
In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 381-387, Sendai, Japan, Sept 2004.

Automatic Synthesis of Communication-Based
Coordinated Multi-Robot Systems

Chris Jones and Maja J Matarić
Computer Science Department, University of Southern California

941 West 37th Place, Los Angeles, CA 90089-0781 USA
Email: {cvjones|maja@robotics.usc.edu}

Abstract— To enable the successful deployment of task-
achieving multi-robot systems (MRS), coordination mecha-
nisms must be utilized in order to effectively mediate the
interactions between the robots and the task environment.
Over the past decade, there have been a number of elegant
experimentally demonstrated MRS coordination mechanisms.
Most of these mechanisms have been task-specific in nature,
typically providing only empirical insights into coordination
design and little in the way of systematic techniques to assist
in the design of coordinated MRS for new task domains.
To fully realize the potentials of MRS, formally-grounded
systematic techniques amenable to analysis are needed in
order to facilitate the design of coordinated MRS. We address
this problem by presenting a formal framework for describing
and reasoning about coordination in a MRS. Using this
principled foundation, we are developing a suite of general
methods for automatically synthesizing the controllers of robots
constituting a MRS such that the given task is performed
in a coordinated fashion. This paper presents a method for
the automatic synthesis of a specific type of controller, one
that is stateless but capable of inter-robot communication. We
also present a graph coloring-based approach for minimizing
the number of necessary unique communication messages.
The synthesis of such communicative controllers provides a
means for assessing the uses and limitations of communication
in MRS coordination. We present experimental validation of
our formal approach of controller synthesis in a multi-robot
construction domain through physically-realistic simulations
and in real-robot demonstrations.

I. INTRODUCTION

The study of multi-robot systems (MRS) has received
increased attention in recent years. This is not surprising
as continually improving technology has made it realistic to
consider the deployment of MRS consisting of increasingly
larger numbers of robots. With the growing interest in
MRS comes the expectation that, at least in some impor-
tant respects, multiple robots will be superior to a single
robot in achieving a given task. Potential advantages of
MRS over a single robot are frequently expounded in the
literature. For example, total system cost, it is frequently
claimed, may be reduced by utilizing multiple simple and
cheap robots as opposed to a single complex and expensive
robot. Furthermore, the inherent complexity of some task
environments may require the use of a heterogeneous group
of robots as the necessary capabilities are too substantial
to be met by a single robot. Finally, multiple robots
may provide increased robustness by taking advantage of
inherent parallelism and redundancy.

However, the utilization of MRS poses potential disad-
vantages and additional challenges that must be addressed

if MRS are to present a viable and effective alternative
to single robot systems. Of paramount importance is the
complexity introduced by the management of multiple,
interacting robots. In order for a task-achieving MRS to
be effective, the robots’ actions must be carried out in a
coordinated fashion and directed towards the achievement
of the given task. A MRS lacking effective coordination is
less likely to present a solution that is more desirable or
effective than a single robot solution. Correctly executing
a task in a multi-robot system presents fundamentally
different issues from doing so in a single robot system.
In a MRS, it cannot be assumed that a particular robot
is always aware of the task progress resulting from the
actions of other robots. Formally, from the perspective of
an individual robot in a MRS, the task environment is
highly non-stationary.

From a few robots performing a manipulation task, to
tens of robots exploring a large space, to thousands of
ecosystem monitoring nano-robots, as the number of robots
in the system increases, so does the necessity and impor-
tance of coordination. Coordination is defined as “the act
of regulating and combining so as to produce harmonious
results” [1]. In the context of MRS, coordination is the
process of appropriately regulating the robots’ actions such
that a given task or goal is successfully achieved. Our
work is focused on distributed MRS, in which each robot
operates independently under local sensing and control,
with coordinated group behavior arising out of local inter-
actions between the robots and the task environment. The
design of such coordinated distributed MRS can be quite
challenging because unexpected collective behaviors may
emerge due to unanticipated ramifications of the robots’
local interactions. Nonetheless, many elegant hand-crafted
coordination mechanisms have been demonstrated, both
in simulation and on physical robots. The nature of the
employed mechanisms have taken many forms, seemingly
limited only by the ingenuity of the designer.

