
The Semantics of the C Programming Language

Yuri Gurevich�and James K. Huggins�

EECS Department, University of Michigan, Ann Arbor, MI 48109-2122, USA

February 19, 1993

This paper �rst appeared in [GH2], and incorporates the corrections indicated in [GH3].

0 Introduction

We present formal operational semantics for the C programming language. Our starting point is the ANSI
standard for C as described in [KR]. Knowledge of C is not necessary (though it may be helpful) for
comprehension, since we explain all relevant aspects of C as we proceed.

Our operational semantics is based on evolving algebras. An exposition on evolving algebras can be
found in the tutorial [Gu]. In order to make this paper self-contained, we recall the notion of a (sequential)
evolving algebra in Sect. 0.1.

Our primary concern here is with semantics, not syntax. Consequently, we assume that all syntactic
information regarding a given program is available to us at the beginning of the computation (via static
functions). We intended to cover all constructs of the C programming language, but not the C standard
library functions (e.g. fprintf(), fscanf()). It is not di�cult to extend our description of C to include
any desired library function or functions.

Evolving algebra semantic speci�cations may be provided on several abstraction levels for the same
language. Having several such algebras is useful, for one can examine the semantics of a particular feature of
a programming language at the desired level of abstraction, with unnecessary details omitted. It also makes
comprehension easier. We present a series of four evolving algebras, each a re�nement of the previous one.
The �nal algebra describes the C programming language in full detail.

Our four algebras focus on the following topics respectively:

1. Statements (e.g. if, for)

2. Expressions

3. Memory allocation and initialization

4. Function invocation and return

What about possible errors, i.e., division by zero or de-referencing a pointer to an invalid address? These
issues are very implementation-dependent. Even what constitutes an error is implementation-dependent. If
an external function does not produce any value in a state where a value is expected, the evolving algebra
will be stalled in that state forever. It is natural to suppose that if an external function does produce a value,
it is of the appropriate type. One may want to augment the guards of transition rules to check for errors;
in this way, the evolving Nalgebra will halt on error conditions (and may even output an error message if
desired). There are more subtle ways to handle errors. We ignore the issue here.

To reect the possibility of di�erent implementations, our evolving algebras contain implementation-
dependent parameters. For example, the set of values \storable" in a pointer variable is implementation-
dependent. Thus, each of our four evolving algebras gives rise to a family of di�erent evolving algebras.

�Partially supported by ONR and NSF.
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2 0 INTRODUCTION

0.1 Evolving Algebras

An evolving algebra A is an abstract machine. Here we restrict attention to sequential evolving algebras.
The signature of A is a (�nite) collection of function names, each name having a �xed arity. A state of
A is a set, the superuniverse, together with interpretations of the function names in the signature. These
interpretations are called basic functions of the state. The superuniverse does not change as A evolves; the
basic functions may.

Formally, a basic function of arity r (i.e. the interpretation of a function name of arity r) is an r-ary
operation on the superuniverse. (We often use basic functions with r = 0; such basic functions will be called
distinguished elements.) But functions naturally arising in applications may be de�ned only on a part of the
superuniverse. Such partial functions are represented by total functions in the following manner.

The superuniverse contains distinct elements true, false, undef which allow us to deal with relations
(viewed as binary functions with values true or false) and partial functions (where f(a) = undef means f
is unde�ned at the tuple a). These three elements are logical constants. Their names do not appear in the
signature; this is similar to the situation in �rst-order logic with equality where equality is a logical constant
and the sign of equality does not appear in the signature. In fact, we use equality as a logical constant as
well.

Further, a universe U is a special type of basic function: a unary relation usually identi�ed with the
set fx : U (x)g. The universe Bool = ftrue; falseg is another logical constant. When we speak about,
say, a function f from a universe U to a universe V , we mean that formally f is a unary operation on
the superuniverse such that f(a) 2 V for all a 2 U and f(a) = undef otherwise. We use self-explanatory
notations like f : U ! V , f : U1 � U2 ! V , and f : V . The last means that the distinguished element f
belongs to V .

In principle, a program of A is a �nite collection of transition rules of the form

if t0 then f(t1; : : : ; tr) := tr+1 endif (1)

where t0, f(t1; : : : ; tr), and tr+1 are closed terms (i.e. terms containing no free variables) in the signature of
A. An example of such a term is g(h1; h2) where g is binary and h1 and h2 are zero-ary. The meaning of the
rule shown above is this: Evaluate all the terms ti in the given state; if t0 evaluates to true then change the
value of the basic function f at the value of the tuple (t1; ::; tr) to the value of tr+1, otherwise do nothing.

In fact, rules are de�ned in a slightly more liberal way; if k is a natural number, b0; : : : ; bk are terms and
C0; : : : ; Ck+1 are sets of rules then both of the following are rules:

if b0 then C0 if b0 then C0

elseif b1 then C1 elseif b1 then C1

...
...

elseif bk then Ck elseif bk then Ck

else Ck+1 endif

endif

Since the Ci are sets of rules, nested transition rules are allowed (and occur frequently). To save space,
we abbreviate the series of endif's at the tail of a transition rule by ENDIF.

A program is a set of rules. It is easy to transform a program to an equivalent program comprising only
rules of the stricter form (1). We use rules of the more liberal form, as well as macros (textual abbreviations),
for brevity.

How does A evolve from one state to another? In a given state, the demon (or interpreter) evaluates
all the relevant terms and then makes all the necessary updates. If several updates contradict each other
(trying to assign di�erent values to the same basic function at the same place), then the demon chooses
nondeterministically one of those updates to execute.

We call a function (name) f dynamic if the demon (interpreter) may change f as the algebra evolves; i.e.
if an assignment of the form f(t1; : : : ; tr) := t0 appears anywhere in the transition rules. Functions which
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are not dynamic are called static. To allow our algebras to interact conveniently with the outside world,
we also make use of external functions within our algebra. External functions are syntactically static (that
is, never changed by rules), but have their values determined by an oracle. Thus, an external function may
have di�erent values for the same arguments as the algebra evolves.

0.2 Acknowledgements

An earlier version of this paper appeared as a technical report [GH1]. We gratefully acknowledge comments
made by on the original report by Egon B�orger, Andre Burago, Martin J. D�urst, Stefano Guerrini, Raghu
Mani, Arnd Poetzsch-He�ter, Dean Rosenzweig, and Marcus Vale, as well as comments in the errata made
by Lars Ole Andersen, L. Douglas Baker, Arnd Poetzsch-He�ter, Thomas Tsukada, and Chuck Wallace.

1 Algebra One: Handling C Statements

Our �rst evolving algebra models the control structures of C.

1.1 Some Basic Functions

A universe tasks consists of elements representing tasks to be accomplished by the program interpreter. The
notion of task is a general one: e.g., a task may be the execution of a statement, initialization of a variable,
or the evaluation of an expression. The elements of this universe are dependent on the particular C program
being executed by the abstract machine. It is often useful to mark a given task with tags indicating its
nature. This gives rise to a universe of tags.

A distinguished element CurTask: tasks indicates the current task. In order to execute tasks in the proper
order, a static function NextTask: tasks ! tasks indicates the next task to be performed once the current
task has been completed. A static function TaskType: tasks ! tags indicates the action to be performed by
the task.

A universe results contains values which may appear as the result of a computation.

1.2 Macro: Moveto

Often, we transfer control to a particular task, modifying CurTask to indicate the transfer of control. In
Algebra Two, the rules for modifying CurTask will change somewhat; in order to facilitate this change, we
will use the Moveto(Task) macro each time that we wish to transfer control. For now, the de�nition of
Moveto(Task) is shown in Fig. 1.

