
Code and Data for the Social Sciences:
A Practitioner’s Guide

Matthew Gentzkow Jesse M. Shapiro1

Chicago Booth and NBER

March 11, 2014

1Copyright (c) 2014, Matthew Gentzkow and Jesse M. Shapiro. E-mail:
matthew.gentzkow@chicagobooth.edu, jesse.shapiro@chicagobooth.edu. Please cite this
document as: Gentzkow, Matthew and Jesse M. Shapiro. 2014. Code and Data
for the Social Sciences: A Practitioner’s Guide. University of Chicago mimeo,
http://faculty.chicagobooth.edu/matthew.gentzkow/research/CodeAndData.pdf.



1



Contents

1 Introduction 3

2 Automation 6

3 Version Control 11

4 Directories 15

5 Keys 18

6 Abstraction 22

7 Documentation 26

8 Management 30

Appendix: Code Style 35

2



Chapter 1

Introduction

What does it mean to do empirical social science? Asking good questions. Digging up novel data.

Designing statistical analysis. Writing up results.

For many of us, most of the time, what it means is writing and debugging code. We write

code to clean data, to transform data, to scrape data, and to merge data. We write code to execute

statistical analyses, to simulate models, to format results, to produce plots. We stare at, puzzle

over, fight with, and curse at code that isn’t working the way we expect it to. We dig through old

code trying to figure out what we were thinking when we wrote it, or why we’re getting a different

result from the one we got the week before.

Even researchers lucky enough to have graduate students or research assistants who write code

for them still spend a significant amount of time reviewing code, instructing on coding style, or

fixing broken code.

Though we all write code for a living, few of the economists, political scientists, psychologists,

sociologists, or other empirical researchers we know have any formal training in computer science.

Most of them picked up the basics of programming without much effort, and have never given it

much thought since. Saying they should spend more time thinking about the way they write code

would be like telling a novelist that she should spend more time thinking about how best to use

Microsoft Word. Sure, there are people who take whole courses in how to change fonts or do mail

merge, but anyone moderately clever just opens the thing up and figures out how it works along

the way.

This manual began with a growing sense that our own version of this self-taught seat-of-the-

3



CHAPTER 1. INTRODUCTION 4

pants approach to computing was hitting its limits. Again and again, we encountered situations

like:

• In trying to replicate the estimates from an early draft of a paper, we discover that the code

that produced the estimates no longer works because it calls files that have since been moved.

When we finally track down the files and get the code running, the results are different from

the earlier ones.

• In the middle of a project we realize that the number of observations in one of our regressions

is surprisingly low. After much sleuthing, we find that many observations were dropped in a

merge because they had missing values for the county identifier we were merging on. When

we correct the mistake and include the dropped observations, the results change dramatically.

• A referee suggests changing our sample definition. The code that defines the sample has

been copied and pasted throughout our project directory, and making the change requires

updating dozens of files. In doing this, we realize that we were actually using different

definitions in different places, so some of our results are based on inconsistent samples.

• We are keen to build on work a research assistant did over the summer. We open her directory

and discover hundreds of code and data files. Despite the fact that the code is full of long,

detailed comments, just figuring out which files to run in which order to reproduce the data

and results takes days of work. Updating the code to extend the analysis proves all but

impossible. In the end, we give up and rewrite all of the code from scratch.

• We and our two research assistants all write code that refers to a common set of data files

stored on a shared drive. Our work is constantly interrupted because changes one of us makes

to the data files causes the others’ code to break.

At first, we thought of these kinds of problems as more or less inevitable. Any large scale endeavor

has a messy underbelly, we figured, and good researchers just keep calm, fight through the frustra-

tions, and make sure the final results are right. But as the projects grew bigger, the problems grew

nastier, and our piecemeal efforts at improving matters—writing handbooks and protocols for our

RAs, producing larger and larger quantities of comments, notes, and documentation—proved ever

more ineffective, we had a growing sense that there must be a way to do better.



CHAPTER 1. INTRODUCTION 5

In the course of a project involving a really big dataset, we had the chance to work with a

computer scientist who had, for many years, taught the course on databases at the University of

Chicago. He showed us how we could organize our really big dataset so that it didn’t become

impossible to work with. Neat, we thought, and went home.

Around that time we were in the middle of assembling a small (but to us, very important)

dataset of our own. We spent hours debating details of how to organize the files. A few weeks in

we realized something. We were solving the same problem the computer scientist had shown us

how to solve. Only we were solving it blind, without the advantage of decades of thought about

database design.

Here is a good rule of thumb: If you are trying to solve a problem, and there are multi-billion

dollar firms whose entire business model depends on solving the same problem, and there are

whole courses at your university devoted to how to solve that problem, you might want to figure

out what the experts do and see if you can’t learn something from it.

This handbook is about translating insights from experts in code and data into practical terms

for empirical social scientists. We are not ourselves software engineers, database managers, or

computer scientists, and we don’t presume to contribute anything to those disciplines. If this

handbook accomplishes something, we hope it will be to help other social scientists realize that

there are better ways to work.

Much of the time, when you are solving problems with code and data, you are solving problems

that have been solved before, better, and on a larger scale. Recognizing that will let you spend less

time wrestling with your RA’s messy code, and more time on the research problems that got you

interested in the first place.



Chapter 2

Automation

Rules

(A) Automate everything that can be automated.

(B) Write a single script that executes all code from beginning to end.

Let’s start with a simple research project. We wish to test the hypothesis that the introduction

of television to the US increased sales of potato chips. We receive an Excel file by e-mail with

two worksheets: (i) "tv," which contains for each county in the US the year that television was first

introduced; and (ii) "chips," which contains total sales of potato chips by county by year from 1940

to 1970. We wish to run a panel regression of log chip sales on a dummy variable for television

being available with county and year fixed effects.

Here is one way we might proceed: Open the file in Excel and use "Save As" to save the work-

sheets as text files. Open up a statistical program like Stata, and issue the appropriate commands to

load, reshape, and merge these text files. Define a new variable to hold logged chip sales, and issue

the command to run the regression. Open a new MS Word file, copy the output from the results

window of the statistical program into a table, write up an exciting discussion of the findings, and

save. Submit to a journal.

Just about everybody learns early in graduate school, if not before, that this "interactive" mode

of research is bad. They learn that the data building and statistical analysis should be stored in

scripts—.do files in Stata, .m files in Matlab, .r files in R, and so forth.

It is worth pausing to remember why we don’t like the interactive mode. There are many

6



CHAPTER 2. AUTOMATION 7

reasons, but two big ones.

The first is replicability. If the next day, or the next year, we want to reproduce our regression

of chip sales on TV, we might dig up tv.csv and chips.csv, load them back into Stata, and set

to work reshaping, merging, defining variables, and so forth. Perhaps we will get lucky, since this

analysis is so simple, and get back the same coefficient when we run the regression. Or perhaps not.

Even in this simple example, there are innumerable things that could go wrong: since writing the

paper we have received an updated version of tv.csv and we inadvertently use the new one rather

than the old one; we forget that we dropped several counties whose chip sales were implausibly

large; we compute regular standard errors whereas before we computed robust standard errors; and

so on.

