

Software Techniques for Multiservice IP Networks

Giorgio Calarco

D.E.I.S. - University of Bologna, Viale Risorgimento, 2 - 40136 Bologna (ITALY)

giorgio.calarco@unibo.it

Abstract. The interest of the scientific and commercial telecommunications

community for the use of software routers running in general purpose (PC)

hardware, as an alternative to the traditional special purpose hardware routers,

has grown quickly in the last few years. This is due to the high level of

flexibility of this solution: the support for new protocols and network

architectures and services, in fact, is easily obtained by re-programming the

router itself. On the other end, the low cost of PCs and the continuous progress

in their performance are making the design of a software packet switch, based

on standard hardware platform, more and more attractive. In recent years,

several proposals emerged, and a very promising architecture is the Click

Modular Router, which is not only easily extensible, but also very effective: on

a multiprocessor hardware, its maximum loss-free forwarding rate for IP

routing reaches 1,250,000 64-byte packets per second. It allows the simple

design and rapid implementation of new services: we first used it for the

development of flow-based classifiers of real time traffic. Then, we introduced

a traffic measurement mechanism and exploited several dynamical allocation

schemes of the inter-domain link bandwidth, to maximize the bandwidth usage

efficiency. Finally, we implemented a congestion and admission control

technique, to preserve the bandwidth usage efficiency and avoid network

congestion. These new functions were evaluated in terms of latency, jitter and

bandwidth usage efficiency.

Keywords. Open router, Quality of Service, Real-time traffic.