Moveto(Task)

CurTask := Task

Figure 1: De�nition of the Moveto(Task) macro.

1.3 Statement Classi�cation in C

According to [KR], there are six categories of statements in C:

1. Expression statements, which evaluate the associated expression.
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2. Selection statements (if and switch).

3. Iteration statements (for, while, and do-while).

4. Jump statements (goto, continue, break, and return).

5. Labeled statements (case and default statements used within the scope of a switch statement, and
targets of goto statements).

6. Compound statements, consisting of a (possibly empty) list of local variable declarations and a (possibly
empty) list of statements.

.

1.4 Expression Statements

An expression statement has one of the following forms:

expression-statement ! ;

expression-statement ! expression ;

To execute an expression statement, evaluate the attached expression (if any), even though the resulting
value will not be used. While this may seem unnecessary, note that the evaluation of an expression in C may
generate side-e�ects (such as assigning a value to a variable). Note also that the evaluation of an expression
may not halt. In this algebra, the evaluation of expressions is handled by an external function TestValue:
tasks ! results.

Since expression statements perform no additional work, the algebra simply proceeds to the next task.
The transition rule for expression tasks is shown in Fig. 2.

if TaskType(CurTask) = expression then

Moveto(NextTask(CurTask))
endif

Figure 2: Transition rule for expression tasks.

1.5 if Statements

There are two types of selection statements in C: if statements and switch statements. An if statement
has one of the following forms:

if-statement ! if ( expression ) statement1
if-statement ! if ( expression ) statement1 else statement2

where statement1 and statement2 are statements.
To execute an if statement, begin by evaluating the guard expression. If the resulting value is non-

zero, execute statement1 . If the resulting value is zero and an else clause is present, execute statement2 .
otherwise, execute the statement following the if statement. Static partial functions TrueTask: tasks !
tasks and FalseTask: tasks ! tasks indicate the task to be performed if the guard of the if statement
evaluates to a non-zero value or zero, respectively.
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The branching decision made in the if statement is represented by an element of the tasks universe for
which the TaskType function returns branch. We illustrate a typical if statement with the graph in Fig. 3,
where ovals represent tasks, labeled arcs represent the corresponding unary functions, and boxes represent
subgraphs. If an else clause is not present in an if statement, the corresponding task graph omits the
lower portion of Fig. 3, with the FalseTask function connecting the branch task to the task following the if
statement. The transition rule for branch tasks is shown in Fig. 4.

NextTask TrueTask

FalseTask

NextTask

FalseTask

NextTask

expression branch

stmt1

stmt2

Figure 3: A typical if statement.

if TaskType(CurTask) = branch then

if TestValue(CurTask) 6= 0 then

Moveto(TrueTask(CurTask))
elseif TestValue(CurTask) = 0 then

Moveto(FalseTask(CurTask))
ENDIF

Figure 4: Transition rule for branch tasks.

Remark. Fig. 3 shows a typical if statement, but it is not representative of all if statements. The
presence of a jump statement in statement1 or statement2 may cause NextTask to point to a di�erent task
than the one which immediately follows the if statement.

1.6 switch Statements

A switch statement has the following form:

switch-statement ! switch ( expression ) body

where body is a statement, usually compound.
Within the body of a switch statement there are (usually) labeled case and default statements. Each

case or default is associated with the smallest enclosing switch statement.
To execute a switch statement, evaluate the guard expression, and within the body of the switch, transfer

control to the case statement for the switch whose labeled value matches the value of the expression, or to
the default statement for the switch, whichever comes �rst. If no such statement is found, transfer control
to the statement following the switch statement.
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expression

TrueTask

NextTask

NextTask

FalseTask

branch

body

Figure 7: A typical while statement.

1.8 do-while Statements

A do-while statement has the following form:

do-while-statement ! do body while ( expression ) ;

where body is a statement.
do-while statements are identical to while statements except that the guard expression and statement

body are visited in the opposite order. We illustrate a typical do-while with the graph shown in Fig. 8;
with regard to the possible e�ects of embedded jump statements, see the remark in Sect. 1.5. (Note the
similarity between this graph and that of the while loop.) As with while loops, no new transition rules are
required to model the behavior of do-while statements.

expression

TrueTask

FalseTaskNextTask

NextTask

branch

body

Figure 8: A typical do-while statement.

1.9 for Statements

The most complete form of the for statement is:

for-statement ! for ( initializer ; test ; update ) body

where initializer , test , and update are expressions, any of which may be omitted, and body is a statement,
usually compound. We begin by describing the behavior and representation of a for statement when all
expressions are present.

In executing a for statement, begin by evaluating the initializer. Evaluate the test next; if the result is
non-zero, execute the body and evaluate the update (in that order) and re-evaluate the test. If the value of
the test is zero, transfer control to the statement following the for loop.
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We illustrate a typical for statement with the graph in Fig. 9; with regard to the possible e�ects of
embedded jump statements, see the remark in Sect. 1.5. Again, no new transition rules are required to
model the behavior of for statements.

TrueTask

FalseTaskNextTask

NextTask

NextTask

NextTask

branch

init−
 ializer

 test

update body

Figure 9: A typical for statement.

The graphs for for loops missing one or more of the three expressions (initializer, test, and update)
omit the corresponding tasks, with NextTask pointing to the next task in the graph sequence. If the test is
omitted, both the test and the branch task are omitted, which creates an in�nite loop (which may still be
broken through the use of jump statements).

1.10 Jump Statements

A jump statement has one of the following forms:

jump-statement ! goto identi�er ;
jump-statement ! continue ;

jump-statement ! break ;

jump-statement ! return ;

jump-statement ! return expression ;

Each of these jump statements is a command indicating that control should be unconditionally transferred
to another task in the task graph:

� goto statements indicate directly the task to which control passes.

� continue statements may only occur within the body of an iteration statement. For a given continue

statement C, let S be the smallest iteration statement which includes C. Executing C transfers control
to the task within S following the statement body of S: e.g., for for statements, control passes to the
update expression, while for while statements, control passes to the guard expression.

� break statements may occur within the body of an iteration or switch statement. For a given break

statement B, let S be the smallest iteration or switch statement which includes B. Executing B transfers
control to the �rst task following S.

� return statements occur within the body of function abstractions, indicating that the current function
execution should be terminated. A more complete discussion of return statements will be presented in
Algebra Four, where function abstractions are presented. For now, we assert that executing a return

statement should set CurTask to undef , which will bring a halt to the algebra, since we only have one
function (main) being executed.

The NextTask function contains the above (static) information for jump statement tasks. Thus, the transition
rule for jump statements (shown in Fig. 10) is trivial.
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if TaskType(CurTask) = jump then

Moveto(NextTask(CurTask))
endif

Figure 10: Transition rule for jump tasks.

1.11 Labeled Statements

A labeled statement has one of the following forms:

labeled-statement ! identi�er : statement
labeled-statement ! case constant-expression : statement
labeled-statement ! default : statement

Statement labels identify the targets for control transfer in goto and switch statements. NextTask and
SwitchTask return the appropriate tasks in each case; no further transition rules are needed.

1.12 Compound Statements

A compound statement has the following form:

compound-statement ! f declaration-list statement-list g

where the declaration and/or statement lists may be empty.)

Since NextTask indicates the order in which tasks are processed, we have no need for rules concerning
compound statements. Each statement or declaration in a compound statement is linked to its successor
via NextTask . (Declarations are not treated until Algebra Three; nonetheless, the same principle holds for
declaration tasks.)

1.13 Initial and Final States

We assert that initially, CurTask indicates the �rst task of the �rst statement of the program.