On a deeper level, because there is no record of the precise steps that were taken, there is no

authoritative definition of what the numbers in our paper actually are. If someone later asks why

the number of observations reported in our table is different from the number of observations in the

raw data, or how we computed our standard errors, or what we did with county-years with missing

chip sales, and we ran the analysis interactively, we will have no way to say for sure.

The second reason is efficiency. If we decide to run a different regression, say using the level

rather than the log of chip sales, we will have to go back and repeat all of the steps of building

and cleaning the data. We can avoid this by saving the combined dataset before running any

regressions, but if we later wish to change which observations we keep and which we drop, we

will be back to square one.

In a real project, there might be a thousand steps from raw data to final results. For each of

these, there could be several alternatives, detours, and experiments that were tried and discarded.

Each step is typically run hundreds of times as the analysis is developed and refined. Trying to run

and re-run all these steps interactively would be completely untenable.

For this reason, most researchers learn to script key steps, especially data manipulation and

statistical analysis. Here is what the project directory for the paper above might look like after

we switched to writing .do files, expanded our analysis a bit, and switched to LATEX for word

processing:



CHAPTER 2. AUTOMATION 8

chips.csv mergefiles.do tv_potato_submission.pdf

cleandata.do regressions_alt.do tv_potato.tex

extract0B.xls regressions_alt.log tv.csv

fig1.eps regressions.do tvdata.dta

fig2.eps regressions.log

figures.do tables.txt

This is certainly a big improvement over our initial interactive approach. If we stare at these files

for a while, we can probably work out more or less what they are. Extract0B.xls is the raw

data file, chips.csv and tv.csv are the text files exported from Excel, and tvdata.dta is the

combined data file in Stata format. Mergefiles.do and cleandata.do are the scripts that build

the data, figures.do, regressions.do, and regressions_alt.do are the scripts that run the

analysis, and the .log and .eps files are the output. Tv_potato.tex is the paper, tables.txt

contains the tables, and tv_potato_submission is the PDF version we submitted to the journal.

But if we set about actually trying to reproduce tv_potato_submission.pdf, we’d immedi-

ately run into a bunch of questions. Should we export all observations from extract0B.xls, or

just those with nonmissing data? Which should be run first, cleandata.do or mergedata.do?

Does it matter in which order we run regressions.do and figures.do? Is the output from

regression_alt.do actually used in the paper or is this file just left over from some experimen-

tation? What is tables.txt? Is it produced manually or by code? Which numbers in the log

files correspond to the numbers reported in the paper? Is tv_potato_submission.pdf just a

PDF version of tv_potato.tex or did we do additional formatting, etc. before submitting to the

journal?

We suspect that the experience of trying to reverse-engineer the build steps for a directory

like this will feel familiar to many readers who have tried to make sense of directories their RAs

or coauthors produced, or even directories that they produced themselves a few months in the

past. In this toy example, the problems are probably surmountable and, assuming that we didn’t

do anything silly like modify and rerun regressions.do after the PDF was produced, we could

probably reproduce the paper in a reasonable amount of time. But as most of us know from

painful experience, the reverse-engineering process for a moderately complex project can easily

become days or weeks of frustrating work, and the probability of those “silly” mistakes that render



CHAPTER 2. AUTOMATION 9

replication all but impossible is remarkably high.

To make the output of our directory replicable, we need to automate more steps. And we need

a way to store the information about the order in which the steps are run.

First, let’s add a Stat/Transfer script called export_to_csv.stc that handles the conversion

from Excel. (Stata can also do this directly using the “import excel” command.) Next, let’s switch

from outputting tables.txt to outputting tables.tex, a LATEX file produced by Stata’s “outreg”

command.

Finally, let’s add another key script to the directory, called rundirectory.bat, which is a

Windows shell script. Its contents look like this:

---- rundirectory.bat ----

stattransfer export_to_csv.stc

statase -b mergefiles.do

statase -b cleandata.do

statase -b regressions.do

statase -b figures.do

pdflatex tv_potato.tex

The rundirectory.bat script works like a roadmap, telling the operating system how to run the

directory. Importantly, the rundirectory script also tells a human reader how the directory works.

But unlike a readme file with notes on the steps of the analysis, rundirectory.bat cannot be

incomplete, ambiguous, or out of date.

The proof in the pudding is that we can now delete all of the output files in the directory –

the .csv files, the .log and .eps files, tables.tex, the .pdf – and reproduce them by running

rundirectory.bat. This is the precise sense in which the output is now replicable.

Writing a shell script like rundirectory.bat is easy.1 You may need a few tweaks, such as

adding Stata to your system path, but many of these will be useful anyway. You could write all these

steps into a Stata script (rundirectory.do), but a system shell provides a more natural interface

for calling commands from multiple software packages, and for operating system commands like

moving or renaming files.
1If you don’t use Windows, Linux shell files work almost the same way. And if you’re comfortable with Python,

you can do even better, and write a rundirectory.py that will work on both Windows and Linux systems.



CHAPTER 2. AUTOMATION 10

Of course, rundirectory.bat does not automate everything. We could (and, admittedly, are

tempted to) write a little Python script to submit the paper to a journal, but that seems like overkill

even to us.

On the other hand, we have consistently found that pushing the boundaries of automation pays

big dividends. The costs tend to be lower than they appear, and the benefits bigger. A rule of

research is that you will end up running every step more times than you think. And the costs of

repeated manual steps quickly accumulate beyond the costs of investing once in a reusable tool.

We used to routinely export files from Excel to CSV by hand. It worked ok until we had a

project that required exporting 200 separate text files from an Excel spreadsheet. We followed our

usual practice and did the export manually. Some time later, the provider sent us a new Excel file

reflecting some updates to the data. We had learned our lesson.



Chapter 3

Version Control

Rules

(A) Store code and data under version control.

(B) Run the whole directory before checking it back in.

In the last chapter, we showed what the project directory for our seminal TV and potato chips

project might look like. After we work on the directory for a while, the key files might look like

this:

cleandata_022113.do cleandata_022613.do regressions.log

cleandata_022113a.do cleandata_022613_jms.do regressions_022413.do

chips.csv tvdata.dta regressions_022713_mg.do

regressions_022413.log

Dates are used to demarcate versions of files. Initials (JMS for Jesse, MG for Matt) are used to

indicate authorship.

There are good reasons to store multiple versions of the same file. The most obvious is that it

provides a quick way to roll back changes you want to discard. Another is that it facilitates com-

parison. Maybe Matt wants to show Jesse how he’s thinking of changing their main specification.

Creating regressions_022713_mg.do may be a good way to illustrate what he has in mind. If

Jesse doesn’t like it, he can always delete it.

11



CHAPTER 3. VERSION CONTROL 12

The goal is admirable, but the method is wrong. There are two main reasons why. First, it is a

pain. The researcher needs to decide when to “spawn” a new version and when to continue to edit

the old one (hence 022113a). The researcher needs to tag authorship and date every file. Failing to

do that will result in confusion: Why is the date on the file name February 21 when the operating

system says this was last edited in March?

And confusion is the second, and by far the more important, reason why this “date and initial”

method is poor. Look at the file names above and answer the following questions: Which is the log

file produced by regressions_022713_mg.do? Did the author (darn you, Matt!) fail to change

the output file name in the code, overwriting regressions_022413.log? Did he simply not

output a log?