Contents

CHAPTER I. A GENERAL OVERVIEW ... 1

CHAPTER II. PERFORMANCE MEASUREMENTS OF PC-BASED

ROUTERS... 5

1 INTRODUCTION ... 5

2 PC ROUTER ARCHITECTURE ... 6

2.1 The Click Modular Router .. 7

3 PERFORMANCE EVALUATION OF A PCI DESKTOP PLATFORM 8

3.1 Performance evaluation with no packet losses ... 8

3.2 Forwarding delay analysis ... 10

3.3 Burst effects .. 12

3.4 Effects of bus sharing.. 14

4 PERFORMANCE EVALUATION OF A MULTIPROCESSOR PCI-X PLATFORM 15

4.1 SMP Click Schedulable Elements ... 15

4.2 CPU Scheduling Management Techniques... 15

4.3 Performance Analysis ... 16

5 CONCLUSIONS ... 21

CHAPTER REFERENCES.. 21

 CHAPTER III. INTRODUCING QUALITY OF SERVICE CAPABILITIES

WITHIN OPEN ROUTERS .. 23

1 INTRODUCTION ... 23

2 DIFFERENTIATED SERVICES MODEL AND INTERACTIVE MULTIMEDIA TRAFFIC . 24

2.1 Interactive Multimedia Traffic .. 24

3 USING THE LINUX TRAFFIC CONTROL TO IMPLEMENT A QOS ROUTER 26

3.1 Test-bed Layout and Configuration .. 26

3.2 The Real Time Classifier... 28

3.3 Experimental Evaluation .. 30

4 USING THE CLICK MODULAR ROUTER TO IMPLEMENT A QOS ROUTER 34

4.1 Real-time Flow Classification... 34

4.2 Test-bed Layout and Configuration .. 37

4.3 Experimental Evaluation .. 38

5 CONCLUSIONS ... 41

CHAPTER REFERENCES.. 42

CHAPTER IV. DESIGN AND IMPLEMENTATION OF ADAPTIVE

ALGORITHMS FOR INTER-DOMAIN DYNAMIC BANDWIDTH

ALLOCATION... 43

1 INTRODUCTION ... 43

2 THE SYSTEM MODEL .. 44

3 THRESHOLD-BASED DYNAMIC BANDWIDTH ALLOCATION 45

3.1 The threshold-based mechanism... 45

3.2 Bounds for design parameters .. 46

3.3 Effects of the measurements process... 49

3.4 An algorithm for congestion management .. 50

3.5 Performance Analysis ... 51

3.6 Dynamic Bandwidth Management Design and Implementation................. 58

3.7 Implementation issues... 60

3.8 Performance measurements.. 61

4 A NEW APPROACH FOR BANDWIDTH UPDATE: THE LOG-BASED DYNAMIC

ALLOCATION SCHEME ... 64

4.1 The logarithmic-based algorithm ... 64

4.2 Performance analysis .. 65

4.3 Implementation issues... 67

4.4 Performance measurements and comparison with the threshold-based

algorithm .. 68

5 CONCLUSIONS ... 71

CHAPTER REFERENCES.. 71

CHAPTER V. IMPLICIT FLOW-BASED ADMISSION AND CONGESTION

CONTROL.. 73

1 INTRODUCTION ... 73

1 IMPLICIT SERVICE DIFFERENTIATION AND ADMISSION CONTROL....................... 74

2.1 Implicit call admission.. 75

2.2 Dynamic bandwidth management... 75

3 COMBINING LOGARITHMIC BANDWIDTH UPDATE AND CONGESTION CONTROL . 76

4 SYSTEM IMPLEMENTATION AND MEASUREMENTS .. 77

5 CONCLUSIONS ... 82

CHAPTER REFERENCES.. 82

1

Chapter I. A General Overview

The quality of a communication service is usually related to the users' expectation that

a functionality will be furnished when necessary and in a reliable way. At the same

time, under a technical point of view, the quality of a multimedia session is usually

measured in terms of delay, losses and errors occurring in the data transfer. For

example, a common application such as VoIP is not so helpful if affected by high

delay (which makes a conversation rather arduous), by losses (which discontinue the

interaction) or by errors (which disturb the voice quality). Fundamentally, the quality

of a network service is strictly related to the traffic amount inside the network, which

depends on the load and profile of the traffic traversing the infrastructure. A common

way to obtain a requested quality for an application is given by network over-

dimension. This solution, even if simple, does not take into account its economical

cost and waste of resources. For this reason, in the last few years an intense research

activity has focused on models for service differentiation and techniques for resource

management in IP networks. A variety of architectures have been proposed: ATM,

RSVP, the Integrated Services and the Differentiated Services represent different

solutions concerning similar necessities.

Since Internet traffic is commonly the result of a wide aggregate of different

communications, classifying and distinguishing this traffic is the first step in order to

offer different performance for the different applications’ needs. A possible

classification of the Internet traffic distinguishes it in “elastic traffic flows” and

“streaming traffic flows”. For our purposes, a flow is identified as a unidirectional

sequence of packets close in time and having a common identifier (for instance, a

tuple like source and destination address and a port number). Elastic traffic is based

on closed-loop control, as commonly happens during a TCP connection, and is named

“elastic” since is able to react to changing network load: each elastic flow essentially

varies its transmitting rate depending on packet loss probability. Streaming traffic

instead is normally emitted from multimedia applications, which generate packets at a

rate that should be conserved traversing the network, by avoiding losses and delay

dispersion. A possible solution to meet these requirements could rely on fixing a

deterministic delay limit for the incoming flows. The main drawback of this solution

is that it usually brings to bandwidth over-provisioning, since the limit should be

dimensioned for a worst-case situation. Thus, if link usage efficiency is considered a

key factor, dynamic bandwidth allocation mechanisms should be introduced at the

edge of the network, to preserve delay bounds on the fly. At the same time, efficiency

can be maximized if both the two traffic categories are considered together: for

instance, if streaming flows are high prioritized, they normally traverse the network

with low delay and losses; elastic flows, instead, can take benefit from the bandwidth

that is temporarily not utilized from multimedia flows. The feasible dynamic

bandwidth allocation schemes are many; in the following chapters, we have

experienced two of them: the first uses a threshold-based approach and it was then

2

compared with a new algorithm, which uses the logarithmic function for the same

purpose. Both the systems have then been provided with an optional congestion

avoidance control, which provides expedited bandwidth increases, to promptly solve

short-term bandwidth increases. The congestion control mechanism can also be

designed to allow flow deletion, when the bandwidth update cannot be performed.

This process can be driven using different policies (e.g. we can cancel the largest

flow, the smallest, the oldest, etc., or choose one randomly).

Another important mandatory capability for a reliable network functioning is the

restriction of the incoming flows of traffic: this approach, commonly named

“admission control”, should be implemented at the edges of the network to preserve

performance, in case bandwidth request exceeds link throughput. Obviously, this can

be accomplished only if each individual flow is identified, classified and inserted in a

proper list of admitted flows and if, at the same time, bandwidth usage measurement

is performed. When the incoming packets of a new flow reach the edge router of a

network, this should be able to control if they satisfy the admission criteria or discard

them. At the same time, if an application does not generate packets for a long amount

of time, its corresponding flow identifier should be properly removed from the list.

