set is used exclusively for
model development and then the test sample is used to evaluate the established model.
The data compositions for the three data sets are given in Table 1.

4.2. Results

In this study, all ARIMA modeling is implemented via SAS=ETS system while neural
network models are built using the GRG2-based training system mentioned earlier. Only
the one-step-ahead forecasting is considered. The mean squared error (MSE) and mean
absolute deviation (MAD) are selected to be the forecasting accuracy measures.
Table 2 gives the forecasting results for the sunspot data. A subset autoregressive

model of order 9 has been found to be the most parsimonious among all ARIMA
models that are also found adequate judged by the residual analysis. This model has
also been used by many researchers such as Subba Rao and Gabr [33] and Hipel and
McLeod [16]. The neural model used is a 4× 4× 1 network as also employed by De
Groot and Wurtz [9] and Cottrell et al. [7]. Two forecast horizons of 35 and 67 periods
are used. Results show that while applying neural networks alone can improve the
forecasting accuracy over the ARIMA model in the 35-period horizon, the performance
of ANNs is getting worse as time horizon extends to 67 periods. This may suggest that
neither the neural network nor the ARIMA model captures all of the patterns in the
data. The results of the hybrid model show that by combining two models together,
the overall forecasting errors can be signi/cantly reduced except for the 35-period
forecasting with the MAD measure where ANN is slightly better. In terms of MSE,
the percentage improvements of the hybrid model over the ARIMA and ANN for
35-period forecasts are 16.13% and 9.89%, respectively. The comparison between the
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Fig. 4. (a) ARIMA prediction of sunspot. (b) Neural network prediction of sunspot and (c) Hybrid prediction
of sunspot.

actual value and the forecast value for the 67 points out-of-sample is given in Fig. 4.
Although at some data points, the hybrid model gives worse predictions than either
ARIMA or ANN forecasts, its overall forecasting capability is improved.
In a similar fashion, we have /tted to Canadian lynx data with a subset AR model

of order 12. This is a parsimonious model also used by Subba Rao and Gabr [33] and
others. The overall forecasting results for the last 14 years are summarized in Table 3.
A neural network structure of 7×5×1 gives slightly better forecasts than the ARIMA
model. Applying the hybrid method, we /nd an 18.87% (18.76%) decrease in MSE
over ARIMA (ANN). With MAD, the improvement of the hybrid model over the
ARIMA and ANN are 7.97% and 7.83%, respectively. Fig. 5 gives the actual vs.
forecast values with individual models of ANN and ARIMA as well as the combined
model.
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Table 3
Lynx forecasting results

MSE MAD

ARIMA 0.020486 0.112255
ANN 0.020466 0.112109
Hybrid 0.017233 0.103972

Fig. 5. (a) ARIMA prediction of Canadian lynx. (b) Neural network prediction of Canadian lynx. (c) Hybrid
prediction of Canadian lynx.
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Table 4
Exchange rate forecasting resultsa

1 month 6 months 12 months

MSE MAD MSE MAD MSE MAD

ARIMA 3.68493 0.005016 5.65747 0.0060447 4.52977 0.0053597
ANN 2.76375 0.004218 5.71096 0.0059458 4.52657 0.0052513
Hybrid 2.67259 0.004146 5.65507 0.0058823 4.35907 0.0051212

aNote: All MSE values should be multiplied by 10−5.

With the exchange rate data, the best linear ARIMA model is found to be the random
walk model: yt = yt−1 + �t . This is the same /nding suggested by many studies in the
exchange rate literature that a simple random walk is the dominant linear model. This
means that the most recent observation is the best guide for the next prediction. A
neural network of 7× 6× 1 is used to model the nonlinear patterns. Table 4 presents
the test sample results with three time horizons of 1, 6 and 12 months. Results show
that for short-term forecasting (1 month), both neural network and hybrid models are
much better in accuracy than the random walk model. For longer time horizons, the
ANN model gives a comparable performance to the ARIMA model. The hybrid model
outperforms both ARIMA and ANN models consistently across three di5erent time
horizons and with both error measures although the improvement for longer horizons
is not very impressive. The point-to-point comparison between actual and predicted
values is given in Fig. 6.

5. Conclusions

Time series analysis and forecasting is an active research area over the last few
decades. The accuracy of time series forecasting is fundamental to many decision
processes and hence the research for improving the e5ectiveness of forecasting models
has never stopped. With the e5orts of Box and Jenkins [2], the ARIMA model has
become one of the most popular methods in the forecasting research and practice. More
recently, arti/cial neural networks have shown their promise in time series forecasting
applications with their nonlinear modeling capability. Although both ARIMA and ANNs
have the Dexibility in modeling a variety of problems, none of them is the universal
best model that can be used indiscriminately in every forecasting situation.
In this paper, we propose to take a combining approach to time series forecasting.

The linear ARIMA model and the nonlinear ANN model are used jointly, aiming to
capture di5erent forms of relationship in the time series data. The hybrid model takes
advantage of the unique strength of ARIMA and ANN in linear and nonlinear modeling.
For complex problems that have both linear and nonlinear correlation structures, the
combination method can be an e5ective way to improve forecasting performance. The
empirical results with three real data sets clearly suggest that the hybrid model is able
to outperform each component model used in isolation.
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Fig. 6. (a) ARIMA prediction of exchange rate. (b) Neural network prediction of exchange rate. (c) Hybrid
prediction of exchange rate.

Various combining methods have been proposed in the literature. However, most
of them are designed to combine the similar methods. Linear models are often com-
bined in the traditional forecasting literature. In the neural network literature, neural
committee and neural network ensemble are often used to describe the combination of
several neural networks. Although this type of combination has improved forecasting
accuracy, we believe a more e5ective way of combining should be based on quite dif-
ferent models. Theoretical as well empirical evidences in the literature suggest that by
using dissimilar models or models that disagree each other strongly, the hybrid model
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will have lower generalization variance or error [15,20,31]. Additionally, because of
the possible unstable or changing patterns in the data, using the hybrid method can
reduce the model uncertainty which typically occurred in statistical inference and time
series forecasting [5]. Furthermore, by /tting the ARIMA model /rst to the data, the
over/tting problem that is more strongly related to neural network models can be
eased.
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