Which version of cleandata.do produces the data file used by regressions_022413.do? Is

it the one labeled 022113a—the last one before February 24? Or was regressions_022413 cre-

ated on February 24 but edited later, raising the possibility that it needs output from cleandata_022613.do

to run correctly? Unfortunately, we failed to tag tvdata.dta with a date and initial—probably

because changing the file name in three different places with each new version is an enormous

hassle.

Given a few minutes to look at the system dates and file contents, you could probably work

out which inputs are needed by which scripts. And, having learned your lesson, next time you

will harangue your coauthor and RAs to remember to date and initial every script, LOG file, and

intermediate data file, so hopefully there’s no more confusion.

This is too much work just to keep track of multiple versions of files. And it creates a se-

rious risk that, later, you won’t be able to sort out which file goes with which, and hence you

won’t be able to replicate your results. Fortunately, your computer can take care of this for you,

automatically, using free software that you can set up in a few minutes.

Before we tell you how, we will start with a fact. (This is, after all, a handbook for empirical

researchers.) Not one piece of commercial software you have on your PC, your phone, your tablet,

your car, or any other modern computing device was written with the “date and initial” method.

Instead, software engineers use a tool called version control software to track successive ver-

sions of a given piece of code. Version control works like this. You set up a “repository” on your

PC (or, even better, on a remote server). Every time you want to modify a directory, you “check it



CHAPTER 3. VERSION CONTROL 13

out” of the repository. After you are done changing it, you check it back in. That’s it. You don’t

change file names, add dates, or anything. Instead, the software remembers every version that was

ever checked in.

What happens if you change your mind about something? You ask the software for a history

of changes to the directory and, if you want to go back to an old version of the directory or even of

a single file, the operation just takes a click.

And what about your sneaky coauthor’s decision to change the main regression model spec-

ification without telling you? The version control software automatically records who authored

every change. And if you want to see what the changes were, most modern packages will show

you a color-coded side-by-side comparison illustrating which lines of code changed and how.1

The main thing about this approach that is great, and the reason real software engineers must

use a tool like this, is that it maintains a single, authoritative version of the directory at all times.

In rare cases where two people try to make simultaneous and conflicting changes to the same file,

the software will warn them and help them reconcile the conflicts.

A major ancillary benefit is therefore that you can edit without fear. If you make a mistake, or

if you start in a new direction but later change your mind, you can always roll back all or part of

your changes with ease. This requires no keeping track of dates and initials. All file names can

remain just as nature intended. The software handles the versioning for you, so you can focus on

writing the code and making it right. You didn’t spend six years in grad school so you could type

in today’s date all over the place.

To visualize how much better your life would be with your code and data under version control,

recall (if, gasp, you are old enough) what word processing was like before the invention of the

“undo” command. A bad keystroke might spell doom. Version control is like an undo command

for everything.

So our first rule is to keep everything—code and data—under version control. In fact, version

control is fantastic for things like drafts of your papers, too. It allows you to overwrite changes

without fear, to keep track of authorship, etc. (Some readers will have noticed the attractions of the

“version history” feature of GoogleDocs, which is based on version control models from software

1For a slightly more advanced user, there are also well-defined methods for changing code in a way that is ex-
plicitly tentative, so you can “pencil in” some changes and let your coauthor have a look before you take them on
board.



CHAPTER 3. VERSION CONTROL 14

engineering. With version control software you get that functionality with LATEX, LYX, or whatever

is your favorite editing package.)

But if you want to get the most out of this approach, there is a second rule: you have to run

the entire directory before you check in your changes. Return to our example, now dropping the

annoying date and initial tags, and adding back rundirectory.bat (which, you’ll recall, will run

every script from top to bottom).

rundirectory.bat tvdata.dta

cleandata.do regressions.do

chips.csv regressions.log

Suppose Jesse modifies cleandata.do and runs it to overwrite tvdata.dta. If Jesse checks in

that change, Matt may find later that regressions.do breaks when he tries to run it, because of a

change to tvdata.dta that regressions.do wasn’t expecting.

The way to fix this problem and ensure it never happens again is just to execute rundirectory.bat,

from start to finish, and check for errors before checking in the directory. If every version you check

in has been run successfully via rundirectory.bat, then you know that, barring changes in the

software itself, the next time you check it out, you will get back the output in regressions.log

exactly.

Note that this is not a problem with the version control software. The “date and initial” method

creates the same potential for this type of within-directory conflict, arguably more so, since a

lot of effort is required to keep track of which input files are required for which scripts. Rather,

version control, coupled with the rule of checking in complete runs of a directory, provides a

comprehensive solution that guarantees both replicability and undo-ability with minimal effort.

OK, you’re convinced. Now what? A step-by-step guide to setting up and using version control

software is a bit outside our scope here. But for what it’s worth, we use a SubVersion repository

that we interact with using the very nice TortoiseSVN browser for Windows. Comparable software

exists for Macs. More recent version control methods like Git or BitBucket may be worth checking

out. It will probably take you a couple days to set up a repository and learn how you want to interact

with it. You will break even on that time investment within a month or two.



Chapter 4

Directories

Rules

(A) Separate directories by function.

(B) Separate files into inputs and outputs.

(C) Make directories portable.

Let’s return to the main directory for our potato chip project:

���C:/tv_and_potato/���

chips.csv mergefiles.do tv_potato_submission.pdf

cleandata.do regressions_alt.do tv_potato.tex

extract0B.xls regressions_alt.log tv.csv

fig1.eps regressions.do tvdata.dta

fig2.eps regressions.log rundirectory.bat

figures.do tables.txt export_to_csv.stc

The directory above contains all the steps for the entire project, governed by the single batch file

rundirectory.bat.

Having a single directory that has and does everything has some appeal, but for most real-

world research projects this organizational system is not ideal. Consider the following scenar-

ios. (i) The researcher wants to change a regression specification, but does not want to re-run

the entire data build. (ii) The researcher learns about a neat Stata command that makes the script

15



CHAPTER 4. DIRECTORIES 16

export_to_csv.stc and its outputs tv.csv and chips.csv unnecessary. Before making this im-

provement, however, the researcher must search through regressions.do and regressions_alt.do

to make sure these scripts do not depend on tv.csv and chips.csv in addition to tvdata.dta.

Consider the following alternative directory structure (leaving aside the TEX and PDF files for

simplicity):

���C:/build��� ���C:/analysis���

/input /input

extract0B.xls tvdata.dta (link to C:/build/output)

/code /code

rundirectory.bat rundirectory.bat

export_to_csv.stc regressions.do

mergefiles.do regressions_alt.do

/output /output

tvdata.dta fig1.eps

fig2.eps

tables.txt

/temp /temp

chips.csv regressions.log

tv.csv regressions_alt.log

There are now two high-level directories. One contains the code to build a useable Stata file from

the raw inputs. The other contains code to take the Stata file and turn it into figures and tables for

the paper.

Within each high-level directory there is a consistent subdirectory structure that separates in-

puts, outputs, code, and temporary or intermediate files. Each directory is still controlled by a

single script called rundirectory.bat that executes from start to finish. (In fact, we advocate



CHAPTER 4. DIRECTORIES 17

having rundirectory.bat start by clearing the contents of /temp and /output, so you can be sure

all your output is produced by your current code.)

