Incremental Heuristic Search in Artificial Intelligence*

Sven Koenig Maxim Likhachev Yaxin Liu

David Furcy

College of Computing
Georgia Institute of Technology
{skoenig,mlikhach,yxliu,dfurcy } @cc.gatech.edu

Abstract

Incremental search reuses information from previous
searches to find solutions to a series of similar search prob-
lems potentially faster than is possible by solving each
search problem from scratch. This is important since many
artificial intelligence systems have to adapt their plans con-
tinuously to changes in (their knowledge of) the world. In
this article, we therefore give an overview of incremental
search, focusing on Lifelong Planning A*, and outline some
of its possible applications in artificial intelligence.

Overview

It is often important that searches be fast. Artificial intelli-
gence has developed several ways of speeding up searches
by trading off the search time and the cost of the result-
ing path. This includes using inadmissible heuristics (Pohl
1970; Pohl 1973) and search with limited look-ahead (Korf
1990; Ishida and Korf 1991; Koenig 2001), which is also
called real-time or agent-centered search. In this article,
we discuss a different way of speeding up searches, namely
incremental search. Incremental search is a search tech-
nique for continual planning (or, synonymously, replan-
ning, plan reuse, and lifelong planning) that reuses infor-
mation from previous searches to find solutions to a series
of similar search problems potentially faster than is possi-
ble by solving each search problem from scratch. Different
from other ways of speeding up searches, it can guarantee
to find shortest paths. Notice that the terminology is unfor-
tunately somewhat problematic since the term “incremen-
tal search” in computer science also refers to both on-line
search and search with limited look-ahead (Pemberton and
Korf 1994).

Most of the research on search has studied how to solve
one-time search problems. However, many artificial in-
telligence systems have to adapt their plans continuously

* Sven Koenig is now at the University of Southern Califor-
nia, and Maxim Likhachev is now at Carnegie Mellon University.

to changes in the world or changes of their models of the
world, for example, because the actual situation turns out
to be slightly different from the one initially assumed or
because the situation changes over time. In these cases,
the original plan might no longer apply or might no longer
be good and one thus needs to replan for the new situation
(desJardins et al. 1999). Similarly, one needs to solve a
series of similar search problems if one wants to perform a
series of what-if analyses or if the costs of planning oper-
ators, their preconditions, or their effects change over time
because they are learned or refined.

In these situations, most search algorithms replan from
scratch, that is, solve the new search problem independently
of the old ones. However, this can be inefficient in large
domains with frequent changes and thus limit the respon-
siveness of artificial intelligence systems or the number of
what-if analyses that they can perform. Fortunately, the
changes to the search problems are usually small. A robot,
for example, might have to replan when it detects a pre-
viously unknown obstacle, a traffic routing system might
have to replan when it learns about a new traffic jam, and
a decision-support system for marine oil-spill containment
might have to replan when the wind direction changes. This
suggests that a complete recomputation of the best plan for
the new search problem is unnecessary since some of the
previous search results can be reused. This is what incre-
mental search does.

Incremental search solves dynamic shortest path problems,
where shortest paths have to be found repeatedly as the
topology of a graph or its edge costs change (Ramalingam
and Reps 1996b). The idea of incremental search is old.
For example, an overview article about shortest-path algo-
rithms from 1984 already cites several incremental search
algorithms, including several ones published in the late
1960s (Deo and Pang 1984). Since then, additional incre-
mental search algorithms have been suggested in the algo-
rithms literature (Ausiello et al. 1991; Even and Shiloach
1981; Even and Gazit 1985; Feuerstein and Marchetti-
Spaccamela 1993; Franciosa et al. 2001; Frigioni et

Original Eight-Connected Gridworld

Changed Eight-Connected Gridworld

Selart 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 s 9
2 2 2 3 4 5 6 7 8 9
3 9
4 4 5 6 7 12 11 10 10
5 S. 11 11 11 11
6 6 & = 8 10 11 12 12
7 s 9 10 Tt 18 13
9 8 8 8 9 11 Q%‘rg
9 9 9 9 9 12 Sé{,w

Figure 1: Simple Gridworld

al. 1996; Goto and Sangiovanni-Vincentelli 1978; Italiano
1988; Klein and Subramanian 1993; Lin and Chang 1990;
Rohnert 1985; Spira and Pan 1975) and, to a much lesser
degree, the artificial intelligence literature (Edelkamp 1998;
Al-Ansari 2001). They differ in their assumptions, for ex-
ample, whether they solve single-source or all-pairs short-
est path problems, which performance measure they use,
when they update the shortest paths, which kinds of graph
topologies and edge costs they apply to, and how the graph
topology and edge costs are allowed to change over time
(Frigioni et al. 1998). If arbitrary sequences of edge in-
sertions, deletions, or weight changes are allowed, then the
dynamic shortest path problems are called fully dynamic
shortest path problems (Frigioni et al. 2000).

The idea of incremental search has also been pursued in
artificial intelligence for problems other than path find-
ing. For example, a variety of algorithms have been devel-
oped for solving constraint satisfaction problems (Dechter

and Dechter 1988; Verfaillie and Schiex 1994) or con-
straint logic programming problems (Miguel and Shen
1999) where the constraints change over time. In this arti-
cle, however, we study incremental search only in the con-
text of dynamic shortest path problems, where it has not
been studied extensively in artificial intelligence.

We believe that four achievements are necessary to make
incremental search more popular in artificial intelligence.
First, one needs to devise more powerful incremental search
algorithms than those that currently exist. Second, one
needs to study their properties more extensively, both an-
alytically and experimentally, to understand their strengths
and limitations better. Third, one needs to demonstrate that
they apply to artificial intelligence applications and com-
pare them to other search algorithms for these applications
to demonstrate that they indeed have advantages over them.
Finally, the artificial intelligence community needs to be
made more aware of incremental search. This article ad-

dresses the last issue so that more researchers can address
the first three ones. It describes one particular incremen-
tal search algorithm and its potential applications, and then
discusses its potential advantages and limitations.

Uninformed I ncremental Search

We now discuss one particular way of solving fully dy-
namic shortest path problems. As an example, we use
route-planning in known eight-connected gridworlds with
cells whose traversability changes over time. They are ei-
ther traversable (with cost one) or untraversable. The route-
planning problem is to repeatedly find a shortest path be-
tween two given cells of the gridworld, knowing both the
topology of the gridworld and which cells are currently
traversable. It can be solved with conventional search, such
as breadth-first search, by finding a shortest path every time
some edge costs change. Conventional search typically
does not reuse information from previous searches. The
following example, however, illustrates the potential advan-
tage of reusing information from previous searches.

Consider the gridworlds shown in Figure 1. The original
gridworld is shown on top and the changed gridworld is
shown at the bottom. Only two blockages have moved,
resulting in four cells with changed blockage status. The
figure shows the shortest paths in both cases under the as-
sumption that every move has cost one. The shortest path
changed since two cells on the original shortest path be-
came untraversable.