A �nal state in our algebra is any state in which CurTask = undef . In this state, no rules will be executed,
since TaskType(undef) = undef.

2 Algebra Two: Evaluating Expressions

Our second evolving algebra re�nes the �rst and focuses on the evaluation of expressions.

We replace each occurrence of a task of type expression from the �rst algebra with numerous tasks
reecting the structure of the expression. Also, TestValue is now an internal, dynamic function.

In Algebra Two, we treat the evaluation of expressions at a relatively high level of abstraction. We map
variable identi�ers to memory locations through external functions. We also treat function invocations as
expressions whose values are provided by external functions. In Algebras Three and Four we will eliminate
these abstractions.
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2.1 New Basic Functions Related To Memory Management

In C, one may (re)cast types. For example, one may cast a pointer to a structure into a pointer to an array of
characters. Thus, one can access the individual bytes of most values which might exist during the execution
of the program.1

A static function Size: typename ! integer indicates how many bytes are used by a particular value
type in memory. A dynamic function Memory: addresses ! bytes indicates the values stored in memory
at a given byte. Since most values of interest are larger than a byte, we need a means for storing members
of results as individual bytes. For example, assume that the int value 258 is represented in the memory of
a particular system by the four (eight-bit) bytes 0, 0, 1, and 2, stored consecutively. We need a way to go
from a value in results (e.g., 258) to its component bytes (0, 0, 1, 2) and vice versa.

A static partial (n+1)-ary function ByteToResult: typename � byten ! results converts the memory
representation of a value of the speci�ed basic type into its corresponding value in the results universe. Here
n is the maximum number of bytes used by the memory representation of any particular basic type (and
is implementation-dependent). For types whose memory representations are less than n bytes in length, we
ignore any unused parameters. In our example above, ByteToResult(int,0,0,1,2) = 258 .

A static partial function ResultToByte: results � integer � typename ! byte yields the speci�ed byte of
the memory representation of the speci�ed value from the speci�ed universe. This function can be thought
of as the inverse of ByteToResult . In our example above, ResultToByte(258,3,int) = 2 . (We assume tacitly
that the arguments of ResultToByte uniquely de�ne the value of the function, which is the case in all the
implementations that we know.)

We de�ne an abbreviation MemoryValue: address � typename ! results, which indicates the value of
the speci�ed type being stored in memory beginning at the indicated address. MemoryValue (addr,type)
abbreviates ByteToResult (type, Memory(addr), Memory(addr+1), . . . , Memory(addr + Size(type) - 1)).

2.2 Other New Basic Functions

Two sub-universes of results, the universe of computational results, are of particular interest in Algebra Two.
A universe bytes contains those values which may be \stored" in a char variable. (This universe is usually
identical to f0,1,. . . ,255g, but we prefer the more general de�nition.) A universe addresses contains positive
integers corresponding to valid memory locations. This is also the universe of values which may be stored
in a pointer-type variable. (Of course, these two universes are implementation-dependent.)

A universe typename contains elements representing the di�erent types of storable values. A static partial
function ValueType: tasks ! typename indicates the type of the resulting value when an expression has been
evaluated.

Static partial functions LeftTask, RightTask: tasks ! tasks indicate the left and right operands of binary
operators whose order of evaluation is not de�ned within C (e.g., +). A static partial function Parent: tasks
! tasks indicates the parent (i.e., closest enclosing) expression for a given expression. For expressions which
are not contained in any other expressions, Parent returns the corresponding branch task which uses the
expression (if one exists) or undef (if none exists). A static partial function WhichChild: tasks ! fleft,
right, only, test, . . .g (where left , etc. are members of the tags universe) indicates the relationship between
a task and its parent.

Dynamic partial functions LeftValue, RightValue: tasks ! results indicate the results of evaluating the
left and right operands of binary operators with ambiguous evaluation order. Similarly, a dynamic partial
function OnlyValue: tasks! results indicates the result of evaluating the single operand of a unary operator.
A static partial function ConstVal: tasks ! results indicates the values of program constants.

1The distinguished value void is an example of a value which cannot be accessed in this manner.
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2.3 Macro: DoAssign

Our rules for assignment to memory are a little complicated, since a given assignment may require an
arbitrarily large number of updates to the Memory function. We need rules which perform a loop to make
those arbitrarily large number of updates in a systematic fashion.2

To facilitate this loop, we use several distinguished elements. CopyValue: results denotes the value to
be copied. CopyType: typename denotes the type of value to be copied. CopyLocation: address denotes the
location to which the value is to be copied. CopyByte: integer denotes which byte of the representation of
CopyValue is being copied into memory. OldTask: tasks denotes the task which invoked the memory copying
procedure. CopyTask: tasks is a static distinguished element used to indicate that the copying procedure
should begin.

We will invoke the copying procedure using the DoAssign(address, value, type) macro, de�ned in Fig. 11.
The copying process itself is relatively straightforward. We utilize the distinguished element CopyByte to
denote which byte of the memory representation of CopyValue we are copying into memory at a given moment
in time. We copy bytes singly, incrementing the value of CopyByte after each assignment to memory, halting
when all bytes have been copied. The transition rule for copying to memory is shown in Fig. 12.

DoAssign(address, value, type)

CopyValue := value
CopyType := type
CopyLocation := address
CopyByte := 0
OldTask := CurTask
CurTask := CopyTask

Figure 11: De�nition of the DoAssign macro.

if CurTask = CopyTask then
if CopyByte < Size(CopyType) then

Memory(CopyLocation + CopyByte) :=
ResultToByte(CopyValue, CopyByte, CopyType)

CopyByte := CopyByte + 1
elseif CopyByte = Size(CopyType) then

CurTask := NextTask(OldTask)
endif

endif

Figure 12: Transition rule for copying to memory.

2Most computer systems provide a means for memory assignments in units larger than a byte, but the particular sizes

available are implementation-dependent. We thus present rules using the lowest-common denominator, the byte.
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2.4 Macro: ReportValue

When we process tasks corresponding to expression evaluation, we assign the value of an evaluated expression
to the appropriate storage function in the parent expression (e.g. LeftValue(Parent(CurTask))). We use the
ReportValue macro (de�ned in Fig. 13) to accomplish this.

ReportValue(value)

if WhichChild(CurTask) = left then
LeftValue(Parent(CurTask)) := value

elseif WhichChild(CurTask) = right then
RightValue(Parent(CurTask)) := value

elseif WhichChild(CurTask) = only then
OnlyValue(Parent(CurTask)) := value

elseif WhichChild(CurTask) = test then
TestValue(Parent(CurTask)) := value

endif

Figure 13: De�nition of the ReportValue macro.

2.5 Macros: EvaluateOperands and Moveto

In C, as described by [KR], many binary operators (such as the assignment operator \=") do not have a
de�ned order of evaluation: either operand may be evaluated �rst. When one or more operands of such an
operator generate side e�ects (as in \a[i] = i++"), the value or the side-e�ects generated by the expression
may depend upon the order of evaluation. Writing such code is usually unwise, since such code may not
be portable; however, an optimizing compiler may take advantage of this ambiguity to generate code which
minimizes the resources required to perform a particular computation [ASU].

For expressions involving such operators, our algebra must be exible enough to reect any possible
evaluation order of an expression's operands, even if this decision is made at run-time. While we believe
most compilers make this decision at compile-time, we must still provide a mechanism for making this
decision dynamically. (If this decision is always made statically in a particular system, the algebra may
be explicitly structured to incorporate those static decisions into the task graph). We will use an external
function ChooseTask to represent this decision.