It is now easy to modify the analysis without re-running the data build. And it is now clear

from the directory structure that only tvdata.dta is required by the analysis code: chips.csv

and tv.csv are explicitly designated as temp files. Finally, because we are using a local link

to the input data, we can write all the code in the analysis directory to use local references

(../input/tvdata.dta instead of C:/build/output/tvdata.dta).1

A disadvantage of this structure is that the code in C:/analysis will break if it is run on a different

machine (where the link to tvdata.dta is not valid), or if the structure of tvdata.dta changes. What

we actually do in practice is therefore slightly more complicated: in place of tvdata.dta, we link

to fixed revisions of our datasets on shared network storage. This means an /analysis/ directory

like the one above can be run anywhere with network access. The fixed revision bit means that

if someone modifies the structure of the data and checks in a new revision, the analysis code will

continue to work, as it still points to the old revision. (Of course at some point someone will

probably want to redirect it to the new revision, but the user gets to decide when to do this, rather

than having her code break unexpectedly.)

We have only outlined a few of the advantages of using modular, functional directories to orga-

nize code. There are many others. For example, the output of C:/build is now easily accessible by

any directory, which makes it easier to have multiple projects that use the same data file without

creating multiple, redundant copies. And, separating scripts into functional groups makes debug-

ging easier and faster when something goes wrong.

1It is easy to create a “symbolic link” to a file in another directory; see your operating system’s documentation
for details. An alternative would be to add code to rundirectory.bat that copies tvdata.dta into /input from
C:/build/output. This would also allow your code to use local file references, but at the cost of duplicating the
storage of tvdata.dta.



Chapter 5

Keys

Rules

(A) Store cleaned data in tables with unique, non-missing keys.

(B) Keep data normalized as far into your code pipeline as you can.

It is well known that television went to big cities first. So a good analysis of the effect of

television on potato chip consumption requires good data on population as a control. We ask an

RA to prepare a population dataset to facilitate our analysis. Here it is:

county state cnty_pop state_pop region

36037 NY 3817735 43320903 1

36038 NY 422999 43320903 1

36039 NY 324920 . 1

36040 . 143432 43320903 1

. NY . 43320903 1

37001 VA 3228290 7173000 3

37002 VA 449499 7173000 3

37003 VA 383888 7173000 4

37004 VA 483829 7173000 3

What a mess. How can the population of the state of New York be 43 million for one county

18



CHAPTER 5. KEYS 19

but “missing” for another? If this is a dataset of counties, what does it mean when the “county”

field is missing? If region is something like Census region, how can two counties in the same state

be in different regions? And why is it that all the counties whose codes start with 36 are in New

York except for one, where the state is unknown?

We can’t use these data, because we don’t understand what they mean. Without looking back

at the underlying code, we could never say confidently what every variable is, or even every row.

And we can forget trying to merge on attributes from another dataset. How would we know which

state goes with county 36040? Or which region to use for 37003?

We know many researchers who spend time wrestling with datasets like this, and barking at

RAs, students, or collaborators to fix them.

There must be a better way, because we know that large organizations like financial institu-

tions, retailers, and insurers have to manage much more complex data in real time, with huge

consequences of mistakes.

Long ago, smart people figured out a fundamental principle of database design: that the physi-

cal structure of a database should communicate its logical structure.

If you gave your county Census data to someone with training in databases, you’d probably get

back something like this, called a relational database:

county state population

36037 NY 3817735

36038 NY 422999

36039 NY 324920

36040 NY 143432

37001 VA 3228290

37002 VA 449499

37003 VA 383888

37004 VA 483829

state population region

NY 43320903 1

VA 7173000 3

Now the ambiguity is gone. Every county has a population and a state. Every state has a

population and a region. There are no missing states, no missing counties, and no conflicting

definitions. The database is self-documenting. In fact, the database is now so clear that we can



CHAPTER 5. KEYS 20

forget about names like county_pop and state_pop and just stick to “population.” Anyone would

know which entity’s population you mean.

Note that when we say relational database here, we are referring to how the data are structured,

not to the use of any fancy software. The data above could be stored as two tab-delimited text files,

or two Stata .dta files, or two files in any standard statistical package that expects rectangular

data.

Stepping back from this example, there are a few key principles at work here. To understand

these it is helpful to have some vocabulary. Data is stored in rectangular arrays called tables. In the

example above, there is a county table and a state table. We will refer to rows of tables as elements

and columns of tables as variables.

Critically, each table has a key (rule A). A key is a variable or set of variables that uniquely

identifies the elements of a table. The variables that form the key never take on missing values,

and a key’s value is never duplicated across rows of the table. So, a state table has one and only

one row for New York, and no rows where state is missing.

Each variable in a table is an attribute of the table’s elements. County population is a property

of a county, so it lives in the county table. State population is a property of a state, so it cannot live

in the county table. If we had panel data on counties, we would need separate tables for things that

vary at the county level (like state) and things that vary at the county-year level (like population).

This is the main reason that most data files researchers use for analysis do not satisfy the database

rules: they typically combine variables defined at several different levels of aggregation.

The variables in a table can include one or more foreign keys. A foreign key is the key for

another table in the database. In the county table, the variable “state” is a foreign key: it matches

a county to an element of the state table. Foreign keys obey the same rules as all variables: they

are included at the level of logical attribution. States are in regions, and counties are in states, so

“state” shows up in the county table, and “region” in the state table.

Data stored in the form we have outlined is considered normalized. Storing normalized data

means your data will be easier to understand and it will be harder to make costly mistakes.

Most statistical software won’t run a regression on a relational database. To perform our anal-

ysis we are going to need to merge (or join, in database-speak) the tables together to produce a

single rectangular array. Plus, we might need to calculate some variables that aren’t in our source



CHAPTER 5. KEYS 21

data, such as the log of population.

To get from the data you downloaded, entered, or bought from an original source to the matrix

on which you will perform estimation, we recommend proceeding in three steps.

First, store your raw data in normalized files that preserve the information in the original data

source and follows the rules above. Don’t worry about how you plan to use the data. Rather,

imagine that you are preparing the data for release to a broad group of users with differing needs.

Do this because you, yourself, are likely to want to use the data in ways you do not currently

anticipate.

Second, construct a second set of normalized files that includes the transformations of the

original variables that you will need for your analysis. For example, you might add to the county

table a variable indicating the county’s population rank within its state. At this stage you can also

bring in variables from other databases. For example, you might use a geography database to bring

in county latitude and longitude.

Third, merge together the tables in the database to form the rectangular array on which you

will estimate your model. At this stage, your database should still have unique, non-missing keys,

but it will likely not be normalized. In our example, you will have a county-level file that includes

variables like region that are not properties of counties. If you had panel data, your file would

include both county-level and county-year-level variables. Do no data manipulation in this step. If

your analysis requires the log of state population, calculate it while your database complies with

the rules.

Following the steps above means you can keep your data in a normalized form until the last

possible step in the code (rule B).



Chapter 6

Abstraction

Rules

(A) Abstract to eliminate redundancy.

(B) Abstract to improve clarity.

(C) Otherwise, don’t abstract.

We are concerned about spatial correlation in potato chip consumption. We want to test whether

per capita potato chip consumption in a county is correlated with the average per capita potato chip

consumption among other counties in the same state. First we must define the “leave-out” mean of

per capita consumption for each county:

egen total_pc_potato = total(pc_potato), by(state)

egen total_obs = count(pc_potato), by(state)

gen leaveout_state_pc_potato = (total_pc_potato - pc_potato) / (total_obs - 1)

We can now test whether pc_potato is correlated with leaveout_state_pc_potato. If so, we

may need to adjust how we compute the standard errors in our model. We perform our analysis

and are comforted to find little evidence of spatial correlation.