The length of a shortest path from the start cell to a cell is
called its start distance. Once the start distances of all cells
are known, one can easily trace back a shortest path from
the start cell to the goal cell by always greedily decreas-
ing the start distance, starting at the goal cell. The start
distances are shown in each traversable cell of the origi-
nal and changed gridworlds. Those cells whose start dis-
tances in the changed gridworld are different from the cor-
responding ones in the original gridworld are shaded gray
in this example. Even though large parts of the shortest
path have changed, less than a quarter of the start distances
have changed. Thus, in such cases, there is a potential ad-
vantage to recalculating only those start distances that have
changed, which is an argument for caching the start dis-
tances rather than the shortest path itself.

This is basically what the incremental search algorithm
DynamicSWSF-FP (Ramalingam and Reps 1996a) does.!

L DynamicSWSF-FP, as originally stated, searches from the
goal vertex to all other vertices and thus maintains estimates of
the goal distances rather than the start distances. We, however,
use it to search from the start vertex to all other vertices. Also, to
calculate a shortest path from the start vertex to the goal vertex not
all distances need to be known. To make DynamicSWSF-FP more

Figure 2: An Example

DynamicSWSF-FP was originally developed in the context
of parsing theory and theoretical computer science. It uses
a clever way of identifying the start distances that have not
changed and recalculates only the ones that have changed.
Consequently, it performs best in situations where only a
small number of start distances change.

Consider the gridworld from Figure 2 to understand how it
operates. The start cell is A3. Assume that one is given
the values in the left gridworld, and it is claimed that they
are equal to the correct start distances. There are at least
two different approaches to verify this. One approach is to
perform a complete search to find the start distances and
compare them to the given values. Another approach is to
check the definition of the start distances, namely that the
value of the start cell is zero and the value of every other
cell is equal to the minimum over all neighboring cells of
the value of the neighboring cell plus the cost of getting
from the neighboring cell to the cell in question, which is
indeed the case. For example, the value of cell B1 should
be the minimum of the values of cells A0, Al, A2, and C1
plus one. Thus, the values are indeed equal to the correct
start distances. Both approaches need about the same run-
time to confirm this. Now assume that cell D1 becomes un-
traversable as shown in the right gridworld of Figure 2 and
thus the costs of all edges into the cell become infinity, and
it is claimed that the values in the cells remain equal to the
correct start distances. Again, there are at least two different
approaches to verify this. One approach is again to perform
a complete search to find the start distances and compare
them to the given values. The second approach is again to
check that the value of the start cell is zero and the value of
every other cell is equal to the minimum over all neighbor-
ing cells of the value of the neighboring cell plus the cost
of getting from the neighboring cell to the cell in question,
Since the values remain unchanged, each cell continues to
have this property unless its neighbors have changed. Thus,
one needs to check only whether the cells close to changes
in the gridworld continue to have this property, that is, cells
C1 and E1. It turns out that cell C1 continues to have this

efficient, we changed its termination condition so that it stops im-
mediately after it has found a shortest path from the start vertex to
the goal vertex.

property but cell E1 does not. Thus, not all values are
equal to the correct start distances. (This does not mean,
of course, that all cells but E1 have correct start distances.)
The second approach now needs less runtime than the first
one. Furthermore, the second approach provides a start-
ing point for replanning, namely cell E1, since one needs
to work on the cells that do not have this property, mov-
ing outwards from the starting point. This is the main idea
behind DynamicSWSF-FP. It shares this idea with other in-
cremental search approaches, including some that apply to
constraint satisfaction (Dechter and Dechter 1988).

Informed Incremental Search

One way of speeding up searches is incremental search. A
different way of speeding up searches is heuristic search.
The question arises whether incremental and heuristic
search can be combined. Many of the start distances that
have changed in the example from Figure 1 are irrelevant
for finding a shortest path from the start cell to the goal cell
and thus do not need to get recalculated. Examples are the
cells in the lower left corner of the gridworld. Thus, there
is a potential advantage to using heuristics to avoid having
to recalculate irrelevant start distances.

To summarize, there are two different ways of decreasing
the search effort of breadth-first search for finding the start
distances for the changed gridworld from Figure 1:

e Incremental search algorithms, such as DynamicSWSF-
FP (Ramalingam and Reps 1996a), find shortest paths for
series of similar search problems potentially faster than
is possible by solving each search problem from scratch
(complete search) because they do not recompute those
start distances that have not changed.

e Heuristic search algorithms, such as A* (Nilsson 1971),
use heuristic knowledge in the form of approximations
of the goal distances to focus the search and find shortest
paths for search problems faster than uninformed search
because they do not compute those start distances that are
irrelevant for finding a shortest path from the start cell to
the goal cell.

Consequently, we developed a search algorithm that com-
bines incremental and heuristic search, namely Lifelong
Planning A* (LPA*) (Koenig and Likhachev 2002b). We
call it “lifelong planning” in analogy to “lifelong learning”
(Thrun 1998) because it reuses information from previous
searches. LPA™* repeatedly finds shortest paths from a given
start vertex to a given goal vertex on arbitrary known finite
graphs (not just gridworlds) whose edge costs increase or
decrease over time (which can also be used to model edges
or vertices that are added or deleted). The pseudo code of

S denotes the fi nite set of vertices of the graph. succ(s) C S denotes the set of successors
of vertex s € S. Similarly, pred(s) C S denotes the set of predecessors of vertex s € S.
0 < ¢(s,s") < oo denotes the cost of moving from vertex s to vertex s’ € succ(s). LPA*
aways determines a shortest path from a given start vertex ss¢qrt € S to agiven goa vertex
Sgoal € S, knowing both the topology of the graph and its current edge costs. The heuristics
need to be nonnegative and consistent.

LPA* maintains estimates g(s) and rhs(s) of the start distance of each vertex s. LPA* aso
maintains a priority queue that contains exactly the vertices s with g(s) # rhs(s). Their pri-
orities are pairs, the fi rst component of which is similar to an f-value of A* and the second one of
which is similar to a g-value of A*. The priorities are compared to according to a lexicographic
ordering. For example, a priority [k1; k2] isless than or equal to a priority [k'l; ké] iff either
k1 < kj or(ky = k7 and kg < k). U.TopKey() returns the smallest priority of all vertices
in priority queue U. (If U is empty, then U.TopKey() returns [oo; co].) U.Pop() deletes the
vertex with the smallest priority in priority queue U and returns the vertex. U.Insert(s, k) inserts
vertex s into priority queue U with priority k. Finally, U.Remove(s) removes vertex s from pri-
ority queue U .

procedure CalculateKey(s)

{01} return [min(g(s), rhs(s)) + h(s); min(g(s), rhs(s))];
procedure Initialize()

{02}y U = 0;

{03} foral s € Srhs(s) = g(s) = oo;

{04} rhs(sstart) = 0;

{05} Unsert(sstart, [h(sstart); 0]);

procedure UpdateVertex(u)

{06} if (u # sstart) rhs(u) = miHS’Epred(u)(g(Sl) + c(s’, u));
{07} if (w € U) U.Remove(u);