Unfortunately, MRS coordination design still remains
more of an art than a science. The coordination mecha-
nisms employed are usually task-specific. Designers typi-
cally provide little formal analysis as to expected system
performance and rarely provide informal explanations as
to why the employed mechanism is more appropriate than
possible alternatives. The design of coordination mecha-
nisms needs to be systematic and formally grounded in
order to move it into the realm of science and fully realize



the advantages of MRS over single robot systems. Thus, a
central challenge facing the MRS community is the design
of principled methods for the synthesis and analysis of
coordination mechanisms.

To address this issue, we have developed a formalism
which provides a principled framework for precisely defin-
ing and reasoning about the intertwined entities involved
in any task-achieving MRS – the world, task definition,
and the capabilities of the robots themselves, including
action selection, sensing, maintenance of internal state, and
inter-robot communication. Using this principled founda-
tion, we are developing a suite of general methods by
which to automatically synthesize the controllers of robots
constituting a MRS such that a given task is performed
in a coordinated fashion. Each of these methods is di-
rected toward the synthesis of a specific type of controller.
We taxonomize controllers based on the following three
characteristics: deterministic or probabilistic action selec-
tion (DA/PA), using internal state or stateless (IS/NIS),
and capable or incapable of inter-robot communication
(Comm/NComm). Our synthesis methods for controllers
across this taxonomy provide more than just pragmatic
tools for building coordinated MRS. Given their formal
grounding, they also provide a means to systematically
determine the fundamental limitations of each type of
controller, to understand the inherent relationships between
different controller types, to contribute methods to sys-
tematically reduce one controller type to another, and to
provide insight into the general requirements necessary
for achieving different forms of coordination. We aim to
facilitate formal answers to fundamental questions, such as:
‘In what conditions is it necessary for the robots to be able
to communicate?’, ‘In what conditions is communication
alone insufficient?’, and ‘When are the use of internal state
and communication interchangeable?’.

In our previous work, we presented a method for the
synthesis of DAct-IS-NoComm controllers and defined
situations in which internal state is useful to achieve the
necessary coordination [10] and a macroscopic MRS mod-
eling approach directed to the analysis of homogeneous
MRS composed of robots executing DAct-IS-NoComm
controllers [11]. In this paper, we present a new method
for the synthesis of a different type of controller, a DAct-
NoIS-Comm. In addition, we show when and why DAct-
NoIS-Comm controllers are useful in achieving the desired
coordination. Furthermore, we provide a graph coloring-
based approach for minimizing the number of unique
communication messages used. We present experimental
validation of our formal approach to DAct-NoIS-Comm
controller synthesis in physically-realistic simulations and
in real-robot demonstrations in a multi-robot construction
task domain.

II. RELATED WORK

Related work on the synthesis and analysis of MRS
coordination mechanisms includes, but is not limited to,
the work of Donald [5] that presents the derivation of
information invariants aimed at defining the informational

requirements of a given task and ways in which those
requirements can be satisfied in a robot controller. Parker
[19] extends the idea of information invariants by defin-
ing equivalence classes among task definitions and robot
capabilities to assist in the choice of an appropriate con-
troller class. Dudek et al. [6] present a taxonomy which
classifies multi-robot systems based on communication and
computational capabilities. Martinoli et al. [14] presents
a general methodology by which the collective behavior
of a group of mobile robots can be accurately studied
using a simple probabilistic model. Balch [4] presents
hierarchic social entropy, an information theoretic measure
of robot team diversity in an effort to understand the role
of heterogeneity in MRS coordination. Gerkey and Matarić
[8] present a principled framework and an analysis method-
ology for the formal study of multi-robot task allocation.
Lerman and Galstyan [13] present a mathematical model
of the dynamics of collective behavior in a multi-robot
adaptive task allocation domain. Alternative approaches
to the synthesis of MRS controllers can be found in
evolutionary methods [7] and learning methods [15, 18].
There also exist a number of MRS design environments,
control architectures, and programming languages which
assist in the design of task-achieving coordinated MRS
[16, 3, 2].