We illustrate how expressions with such operators are represented in our algebra by the graph in Fig. 14.
A dynamic function Visited: tasks ! fleft, right, both, neitherg indicates which subexpressions have been
evaluated at a given moment. Initially, Visited has the value neither for all tasks.

To evaluate expressions of this type, begin by evaluating the sub-expression indicated by ChooseTask .
When that sub-expression has been evaluated, evaluate the other sub-expression. Finally, when both ex-
pressions have been evaluated, perform the desired operation.

To handle the portion of this behavior dealing with the operator task, we use the EVALUATE OPERANDS
macro. Informally, the macro means \Evaluate both operands in the order given by ChooseTask ; when both
operands are evaluated, then do . . . ". To handle the portion of this behavior dealing with movement between
subtasks, we rede�ne the Moveto(Task) macro to jump directly between the subtasks of an operator of this
type. The de�nitions for EVALUATE OPERANDS and Moveto are shown in Fig 15 and Fig. 16.
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Left
Task

RightTask

NextTask

operator

leftexp rightexp

NextTask

Figure 14: Binary operators.

EVALUATE OPERANDS WITH
statements

END EVALUATE

if Visited(CurTask) = neither then
if ChooseTask(CurTask) = LeftTask(CurTask) then

Visited(CurTask) := left
elseif ChooseTask(CurTask) = RightTask(CurTask) then

Visited(CurTask) := right
endif

Moveto(ChooseTask(CurTask))
elseif Visited(CurTask) = both then

Visited(CurTask) := neither
statements

endif

Figure 15: De�nition of the EVALUATE OPERANDS macro.
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Moveto(Task)

if Visited(Task) = neither then
CurTask := Task

elseif Visited(Task) = both then

CurTask := Task
elseif Visited(Task) = left then

CurTask := RightTask(Task)
Visited(Task) := both

elseif Visited(Task) = right then
CurTask := LeftTask(Task)
Visited(Task) := both

endif

Figure 16: Revised de�nition of the Moveto(Task) macro.

2.6 Comma Operators

A comma expression has the following form:

comma-expression ! expr1 , expr2

where expr1 and expr2 are expressions.
To evaluate a comma expression, evaluate expr1 and expr2 , left to right, returning the value of expr2 as

the value of the parent expression. (Though it may seem unnecessary to evaluate the �rst expression since
we ignore its value, recall that expressions in C may generate side-e�ects.) We represent comma expressions
as a sequence of two expressions linked by the NextTask function. Thus, no additional transition rules are
needed to process comma operators.

2.7 Conditional Expressions

A conditional expression has the following form:

conditional-expression ! expr1 ? expr2 : expr3

where expr1 , expr2 , and expr3 are expressions.
To evaluate a conditional expression, evaluate expr1 . If the resulting value is non-zero, evaluate expr2

and return its value as the value of the parent expression; otherwise, evaluate expr3 and return its value as
the value of the parent expression.

We will represent conditional expressions in our algebra in a manner similar to that in which we represent
conditional statements, as illustrated in Fig. 17. The tasks corresponding to the center and right sub-
expressions will update the appropriate Value function for the parent expression upon completion of the
evaluation of the subexpression. No new transition rules are needed to handle conditional expressions.

2.8 Logical OR Expressions

A logical OR expression has the following form:

logical-OR-expression ! expr1 || expr2
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NextTask
TrueTask

FalseTask

NextTask
expression

expression

NextTask

branchexpression

Figure 17: Conditional expression.

where expr1 and expr2 are expressions.
To evaluate a logical OR expression, start by evaluating expr1 . If the result is non-zero, the value of the

parent expression is 1 and expr2 is not evaluated. Otherwise, the value of the parent expression is the value
of expr2 , with non-zero values coerced to 1.

To represent a logical OR expression, we will introduce two new task types, OR and makeBool . We
illustrate how logical OR expressions are represented in our algebra by the graph in Fig. 18.

OR

makeBool

NextTask
TrueTask

FalseTask

NextTask NextTask
rightexp

leftexp

Figure 18: Logical OR expression.

In processing the OR task, the value of expr1 will be examined. If the value is not zero, the rules for
OR tasks will set the value of the expression to 1 and end processing of the parent expression. Otherwise,
the rules will pass control to the tasks which evaluate expr2 . The rules for makeBool tasks will examine the
value of expr2 and coerce it to 0 or 1. The transition rules for OR and makeBool tasks are shown in Fig. 19
and Fig. 20.

2.9 Logical AND expressions

A logical AND expression has the following form:

logical-AND-expression ! expr1 && expr2

where expr1 and expr2 are expressions.
To evaluate an AND expression, begin by evaluating expr1 . If the resulting value is 0, the value of the

parent expression is 0. Otherwise, the value of expr2 (coerced to 0 or 1) is the value of the parent expression.
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if TaskType(CurTask) = OR then

if OnlyValue(CurTask) 6= 0 then

ReportValue(1)
Moveto(TrueTask(CurTask))

elseif OnlyValue(CurTask) = 0 then

Moveto(FalseTask(CurTask))
ENDIF

Figure 19: Transition rule for OR tasks.

if TaskType(CurTask) = makeBool then
if OnlyValue(CurTask) 6= 0 then

ReportValue(1)
elseif OnlyValue(CurTask) = 0 then

ReportValue(0)
endif

Moveto(NextTask(CurTask))
endif

Figure 20: Transition rule for makeBool tasks.

The representation of logical AND expressions is similar to that of logical OR expressions, as illustrated in
Fig. 21. The transition rule for AND tasks (used in such representations) is shown in Fig. 22.

makeBool

NextTask

TrueTask

FalseTask

NextTask NextTask

AND

rightexp

leftexp

Figure 21: Logical AND expression.

2.10 Assignment Expressions

A simple assignment has the following form:

assignment-expression ! expr1 = expr2

where expr1 and expr2 are expressions.
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if TaskType(CurTask) = AND then

if OnlyValue(CurTask) = 0 then

ReportValue(0)
Moveto(FalseTask(CurTask))

elseif OnlyValue(CurTask) 6= 0 then

Moveto(TrueTask(CurTask))
ENDIF

Figure 22: Transition rule for AND tasks.

To evaluate a simple assignment expression, copy the value of expr2 into the memory location given by
expr1 , returning that value as the value of the parent expression.

This is the �rst occurrence of an operator in Algebra Two with an ambiguous evaluation order, as
discussed in Sect. 2.5. Thus, the expression is represented in our algebra as in Fig. 14. The transition rule
for assignment operators is shown in Fig. 23.

if TaskType(CurTask) = simple-assignment then
EVALUATE OPERANDS WITH

DoAssign( LeftValue(CurTask),RightValue(CurTask),
ValueType(CurTask))

ReportValue(RightValue(CurTask))
END EVALUATE

endif

Figure 23: Transition rule for simple assignment tasks.

Within C, there are other assignment operators (\+=", \*=", etc.) which perform a mathematic operation
on the value of expr2 and the value stored in the memory location given by expr1 . The result is copied into
the memory location given by expr1 . For example, \i *= 2" has the same value and e�ect as \i = i * 2".
However, it is not true in general that \a op= b" can be seen as an abbreviation for \a = a op b", since
the expression a is evaluated only once in the former expression, but twice in the latter. Since evaluating
expressions in C may cause side e�ects, the distinction is important. Thus, we must present additional
transition rules for such operators.

With two exceptions, all these assignment operators have transition rules like that shown in Fig 24 for
the multiplicative assignment operator (\*=").