Thus, this approach is helpful to preserve the bandwidth usage efficiency and avoid

network congestion. It can be easily realized that the admission control service could

be applied smoothly, assigning different policies to different service classes (e.g.

regular flows could be rejected before than premium flows). This mechanism assures

that all the admitted flows take advantage of adequate quality guarantees.

Additionally, the kind of service provided to each individual user from the network

administrator should be regularly arranged by a contract. This accordance, usually

named Service Level Agreement (SLA), fixes the maximum amount of the network

resources that such a user can rely on. This mechanism is not only interesting under

an economical perspective, but is also helpful for the network link dimensioning.

A few years ago, the introduction of a hierarchical two-tier architecture into the

Differentiated Services model, which is interesting for scalability aspects, has been

proposed for end-to-end QoS support. This model requires some functions to be

implemented in the edge routers, such as packet assignment to service classes on the

basis of explicit signaling or classification mechanisms, and class management in the

core routers. The Differentiated Services architecture considered in the following

chapters supports a scalable solution to QoS in IP networks being it based on few

fundamental concepts and components: the identification of the packet QoS class

through a code point and the differentiated treatment of that packet within a DiffServ

node. More recently, an intense research activity on models for service differentiation

has been developed and lately it has focused on the techniques for resource

management. Among these, the scheme based on the Bandwidth Broker concept can

be considered as suitable to cope with the Differentiated Services model. Although

this approach is fairly centralized, it can be made scalable through hierarchical

organization of its functions. In fact, this scheme separates the intra- and inter-domain

resource management problems apart: while the first one is delegated to the

bandwidth broker inside the domain, the latter is provided by the agreements of the

bandwidth brokers belonging to adjacent domains. At the same time, the edge router

must be able to solve the classes of traffic designated for a privileged treatment, and

to manage efficiently the resources arranged by its bandwidth broker.

3

Concerning this, leading routers’ producers nowadays offer proprietary solutions,

which are often complex or impossible to improve and adapt. Instead, there is a

growing attention of the international scientific and industrial community for open

and standard platforms supporting free software. To this end, the Click Modular

Router, realized at the MIT a few years ago, is a flexible and modular framework for

the simple design and the rapid implementation of new services. It offers excellent

performance (in particular if executed with Symmetric Multi Processing

architectures), quite impressive when compared with most of other existing software

routers (the Linux kernel, BSD, Scout, CrossBow, etc.). It is easily extensible: for this

main reason, we have preferred it to other similar frameworks. We first used it for the

development of flow-based protocol and statistical classifiers of real time traffic; then,

we introduced the traffic measurement and exploited the dynamic allocation of the

inter-domain link bandwidth; finally, we implemented the congestion and admission

control mechanisms previously depicted. These new functions were evaluated in

terms of latency, efficiency and number of requests for the bandwidth broker.

4

5

Chapter II. Performance Measurements of PC-based

Routers

1 Introduction

The interest of the scientific and commercial telecommunications community for the

use of software routers running in general purpose (PC) hardware, as an alternative to

the traditional special purpose hardware routers, is risen quickly in the last few years.

Open routing approaches have been developed with the aim to use standard hardware

platforms to support free and open software [1]. In recent years, several proposals

have been made, most of which are suitable for the Linux environment and assume

standard PCs as hardware platforms. This is due to the high level of flexibility and

extensibility of this solution: the support for new protocols and network architectures

and services, in fact, is easily obtained by re-programming the router itself. In

addition, the diffusion of multiprocessor systems due to the progress in the

semiconductor technologies allows software routers to obtain high performance if

supported by multiprocessor PC hardware. Of course, in order to achieve a good use

of the potentiality offered by multiprocessor architectures, the distribution of the tasks

among the CPUs, and the parallel execution of the different operations, requires to be

performed with some care. Moreover, different CPU scheduling techniques, that is,

different approaches in the assignment of the tasks to the different CPUs, affect the

router performance. This chapter addresses the problem of performance evaluation of

routers implemented using open source software running on a general purpose PC. It

evidences the need of the availability of flexible platforms to easily and timely

implement new router functionalities in relation to the service scenario evolution. At

the same time, the chapter presents measurements performed on a PC router

implementation to evidence the performance bottlenecks of present-day PCs when

used as routers and the main effects of the operating environment that influence

packet forwarding. In fact, even if PC hardware limitations are well known in general,

at the time of these writing limited contributions have been given to the knowledge of

performance and bottlenecks of a PC when used as a router. The chapter is organized

as follows: in section 2 basic concepts related to Personal Computers architectures are

withdrawn, together with a very brief description of the MIT Click Modular Router;

section 3 describes the performance tests conducted using a typical Desktop PC

platform and analyzes in dept the bottlenecks of this kind of architecture; section 4

shows how is possible to use a multiprocessor PC platform combined with the SMP

Click Modular Router to build very fast software routers.