III. DEFINITIONS AND NOTATION

We now provide necessary definitions for the formal-
ism. The world is the environment in which the MRS
is expected to perform a defined task. We assume the
world is Markovian, the state is an element of the finite
set S of all possible states, and is populated by a finite
set of homogeneous robots R. An action performed in the
world by a single robot is drawn from the finite set A of
all possible actions. An observation x made by a robot,
drawn from the finite set of all observations X , consists of
accessible information external to the robot and formally
represents a subset of the world state. The world is defined
by a probabilistic state transition function P (s, x, a, s′) that
states the probability the world state at time t + 1 is s′

given the world state at time t is s and a robot making
observation x executes action a. We note that the world
state transition function involves an observation because
the tasks we consider are spatial in nature and the physical
location where an action is performed is just as important
as the action itself. In this representation, an observation
x is equated with the spatial location where the action a

is performed. Therefore, an action a, executed upon the
observation of xi, will transition the world differently than
the same action a, performed upon the observation of xj .
The probabilistic observation function O(s, x) gives the
probability the observation x will be made by a robot
in world state s. We assume that an observation x may
only be made at one physical location in the world in a
state s. We define a task, assumed to be Markovian, as a
set of n ordered world states Ts = {s0, s1, ..., sn} which
must be progressed through in sequence. We assume the
initial state of the world is s0 and the task terminates



when the world state sn is achieved. We define correct
task execution to be the case where, for all task states
si ∈ Ts, i < n the only actions executed by any robot
are those that transition the world state to si+1. Therefore,
we define an observation and action pair, x and a, to be
correct for task state si if P (si, x, a, si+1) > 0. We assume
that an observation x and action a cannot be correct for
more than one task state. The robots we consider do not
maintain any internal state or representation; however, they
are capable of inter-robot communication. The set of all
possible communication messages a robot may send and
receive is denoted by the set C. The actual communication
content or mechanism of each message is not important, we
only require that each message is uniquely distinguishable
and instantaneously received by other robots. For example,
in our implementation each message is just a unique integer
broadcast over the wireless network connecting the robots.
The communication message a robot is currently sending
is denoted as cs. We assume a robot may receive any
number of messages simultaneously. The set of messages a
robot is currently receiving is denoted as cr. Two functions
define a robot’s behavior in the world, known collectively
as the robot’s controller. The action function Act(x, cr, a)
specifies the probability a robot will execute action a given
it is currently observing x and receiving communication
messages cr. The communication function Comm(x, c)
specifies the probability a robot will send communication
message c given that it is currently observing x. Although
the controller is modeled with probabilistic functions to
maintain consistency with our other work, in this paper
these functions are treated as deterministic, i.e., Act and
Comm will always return either 0 or 1.

IV. DACT-NOIS-COMM CONTROLLERS

In this section we present a systematic procedure for
synthesizing a DAct-NoIS-Comm controller, a stateless
controller with deterministic action selection and inter-
robot communication capabilities. This entails defining
the robots action and communication functions. We also
discuss the uses and limitations of such controllers in the
facilitation of coordination in MRS.

A. Synthesis

There are four high-level steps in the synthesis process:
1) synthesize a baseline DAct-NoIS-NoComm controller,
2) identify situations in which communication can be
used to better facilitate coherent coordination, 3) assign
specific communication messages to each of these situ-
ations, and 4) incorporate these communication assign-
ments into a DAct-NoIS-Comm controller. The full syn-
thesis process is given by the procedure Build DAct-NoIS-
Comm Controller, shown at the bottom of Figure 1.

Step 1: We synthesize a DAct-NoIS-NoComm con-
troller, which is simply a stateless, non-communicative
controller that we will augment with communication to
synthesize the DAct-NoIS-Comm controller. The process
of synthesizing a DAct-NoIS-NoComm controller is given
by the procedure Build DAct-NoIS-NoComm Controller,

(1) procedure Build DAct-NoIS-NoComm Controller()
(2) for all a ∈ A, x ∈ X do
(3) Act(x, {}, a) = 0
(4) endfor
(5) for all si ∈ Ts do
(6) for all a ∈ A, x ∈ X s.t. (O(si, x) > 0∧

P (si, x, a, si+1) > 0) do
(7) Act(x, {}, a) = 1
(8) endfor
(9) endfor
(10) end procedure Build DAct-NoIS-NoComm Controller

(11) procedure Build DAct-NoIS-Comm Controller()
(12) Build DAct-NoIS-NoComm Controller()

(13) for all si ∈ Ts do
(14) Xc(si) = {x0, x1, ..., xn} s.t. ∀x ∈ Xc(si)@sk

(O(si, x) > 0 ∧ k 6= i ∧O(sk, x) > 0)
(15) Xa(si) = {x0, x1, ..., xm} s.t. ∀x ∈ Xa(si)∃a