The two exceptions are the additive and subtractive assignment operators, \+=" and \-=". In C, one
may add an integer i to a pointer expression p, with the result being a pointer which is i units forward
in memory from p. Thus, to process ``a += b'', we must perform di�erent actions if a is a pointer
variable. The transition rule for additive assignment involving pointers is shown in Fig 25. The rule for
additive assignment involving non-pointers is like that shown above for multiplicative assignments, with the
additional condition PointerType(LeftChild(CurTask)) = false inserted in the guard of the rule. The rules
for subtractive assignment are similar and thus omitted.
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if TaskType(CurTask) = multiplicative-assignment then
EVALUATE OPERANDS WITH

DoAssign( LeftValue(CurTask),
MemoryValue[LeftValue(CurTask),ValueType(CurTask)]

* RightValue(CurTask),
ValueType(CurTask))

ReportValue(MemoryValue[LeftValue(CurTask),ValueType(CurTask)]
* RightValue(CurTask))

END EVALUATE
endif

Figure 24: Transition rule for multiplicative assignment.

if TaskType(CurTask) = additive-assignment
and PointerType(LeftChild(CurTask)) = true then

EVALUATE OPERANDS WITH
DoAssign( LeftValue(CurTask),

MemoryValue(LeftValue(CurTask),ValueType(CurTask))
+ Size(PointsToType(CurTask)) * RightValue(CurTask),
ValueType(CurTask)

ReportValue(MemoryValue(LeftValue(CurTask),ValueType(CurTask))
+ Size(PointsToType(CurTask)) * RightValue(CurTask))

END EVALUATE
endif

Figure 25: Transition rule for additive assignment with pointers.
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2.11 The sizeof Operator

Expressions involving sizeof have one of the following forms:

sizeof-expression ! sizeof expression
sizeof-expression ! sizeof ( type-name )

The ValueType function converts either operand into a value in the typename universe. With that
information, we may use the Size function to determine the size, in bytes, of an element of that particular
type and return that number as the value of the unary expression. The transition rule for size operators is
shown in Fig. 26.

if TaskType(CurTask) = sizeof then
ReportValue(Size(ValueType(CurTask)))
Moveto(NextTask(CurTask))

endif

Figure 26: Transition rule for sizeof tasks.

2.12 Constants

For constant expressions, the ConstVal function returns the appropriate value. (Note that we treat enumer-
ated type values as constants.) The transition rules for constants is shown in Fig. 27.

if TaskType(CurTask) = constant then
ReportValue(ConstVal(CurTask))
Moveto(NextTask(CurTask))

endif

Figure 27: Transition rule for constant tasks.

2.13 General Mathematic Expressions

There are a large number of mathematic expressions in C involving binary operators (\*", \+", \-", etc.)
whose behaviors are similar. (We treat the bit-wise operators (e.g., |, &) as ordinary mathematic operators.)
We assume that in�x functions corresponding to these C functions are present within our algebra. Thus,
to evaluate one of these expressions, evaluate both operand expressions and apply the appropriate function.
We present the transition rule for multiplication in Fig.28 as a representative of this category of expressions,
and omit the rules for other binary operators of this form for brevity.

Rules for the addition and subtraction operators are slightly more complicated, since one may add or
subtract an integer to a pointer. One may add an integer i to a pointer variable p with the result being a
pointer which is i units forward in memory from p. Consider, for example, a pointer p to an int in a system
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if TaskType(CurTask) = multiplication then

EVALUATE OPERANDS WITH
ReportValue(LeftValue(CurTask) * RightValue(CurTask))
Moveto(NextTask(CurTask))

END EVALUATE
endif

Figure 28: Transition rule for multiplication tasks.

where ints require 4 bytes in memory. The expression \p+1" refers to the location in memory 4 bytes after
p.

Similarly, one may subtract an integer i from a pointer variable p, with the result being a pointer i units
in memory preceding p. (In our example, \p�1" refers to the location in memory 4 bytes before p.) Further,
one may subtract two pointers of the same type, resulting in the number of units of memory lying between
the two pointers. (Thus, ((p + i) � p) = i.) In each case, the size of a \unit" of memory is determined by
the size of the object type to which the pointer points.

This requires specialized rules for the addition and subtraction operators. As we process each of these
operators, it now becomes necessary to know whether or not a given variable is a pointer; a static partial
function PointerType: tasks ! ftrue, falseg contains this information. For tasks for which PointerType
returns true, a static partial function PointsToType : tasks ! typename indicates the object type to which
the pointer points.

The transition rules for the addition and subtraction operators are shown in Fig. 29 and Fig. 30.

if TaskType(CurTask) = addition then

EVALUATE OPERANDS WITH
if PointerType(LeftTask(CurTask)) = true then

ReportValue(LeftValue(CurTask)
+ (Size(PointsToType(CurTask)) * RightValue(CurTask)))

elseif PointerType(RightTask(CurTask)) = true then
ReportValue(RightValue(CurTask)

+ (Size(PointsToType(CurTask)) * LeftValue(CurTask)))
else

ReportValue(LeftValue(CurTask) + RightValue(CurTask))
endif

Moveto(NextTask(CurTask))
END EVALUATE

endif

Figure 29: Transition rule for addition tasks.
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if TaskType(CurTask) = subtraction then

if PointerType(LeftTask(CurTask)) = true and
PointerType(RightTask(CurTask)) = true then

ReportValue((LeftValue(CurTask) - RightValue(CurTask))
/ Size(PointsToType(CurTask)))

elseif PointerType(LeftTask(CurTask)) = true and
PointerType(RightTask(CurTask)) = false then

ReportValue(LeftValue(CurTask)
- (Size(PointsToType(CurTask)) * RightValue(CurTask)))

else

ReportValue(LeftValue(CurTask) - RightValue(CurTask))
endif

Moveto(NextTask(CurTask))
endif

Figure 30: Transition rule for subtraction tasks.

2.14 Mathematical Unary Operators

Unary operator expressions have one of the following forms:

unary-expression ! + expression
unary-expression ! - expression
unary-expression ! ~ expression
unary-expression ! ! expression

Evaluating these expressions takes a form similar to that for binary mathematical operators. We present
the transition rule for the negation operator in Fig. 31 as a representative example.

if TaskType(CurTask) = negation then

ReportValue( - OnlyValue(CurTask))
Moveto(NextTask(CurTask))

endif

Figure 31: Transition rule for negation tasks.

2.15 Casting Expressions

A casting expression has the following form:

cast-expression ! ( type-name ) expression

A static function CastType: tasks ! typename indicates the old type from which the value of the
expression is to be cast; ValueType indicates the new type into which the value will be cast. A static
function Convert: typename � typename � values ! values converts elements from one universe into the
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corresponding elements of another universe. For example, Convert(oat,int,X) is the closest integer to X
(assuming X is a oating-point value). Note that the meaning of \closest" is implementation-de�ned.

To perform a cast, evaluates the argument expression and use the Convert function to generate the proper
return value. Our task sequence places the expression to be cast before the task which performs the casting;
thus, the argument of the cast has been evaluated already and its value is available. The transition rule for
casting expressions is shown in Fig. 32.

if TaskType(CurTask) = cast then
ReportValue(Convert( CastType(CurTask),

ValueType(CurTask), OnlyValue(CurTask)))
Moveto(NextTask(CurTask))

endif

Figure 32: Transition rule for cast tasks.

2.16 Pre-Increment and Pre-Decrement

A pre-increment or pre-decrement expression has the following form:

pre-incr-expression ! ++ expression
pre-decr-expression ! -- expression

To evaluate a pre-increment (resp. pre-decrement) expression, increment (decrement) the value stored at
the indicated memory location by one and store the new value into that memory location; the incremented
(decremented) value is the value of the parent expression. Note that the expression to be modi�ed may
be a pointer; in this case, the value in memory is incremented (decremented) by the size of the object to
which the pointer points (as with normal pointer addition and subtraction). The transition rule for pre-
increment expressions is shown in Fig 33. The transition rules for pre-decrement expressions are similar to
those presented here and thus omitted.