{08} if (g(u) # rhs(u)) U.lnsert(u, CaculateKey(u));

procedure ComputeShortestPath()

{09} while (U.TopKey() <CalculateKey (s goq1) ORThs(sgoal) # 9(Sgoal))
{10} w = U.Pop();

{11} if (g(u) > rhs(u))

{12} g(u) = rhs(u);
{13} foral s € succ(u) UpdateVertex(s);

{14} dse

{15} g(u) = oo;

{16} foral s € succ(u) U {u} UpdateVertex(s);
procedure Main()

{17} Initialize();

{18} forever

{19} ComputeShortestPath();

{20} Wait for changes in edge costs;

{21} forall directed edges (u, v) with changed edge costs
{22} Update the edge cost ¢(u, v);

{23} UpdateVertex(v);

Figure 3: Lifelong Planning A* (simple version)

the simplest version of LPA* reduces to a version of A* that
breaks ties among vertices with the same f-value in favor of
smaller g-values when used to search from scratch and to
DynamicSWSF-FP when used with uninformed heuristics.
In fact, it differs from DynamicSWSF-FP only in the calcu-
lation of the priorities for the vertices in the priority queue
(Line {01} in the pseudo code of Figure 3). It is unop-
timized and needs consistent heuristics (Pearl 1985). We
have also developed more sophisticated versions of LPA*
that are optimized (for example, recalculate the various val-
ues much more efficiently than the simple version), can
work with inadmissible heuristics, and break ties among
vertices with the same f-value in favor of larger g-values.
These changes make LPA* more complex.

Replanning with LPA* can best be understood as trans-
forming the A* search tree of the old search problem to the
A* search tree of the new one. This results in some com-
putational overhead since parts of the old A* search tree
need to be undone. It also results in computational savings
since other parts of the old A* search tree can be reused.
The larger the overlap between the old and new A* search

RVANEIAN
NN

—— oldsearchtree === new search tree

Figure 4: Old and New Search Trees

trees, the more efficient replanning with LPA* is compared
to using A* to create the new search tree from scratch. For
example, LPA* is likely more efficient in Situation 1a than
Situation 1b of Figure 4.2 This is experimentally the case,
for example, the less the graph has changed (see Experi-
ment 1 below) and the closer edges with changed cost are to
the goal of the search (see Experiment 3 below). The com-
putational savings can dominate the computational over-
head and LPA* then replans faster than A*. In the worst
case, however, any search algorithm is no more efficient
than a complete search from scratch (Nebel and Koehler
1995) and LPA* can be less efficient than A*. This can
happen if the overlap of the old and new A* search trees is
small.

The simplicity of LPA* allows us to prove a number of
properties about it, including its termination, correctness,
efficiency in terms of vertex expansions, and similarity to
A*, which makes it easy to understand, analyze, and ex-
tend, for example, to nondeterministic domains (Likhachev
and Koenig 2002b). We can prove, for example, that the
first search of LPA* expands the vertices in the same order
as a version of A* that breaks ties among vertices with the
same f-value in favor of smaller g-values. LPA* expands
every vertex at most twice and expands many vertices not at
all because it does not expand vertices whose values were
already equal to their start distances (efficiency due to in-
cremental search) or whose previous and current f-values
are larger than the f-value of the goal vertex (efficiency due
to heuristic search). Details can be found in (Koenig et al.
2003a).

More information on incremental search in general can be
found in (Frigioni et al. 2000), and more information on
LPA* can be found in (Koenig et al. 2003a), which this
article is an introductory overview version of.

2To be more precise: It is not only important that the trees are
similar but most start distances of its nodes have to be the same
as well. Thus, it is insufficient, for example, that the tree remains
unchanged if most of the start distances of its nodes change.

Experimental Evaluation

We now perform experiments in small gridworlds to un-
derstand the advantages and limitations of LPA* better
(Koenig et al. 2003a). We compare an optimized version
of LPA* against a version of A* that breaks ties among ver-
tices with the same f-value in favor of vertices with larger
g-values since this tends to result in a smaller number of
vertex expansions than breaking ties in the opposite direc-
tion (although tie breaking turns out not to make a big dif-
ference in our gridworlds). All priority queues were imple-
mented as binary heaps. The code of our implementations
is available at

http://www.cc.gatech.edu/fac/Sven.Koenig/fastreplanning.html

We use four-connected gridworlds with directed edges be-
tween adjacent cells. We generate one hundred gridworlds.
The start and goal cell are drawn with uniform probability
for each gridworld. All edge costs are either one or two
with uniform probability. We then change each gridworld
five hundred times in a row by selecting a given number of
edges and re-assigning them random costs. \We report the
probability that the cost of the shortest path changes to en-
sure that the edge cost changes indeed change the shortest
path sufficiently often. A probability of 33.9 percent, for
example, means that the cost of the shortest path changes
on average after 2.96 planning episodes. We use the Man-
hattan distances as heuristics for the cost of a shortest path
between two cells, that is, the sum of the difference of their
x- and y-coordinates. For each experiment, we report the
runtime (in milliseconds) averaged over all first planning
episodes (#1) and over all planning episodes (#2), run on a
Pentium 1.7 MHz PC. We also report the speedup of LPA*
over A* in the long run (#3), that is, the ratio of the run-
times of A* and LPA* averaged over all planning episodes.
The first search of LPA* tends to be slower than that of A*
since it expands more states and needs more time for each
state expansion. During the subsequent searches, however,
LPA* often expands fewer states than A* and is thus faster
than A*. We therefore also report the replanning episode
after which the average total runtime of LPA* is smaller
than the one of A* (#4), in other words, the number of re-
planning episodes that are necessary for one to prefer LPA*
over A*. For example, if this number is two, then LPA*
solves one planning problem and two replanning problems
together faster than A*. Additional experiments are re-
ported in (Koenig et al. 2003a).

Experiment 1. In the first experiment, the size of the grid-
worlds is 101 x 101. We change the number of edges that
get assigned random costs before each planning episode.
Figure 1 shows our experimental results. The smaller the
number of edges that get assigned random costs, the less the
search space changes and the larger the advantage of LPA*

edge cost changes path cost changes A* LPA*

#1 and #2 #1 #2 #3 4
0.2% 3.0% 0.299 0386 0.029 10.370% 1
0.4% 7.9% 0.336 0419 0.067 5.033% 1
0.6% 13.0% 0.362 0453 0.108 3.344% 1
0.8% 17.6% 0.406 0499 0.156 2.603%x 1
1.0% 20.5% 0.370 0434 0174 2.126x 1
1.2% 24.6% 0.413 0476 0222 1.858x 1
1.4% 28.7% 0.468 0539 0.282 1.657x 1
1.6% 32.6% 0.500 0563 0.332 1.507x 1
1.8% 32.1% 0.455 0.497 0.328 1.384x 1
2.0% 33.8% 0.394 0.433 0.315 1.249x 1