(O(si, x) > 0 ∧Act(x, {}, a) > 0∧
P (si, x, a, si+1) > 0)

(16) endfor

(17) Graph Color(
S

∀si∈Ts
{Xc(si)−Xa(si)})

(18) for all si ∈ Ts do
(19) for all x ∈ {Xc(si)−Xa(si)} do
(20) Comm(x,Assigned Comm(x)) = 1
(21) endfor
(22) c = {}
(23) for all x ∈ {Xc(si)−Xa(si)} do
(24) c = c

S

Assigned Comm(x)
(25) endfor
(26) for all x ∈ Xa(si), a ∈ A s.t. (Act(x, {}, a) = 1) do
(27) Act(x, {}, a) = 0
(28) Act(x, c, a) = 1
(29) endfor
(30) endfor
(31) end procedure Build DAct-NoIS-Comm Controller

Fig. 1. Procedure for synthesizing a DAct-NoIS-Comm controller.

shown at the top of Figure 1. For each si ∈ Ts, the
synthesis procedure adds a rule to the action function of
the form Act(x, {}, a) = 1, such that x and a are correct
for task state si.

However, such a DAct-NoIS-NoComm controller leaves
room for error if x and a are correct for some task state
si but there exists another task state sj where x and a are
not correct and O(sj , x) > 0. In such situations, an MRS
composed of robots with DAct-NoIS-NoComm controllers
cannot enforce the action sequence necessary for correct
task execution. This is a common problem with purely
reactive controllers in sequential task domains. In the
DAct-NoIS-Comm synthesis steps that follow, we incorpo-
rate the use of communication to improve coordination in
these situations. Due to sensing and action uncertainty, the
addition of communication cannot guarantee correct task
execution, but it can be used to increase the probability of
correct task execution.

Step 2: We define a set of observations that will serve
as the basis of the DAct-NoIS-Comm controller’s com-
munication function. For each task state si ∈ Ts, we



define a set of observations Xc(si) (Figure 1, lines 13-
16), the union of which can only occur in state si. We
also define Xa(si), a set of observations such that, for
each x ∈ Xa(si), there exists an action a, where x and a

are correct for si. We note that if ∃si, sj ∈ Ts such that
{∀x(O(si, x) > 0)} ⊆ {∀x(O(sj , x) > 0)}, then the state
si is fundamentally unobservable. In such a situation, one
cannot guarantee that a MRS composed of robots executing
a DAct-NoIS-Comm controller will correctly execute the
task, even in the absence of sensing and action uncertainty.

Step 3: We assign specific communication messages to
all observations in {Xc(si)−Xa(si)} for each si ∈ Ts, as
defined in Step 2. The simplest solution to this problem
is to assign a specific, unique communication message
to each observation in this set. However, in many MRS
communication bandwidth can be quite limited (e.g., in a
MRS composed of autonomous underwater vehicles), and
so it is advantageous to minimize the number of bits trans-
fered in each communication message; the more unique
communication messages used, more bits in each commu-
nication message will be required to uniquely identify the
message. Furthermore, in some MRS communication is not
achieved through digitized radio transmissions but through
other means such as the release of chemicals, sound, or
light. In such cases, the number of unique communication
messages a robot is capable of sending and receiving can
be very constrained. Therefore, to minimize the actual
number of unique communication messages needed, we
use a graph coloring approach. This step is not used to
minimize the number of instances in which communication
is used, which is decided by the process in Step 2. Although
graph coloring is NP-complete, there are a number of
well studied heuristics that provide understood bounds
on resulting solution quality [17]. Furthermore, the graph
coloring approach is desirable in many domains to reduce
the number of unique messages required, but it is not
absolutely required as the direct assignment of unique
messages to each necessary observation is suitable.

The problem of assigning unique communication mes-
sages to a given set of observations O =

⋃
∀si∈Ts

{Xc(si)−
Xa(si)} can be reduced to a graph coloring problem as
follows. First, a graph G, consisting of a set of vertices V

and a set of edges E, both initially empty, is created. Next,
a vertex is added to V for each observation in O. Then,
we add edges to E between each pair of vertices in V

for which the associated observations interfere with each
other. The test for interference between two observations
xi and xj is given by the function I(xi, xj) shown in
Equation 1. Now a standard graph coloring algorithm may
be applied to G in which the color assigned to a vertex
in V corresponds to a specific communication message
assigned to the observation represented by that vertex. The
function Assigned Comm(x) as used in Figure 1 returns
the communication message assigned to the observation x

as a result of the graph coloring in that step.