But what if we are using the wrong level of aggregation? Maybe spatial correlation will show

up at the level of the metropolitan area. Let’s copy and paste the code above and then adapt it to

use metropolitan area instead of state as the level of aggregation:

22



CHAPTER 6. ABSTRACTION 23

egen total_pc_potato = total(pc_potato), by(metroarea)

egen total_obs = count(pc_potato), by(state)

gen leaveout_metro_pc_potato = (total_pc_potato - pc_potato) / (total_obs - 1)

And while we’re at it, let’s check if there is more spatial correlation in potato chip consumption

when measured on a per-household rather than per-capita basis. For this we will need a third

leave-out mean:

egen total_hh_potato = total(hh_potato), by(metroarea)

egen total_obs = count(hh_potato), by(state)

gen leaveout_metro_hh_potato = (total_hh_potato - pc_potato) / (total_obs - 1)

Note the errors. In the first “copy-and-paste” operation, we failed to replace an instance of state

with metroarea. In the second, we propagated the first error, plus we failed to replace one use of

the per-capita potato variable with the per-household analogue. The code will run, but everything

after the first code block will be totally wrong.

Consider an alternative to the copy-and-paste approach, which is to write a general-purpose

function that computes the leave-out mean of a variable:

program leaveout_mean

syntax, invar(varname) outvar(name) byvar(varname)

tempvar tot_invar count_invar

egen `tot_invar'= total(`invar'), by(`byvar')

egen `count_invar'= count(`invar'), by(`byvar')

gen `outvar' = (`tot_invar' - `invar') / (`count_invar' - 1)

end

Having defined the function above, we can now replace our three code blocks with three lines:

leaveout_mean, invar(pc_potato) outvar(leaveout_state_pc_potato) byvar(state)

leaveout_mean, invar(pc_potato) outvar(leaveout_metro_pc_potato) byvar(metro)

leaveout_mean, invar(hh_potato) outvar(leaveout_metro_hh_potato) byvar(metro)



CHAPTER 6. ABSTRACTION 24

Now the amount of copying and pasting is minimized: each input is changed only once as we go

from line to line. And because we wrote the leaveout_mean function to be totally general, we can

use it for other projects as well as this one.1 We will never again have to write code from scratch

to compute a leave-out mean.

Key to achieving these goals is recognizing that all three code blocks were just specific in-

stances of the same abstract idea: compute the mean of a variable across observations in a group,

excepting the given observation. In programming, turning the specific instances of something into

a general-purpose tool is known as abstraction.

Abstraction is essential to writing good code for at least two reasons. First, as we saw above, it

eliminates redundancy, which reduces the scope for error and increases the value you can get from

the code you write. Second, just as importantly, it makes code more readable.2 A reader scanning

one of the three code blocks above might easily miss their purpose. By contrast, a call to a function

called leaveout_mean is hard to misunderstand.

Abstraction can be taken too far. If an operation only needs to be performed once, and the code

that performs it is easy to read, we would not advise abstraction. Abstracting without a purpose

can lead you to spend a lot of time dealing with cases that will never come up in your work.

When you do have a function you plan to use often, you should take the time to implement

it carefully. One thing we have found helpful is the software engineering practice of “unit test-

ing.” This means writing a script that tests out the behavior of the function you’ve written to

make sure it works as intended. For example, we might make some fake data and verify that the

leaveout_mean calculates the leave-out mean correctly. An advantage of unit testing is that it al-

lows you to safely change your function without fear that you will introduce errors that will break

your code down the line. It also provides a convenient way to document how the function works:

what inputs it requires, what inputs it will not accept, etc.

Abstraction is not just about code. It is relevant anywhere you find yourself repeating an

operation. The principles in this chapter, for example, explain why word processing packages

come with templates for standard document types like memos or reports. And these principles are

1In Stata, as with just about any program you are likely to use, it is easy to make a function portable and accessible
anytime you use the program.

2In fact, we have found that the general version of a function is often easier to write as well as easier to read. (To
see why, think about how much harder it would be to program a linear regression for a specific matrix of variables
than for a general one.)



CHAPTER 6. ABSTRACTION 25

the reason why, rather than just repeatedly telling our RAs how we thought code should be written,

we decided to write this handbook!



Chapter 7

Documentation

Rules

(A) Don’t write documentation you will not maintain.

(B) Code should be self-documenting.

We have estimated the effect of television on potato chip consumption. To illustrate the per-

nicious consequences for society we wish to perform a welfare analysis, for which we will need

to compute an elasticity. Fortunately, Jesse’s dissertation studied the effect of a tax increase on

demand for potatoes, from which we can back out the elasticity of demand.

Here is how a section of our Stata code might look:

* Elasticity = Percent Change in Quantity / Percent Change in Price

* Elasticity = 0.4 / 0.2 = 2

* See Shapiro (2005), The Economics of Potato Chips,

* Harvard University Mimeo, Table 2A.

compute_welfare_loss, elasticity(2)

Notice the helpful comments that provide a roadmap to the reader.

Many researchers we know spend a lot of energy haranguing themselves, their coauthors, and

their research assistants to write more comments like the above, and in general, to carefully docu-

26



CHAPTER 7. DOCUMENTATION 27

ment the organization of their code and data outside of the scripts and data files themselves. You

might expect us to say the same. After all, we love organizing things. But in this chapter we will

try to convince you to document less, not more. To see why, we continue our story.

A few months after writing the first version of our script we return to our code to revise the

analysis. We find the following:

* Elasticity = Percent Change in Quantity / Percent Change in Price

* Elasticity = 0.4 / 0.2 = 2

* See Shapiro (2005), The Economics of Potato Chips,

* Harvard University Mimeo, Table 2A.

compute_welfare_loss, elasticity(3)

Notice the conflict in red. Maybe someone noticed a typo in the original calculation, or decided to

use the estimates from Table 2B instead of Table 2A of Jesse’s dissertation. Whatever its origin,

the problem is clear: the comments contradict the code, and it is now unclear which (if either) is

correct. Someone will have to go back to the source to figure out what number we should be using.

Readers will notice that this is an instance of a more general problem: anytime you have more

than one representation of the same information (in this case, an elasticity), you run the risk that

the two will someday come in conflict. In the best case scenario, you will need to do some work to

untangle the mess. In the worst case scenario, your results will be wrong or internally inconsistent.

The problem of internal inconsistency is especially severe when it comes to documentation—

comments, notes, readmes, etc.—because you don’t have to keep them up to date for your code to

work or for your results to be quantitatively right. It is therefore tempting to make improvements

to the code without making parallel improvements to the comments, only to find later that your

comments are confusing or misleading. In the case above, the practice of letting comments go

stale resulted in code that is probably less clear than it would have been if we had not had so much

documentation in the first place.

To avoid such confusion, you will need to keep your comments up to date, meaning just as up

to date as your code. If it’s not worth maintaining a piece of documentation up to that standard, it

probably isn’t worth writing it in the first place (rule A).



CHAPTER 7. DOCUMENTATION 28

That raises the important question of how to make the code clear without extensive comments.