Table 1: Experiment 1

maze size path cost changes A* LPA*
#1 and #2 #1 #2 #3 #4

51 X 51 7.3% 0.077 0098 0015 5032x 1

76 X 76 10.7% 0.201 0258 0050 3.987x 1
101 x 101 13.0% 0.345 0437 0104 3315x 1
126 x 126 16.2% 0.690 0789 0220 3.128x 1
151 x 151 17.7% 0.933 1013 0322 2.900x 1
176 X 176 21.5% 1553 1608 0564 2.753x 1
201 x 201 22.9% 1.840 1.898 0682 2.696x 1

Table 2: Experiment 2

80 % of edge cost changes are < 25 cells away from the goal

maze size path cost changes A* LPA*
#1 and #2 #1 #2 #3 #4
51 x 51 13.5% 0.084 0.115 0.014 6.165% 1
76 X 76 23.9% 0.189 0.245 0.028 6.661 % 1
101 x 101 33.4% 0.295 0.375 0.048 6.184 % 1
126 x 126 42.5% 0.696 0.812 0.084 8.297x 1
151 x 151 48.5% 0.886 0.964 0.114 7.808x 1
176 x 176 55.7% 1.353 1.450 0.156 8.683x 1
201 x 201 59.6% 1.676 1.733 0.202 8.305x 1

80 % of edge cost changes are < 50 cells away from the goal

maze size path cost changes A* LPA*
#1 and #2 #1 #2 #3 #4
51 X 51 8.6% 0.086 0115 0017 5138x 1
76 X 76 15.7% 0.190 0247 0039 4.822x 1
101 x 101 23.2% 0.304 0378 0072 4.235x 1
126 x 126 31.3% 0.702 0812 0130 5.398x 1
151 x 151 36.2% 0.896 0959 0173 5166% 1
176 X 176 44.0% 1.372 1.458 0.242 5.664 x 1
201 x 201 48.3% 1.689 1.742 0.313 5.398x 1

80 % of edge cost changes are < 75 cells away from the goal

maze size path cost changes A* LPA*
#1 and #2 #1 #2 #3 #4

76 X 76 12.1% 0.196 0250 0.047 4.206x 1
101 x 101 17.5% 0.306 0391 0088 3.499x 1
126 X 126 26.0% 0.703 0.818 0.175 4.012x 1
151 x 151 28.8% 0.893 0972 0225 3.978x 1
176 X 176 36.8% 1.370 1438 0319 4.301x 1
201 x 201 40.1% 1728 1790 0408 4.236x 1

Table 3: Experiment 3

in our experiments. The average runtime of the first plan-
ning episode of LPA* tends to be larger than the one of A*
but the average runtime of the following planning episodes
tends to be so much smaller (if the number of edges that get
assigned random costs is sufficiently small) that the number
of replanning episodes that are necessary for one to prefer
LPA* over A* is one.

Experiment 2: In the second experiment, the number of
edges that get assigned random costs before each planning
episode is 0.6 percent. We change the size of the square
gridworlds. Figure 2 shows our experimental results. The
smaller the gridworlds, the larger the advantage of LPA*
in our experiments, although we were not able to predict

this effect. This is an important insight since it implies that
LPA* does not scale well in our gridworlds (although part
of this effect could be due to the fact that more edges get as-
signed random costs as the size of the gridworlds increases
and this time is included in the runtime averaged over all
planning episodes). We therefore devised the third experi-
ment.

Experiment 3. In the third experiment, the number of
edges that get assigned random costs before each planning
episode is again 0.6 percent. We change both the size of the
square gridworlds and how close the edges that get assigned
random costs are to the goal cell. 80 percent of these edges
leave cells that are close to the goal cell. Figure 3 shows
our experimental results. Now, the advantage of LPA* no
longer decreases with the size of the gridworlds. The closer
the edge cost changes are to the goal cell, the larger the ad-
vantage of LPA* in our experiments, as predicted earlier.
This is an important insight since it suggests to use LPA*
when most of the edge cost changes are close to the goal
cell. We utilize this property when we apply LPA* to mo-
bile robotics and control (see below).

Although these experiments give us some insight into the
behavior of LPA*, we need to improve our understanding
of when to prefer incremental search over alternative search
algorithms and which incremental search algorithm to use.
The main criteria for choosing a search algorithm are its
memory consumption and its runtime.

With respect to memory, incremental search needs mem-
ory for information from past searches. LPA*, for example,
needs to remember the previous search tree. This tends not
to be a problem for gridworlds but the search trees of other
search problems are often so large that they do not com-
pletely fit into memory. In this case, it might be possible
to combine incremental search with memory-limited search
algorithms such as RBFS (Korf 1993) or SMA* (Russell
1992), but this is future work.

With respect to runtime, our experiments have demon-
strated that LPA* expands fewer vertices than A*, for ex-
ample, when only few edge costs change and these edge
costs are close to the goal vertex. These situations need
to be characterized better. LPA* also needs more time per
vertex expansion than A*. This time disadvantage depends
on low-level implementation and machine details, such as
the instruction set of the processor, the optimizations per-
formed by the compiler, and the data structures used for
the priority queues, and is thus hard to characterize. For
example, when the number of edges that get assigned ran-
dom costs was 0.2 percent in Experiment 1, the number of
heap percolates of A* was 8213.04 while the number of
heap percolates of LPA* was only 297.30. This makes it
difficult to determine whether there is a benefit to incre-

mental search and, if so, to quantify it. For example, one
can decrease the speedup of LPA* over A* by using buck-
ets to implement the priority queues rather than heaps, even
though this is more complicated. For example, LPA* needs
more than one replanning episode to outperform A* if the
number of edges that get reassigned random costs before
each planning episode is less than 1.0 percent and does not
outperform A* at all if the number of edges that get reas-
signed random costs before each planning episode is 1.0
percent or more in the experiment of Figure 1 when we im-
plemented A* with buckets and a simple FIFO tie-breaking
strategy within buckets but left the implementation of LPA*
unchanged. Therefore, we are only willing to conclude
from our experiments that incremental heuristic search is
a promising technology that needs to get investigated fur-
ther. In general, the trade-off between the number of vertex
expansions and the time needed per vertex expansion might
benefit incremental search algorithms that are less sophis-
ticated than LPA* and thus expand more vertices but with
less time per vertex expansion, for example, by restoring
the priority queue of A* to the vertices it had immediately
before the changed edge costs make A* behave differently.
One might also be able to develop incremental search algo-
rithms that apply only to special cases of graphs (such as
gridworlds) and thus are faster but not as versatile as LPA*.

Applications

Our gridworld experiments suggest that incremental search

can be beneficial for route planning in traffic or computer
networks, where the congestion and thus the optimal routes

change over time. These applications are similar to our

gridworld experiments. However, there are also a variety of

areas in artificial intelligence that could potentially benefit
from incremental search. In the following, we discuss some

of the possible applications, many (but not all) of which

involve gridworlds. We also discuss the current state of

the art, including opportunities for future research on in-

cremental search.

Symbolic Planning (HSP)

Symbolic planning is the most obvious application of in-
cremental search. Interestingly, incremental search can be
used not only to solve a series of similar symbolic (STRIPS-
style) planning problems but also single symbolic planning
problems.