I(xi, xj) =

8

>

>

>

>

>

<

>

>

>

>

>

:

1, if ∃s ∈ Ts(O(s, xi) > 0 ∧O(s, xj) > 0),
1, if ∃su, sv ∈ S∃x ∈ Xa(sv)(O(su, x) > 0∧

xj ∈ {Xc(sv)−Xa(sv)} ∧O(su, xi) > 0),
1, if ∃su, sv ∈ S∃x ∈ Xa(sv)(O(su, x) > 0∧

xi ∈ {Xc(sv)−Xa(sv)} ∧ O(su, xj) > 0),
0, otherwise.

(1)

Step 4: We synthesize the DAct-NoIS-Comm controller
by augmenting the DAct-NoIS-NoComm controller syn-
thesized in Step 1. This is accomplished by adding the
communication function and appropriately modifying the
action function such that an action is not executed unless
all necessary communications are being simultaneously
received. Through the graph coloring approach presented
in Step 3, a specific communication message was assigned
to each observation in the set {Xc(si) − Xa(si)} for
each si ∈ Ts. The controller communication function
is constructed (Figure 1, lines 19-21) by adding a com-
munication rule for all x ∈ {Xc(si) − Xa(si)} for all
si ∈ Ts of the form Comm(x, Assigned Comm(x)) = 1,
where Assigned Comm(x) is the specific communica-
tion message assigned to the observation x in Step 3.
Such a communication rule will cause the robot to send
the communication Assigned Comm(x) every time the
observation x is made. The action function is modified
(Figure 1, lines 22-30) so that for each rule of the action
function, Act(x, {}, a) = 1, where x and a are correct for
a state si is modified to become Act(x, cr, a) = 1, where
cr is the set of specific communication messages mapped
in Step 3 to the observations in {Xc(si) − Xa(si)}. All
probabilities not explicitly declared for the controller are
0.

B. Discussion

Due to imperfect robot action and sensing capabilities,
there is no guarantee that the synthesized DAct-NoIS-
Comm controller will correctly execute the given task.
However, the use of a communicative controller leads to
significantly improved performance over a similar non-
communicative controller, as we demonstrate in Section V.
Importantly, the synthesized DAct-NoIS-Comm controller
is, however, guaranteed to correctly execute the task in the
absence of sensing and action uncertainties.

A DAct-NoIS-Comm controller synthesized by the pro-
cedure in Figure 1 is only one, and certainly not the only,
way in which communication can be used to facilitate
coordination. In fact, from a pragmatic standpoint, a MRS
composed of robots executing such DAct-NoIS-Comm
controllers has many disadvantages that other forms of
communicative MRS may not exhibit. For example, the
efficiency of the MRS in terms of time to task completion
will usually be quite poor, as many events have to happen
simultaneously before actions can be performed. A part of
this problem stems from the fact that DAct-NoIS-Comm
controllers are stateless. Allowing the robots to retain some
form of non-transient internal state or representation would
likely improve the system performance in a number of



Fig. 3. (left) Snapshot of an 8-robot experiment in simulation. (right)
Snapshot of a 3 robot real-world experiment.

respects. However, from the perspective of identifying and
understanding the fundamental requirements of coordina-
tion, MRS composed of stateless, communicative robots
are quite interesting. By isolating the use of communica-
tion, analysis of such MRS provides a means to better un-
derstand when and why communication is able to facilitate
coordination and when it is insufficient. Knowledge of the
limitations of communication helps identify when and why
the integration of other controller features, such as internal
state, becomes necessary.

V. CASE STUDY: COORDINATION IN MULTI-ROBOT
CONSTRUCTION

The formalism and synthesis method described in Sec-
tions III and IV-A, respectively, are task in-specific. In
this section we apply the formalism and synthesis method
to a specific multi-robot construction task domain. Using
both physically-realistic simulation and physical robots, we
experimentally demonstrate and validate our approach to
the synthesis of coordinated MRS through the use of DAct-
NoIS-Comm controllers. This task requires the sequential
placement of a series of cubic colored bricks into a planar
structure. For all examples used in this section, a brick’s
color is denoted by the letters R, G, B, and Y which stand
for Red, Green, Blue, and Yellow, respectively. The
construction task starts with a seed structure, which is a
small number of initially placed bricks forming the core of
the structure.