6

2 PC Router Architecture

A software router can be characterized as a general purpose PC, governed by an

application able to move data (packets) among different devices (the network

interface cards). The hardware architecture of a modern PC includes at least the

following elements, outlined in figure 1: one or several CPUs; a main memory bank; a

shared I/O bus which interconnects various devices; a bridge chipset implementing

the connection among CPUs, memory and I/O bus. A particular example of an I/O

bus is the Peripheral Component Interconnect (PCI) bus. In the past years the PCI bus

specifications and performance remained relatively stable over different PC

generations and this situation should persist for further years. On the contrary,

impressive improvements have concerned the CPU-Memory subsystem.

Main
Memory

CPU CPU

Bridge

DISK

Graphic

device

Printer

Network

Interface Card

I/O bus

Fig. 1. A common PC architecture

The routing process generally involves all the subsystems summarized in Fig.1 and

can be divided into three distinct steps. At first, the datagram is transferred from the

input network interface card to memory using the I/O bus; in a second phase, the CPU

reads the necessary data from memory and uses them to take the routing decision;

then, the packet is sent to the output NIC, accessing again the I/O bus. Thus, the I/O

bus subsystem, besides being the slowest path traversed by data, is also utilized twice.

In the near future, if hardware evolution will follow the actual trends, the PCI bus will

probably represent the bottleneck of a PC system. For this reason, if in the past many

works had converged about the issue of the fair sharing of the CPU and memory

resources [3] [4], more recently the management of the I/O bus resources has become

a more crucial problem [5]. Furthermore, being it a single common communication

line at the disposal of several devices (this architecture is named “Multiple Bus

Master”) poses some problems. In fact, access conflicts must be avoided, and thus an

arbiter should manage the admission of the devices to the shared bus; moreover, the

policy adopted by the arbiter should be carefully chosen to obtain a fair share of the

bus resource, but the PCI specifications do not establish any constraint to obtain this

result. A round-robin scheduling technique is usually adopted for the admission of the

devices to the PCI bus. This choice is directed to minimize the access latency: the bus

arbitration protocol is access-based instead of being time-slotted. The devices plugged

into the PCI bus can communicate with software running on the host processor(s)

using two distinct techniques: Programmed I/O and Direct Memory Access (DMA).

The second mechanism uses shared data structures that can be manipulated by both

7

the processor and devices: its main advantage is evident with large amounts of data to

transfer to or from main memory, since it does not lock the CPU during the

relocation. Most modern NICs support DMA as the favorite method for moving

packets and offer an integrated DMA controller to manage all DMA associated

operations. These interfaces can request the bus arbiter to access the I/O bus, become

the bus master and move the data from/to memory independently from the CPU

activity.

2.1 The Click Modular Router

The functions of packet forwarding can be implemented by the operating system

kernel itself, or by other software layers, like in the case of the Click Modular Router,

a Linux-based software framework developed at the MIT [2]. It permits the design of

PC routers or other packet processors offering an extensive library of simple modular

components. The principal advantages of such a modular system are flexibility and

extensibility: the designer can easily create various services simply connecting the

basic modules, called elements. An IETF RFC-1812 router was proved quite simple

to realize, since only 16 click elements must be employed, as described in [2].

Packet

on NIC
PollDevicePCI bus Memory

Packet

on NIC
ToDevicePCI bus Memory

RFC1812

router

C
L

IC
K T

ro
u

te
T

q
u

eu
e T

cl
ic

k

C
li

ck
 L

a
te

n
c
y

Packet

on NIC
PollDevicePCI bus Memory

Packet

on NIC
ToDevicePCI bus Memory

RFC1812

router

C
L

IC
K T

ro
u

te
T

q
u

eu
e T

cl
ic

k

C
li

ck
 L

a
te

n
c
y

Fig. 2. Hardware/software elements traversed by a packet during forwarding

Even if performance is not the main goal of the project, Click can be dynamically

linked as a module to the Linux kernel, taking advantage of the kernel-space

execution priority and substituting the standard kernel networking functions.