One-Time Planning: Heuristic search-based planners
solve symbolic planning problems. They were introduced
by (McDermott 1996) and (Bonet et al. 1997) and have be-
come very popular. In its default configuration, HSP 2.0
(Bonet and Geffner 2000), for example, uses weighted A*
searches with inadmissible heuristics to perform forward

searches in the space of world states to find a path from
the start state to a goal state. This is possible despite the
large state spaces due to the specific heuristics used. How-
ever, the calculation of the heuristics is time-consuming
since HSP 2.0 calculates the heuristic of each state that it
encounters during the search by solving a relaxed search
problem. Consequently, the calculation of the heuristics
comprises about eighty percent of its runtime (Bonet and
Geffner 2001).

HSP 2.0 thus repeatedly solves relaxed search problems as
it calculates the heuristics. The relaxed search problems
that it solves to find the heuristics of two states are similar
if the two states are similar, and two states whose heuris-
tics it calculates consecutively are often similar since they
are both children of the same parent in the A* search tree.
Thus, incremental search can solve a relaxed search prob-
lem by reusing information from the calculation of the pre-
vious relaxed search problem. Our PINCH (Prioritized,
INCremental Heuristics calculation) algorithm (Liu et al.
2002), for example, is based on DynamicSWSF-FP and
speeds up the runtime of HSP 2.0 by up to eighty percent
in several domains and, in general, the amount of savings
grows with the size of the domains, allowing HSP 2.0 to
solve larger search problems with the same limit on its run-
time and without changing its heuristics or overall opera-
tion.

Continual Planning: So far, we have described how in-
cremental search can solve single symbolic planning prob-
lems. However, planning researchers realized a long time
ago that one often does not need to solve just one symbolic
planning problem but rather a series of similar symbolic
planning problems. Examples of practical significance in-
clude the aeromedical evacuation of injured people in cri-
sis situations (Kott et al. 1999) and air campaign plan-
ning (Myers 1999). Replanning is necessary in these cases,
for example, when a landing strip of an airfield becomes
unusable. Planning researchers have therefore studied re-
planning and plan reuse. Replanning attempts to retain as
many plan steps of the previous plan as possible. Plan reuse
does not have this requirement. (We do not make this dis-
tinction and thus use the term “replanning” throughout the
text.) Examples include case-based planning, planning by
analogy, plan adaptation, transformational planning, plan-
ning by solution replay, repair-based planning, and learning
search-control knowledge. These search algorithms have
been used as part of systems such as CHEF (Hammond
1990), GORDIUS (Simmons 1988), LS-ADJUST-PLAN
(Gerevini and Serina 2000), MRL (Koehler 1994), NoLimit
(Veloso 1994), PLEXUS (Alterman 1988), PRIAR (Kamb-
hampati and Hendler 1992), and SPA (Hanks and Weld
1995).

HSP 2.0 with weight one and consistent heuristics finds

plans with minimal plan-execution cost. If HSP 2.0 solves
a series of similar symbolic planning problems, then it can
use LPA* instead of A* to replan faster, resulting in the
SHERPA replanner (Speedy HEuristic search-based Re-
PIAnner) (Koenig et al. 2002) for consistent heuristics.
A difference between SHERPA and the other replanners
described above is that SHERPA does not only remember
the previous plans but also the previous plan-construction
processes. Thus, it has more information available for re-
planning than even PRIAR, that stores plans together with
explanations of their correctness, or NoLimit, that stores
plans together with substantial descriptions of the decisions
that resulted in the solution. Another difference between
SHERPA and the other replanners is that its plan-execution
cost is as good as the plan-execution cost achieved by
search from scratch. Thus, incremental search can be used
for plan reuse if the plan-execution cost of the resulting plan
is important but its similarity to the previous plans is not.

Inadmissible heuristics allow HSP 2.0 to solve search prob-

lems in large state spaces by trading off runtime and the

plan-execution cost of the resulting plan. SHERPA uses

LPA* with consistent heuristics. While we have extended

LPA* to use inadmissible heuristics and still guarantee that

it expands every vertex at most twice, it turns out to be

difficult to make incremental search more efficient than
search from scratch with the same inadmissible heuristics,

although we have had success in special cases. This can

be explained as follows: The larger the heuristics are, the

narrower the A* search tree and thus the more efficient A*
is. On the other hand, the narrower the A* search tree, the

more likely it is that the overlap between the old and new

A* search trees is small and thus the less efficient LPA* is.
For example, Situations 2a and 2b correspond to Situations

la and 1b, respectively, except that the old and new search

trees are narrower and thus overlap less.

Mobile Robotics and Games (Path Planning)

Mobile robots often have to replan quickly as the world or
their knowledge of it changes. Examples include both phys-
ical robots and computer-controlled robots (or, more gen-
erally, computer-controlled characters) in computer games.
Efficient replanning is especially important for computer
games since they often simulate a large number of char-
acters and their other software components, such as the
graphics generation, already place a high demand on the
processor. In the following, we discuss two cases where the
knowledge of a robot changes because its sensors acquire
more information about the initially unknown terrain as it
moves around.

Goal-Directed Navigation in Unknown Terrain: Plan-
ning with the freespace assumption is a popular solution

to the goal-directed navigation problem where a mobile
robot has to move in initially unknown terrain to given goal
coordinates. For example, the characters in popular com-
bat games such as “Total Annihilation,” “Age of Empires.”
and “Warcraft” have to move autonomously in initially un-
known terrain to user-specified coordinates. Planning with
the freespace assumption always plans a shortest path from
its current coordinates to the goal coordinates under the as-
sumption that the unknown terrain is traversable. When it
observes obstacles as it follows this path, it enters them into
its map and then repeats the procedure, until it eventually
reaches the goal coordinates or all paths to them are un-
traversable.

To implement this navigation strategy, the robot needs to re-
plan shortest paths whenever it detects that its current path
is untraversable. Several ways of speeding up the searches
have been proposed in the literature (Trovato 1990; Bar-
behenn and Hutchinson 1995; Tao et al. 1997; Podsed-
kowski et al. 2001; Ersson and Hu 2001; Huiming et al.
2001). Focussed Dynamic A* (D*) (Stentz 1995) is prob-
ably the most popular solution and has been extensively
used on real robots, such as outdoor HMMWVs (Stentz
and Hebert 1995; Hebert et al. 1999; Matthies et al. 2000;
Thayer et al. 2000), as well as studied theoretically (Koenig
et al. 2003b). We believe that D* is the first truly incremen-
tal heuristic search algorithm. It resulted in a new applica-
tion for incremental search and a major advance in robotics.
LPA* and D* share similarities. For example, we can com-
bine LPA* with ideas from D* to apply it to moving robots,
resulting in D* Lite (Koenig and Likhachev 2002a). D*
Lite and D* implement the same navigation strategy and
are about equally fast but D* Lite is algorithmically sim-
pler and thus easy to understand, analyze, and extend. Both
search algorithms search from the goal coordinates toward
the current coordinates of the robot. Since the robot usu-
ally observes obstacles close to its current coordinates, the
changes are close to the goal of the search, which makes
incremental search efficient, as predicted earlier.