Our simulation experiments were performed using
Player and the Gazebo simulation environment. Player
[9] is a server that connects robots, sensors, and control
programs over a network. Gazebo [12] simulates a set
of Player devices in a 3-D physically-realistic world with
full dynamics. Together, the two represent a high-fidelity
simulation tool for individual robots and teams that has
been validated on a collection of real-robot robot exper-
iments using Player control programs transferred directly
to physical Pioneer 2DX mobile robots. In all simulation
experiments 8 robots were used, and in all real-robot
experiments 3 robots were used. The robots were either
realistic models of or actual ActivMedia Pioneer 2DX mo-
bile robots. Each robot, approximately 30 cm in diameter,
is equipped with a differential drive, a forward-facing 180
degree scanning laser rangefinder, and a forward-looking
color camera with a 100-degree field-of-view and a color

Fig. 4. Example observations and actions in the construction domain.
(top left) Robot in position to make observation <FLUSH R B>. (top
right) Immediately after robot performs action <G RIGHT FLUSH R
B>. (bottom left) Robot in position to make observation <CORNER R
B>. (bottom right) Immediately after robot performs action <G CORNER
R B>.

blob detection system. The bricks are taller than the robot’s
sensors, so the robots can only sense the local bricks on the
periphery of the structure (i.e., robots do not have a birds-
eye view of the entire structure). Figure 3 shows snapshots
of our simulation and real-world experimental setup.

A. Formal Definitions for Construction Task

In order to cast the construction task in the formal
framework presented in Section III, we now define the
world, task definitions, observations, and actions for the
construction task domain. The world state is defined as a
specific spatial configuration of bricks, including the color
of each brick. A construction task is defined as a sequence
of brick configurations (i.e., world states), providing a
specific construction sequence. Observations in the con-
struction domain are made up of the spatial configuration
and color of bricks in the field-of-view of the robot’s laser
rangefinder and color camera and within an appropriate
range and bearing. Two categories of observations can be
made. The first is two adjacent, aligned bricks. A situation
in which such an observation is made is shown in Figure 4
and is denoted as <FLUSH R B>. The second is two
adjacent bricks forming a corner. A situation in which such
an observation is made is shown in Figure 4 and is denoted
as <CORNER R B>. The observations <FLUSH R B>
and <FLUSH B R> constitute two different observations
in which the spatial relationship between the Red and
Blue bricks are switched. A similar point holds for the
observations <CORNER R B> and <CORNER B R>. Due
to uncertainty in sensing, the probability a given FLUSH
observation will be mistaken as a CORNER observation is
1.1% and the probability a given CORNER observation will
be mistaken as a FLUSH observation is 11.5%.

Actions are the placement of individual bricks to the
growing structure. We do not consider construction tasks



Fig. 2. The sequence of world states defining a construction task as seen from overhead (a view not available to the robots in the MRS), from s0 to
s6, left to right. The last state provides the color of each brick.

Action Function
Act(<FLUSH R B>, {}, <G RIGHT FLUSH R B>) = 1
Act(<FLUSH B R>, {c0}, <Y RIGHT FLUSH B R>) = 1
Act(<FLUSH R G>, {c1}, <B LEFT FLUSH R G>) = 1
Act(<CORNER G B>, {c2}, <Y CORNER G B>) = 1
Act(<CORNER Y R>, {c3}, <G CORNER Y R>) = 1
Act(<FLUSH Y B>, {c0}, <R RIGHT FLUSH Y B>) = 1

Communication Function
Comm(<FLUSH R G>, c0) = 1
Comm(<FLUSH B Y>, c1) = 1
Comm(<FLUSH B G>, c2) = 1
Comm(<FLUSH G Y>, c3) = 1

TABLE I
SYNTHESIZED ACTION AND COMMUNICATION FUNCTIONS FOR THE

CONSTRUCTION TASK SHOWN IN FIGURE 2. c0, c1, c2, c3 ∈ C .