2.17 Post-Increment and Post-Decrement

A post-increment or post-decrement expression has the following form:

postincr-expression ! expression ++

postdecr-expression ! expression --

Post-increment (resp. post-decrement) operators are handled in the same manner as pre-increment
(pre-decrement) operators except that the sequence of operations is reversed: i.e., the value of the parent
expression is established before the incrementing (decrementing) takes place. The transition rule for the
post-increment operator is shown in Fig. 34. (As before, the transition rules for the post-decrement operator
are similar and thus omitted.)
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if TaskType(CurTask) = pre-increment then
if PointerType(CurTask) = true then

DoAssign(OnlyValue(CurTask),
MemoryValue(OnlyValue(CurTask),ValueType(CurTask))

+ Size(PointsToType(CurTask)),
ValueType(CurTask))

ReportValue( MemoryValue(OnlyValue(CurTask),
ValueType(CurTask))

+ Size(PointsToType(CurTask)))
else

DoAssign(OnlyValue(CurTask),
MemoryValue(OnlyValue(CurTask),ValueType(CurTask)) + 1,
ValueType(CurTask))

ReportValue(MemoryValue( OnlyValue(CurTask),
ValueType(CurTask))+1)

ENDIF

Figure 33: Transition rule for pre-increment tasks.

if TaskType(CurTask) = post-increment then
if PointerType(CurTask) = true then

DoAssign(OnlyValue(CurTask),
MemoryValue(OnlyValue(CurTask),ValueType(CurTask))

+ Size(PointsToType(CurTask)),
ValueType(CurTask))

else

DoAssign(OnlyValue(CurTask),
MemoryValue(OnlyValue(CurTask),ValueType(CurTask))+1,
ValueType(CurTask))

endif

ReportValue(MemoryValue( OnlyValue(CurTask),
ValueType(CurTask)))

endif

Figure 34: Transition rule for post-increment tasks.
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2.18 Addresses

An addressing expression has the following form:

addressing-expression ! & expr1

where expr1 is an expression.
The & operator in C passes back as its result the address of the memory location indicated by the

argument expression.
As we evaluate expressions which refer to objects in memory, we need to know whether we need to use

the address of an object or the object itself in our calculations. (For example, in the assignment statement
\a = b;", the address or lvalue of variable a is needed, but the object being referenced or rvalue of variable
b is needed.) A static partial function ValueMode: tasks ! flvalue, rvalueg indicates which of the two pieces
of information should be computed for a given task.

We assert that ValueMode(e) = lvalue for the sub-expressions of expr1 ; thus, the value returned through
evaluation of the argument expression is the address (and not the value) of the argument expression in
memory. We simply pass this address up the task graph. The resulting simple transition rule for the
addressing operator is shown in Fig. 35.

if TaskType(CurTask) = address then
ReportValue(OnlyValue(CurTask))
Moveto(NextTask(CurTask))

endif

Figure 35: Transition rule for address tasks.

2.19 De-Referencing

A de-referencing expression has the following form:

de-reference-expression ! * expression

If the parent expression is an rvalue, evaluate the argument and use the Memory function to return the
value stored in memory at the indicated location. Otherwise, return the address indicated by the argument
(since the expression is an lvalue and requires that a pointer be returned to the parent expression). The
transition rule for de-referencing is shown in Fig. 36.

2.20 Array References

An array reference has the following form:

array-ref-expression ! expr1 [ expr2 ]

where expr1 and expr2 are expressions.
According to [KR], an array reference of the form a[b] is identical, by de�nition, to the expression

*((a)+(b)).3 This de�nition is valid because the name of an array in C may be used as a pointer to the
�rst element of the array.

3Note that this means that a[b] and b[a] evaluate to the same value.
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if TaskType(CurTask) = de-referencing then
if ValueMode(CurTask) = rvalue then

ReportValue(MemoryValue( OnlyValue(CurTask),
ValueType(CurTask)))

elseif ValueMode(CurTask) = lvalue then
ReportValue(OnlyValue(CurTask))

endif

Moveto(NextTask(CurTask))
endif

Figure 36: Transition rule for de-referencing tasks.

We assert that any array references present in the program being modeled in our algebra are represented
as an expression of equivalent form involving addition and de-referencing. Thus, we do not need to present
any additional rules to handle array references.

One may prefer to think of arrays as objects in their own right, and present an algebra intermediate to
Algebras One and Two where expressions like a[b] could be treated at a higher level of abstraction. While
such a presentation is possible, we choose not to do so here.

2.21 Function Invocations

A function invocation has the following form:

func-invocation-expression ! expression ( expression-list )

Since we have disallowed function invocations for the moment, we will obtain the value of a function
invocation expression from an external function FunctionValue: tasks ! results. The transition rule for
function invocations is shown in Fig. 37.

if TaskType(CurTask) = function-invocation then

ReportValue(FunctionValue(CurTask))
Moveto(NextTask(CurTask))

endif

Figure 37: Transition rule for function-invocation tasks.

2.22 Identi�ers

An external function FindID: tasks ! addresses maps identi�er expression tasks to the corresponding mem-
ory location used by the associated variable. (In Algebra Three we shall eliminate the use of this function.)
Thus, to handle an identi�er expression, one returns the appropriate address or value from memory, as
speci�ed by the ValueMode function. The transition rule for identi�ers is shown in Fig. 38.
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if TaskType(CurTask) = identi�er then
if ValueMode(CurTask) = lvalue then

ReportValue(FindID(CurTask))
elseif ValueMode(CurTask) = rvalue then

ReportValue(MemoryValue( FindID(CurTask),
ValueType(CurTask)))

endif

Moveto(NextTask(CurTask))
endif

Figure 38: Transition rule for identi�er tasks.

2.23 struct or union References

A struct or union reference has the following form:

struct-expression ! expr1 . identi�er

where expr1 is an expression evaluating to a struct or union. There is also another form:

struct-expression ! expr2 -> identi�er

where expr2 is an expression evaluating to a pointer to a struct or union. Expressions of the form \a->b"
are equivalent to those of the form \(*a).b". Thus, we will only consider references of the form \a.b",
asserting that references of the other form are represented using their equivalent expansions.

The ConstVal function applied to the struct reference task returns the o�set in memory to be used in
obtaining the address or value of the speci�ed �eld of the structure. The transition rule for struct references
is shown in Fig. 39.

if TaskType(CurTask) = struct-reference then
if ValueMode(CurTask) = lvalue then

ReportValue(OnlyValue(CurTask) + ConstVal(CurTask))
elseif ValueMode(CurTask) = rvalue then

ReportValue(MemoryValue(OnlyValue(CurTask)
+ ConstVal(CurTask),

ValueType(CurTask)))
endif

Moveto(NextTask(CurTask))
endif

Figure 39: Transition rule for struct-reference tasks.

2.24 Bit Fields

Bit �elds are members of structs which use a user-speci�ed number of bits for their representations. Bit
�elds are used to minimize the space used by a struct or to represent accurately input or output values
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with bit-level signi�cance. Much about bit �elds behave is implementation-dependent: e.g. how bit �elds
are packed into adjacent bytes, whether or not unnamed \holes" will appear in structs between bit �elds,
or whether bit �elds are read left-to-right or right-to-left. As a rule, operaptions are done with bytes (even
bit operations); we show how to handle bit-�elds in a byte-based model of memory.