Mapping: Greedy mapping is a popular solution to the
problem of mapping unknown terrain (Thrun et al. 1998;
Koenig et al. 2001; Romero et al. 2001). The robot always
plans a shortest path from its current coordinates to a clos-
est patch of terrain with unknown traversability, until the
terrain is mapped.

To implement this navigation strategy, the robot needs to
replan shortest paths whenever it observes new obstacles.
Both D* and D* Lite can be used unchanged to implement
greedy mapping, although their advantage over A* is much
smaller for mapping than for goal-directed navigation in un-
known terrain (Likhachev and Koenig 2002a).

Machine L ear ning (Reinforcement L earning)

Reinforcement learning is learning from rewards and penal-
ties that can be delayed (Kaelbling et al. 1996; Sutton
and Barto 1998). Reinforcement-learning algorithms, such
as Q-learning (Watkins and Dayan 1992) or on-line ver-
sions of value iteration (Barto et al. 1995), often use
dynamic programming to update state or state-action val-
ues and are then similar to real-time search (Korf 1990;
Ishida and Korf 1991; Koenig 2001). The order of the value
updates determines how fast they can propagate informa-
tion through the state space, which has a substantial effect
on their efficiency. The Dyna-Q environment (Sutton and
Barto 1998) has been used by various researchers to study
ways of making reinforcement learning more efficient by
ordering their value updates. Prioritized Sweeping (Moore
and Atkeson 1993) and Queue-Dyna (Peng and Williams
1993) are, for example, reinforcement-learning algorithms
that resulted from this research. They concentrate the value
updates on those states whose values they change most.

Incremental search can order the value updates in an even
more systematic way and uses concepts related to those
from reinforcement learning. For example, LPA* per-
forms dynamic programming and implicitly uses the Bell-
man equations (Bellman 1957). It is currently unclear how
incremental search can be applied to minimizing the ex-
pected (discounted) plan-execution cost in hondeterminis-
tic domain, the typical objective of reinforcement learning.
However, we have extended LPA* from minimizing the
plan-execution cost in deterministic domains to minimizing
the worst-case plan-execution cost in nondeterministic do-
mains, resulting in Minimax LPA* (Likhachev and Koenig
2002b), which we believe to be the first incremental heuris-
tic minimax search algorithm. It applies to goal-directed
reinforcement learning for minimizing the worst-case plan-
execution cost. While this is the only application of incre-
mental search to reinforcement learning that has been iden-
tified so far, it suggests that ideas from incremental search
can potentially be used to reduce the number of values that
reinforcement-learning algorithms need to update.

Control (Parti-Game Algorithm)

State spaces of control problems are often continuous and
sometimes high-dimensional. The parti-game algorithm
(Moore and Atkeson 1995) finds control policies that move
an agent in such domains from given start coordinates to
given goal coordinates. It is popular because it is simple,
efficient, and applies to a broad range of control problems
such as path planning for mobile robots and robot arms (Al-
Ansari and Williams 1999; Araujo and de Almeida 1997,
Araujo and de Almeida 1998; Kollmann et al. 1997). To
solve these problems, one can first discretize the domains

and then use conventional search to find plans that move
the agent from its current coordinates to the goal coordi-
nates. However, uniform discretizations can prevent one
from finding a plan if they are too coarse-grained (for exam-
ple, because the resolution prevents one from noticing small
gaps between obstacles) and result in large state spaces that
cannot be searched efficiently if they are too fine-grained.
The parti-game algorithm solves this dilemma by starting
with a coarse discretization and refines it during execution
only when and where it is needed (for example, around ob-
stacles), resulting in a nonuniform discretization. To im-
plement the parti-game algorithm, the agent needs to find
a plan with minimal worst-case plan-execution cost when-
ever it has refined its model of the domain. Several ways
of speeding up the searches with incremental search have
been proposed in the literature. (Al-Ansari 2001), for ex-
ample, proposed an uninformed incremental search algo-
rithm that restores the priority queue of a Dijkstra-like min-
imax search algorithm to the vertices it had immediately
before the changed edge costs made it behave differently
(Al-Ansari 2001), and we proposed a combination of Min-
imax LPA* and D* Lite (Likhachev and Koenig 2002b).

Conclusions

Incremental search reuses information from previous
searches to find solutions to a series of similar search prob-
lems potentially faster than is possible by solving each
search problem from scratch. Although incremental search
is currently not used much in artificial intelligence, this ar-
ticle demonstrated that there are artificial intelligence ap-
plications that might benefit from incremental search. It
also demonstrated that we need to improve our understand-
ing of incremental search, including when to prefer incre-
mental search over alternative search algorithms and which
incremental search algorithm to use. For example, the
search spaces of incremental search methods (for example,
for computer games) are often small and thus their scal-
ing properties are less important than implementation and
machine details. At the same time, it is difficult to com-
pare them using proxies, such as the number of vertex ex-
pansions, if they perform very different basic operations.
We therefore suggest that artificial intelligence researchers
study incremental search in more depth in the coming years
to understand it better, develop new algorithms, evaluate its
potential for real-world applications and, in general, deter-
mine whether incremental search is an important technique
in the tool box of artificial intelligence.

Acknowledgments

Thanks to Peter Yap, Rob Holte, and Jonathan Schaeffer
for interesting insights into the behavior of LPA*. Thanks

also to Anthony Stentz and Craig Tovey for helpful discus-
sions and to Colin Bauer for implementing some of our
ideas. The Intelligent Decision-Making Group is partly
supported by NSF awards to Sven Koenig under contracts
11S5-9984827, 11S-0098807, and ITR/AP-0113881. Yaxin
Liu was supported by an IBM Ph.D. Fellowship. The views
and conclusions contained in this document are those of the
authors and should not be interpreted as representing the
official policies, either expressed or implied, of the spon-
soring organizations, agencies, companies or the U.S. gov-
ernment.

References

Al-Ansari, M. and Williams, R. 1999. Robust, efficient, globally-
optimized reinforcement learning with the parti-game algorithm.
In Advances in Neural Information Processing Systems, vol-
ume 11. MIT Press. 961-967.

Al-Ansari, M. 2001. Efficient Reinforcement Learning in Con-
tinuous Environments. Ph.D. Dissertation, College of Computer
Science, Northeastern University, Boston (Massachusetts).

Alterman, R. 1988. Adaptive planning. Cognitive Science
12(3):393-421.

Araujo, R. and de Almeida, A. 1997. Sensor-based learning of
environment model and path planning with a Nomad 200 mo-
bile robot. In Proceedings of the International Conference on
Intelligent Robots and Systems, volume 2. 539-544.

Araujo, R. and de Almeida, A. 1998. Map building using fuzzy
art, and learning to navigate a mobile robot on an unknown
world. In International Conference on Robotics and Automation,
volume 3. 2554-2559.