in which robots may remove bricks from the structure nor
those in which sub-structures consisting of multiple bricks
may be connected together. Other actions performed by
the robots, such as moving through the environment, do
not affect the world state and are therefore not explicitly
considered. Three categories of actions can be executed.
The first is the placement of a brick on the right side
(from the perspective of the acting robot) of a pair of
adjacent, aligned bricks. The immediate result of such
an action is demonstrated in Figure 4 and is denoted as
<G RIGHT FLUSH R B>. The second is identical to the
first except that the brick is placed on the left side of a
pair of adjacent, aligned bricks. This action is denoted as
<G LEFT FLUSH R B>. The third is the placement of
a brick in the corner formed by two other bricks. The
immediate result of such an action is demonstrated in
Figure 4 and is denoted as <G CORNER B R>. Due to
uncertainty in action, the probability an attempted CORNER
action will succeed is 78% and the probability an attempted
FLUSH action will succeed is 98.5%.

B. Synthesized Controllers

We applied our systematic method for synthesizing
DAct-NoIS-Comm controllers to the construction task
shown in Figure 2. The synthesized action and commu-
nication functions are given in Table I. As can be seen,
the graph coloring approach for minimizing communica-
tion messages was able to reduce the number of unique
messages needed from 5 to 4. The reduction in this case
was minimal as many observations can be made in a large
proportion of the task states. However, this technique can
quite significantly reduce the number of unique messages
needed in many task domains. Figure 5 shows how the

(1) procedure Execute DAct-NoIS-Comm Controller()
(2) repeat forever
(3) x← current observation
(4) cr ← communications being received
(5) if ∃c(Comm(x, c) > 0) then
(6) send communication c with prob. Comm(x, c)
(7) execute a random walk
(8) else if obstacle nearby then
(9) execute obstacle avoidance
(10) else if ∃a(Act(x, cr, a) > 0) then
(11) execute action a with prob. Act(x, cr, a)
(12) execute a random walk
(13) else
(14) execute a random walk
(15) endif
(16) endrepeat
(17) end procedure Execute DAct-NoIS-Comm Controller

Fig. 5. High-level controller integrating the synthesized action and
communication functions for the construction task domain.

action and communication functions are integrated into the
controller. Since the Avoid and Random Walk behaviors
do not change the world state, they do not impact the
controller synthesis procedure. The controllers for the
construction task shown in Figure 2 were implemented on a
group of 8 simulated robots. A total of 300 simulation runs
were conducted. As expected, due to significant uncertainty
in sensing and actions, each trial did not result in correct
task execution. Over the 300 experiments, correct task exe-
cution was achieved in 29.4% of the trials. This represents
a significant improvement over the non-communicative
DAct-NoIS-NoComm controller, which resulted in only
0.9% of trials being correctly executed. We note that
if there was no uncertainty in sensing and action, the
synthesized DAct-NoIS-Comm controller would be gau-
ranteed to correctly execute the task, whereas no such
gaurantee could be made for the non-communicative DAct-
NoIS-NoComm controller. For real-robot verification of the
feasibility of the synthesized DAct-NoIS-Comm controller,
we also implemented it on a group of three actual Pioneer
2DX mobile robots. A limited number of real-world trials
were correctly executed which verified the feasibility of
the DAct-NoIS-Comm controller in the real-world. We
emphasize that the real-robot experiments were performed
in order to show that our formalism and synthesis method
are not merely abstract concepts but successfully capture
the difficult issues involved in real-world embodied MRS,
thus providing a grounded and pragmatic tool for the
description, synthesis, and analysis of coordinated MRS.

We note that our robots do not have the ability to



manipulate bricks in simulation or with physical robots.
To address this issue in simulation, when a robot wants
to execute a brick placement action, it commands the
simulator to place a brick of a given color at a given
location relative to the robot’s current pose. In real-robot
experiments, we manually placed the appropriate brick in
response to the robot’s command (e.g., “Place yellow brick
in the corner formed by the red and blue bricks directly in
front of my position”).