An example of a struct using bit �elds is shown in Fig. 40. Here, the �eld b holds a 4-bit unsigned
integer and c holds a 15-bit unsigned integer. Since bytes usually comprise 8 bits, c will probably lie in two
or three consecutive bytes in memory, possibly sharing a byte with b.

struct f
unsigned int a;

unsigned int b:4;

unsigned int c:15;

g bitty;

Figure 40: Example of a struct using bit �elds.

Suppose that we want to execute bitty.c = 12. We need to obtain the bytes which hold c's bits and
modify those bits accordingly while leaving all other bits unchanged. This gives rise to a static function
BitAssign: results � typename � results ! results which indicates the change occurring in the value of
the appropriate collection of contiguous bytes when a bit �eld is modi�ed. Given the content oldval of an
appropriate piece of memory, BitAssign(oldval, bittype, 12) returns the new value; here bittype is the type
of c in bitty.

Assigning to bit-�elds is thus slightly di�erent than usual. We present the transition rule for simple
assignments to bit �elds in Fig. 41.

if TaskType(CurTask) = bit-assignment then
EVALUATE OPERANDS WITH

DoAssign(LeftValue(CurTask),
BitAssign(MemoryValue( LeftValue(CurTask),

ValueType(CurTask)),
ValueType(CurTask),
RightValue(CurTask)),

ValueType(CurTask))
ReportValue(RightValue(CurTask))

END EVALUATE
endif

Figure 41: Transition rule for bit-assignment tasks.

Evaluating bit-�eld references is also slightly di�erent, since we need to extract the value of the bit
�eld from the (usually) larger enclosing value. A static function BitExtract: results � typename ! results
performs this extraction. A static partial function BitType: tasks ! typename indicates the type of bit �eld
being references in such situations.

The transition rule for structure bit-�eld references is shown in Fig. 42.
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if TaskType(CurTask) = struct-bit-reference then
if ValueMode(CurTask) = lvalue then

ReportValue(OnlyValue(CurTask) + ConstVal(CurTask))
elseif ValueMode(CurTask) = rvalue then

ReportValue(BitExtract(
MemoryValue(OnlyValue(CurTask) + ConstVal(CurTask),
BitType(CurTask)),

ValueType(CurTask)))
endif

Moveto(NextTask(CurTask))
endif

Figure 42: Transition rule for struct-bit-reference tasks.

3 Algebra Three: Allocating and Initializing Memory

Algebra Three re�nes Algebra Two and focuses on memory allocation and initialization of variables.

3.1 Declarations

We represent declarations in C as elements of the tasks universe, linked in the proper order with statement
tasks by NextTask .

C distinguishes between so-called static variables and other variables. The di�erence between static and
non-static variables arises when control is passed to the declaration task for a variable. If the variable is not
static, new memory is always allocated to the variable and its initializing expression (if it exists) is evaluated
with the value of the expression being assigned to the new memory location. If the variable is static, the
above allocation and initialization is performed only the �rst time that the declaration is executed; should
the declaration become the focus of control once again, the same memory segment is allotted to the variable.

A static partial function DecType: tasks ! fstatic, non-staticg indicates what type of variable is being
declared. (Note that there are also extern variable declarations in C which do not reserve memory but
serve as syntactic linkage between variables. We omit consideration of such declarations since their function
is wholly syntactic in nature.) A static partial function Initializer: tasks ! tasks indicates the appropriate
initializing expression (if any). We will store the value of the initializing expression using RightValue.

A partial function StaticAddr: tasks ! addresses stores the current address (if any) that has been
assigned to a static variable. In Algebra Three, StaticAddr is not really needed, since the OnlyValue function
would provide the proper storage for the address of the static variable. However, it will simplify other rules
to be presented. An external function NewMemory: tasks ! addresses returns an address in memory to be
used for the given declaration task. The transition rules for declarations are shown in Fig. 43 and Fig. 44.

3.2 Automatic Variables and Non-Local Jumps

Automatic (or local) variables are allocated memory not only when a block is entered normally, but also
if a non-local goto statement transfers control into a block. As an example, consider the following code
fragment:
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if TaskType(CurTask) = declaration and DecType(CurTask) = static then
if StaticAddr(CurTask) 6= undef then

OnlyValue(CurTask) := StaticAddr(CurTask)
Moveto(NextTask(CurTask))

elseif StaticAddr(CurTask) = undef then

if Initializer(CurTask) 6= undef and

RightValue(CurTask) = undef then

Moveto(Initializer(CurTask))
else

OnlyValue(CurTask) := NewMemory(CurTask)
StaticAddr(CurTask) := NewMemory(CurTask)
if Initializer(CurTask) 6= undef then

DoAssign(NewMemory(CurTask),
RightValue(CurTask), ValueType(CurTask))

else

Moveto(NextTask(CurTask))
ENDIF

Figure 43: Transition rule for static declarations.

if TaskType(CurTask) = declaration and DecType(CurTask) 6= static then
if Initializer(CurTask) 6= undef and

RightValue(CurTask) = undef then

Moveto(Initializer(CurTask))
else

OnlyValue(CurTask) := NewMemory(CurTask)
if Initializer(CurTask) 6= undef then

DoAssign(NewMemory(CurTask),
RightValue(CurTask),ValueType(CurTask))

else

Moveto(NextTask(CurTask))
ENDIF

Figure 44: Transition rule for non-static declarations.
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int flag; for (;;) f
... int local = 1;

if (flag) goto target; printf("%i" ,local);
... target: local = 0;

printf("%i" ,local);

g

In this fragment, if the for statement is entered normally, variable local will be allocated memory and
initialized to 1. If the goto statement is executed, variable local should be allocated memory before the
statement labeled target is executed, although no initialization is performed.

Our rules for constructing task graphs only provide for a unique moment when a given variable may be
allocated. Consequently, we introduce a new task type indirect-declaration. Previously, NextTask mapped
each jump task directly to its target. Now, we put an indirect-declaration task for each local variable between
the jump task and its target. The Decl function will map each new task to the original declaration of that
variable. The rule for handling indirect declarations (shown in Fig. 45) is pretty obvious.

if TaskType(CurTask) = indirect-declaration then

OnlyValue(Decl(CurTask)) := NewMemory(Decl(CurTask))
Moveto(NextTask(CurTask))

endif

Figure 45: Transition rule for indirect declarations.

3.3 Revision: Identi�ers

A static partial function Decl: tasks ! tasks maps tasks corresponding to occurrences of an identi�er to the
task corresponding to the declaration task for that variable. The revised rule for identi�ers (generated by
replacing each previous occurrence of FindID() with OnlyValue(Decl())) is shown in Fig. 46.

if TaskType(CurTask) = identi�er then
if ValueMode(CurTask) = lvalue then

ReportValue(OnlyValue(Decl(CurTask)))
elseif ValueMode(CurTask) = rvalue then

ReportValue(MemoryValue( OnlyValue(Decl(CurTask)),
ValueType(CurTask)))

endif

Moveto(NextTask(CurTask))
endif

Figure 46: Revised transition rule for identi�er tasks.
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3.4 Initializers

Initializers in C come in two forms: expressions (for variables of the basic types) and lists of expressions (for
variables representing arrays and structures).

Our previous rules for evaluating expressions will handle initializers for simple expressions. To assist in
handling aggregate expressions, a static function AddTo: typename � results � results ! results appends a
value onto the end of an aggregate structure of the speci�ed type. (For example, if [42; 8] is an integer array,
then AddTo(array; [42; 8];4) = [42; 8; 4].)

We illustrate how expressions with aggregate initializers (i.e. expressions whose initializer is an expression
list) are represented in our algebra by the graph in Fig. 47. Our previous transition rules will insure that
each expression in the initializer list will be evaluated; we need to provide rules that combine the results of
these evaluations into the proper aggregate value.