Ausiello, G.; Italiano, G.; Marchetti-Spaccamela, A.; and Nanni,
U. 1991. Incremental algorithms for minimal length paths. Jour-
nal of Algorithms 12(4):615-638.

Barbehenn, M. and Hutchinson, S. 1995. Efficient search and
hierarchical motion planning by dynamically maintaining single-
source shortest paths trees. IEEE Transactions on Robotics and
Automation 11(2):198-214.

Barto, A.; Bradtke, S.; and Singh, S. 1995. Learning to act
using real-time dynamic programming. Artificial Intelligence
73(1):81-138.

Bellman, R. 1957. Dynamic Programming. Princeton University
Press.

Bonet, B. and Geffner, H. 2000. Heuristic search planner 2.0.
Artificial Intelligence Magazine 22(3):77-80.

Bonet, B. and Geffner, H. 2001. Planning as heuristic search.
Artificial Intelligence 129(1):5-33.

Bonet, B.; Loerincs, G.; and Geffner, H. 1997. A robust and
fast action selection mechanism. In Proceedings of the National
Conference on Artificial Intelligence. 714-719.

Dechter, R. and Dechter, A. 1988. Belief maintenance in dy-
namic constraint networks. In Proceedings of the National Con-
ference on Artificial Intelligence. 37-42.

Deo, N. and Pang, C. 1984. Shortest-path algorithms: Taxonomy
and annotation. Networks 14:275-323.

desJardins, M.; Durfee, E.; Ortiz, C.; and Wolverton, M. 1999.
A survey of research in distributed, continual planning. Artificial
Intelligence Magazine 20(4):13-22.

Edelkamp, S. 1998. Updating shortest paths. In Proceedings of
the European Conference on Artificial Intelligence. 655-659.

Ersson, T. and Hu, X. 2001. Path planning and navigation of mo-
bile robots in unknown environments. In Proceedings of the In-
ternational Conference on Intelligent Robots and Systems. 858—
864.

Even, S. and Gazit, H. 1985. Updating distances in dynamic
graphs. Methods of Operations Research 49:371-387.

Even, S. and Shiloach, Y. 1981. An on-line edge deletion prob-
lem. Journal of the ACM 28(1):1-4.

Feuerstein, E. and Marchetti-Spaccamela, A. 1993. Dynamic
algorithms for shortest paths in planar graphs. Theoretical Com-
puter Science 116(2):359-371.

Franciosa, P.; Frigioni, D.; and Giaccio, R. 2001. Semi-dynamic
breadth-first search in digraphs. Theoretical Computer Science
250(1-2):201-217.

Frigioni, D.; Marchetti-Spaccamela, A.; and Nanni, U. 1996.
Fully dynamic output bounded single source shortest path prob-
lem. In Proceedings of the Symposium on Discrete Algorithms.
212-221.

Frigioni, D.; Marchetti-Spaccamela, A.; and Nanni, U. 1998.
Semidynamic algorithms for maintaining single source shortest
path trees. Algorithmica 22(3):250-274.

Frigioni, D.; Marchetti-Spaccamela, A.; and Nanni, U. 2000.
Fully dynamic algorithms for maintaining shortest paths trees.
Journal of Algorithms 34(2):251-281.

Gerevini, A. and Serina, I. 2000. Fast plan adaptation through
planning graphs: Local and systematic search techniques. In
Proceedings of the International Conference on Artificial Intelli-
gence Planning and Scheduling. 112-121.

Goto, S. and Sangiovanni-Vincentelli, A. 1978. A new shortest
path updating algorithm. Networks 8(4):341-372.

Hammond, K. 1990. Explaining and repairing plans that fail.
Artificial Intelligence 45:173-228.

Hanks, S. and Weld, D. 1995. A domain-independent algorithm
for plan adaptation. Journal of Artificial Intelligence Research
2:319-360.

Hebert, M.; McLachlan, R.; and Chang, P. 1999. Experiments
with driving modes for urban robots. In Proceedings of the SPIE
Mobile Robots.

Huiming, Y.; Chia-Jung, C.; Tong, S.; and Qiang, B. 2001. Hy-
brid evolutionary motion planning using follow boundary repair
for mobile robots. Journal of Systems Architecture 47(7):635-
647.

Ishida, T. and Korf, R. 1991. Moving target search. In Proceed-
ings of the International Joint Conference on Artificial Intelli-
gence. 204-210.

Italiano, G. 1988. Finding paths and deleting edges in directed
acyclic graphs. Information Processing Letters 28(1):5-11.

Kaelbling, L.; Littman, M.; and Moore, A. 1996. Reinforcement
learning: A survey. Journal of Artificial Intelligence Research
4:237-285.

Kambhampati, S. and Hendler, J. 1992. A validation-structure-
based theory of plan modification and reuse. Artificial Intelli-
gence 55:193-258.

Klein, P. and Subramanian, S. 1993. Fully dynamic approxi-
mation schemes for shortest path problems in planar graphs. In
Proceedings of the International Workshop on Algorithms and
Data Structures. 443-451.

Koehler, J. 1994. Flexible plan reuse in a formal framework. In
Béackstrom, C. and Sandewall, E., editors 1994, Current Trends
in Al Planning. 10S Press. 171-184.

Koenig, S. and Likhachev, M. 2002a. D* Lite. In Proceedings
of the National Conference on Artificial Intelligence. 476-483.

Koenig, S. and Likhachev, M. 2002b. Incremental A*. In Di-
etterich, T.; Becker, S.; and Ghahramani, Z., editors 2002b,
Advances in Neural Information Processing Systems 14, Cam-
bridge, MA. MIT Press.

Koenig, S.; Tovey, C.; and Halliburton, W. 2001. Greedy map-
ping of terrain. In Proceedings of the International Conference
on Robotics and Automation. 3594-3599.

Koenig, S.; Furcy, D.; and Bauer, C. 2002. Heuristic search-
based replanning. In Proceedings of the International Confer-
ence on Artificial Intelligence Planning and Scheduling. 294-
301.

Koenig, S.; Likhachev, M.; and Furcy, D. 2003a. Lifelong plan-
ning A*. Artificial Intelligence Journal. (in press).

Koenig, S.; Tovey, C.; and Smirnov, Y. 2003b. Performance
bounds for planning in unknown terrain. Artificial Intelligence
147:253-279.

Koenig, S. 2001. Agent-centered search. Artificial Intelligence
Magazine 22(4):109-131.

Kollmann, J.; Lankenau, A.; Buhlmeier, A.; Krieg-Bruckner, B.;
and Rofer, T. 1997. Navigation of a kinematically restricted
wheelchair by the parti-game algorithm. In Proceedings of the
AISB-97 Workshop on Spatial Reasoning in Mobile Robots and
Animals. 35-44.

Korf, R. 1990. Real-time heuristic search. Artificial Intelligence
42(2-3):189-211.

Korf, R. 1993. Linear-space best-first search. Artificial Intelli-
gence 62(1):41-78.