VI. CONCLUSIONS

The successful deployment of a task-achieving MRS de-
pends on effective mechanisms for coordinating the robots’
actions and interactions. To date, demonstrated coordina-
tion mechanisms have largely been designed in a task-
specific manner with little formal analysis of the funda-
mental issues involved in MRS coordination. In this paper,
we presented a formally-grounded method for designing
coordinated MRS. Specifically, we introduced a systematic
method for synthesizing a specific type of robot controller
we call a DAct-NoIS-Comm controller, one that is stateless
but capable of inter-robot communication. This controller,
executed by all robots in a MRS, achieves coordinated
execution of a given task. From the broader perspective
of our over-arching research goal aimed at a formal in-
vestigation of coordination in MRS, the synthesis of a
coordinated MRS with each robot executing a DAct-NoIS-
Comm controller provides insight into how and why inter-
robot communication can be used to facilitate coordination.
Through experimental results in a multi-robot construction
domain, we have shown how the use of communication
can significantly improve MRS coordination.

REFERENCES

[1] Webster’s Revised Unabridged Dictionary. C. & G.
Merriam Co., 1996.

[2] R. Alur, R. Grosu, Y. Hur, V. Kumar, and I. Lee.
Modular specification of hybrid systems in charon.
In Proceedings of the 3rd International Workshop on
Hybrid Systems: Computation and Control, pages 6–
19, Pittsburgh, PA, Mar 2000.

[3] R. Arkin and T. Balch. Aura: Principles and practive
in review. Journal of Experimental and Theoretical
Artificial Intelligence, 9:175–189, 1997.

[4] T. Balch. Measuring robot group diversity. In
T. Balch and L. E. Parker, editors, Robot Teams: From
Diversity to Polymorphism, pages 93–135. AK Peters,
2002.

[5] B. R. Donald. Information invariants in robotics.
Artifical Intelligence, 72(1–2):217–304, 1995.

[6] G. Dudek, M. Jenkin, E. Milios, and D. Wilkes.
A taxonomy for multi-agent robotics. Autonomous
Robots 3, (4):375–397, 1996.

[7] D. Floreano. Patterns of interactions in shared en-
vironments. In Proceedings of the Second European
Conference on Artificial Life, pages 347–366, Brus-
sels, Belgium, May 1993.

[8] B. Gerkey and M. Matarić. Multi-robot task allo-
cation: Analyzing the complexity and optimality of
key architectures. In Proceedings of the IEEE In-
ternational Conference on Robotics and Automation,
pages 3862–3867, Taipei, Taiwan, Sep 2003.

[9] B. Gerkey, R. Vaughan, K. Stoey, A. Howard,
G. Sukhatme, and M. Matarić. Most valuable player:
A robot device server for distributed control. In Pro-
ceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 1226–1231,
Maui, Hawaii, Oct 2001.

[10] C. Jones and M. Matarić. Towards a multi-robot
coordinaton formalism. In Proc. of the Workshop
on the Mathematics and Algorithms of Social Insects,
pages 60–67, Atlanta, Georgia, 2003.

[11] C. Jones and M. Matarić. Synthesis and analysis
of non-reactive controllers for multi-robot sequential
task domains. In Proceedings of the International
Symposium on Experimental Robotics, Singapore, Jun
2004.

[12] Nathan Koenig and Andrew Howard. Design and
use paradigms for gazebo, an open-source multi-robot
simulator. In IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 2149–2154,
Sendai, Japan, Sep 2004.

[13] K. Lerman and A. Galstyan. Macroscopic analysis of
adaptive task allocation in robots. In Proceedings of
the IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 1951–1956, Las Vegas,
Nevada, Oct 2003.

[14] A. Martinoli, A. Ijspeert, and F. Mondada. Under-
standing collective aggregation mechanisms: From
probabilistic modeling to experiments with real
robots. Robotics and Autonomous Systems, 29:51–63,
1999.

[15] M. Matarić. Designing and understanding adaptive
group behavior. Adaptive Behavior, 4:51–80, Dec
1995.

[16] M. Matarić. Issues and approaches in the design
of collective autonomous agents. Robotics and Au-
tonomous Systems, 16(2–4):321–331, Dec 1995.

[17] R. Nelson and R. Wilson. Graph Colourings. Long-
man Scientific and Technical, 1990.

[18] L. Parker. Alliance: An architecture for fault-tolerant
multi-robot cooperation. Transactions on Robotics
and Automation, 14(2):220–240, Apr 1998.

[19] L. Parker. Toward the automated synthesis of co-
operative mobile robot teams. In Proceedings of
SPIE Mobile Robots XIII, volume 3525, pages 82–
93, Boston, MA, Nov 1998.