NextTask

NextTask
expression expression expression. . .

initializer
Initializer

Parent

NextTask

Figure 47: Aggregate initializer.

TheWhichChild function returns the value aggregate when the expression being evaluated is a component
of an aggregate initializer. We extend our ReportValue macro as shown in Fig. 48 to correctly combine
aggregate expressions.

if WhichChild(CurTask) = aggregate then
RightValue(Parent(CurTask)) :=

AddTo(ValueType(Parent(CurTask)),
RightValue(Parent(CurTask)),value)

endif

Figure 48: Extension of the ReportValue macro.

3.5 Initial State

We assert that initially, CurTask indicates the �rst declaration task for the program, or the �rst task of the
�rst statement of the program if no declaration tasks exist.

4 Algebra Four: Handling Function De�nitions

Algebra Four revises Algebra Three and focuses on C function de�nitions. In this way, we also (implicitly)
present rules for starting a C program, since the starting function main is an ordinary C function (with
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externally provided parameters).
(There are also function declarations in C, which are used to specify syntactic information. Since their

purpose is wholly syntactic in nature, we ignore them.)

4.1 Modeling The Stack

C functions may have several active incarnations at a given moment. Thus, we must have some means for
storing multiple values of a function for a given task.

The universe stack comprises the positive integers, with a distinguished element StackRoot = 1 . Static
functions StackPrev: stack! stack and StackNext: stack! stack are the predecessor and successor functions
on the positive integers. A dynamic distinguished element StackTop indicates the current top of the stack.

To store state-associated information on the stack, we modify the various Value functions LeftValue,
RightValue, OnlyValue, and TestValue to be binary functions from tasks � stack to results. This requires
us to rewrite almost every rule that has appeared previously; we simplify matters by stating that every
previous reference to V(X) should be replaced by V(X, StackTop), where V is one of the Value functions
listed above. Similarly, we modify Visited to be a binary fruntion from tasks � stack to tags, replacing all
previous occurrences of Visited(X) with Visited(X, StackTop).

4.2 Function Invocations: Caller's Story

A function invocation has the following form:

func-invocation ! func-name ( expression-list )

In Algebra Two we used an external function FunctionValue to obtain the value of a function invocation.
Here, we eliminate the use of this function.

The name of a function is often an identi�er, but in general it is an expression referring to the address
of the function. (What resides in memory at that address is implementation-dependent.) A static partial
function AddrToFunc: addresses ! tasks maps function addresses to the �rst task of the function de�nition.

While processing a function invocation, we wish to copy the value4 of each parameter to an appropriate
place for the callee to process. The Parent function (utilized by our ReportValue macro)maps each argument-
expression task to its corresponding function parameter task. A partial function ParamValue: tasks � stack
! results indicates the values of parameters being passed. We append the rule shown in Fig. 49 to the
ReportValue macro.

if WhichChild(CurTask) = param then

ParamValue(Parent(CurTask),StackNext(StackTop)) := value
endif

Figure 49: Extension of the ReportValue macro.

We need to store the current task in order to resume execution at this point after the callee has �nished.
A dynamic function ReturnTask: stack ! tasks indicates the new value of CurTask when the execution of
the current function terminates. We assert that when CurTask = 1 , ReturnTask(CurTask) = undef , which
will cause the algebra to terminate when the top-level function terminates.

To process a function invocation, evaluate the name of the function along with all of the arguments in
the expression list, and then transfer control to the speci�ed function. At the same time, \push another

4In C, all function parameters are call-by-value.
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frame onto the stack"; i.e., increment StackTop by 1. When control returns from the function, the stack
value will be \popped" (i.e., decremented by 1) and the function's return value will be passed to the parent
expression.

As with the operands to most arithmetic operators, the ANSI standard [KR] does not specify the order
in which arguments to a function are evaluated. We thus must present specialized rules for evaluating
the expressions associated with a function invocation. The external function ChooseTask will indicate at
each moment which expression associated with a function invocation should be evaluated next. Thus, our
transition rules will simply make repeated calls to ChooseTask until all expressions have been evaluated,
which will occur when ChooseTask returns undef . The transition rule for function invocation is shown in
Fig. 50.

if TaskType(CurTask) = function-invocation then

if ChooseTask(CurTask) 6= undef then

Moveto(ChooseTask(CurTask))
elseif ChooseTask(CurTask) = undef then

if OnlyValue(CurTask,StackTop) = undef then

StackTop := StackNext(StackTop)
ReturnTask(StackNext(StackTop)) := CurTask
Moveto(AddrToFunc(LeftValue(CurTask,StackTop)))

elseif OnlyValue(CurTask,StackTop) 6= undef then

ReportValue(OnlyValue(CurTask,StackTop))
Moveto(NextTask(CurTask))

ENDIF

Figure 50: Revised transition rule for function-invocation tasks.

4.3 Function Invocations: Callee's Story

A function de�nition in C consists of a list of parameter declarations and a compound statement. To process
a parameter declaration, we allocate new memory for each parameter and assign the appropriate value
(stored here by the function invocation transition rules) to that new memory location. The transition rule
for parameter declarations is shown in Fig. 51.

if TaskType(CurTask) = parameter-declaration then

DoAssign(NewMemory(CurTask),
ParamValue(CurTask,StackTop),ValueType(CurTask))

OnlyValue(CurTask,StackTop) := NewMemory(CurTask)
endif

Figure 51: Transition rule for parameter-declaration tasks.

A return statement has one of the following forms:
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return-statement ! return ;

return-statement ! return expression ;

If an expression is present, copy the value of the expression to the task which invoked the current function
(as indicated by ReturnTask and StackPrev). Whether or not an expression is present, return control to the
invoking task. The transition rule for return statements is shown in Fig. 52.

if TaskType(CurTask) = return then

OnlyValue(ReturnTask(StackTop),StackPrev(StackTop)) :=
OnlyValue(CurTask,StackTop)

StackTop := StackPrev(StackTop)
Moveto(ReturnTask(StackTop))

endif

Figure 52: Transition rule for return tasks.

If a return statement is not explicitly present at the end of a function, our algebra will still contain a
return task as the last task of the function, as if the statement \return ;" was present as the last statement
of the original C function.

4.4 Global Variables

Since function de�nitions may not contain other function de�nitions, a given variable identi�er refers either
to a variable local to the current function or to a variable declared outside any function. A static partial
function GlobalVar: tasks ! Bool indicates whether or not a given identi�er refers to a global variable. We
present the modi�ed transition rule for identi�ers in Fig. 53.

4.5 Initial State

We assert that initially, CurTask indicates the �rst declaration task for the global variables of the program,
or the �rst task of the �rst statement main() if no declaration tasks exist.
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if TaskType(CurTask) = identi�er then
if ValueMode(CurTask) = lvalue then

if GlobalVar(CurTask) = true then
ReportValue(OnlyValue(Decl(CurTask),StackRoot))

elseif GlobalVar(CurTask) = false then
ReportValue(OnlyValue(Decl(CurTask),StackTop))

endif

elseif ValueMode(CurTask) = rvalue then
if GlobalVar(CurTask) = true then

ReportValue(MemoryValue(OnlyValue
(Decl(CurTask),StackRoot),ValueType(CurTask)))

elseif GlobalVar(CurTask) = false then
ReportValue(MemoryValue(OnlyValue

(Decl(CurTask),StackTop),ValueType(CurTask)))
endif

endif

Moveto(NextTask(CurTask))
endif

Figure 53: Revised transition rule for identi�ers.
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