Kott, A.; Saks, V.; and Mercer, A. 1999. A new technique en-
ables dynamic replanning and rescheduling of aeromedical evac-
uation. Artificial Intelligence Magazine 20(1):43-53.

Likhachev, M. and Koenig, S. 2002a. Incremental replanning
for mapping. In Proceedings of the International Conference on
Intelligent Robots and Systems.

Likhachev, M. and Koenig, S. 2002b. Speeding up the parti-
game algorithm. In Becker, S.; Thrun, S.; and Obermayer, K.,
editors 2002b, Advances in Neural Information Processing Sys-
tems 15, Cambridge, MA. MIT Press. (in press).

Lin, C. and Chang, R. 1990. On the dynamic shortest path prob-
lem. Journal of Information Processing 13(4):470-476.

Liu, Y.; Koenig, S.; and Furcy, D. 2002. Speeding up the calcu-
lation of heuristics for heuristic search-based planning. In Pro-
ceedings of the National Conference on Artificial Intelligence.
484-491.

Matthies, L.; Xiong, Y.; Hogg, R.; Zhu, D.; Rankin, A;
Kennedy, B.; Hebert, M.; Maclachlan, R.; Won, C.; Frost, T.;
Sukhatme, G.; McHenry, M.; and Goldberg, S. 2000. A portable,
autonomous, urban reconnaissance robot. In Proceedings of the
International Conference on Intelligent Autonomous Systems.

McDermott, D. 1996. A heuristic estimator for means-ends anal-
ysis in planning. In Proceedings of the International Conference
on Artificial Intelligence Planning and Scheduling. 142-149.

Miguel, I. and Shen, Q. 1999. Extending FCSP to support dy-
namically changing problems. In Proceedingfs of IEEE Interna-
tional Fuzzy Systems Conference. 1615-1620.

Moore, A. and Atkeson, C. 1993. Prioritized sweeping: Rein-
forcement learning with less data and less time. Machine Learn-
ing 13(1):103-130.

Moore, A. and Atkeson, C. 1995. The parti-game algorithm for
variable resolution reinforcement learning in multidimensional
state-spaces. Machine Learning 21(3):199-233.

Myers, K. 1999. CPEF: A continuous planning and execution
framework. Artificial Intelligence Magazine 20(4):63-69.

Nebel, B. and Koehler, J. 1995. Plan reuse versus plan genera-
tion: A theoretical and empirical analysis. Artificial Intelligence
76(1-2):427-454.

Nilsson, N. 1971. Problem-Solving Methods in Artificial Intelli-
gence. McGraw-Hill.

Pearl, J. 1985. Heuristics: Intelligent Search Strategies for Com-
puter Problem Solving. Addison-Wesley.

Pemberton, J. and Korf, R. 1994. Incremental search algorithms
for real-time decision making. In Proceedings of the Interna-
tional Conference on Artificial Intelligence Planning Systems.
140-145.

Peng, J. and Williams, R. 1993. Efficient learning and planning
within the DYNA framwork. Adaptive Behavior 1(4):437-454.

Podsedkowski, L.; Nowakowski, J.; ldzikowski, M.; and Viz-
vary, . 2001. A new solution for path planning in par-
tially known or unknown environment for nonholonomic mobile
robots. Robotics and Autonomous Systems 34:145-152.

Pohl, I. 1970. First results on the effect of error in heuristic
search. In Meltzer, B. and Michie, D., editors 1970, Machine
Intelligence, volume 5. American Elsevier. 219-236.

Pohl, 1. 1973. The avoidance of (relative) catastrophe, heuris-
tic competence, genuine dynamic weighting and computational
issues in heuristic problem solving. In Proceedings of the Inter-
national Conference on Intelligent Robots and Systems. 20-23.

Ramalingam, G. and Reps, T. 1996a. An incremental algorithm
for a generalization of the shortest-path problem. Journal of Al-
gorithms 21:267-305.

Ramalingam, G. and Reps, T. 1996b. On the computational com-
plexity of dynamic graph problems. Theoretical Computer Sci-
ence 158(1-2):233-277.

Rohnert, H. 1985. A dynamization of the all pairs least cost
path problem. In Proceedings of the Symposium on Theoretical
Aspects of Computer Science. 279-286.

Romero, L.; Morales, E.; and Sucar, E. 2001. An exploration
and navigation approach for indoor mobile robots considering
sensor’s perceptual limitations. In Proceedings of the Interna-
tional Conference on Robotics and Automation. 3092-3097.

Russell, S. 1992. Efficient memory-bounded search methods.
In Proceedings of the European Conference on Artificial Intelli-
gence. 1-5.

Simmons, R. 1988. A theory of debugging plans and interpre-
tations. In Proceedings of the National Conference on Atrtificial
Intelligence. 94-99.

Spira, P. and Pan, A. 1975. On finding and updating spanning
trees and shortest paths. SIAM Journal on Computing 4:375-
380.

Stentz, A. and Hebert, M. 1995. A complete navigation sys-
tem for goal acquisition in unknown environments. Autonomous
Robots 2(2):127-145.

Stentz, A. 1995. The focussed D* algorithm for real-time re-
planning. In Proceedings of the International Joint Conference
on Artificial Intelligence. 1652-1659.

Sutton, R. and Barto, A. 1998. Reinforcement Learning: An
Introduction. MIT Press.

Tao, M.; Elssamadisy, A.; Flann, N.; and Abbott, B. 1997. Op-
timal route re-planning for mobile robots: A massively paral-
lel incremental A* algorithm. In International Conference on
Robotics and Automation. 2727-2732.

Thayer, S.; Digney, B.; Diaz, M.; Stentz, A.; Nabbe, B.; and
Hebert, M. 2000. Distributed robotic mapping of extreme en-
vironments. In Proceedings of the SPIE: Mobile Robots XV
and Telemanipulator and Telepresence Technologies VII, volume
4195.

Thrun, S.; Biicken, A.; Burgard, W.; Fox, D.; Fréhlinghaus, T.;
Hennig, D.; Hofmann, T.; Krell, M.; and Schmidt, T. 1998. Map
learning and high-speed navigation in RHINO. In Kortenkamp,
D.; Bonasso, R.; and Murphy, R., editors 1998, Artificial Intelli-
gence Based Mobile Robotics: Case Studies of Successful Robot
Systems. MIT Press. 21-52.

Thrun, S. 1998. Lifelong learning algorithms. In Thrun, S. and
Pratt, L., editors 1998, Learning To Learn. Kluwer Academic
Publishers.

Trovato, K. 1990. Differential A*: An adaptive search method
illustrated with robot path planning for moving obstacles and
goals, and an uncertain environment. Journal of Pattern Recog-
nition and Artificial Intelligence 4(2).

Veloso, M. 1994. Planning and Learning by Analogical Reason-
ing. Springer.

Verfaillie, G. and Schiex, T. 1994. Solution reuse in dynamic
constraint satisfaction problems. In Proceedings of the National
Conference on Artificial Intelligence.

Watkins, C. and Dayan, P. 1992. Q-learning. Machine Learning
8(3-4):279-292.