Imagine the selection above with no comments at all. How would a reader know why the elasticity

is 2 and not 3?

To solve that problem we turn to the code itself. Much of the content of the comments above

can be readily incorporated into the code:

* See Shapiro (2005), The Economics of Potato Chips,

* Harvard University Mimeo, Table 2A.

local percent_change_in_quantity = -0.4

local percent_change_in_price = 0.2

local elasticity = `percent_change_in_quantity'/`percent_change_in_price'

compute_welfare_loss, elasticity(`elasticity')

This code block contains just as much documentation as the one we started with. It makes clear

both the formula for the price elasticity and the quantitative components we are using. But it is

far better than the original code, because it has far less scope for internal inconsistency. You can’t

change the percent change in quantity without also changing the elasticity, and you can’t get a

different elasticity number with these percent changes.

When possible, then, you should write your code to be self-documenting (rule B). Use the

naming of variables and the structure of the code to help guide a reader through your operations.

That’s a good idea anyway, because even the best comments can’t untangle a coding mess. To

boot, writing such code will mean you don’t have to write comments and other notes only to find

that they have later lost their grip on what the code is really doing.

These principles apply far beyond code, and indeed they underlie many of the other chapters

in this handbook. Organizing your data files so that their structure makes their meaning clear lets

you avoid pairing every dataset you make with extensive documentation (chapter 5). Naming files,

directories, and other objects intelligently means their names declare their function (chapter 4). A

cleverly drawn figure or table will often say so much that notes are present only to confirm the

obvious or clarify minor details. And so on.

Documentation does have its place. In the example above, if we don’t include the citation to

Jesse’s stellar thesis, how will a reader know where 0.4 comes from? There is no (practical) way



CHAPTER 7. DOCUMENTATION 29

to script the link back to the original paper, so a comment is appropriate.

Documentation can be used to make clear that something is right when it at first may seem

wrong. Suppose, for example, we have a variable y distributed lognormal with location µ and

scale σ . If we wish to compute the log of the variable’s expectation, it might be wise to write

* Log of the expectation is not the expectation of the log

* See http://en.wikipedia.org/wiki/Log-normal_distribution

log_expected_y = `mu' + 0.5*(`sigma'^2)

so that a reader isn’t surprised that the expression is not simply log(E (y)) = µ . Of course, what

to document is in the eye of the beholder: if you and your collaborators are not likely to forget the

expression for the expectation of a lognormal, then the comment above is probably superfluous.

Documentation can also be used to prevent unintended behavior. Suppose you write a com-

mand to estimate a regression model via maximum likelihood. If two or more variables are

collinear, your solver will iterate forever. So, you may wish to put a warning in the code: “Don’t

try to estimate an unidentified model.” But be careful. As we note above, nothing documents code

quite like code. Writing a function to test whether your (X ′X) matrix has full rank will provide just

as much documentation, will not require the user to be conscientious enough to read the comments,

and will likely lead to a faster resolution of the problem.

Which brings us to a related point. In Jesse’s house there is a furnace room with two switches.

One controls a light. The other turns off the hot water for the whole house. When he first moved

in, people (let’s not name names) conducting innocent business would occasionally shut off the

hot water while fumbling for the light switch. He tried having a sign: “Do not touch this switch.”

But in the dark, in a hurry, a sign is worthless. So he put a piece of tape over the switch. If there

are some inputs you really, really want to prevent, comments that say “don’t ever do X” are not the

way to go. Write your code so it will not let those inputs in the door in the first place.



Chapter 8

Management

Rules

(A) Manage tasks with a task management system.

(B) E-mail is not a task management system.

From: Jesse Shapiro

To: Matthew Gentzkow

Re: potato chips

Hey Matt,

Do you have that robustness check where we control for the amount of ranch dip sold in each county?

I am writing the section on dipping sauces and wanted to mention it.

-Jesse

From Matthew Gentzkow

To: Jesse Shapiro

Sorry, I thought you were doing that because it’s similar to that other thing you were doing with con-

trolling for salsa sales.

Let me know if you want to do it or if you want me to take over.

-MG

30



CHAPTER 8. MANAGEMENT 31

From: Jesse Shapiro

To: Matthew Gentzkow, Michael Sinkinson

I thought Matt was doing ranch dip and Mike was doing salsa?

-Jesse

From: Michael Sinkinson

To: Matthew Gentzkow, Jesse Shapiro

I did the salsa robustness check two weeks ago. See my e-mail from 8/14, 9:36am.

-Mike

From: Jesse Shapiro

To: Michael Sinkinson, Matthew Gentzkow

Right, but in that e-mail you were controlling for the log of salsa consumption. I thought we agreed we

wanted the level of consumption?

-Jesse

From: Michael Sinkinson

To: Jesse Shapiro, Matthew Gentzkow

On it!

-Mike

What’s wrong with this picture? Mainly, it’s ambiguity. Mike thought his task was done, when

Jesse thought it was not. Matt thought Jesse was working on the ranch dressing task, but Jesse

thought Matt was doing it. In fact, a careful reader will notice that even after all that e-mail, it’s

still not clear who is going to do the ranch dressing robustness check!

It’s worse than that. If we come back to the salsa task in two weeks, where will we look to

find out its status? This thread? The one Mike mentions from 8/14? And how will we reference

our discussion? By date? By forwarding this whole thread, including all the extraneous exchanges

about ranch dressing?



CHAPTER 8. MANAGEMENT 32

If you work alone, these problems are small. You probably have a legal pad or a Word document

or a spot on your whiteboard where you keep track of what you need to do. Every now and again

you might forget what you were planning to do or where you jotted something down, but if you

are organized you probably get by ok.

The minute two people need to work together, however, the problems exemplified in the thread

above are big. And although we haven’t proved this formally, we think they grow more than

arithmetically with the number of people (coauthors, RAs, etc.) involved in a project.

Software firms handle project and task management systematically. Microsoft does not just

say, “Hey Matt, when you get a chance, can you add in-line spell-checking to Word?”

Rather, enterprises engaged in collaborative work use project and task management systems

that enforce organized communication and reporting about tasks. In the old days, those often

involved handing physical reports up the chain of command. Now, they increasingly involve the

use of browser-based task-management portals.

In one of these portals, Mike’s salsa task would have looked like this:

Task: Salsa Robustness Check

Assigned To: Michael Sinkinson

Assigned By: Jesse Shapiro

Subscribed to Comments: Matthew Gentzkow

Status: Completed.

Description:

Run main specifications adding a control for per capita salsa consumption.

Add a line to our robustness table reflecting the results.

Comment by: Michael Sinkinson

On it!

Comment by: Michael Sinkinson

See the new version of the paper posted in /drafts/Potato Chips and the supporting code in /analy-

sis/Potato Chips. Is this what you had in mind?



CHAPTER 8. MANAGEMENT 33

Comment by: Jesse Shapiro

Almost. Our econometric model implies that salsa consumption should enter in levels not logs. Can

you revise?

Comment by: Michael Sinkinson

Ok, how about now?

Comment by: Jesse Shapiro

Yup, looks good.

Completed By: Michael Sinkinson

Notice that now there is no ambiguity about whose responsibility the task is or what the goals

are. Anyone looking at the task header will know that Mike is expected to do it, and no explicit

communication is needed to figure out who is doing what.

There is also a natural place to store communication about the task. Everyone expects that

questions and answers will be posted to the appropriate task. And, weeks, months, or years later,

there will still be a task-specific record of who did what and why.

There are lots of good online systems for task management available at the moment that look

something like the example above. Many are free or at least have a free no-frills option. Most

have apps for mobile devices and offer some kind of e-mail integration so, for example, Mike’s

comments above would be e-mailed to Jesse so he knows there’s something he needs to look at.

These systems are changing all the time and which one you want is a matter of taste, style,

budget, and the like, so we won’t review them all here. Good free options as of this writing

include Asana (www.asana.com), Wrike (www.wrike.com) and Flow (www.getflow.com). We use

a program called JIRA, which is not free and requires a little more work to install.

While we’re on the subject of useful tools, you should probably get yourself set up with some

kind of collaborative note-taking environment. That way, you’re not bound by the limitations of

your task management system in what you can share or record. It’s helpful to have a place to



CHAPTER 8. MANAGEMENT 34

jot down thoughts or display results that are less structured than the code that produces your final

paper, but more permanent than an e-mail or conversation.

The best system is one that lets you easily organize notes by project and share them with other

users. It’s great if you can add rich attachments so you can show your collaborators a graph, a code

snippet, a table, etc.

There are a bunch of options, and again, many are free. Evernote (www.evernote.com) has

a free basic option and is available across lots of platforms and interfaces. Another option for

Windows users is OneNote, which is included with Microsoft Office.



Appendix: Code Style

Every piece of code you write has multiple audiences. The most important audience is the

computer: if the code does not deliver unambiguous and correct instructions, the result will not be

what the author intends.

But code has other audiences as well. Somewhere down the line, you, your coauthor, your RA,

or someone wishing to replicate your findings will need to look at the code in order to understand

or modify it.

Good code is written with all of these audiences in mind. Below, we collect some of the most

important principles that we have learned about writing good code, mostly with examples using

Stata or Matlab syntax. A lot has been written about good code style and we don’t intend this as a

replacement for a good book or more formal training or industry experience. But we have found

the notes below useful in reminding ourselves and our collaborators of some important elements

of best practice.

Keep it short and purposeful.

No line of code should be more than 100 or so characters long. Long scripts should be factored

into smaller functions. Individual functions should not normally be more than 80 or so lines long.

Scripts should not normally be longer than a few hundred lines. If you are finding it hard to

make a long script short and purposeful, this is a sign that you need to step back and think about

the logical structure of the directory as a whole.

Every script and function should have a clear, intuitive purpose.

35



CHAPTER 8. MANAGEMENT 36

Make your functions shy.

A reader should know exactly which variables a function uses as inputs and which variables it can

potentially change.

Most functions should explicitly declare their inputs and outputs and should only operate on

local variables. Make the set of inputs and outputs as small as possible; the functions should be

reluctant to touch any more data than they need to. For example, if a function only depends on the

parameter beta, pass it only beta and not the entire parameter vector.

Use global variables rarely if ever.

Order your functions for linear reading.

A reader should be able to read your code from top to bottom without skipping around. Subfunc-

tions should therefore appear immediately after the higher level functions that call them.

Us descriptive names.

Good names replace comments and make code self-documenting.

By default, names for variables, functions, files, etc. should consist of complete words. Only

use abbreviations where you are confident that a reader not familiar with your code would under-

stand them and that there is no ambiguity. Most economists would understand that “income_percap”

means income per capita, so there is no need to write out income_percapita. But income_pc

could mean a lot of different things depending on the context. Abbreviations like st, cnty, and

hhld are fine if they are used consistently throughout a body of code. But using blk_income to

represent the income in a census block could be confusing.

Avoid having multiple objects whose names do not make clear how they are different: e.g.,

scripts called “state_level_analysis.do” and “state_level_analysisb.do” or variables called x and

xx.

Names can be shorter or more abbreviated when the objects they represent are used frequently

and/or very close to where they are defined. E.g., it is sometimes useful to define short names to

use in algebraic calculations. This is hard to read:

log_coefficient = log((income_percap' * income_percap)^(-1) *///



CHAPTER 8. MANAGEMENT 37

income_percap' * log_wage)

This is better:

X = income_percap

Y = log_wage

log_coefficient = log((X'*X)^(-1)*X'*Y)

Pay special attention to coding algebra.

Make sure that key calculations are clearly set off from the rest of the code. If you have a function

called demand() with 15 lines of setup code, 1 line that actually computes the demand function,

and 5 more lines of other code, that 1 line should be set off from the rest of the code or isolated

inside a sub-function so it is obvious to a reader scanning the document.

Break complicated algebraic calculations into pieces. Programming languages have no objec-

tion to definitions like

gen percap_gdp_real = ///

(consumption + govt_expenditures + exports - imports - taxes) * ///

10^6 / (price_index * pop_thousands * 1000)

or far longer ones. But a human may find it easier to parse the following:

gen gdp_millions_nominal = ///

(consumption + govt_expenditures + exports - imports - taxes)

gen gdp_total_real = gdp_millions * 10^6 / price_index

gen pop_total = pop_thousands * 10^3

gen gdp_percap_real = gdp_total_real / pop_total

Complex calculations are better represented in mathematical notation than in code. This is

a case where storing documentation (a LaTex or pdf with the calculations written out) alongside

code can make sense.



CHAPTER 8. MANAGEMENT 38

Make logical switches intuitive.

When coding switches, make sure that the conditions are intuitive. Often there is more than one

way to express a logical condition. Choosing the most intuitive expression makes the logical

meaning of the switch clear, and helps users parse the code quickly. In the following example

using Matlab code, suppose x is a vector of 0s and 1s:

if max(x) == 0

y = 0

end

This block of code is logically equivalent to:

if all(x == 0)

y = 0

end

Both switches check whether the vector x contains only 0s. However, the first condition parses as

“if the maximum entry of x if equal to 0”, while the second parses as “if all entries of x are zero”.

The second test is better because it is logically identical to what we want to check, whereas the

first test relies on the fact that all entries of x are greater than or equal to 0.

Be consistent.

There are many points of coding style that are mostly a matter of taste. E.g., sometimes people

write variable names like hhld_annual_income and other times like hhldAnnualIncome. Al-

though some people have strong feelings about which is better, we don’t. What is important is that

everyone on a team use consistent conventions. This is especially important within scripts: if you

are editing a program in which all scripts use two-space indent you should use two-space indent

too, even if that breaks the normal rule. (Or, you should use grep to update the script to four-space

indent).



CHAPTER 8. MANAGEMENT 39

Check for errors.

Programming languages typically come with debugging tools and informative error handling. Of-

ten they are enough, and we do not need to write additional error checking ourselves. For example

if in Stata I write

gen str x = "hello"

gen y = x^2

then Stata will return:

type mismatch

r(109);

Typically, this will be enough information to alert the user to the fact that the code failed because

the user attempted to square a string. Adding additional error-checking to check that x is not a

string will add one or more lines of code with little gain in functionality.

However, there are some circumstances in which error-checking should be added to code.

Error-checking should be added for robustness. For example, if the wrong argument will cause

your script to become stuck in an infinite loop, or call so much memory that it crashes your com-

puter, or erase your hard drive, you should include code to ensure that the arguments satisfy suffi-

cient conditions so that those outcomes will not occur.

Error-checking should be added to avoid unintentional behavior. For example, suppose func-

tion multiplybytwo() multiplies a number by 2 but is only written to handle positive reals. For

negative reals it produces an incoherent value. Because a user might expect the function to work

on any real, it would be a good idea to throw an error if the user supplies a negative real argument.

(Of course, it would be even better not to write a function with such confusing behavior.)

Error-checking should be added to improve clarity of error messages. For example, suppose

that function norm() requires a vector input. Suppose the default error message that gets returned

in the event you pass norm() it a scalar is “Input to ’*’ cannot be an empty array.” A user could

spend a lot of time trying to understand the source of the error. If you suspect that people may be

tempted to pass the function a scalar, it is probably worth checking the input and returning a more



CHAPTER 8. MANAGEMENT 40

informative error message like “Input to norm() must be a vector.” Chances are that this will save

a few more 30-minute debugging sessions in the future and be worth the time.

Note that there is an intrinsic tradeoff between time spent coding error-handling and time spent

debugging. It is not efficient to code explicit handling of all conceivable errors. For example, it is

probably not worth adding a special warning in the case where the user passes a string to norm(),

because the user is unlikely to make that mistake in the first place.

Error checking code should be written so it is easy to read. It should be clearly separated from

other code, either in a block at the top of a script or in a separate function. It should be automated

whenever possible. If you find yourself writing a comment of the form

% Note that x must be a vector

ask yourself whether you can replace this with code that throws an error when isvector(x) is

false. Code is more precise than comments, and it lets the language do the work.

The usual warning against redundancy applies to error-checking. If you have a large program

many of whose functions operate on a data matrix X, and there are various conditions that the data

matrix must satisfy, write a function called is_valid_data_matrix() rather than repeating all

the validation checks at the top of each function.

Write tests.

Real programmers write “unit tests” for just about every piece of code they write. These scripts

check that the piece of code does everything it is expected to do. For a demand function that returns

quantity given price, for example, the unit test might confirm that several specific prices return the

expected values, that the demand curve slopes down, and that the function properly handles zero,

negative, or very large prices. For a program to compile, it must pass all the unit tests. Many bugs

are thus caught automatically. A large program will often have as much testing code as program

code.

Many people advocate writing unit tests before writing the associated program code.

Economists typically do not write unit tests, but they test their code anyway. They just do it

manually. An economist who wrote a demand function would give it several trial values interac-

tively to make sure it performed as expected. This is inefficient because writing the test would



CHAPTER 8. MANAGEMENT 41

take no more time than testing manually, and it would eliminate the need to repeat the manual tests

every time the code is updated. This is just a special case of the more general principle that any

manual step that can be turned into code should be.

We therefore advocate writing unit tests wherever possible.

Profile slow code relentlessly.

Languages like Matlab and R provide sophisticated profiling tools. For any script for which com-

putation time is an issue (typically, anything that takes more than a minute or so to run), you

should profile frequently. The profiler often reveals simple changes that can dramatically increase

the speed of the code.

Profiling code in Stata or similar statistical packages is more difficult. Often, the sequential

nature of the code means it is easy to see where it is spending time. When this is not the case,

insert timing functions into the code to clarify which steps are slow.

Speed can occasionally be a valid justification for violating the other coding principles we

articulate above. Sometimes we are calling a function so many times that the tiny overhead cost of

good, readable code structure imposes a big burden in terms of run-time. But these exceptions are

rare and occur only in cases where computational costs are significant.

Store “too much” output from slow code.

There is an intrinsic tradeoff between storage and CPU time. We could store no intermediate data

or results, and rerun the entire code pipeline for a project back to the raw data stage each time

we change one of the tables. This would save space but would require a tremendous amount of

computation time. Or, we could break up a project’s code into hundreds of directories, each of

which does one small thing, and store all the intermediate output along the way. This would let

us make changes with little computation time but would use a lot of storage (and would likely

make the pipeline harder to follow). Usually, we compromise, aggregating code into directories

for conceptual reasons and to efficiently manage storage.

It is important to keep this tradeoff in mind when writing slow code. Within reason, err on the

side of storing too much output when code takes a long time to run. For example, suppose you write

a directory to estimate several specifications of a model. Estimation takes one hour. At the time



CHAPTER 8. MANAGEMENT 42

you write the directory, you expect to need only one parameter from the model. Outputting only

that parameter is a mistake. It will (likely) be trivial to store estimates of all the model parameters,

and the benefits will be large in compute time if, later, you decide it would be better to report

results on two or three of the model’s parameters.

If estimation is instantaneous, re-estimating the model later to change output format will not be

costly in terms of compute time. In such cases, concerns about clarity and conceptual boundaries

of directories should take priority over concerns about CPU time.

Separate slow code from fast code.

Slow code that one plans to change rarely, such as code that estimates models, runs simulations,

etc., should ideally be separated from fast code that one expects to change often, such as code that

computes summary statistics, outputs tables, etc. This makes it easy to modify the presentation of

the output without having to rerun the slow steps over and over.

Consider again a directory that estimates several specifications that take, together, an hour to

run. The code that produces tables from those specifications will likely run in seconds. Therefore,

it should be stored in a separate directory. We are likely to want to make many small changes to

how we format the output, none of which will affect which specifications we want to run. It will

not be efficient to have to repeatedly re-estimate the same model in order to change, say, the order

of presentation of the parameters in the table.

Again, if instead estimation were very fast, it might be reasonable to include the script that

produces tables inside the same directory as the script that estimates models. In such a case, the

decision should be based on clarity, robustness, and the other principles articulated above, rather

than on economizing CPU time.



For Further Reading

The ideas in this handbook are not new. The chapters are an attempt to communicate well-trod

ideas from software engineering and computer science to a social science audience.

Here we list additional resources that have influenced our thinking. You may find these helpful

if you wish to see some of the topics we have covered in greater depth.

Note that the single best resource we know of is not a book, but a website called software

carpentry (http://software-carpentry.org/) devoted to teaching computing to scientists.

Bowman, Judith S., Sandra L. Emerson and Marcy Darnovsky. 2001. The Practical SQL Hand-

book: Using SQL Variants. New York: Addison-Wesley. [Chapter 2 contains a nice

overview of database design.]

Brooks, Frederick P. 1975. The Mythical Man-month. Reading: Addison-Wesley.

Hunt, Andrew and David Thomas. 2000. The Pragmatic Programmer: From Journeyman to

Master. Addison-Wesley: New York.

Immon, William H. 2005. Building the Data Warehouse. New York: Wiley.

Martin, Robert C. 2008. Clean Code: A Handbook of Agile Software Craftsmanship. New York:

Prentice Hall.

Lutz, Mark and David Ascher. 1999. Learning Python. New York: O’Reilly Media.

43

http://software-carpentry.org/


Acknowledgments

We benefited greatly from the input of coauthors and colleagues on the methods described in this

handbook. Ben Skrainka’s Institute for Computational Economics lecture slides showed us that we

were not alone.

Most importantly, we acknowledge the tireless work of the research assistants who suffered

through our obsessions and wrong turns.

44


	Introduction
	Automation
	Version Control
	Directories
	Keys
	Abstraction
	Documentation
	Management
	Appendix: Code Style