Moreover, some network cards can be managed with polling drivers, instead of using

the more expensive interrupt-based technique [3], eliminating the livelock problem

and improving the forwarding rate. The standard library also furnishes an effective

support for measurements: the SetCycleCount and CycleCountAccum modules can be

used to collect the average number of CPU-cycles required for a packet to traverse the

elements comprised between them. Inserted at the sections outlined in figure 2, they

permitted the latency evaluations (entirely done inside the Click configuration)

presented in the rest of the chapter. This measurement support, which is based on the

Intel Pentium RDTSC register, offers an excellent timing accuracy (using a 1.6 GHz

CPU the resolution is 0.625 ns). In addition, the new functionalities we added to these

elements permit a good insight into the PC based routers’ functioning limitations,

which cannot be so easily evaluated within the Linux kernel networking structures or

in any way appreciated if measuring performance outside the router.

8

3 Performance Evaluation of a PCI Desktop Platform

In order to execute performance tests, the trial configuration outlined in Figure 3 was

created to simulate functions of a real network environment. The test-bed consists of

four PC-based systems, plugged in a Gigabit Ethernet layer2-switch. The edge router

is equipped with a 1.6 GHz Pentium IV CPU and implements the RFC1812-compliant

router, with a basic FIFO output queuing scheme. The other three PCs have got a

1Ghz–Pentium III processor. Every PC is equipped with the Intel PRO1000 network

cards. On our router, two of them were plugged on the 32-bit/33 MHz PCI bus, even

if they would be ready for the more advanced 64-bit/133 MHz PCI-X buses. The

choice of this NIC permits to use the polling-based driver already developed by the

MIT for these adapters. Like most of recent network cards, it disposes of an on-board

FIFO buffer to store datagrams received from the wire or waiting to be transmitted. In

addition, it contains dedicated registers maintaining statistics about its internal state.

All the PCs mount the Linux kernel 2.4.18 and Click release 1.3. Two PCs work as

traffic generators for injecting two distinct flows of UDP traffic at a constant rate into

the input port of the router. Another PC collects the packets coming from the router.

Fig. 3. The testbed layout

3.1 Performance evaluation with no packet losses

The results presented in the following are the average of 20 successive 120-seconds

runs, as proposed in the RFC1242-2544, at the maximum forwarding rate and

avoiding packet losses. Figure 4 shows the throughput and the bus occupancy of the

router as a function of the packet length. Only with long datagrams, the maximum

theoretical bus capacity of 1.056 Gbit/s is approached (the bus is traversed twice for

each packet). Another important figure of interest for a router is packet delay (see

Table 1). As well, the latency is not dependent on packet length: this behavior is

expected, since only data (i.e. packet) pointers are passed through the Click modules,

avoiding time-expensive data-touches.

9

0

50

100

150

200

250

300

350

400

64 128 256 512 1024 1280 1518

Packet Length (byte)

T
h
ro

u
g
h
p
u
t

(k
p
ac

k
et

/s
)

0

100

200

300

400

500

B
u
s

o
cc

u
p
an

cy
 (

M
b
it

/s
)

Throughput

Bus

occupancy

Fig. 4. Loss-free maximum forwarding rate and corresponding bus occupancy vs. packet length

for a Click-based RFC-1812 router (20 120-seconds runs)

Table 1. Average packet latency in microseconds for a RFC1812-based Click router for

different values of packet rate in kpacket/s (columns) and length in byte (rows), evaluated at the

highest loss-free rates

 350 200 140 85 53 43 37

64 8,43 4,63 3,83 3,23 2,49 2,43 2,42

128 4,68 3,82 3,20 2,46 2,40 2,39

256 3,78 3,14 2,43 2,34 2,35

512 2,99 2,37 2,32 2,30

1024 2,50 2,39 2,42

1280 2,48 2,45

1518 2,49

0

2

4

6

8

10

64 128 256 512 1024 1280 1518

Packet Length (byte)

D
el

ay
 (

µ
s)

Queue Delay

Routing Delay

Fig. 5. Average delay vs. packet lenght for a Click-based RFC-1812 router (20 120-seconds

runs)

Evaluations reported in [6] and summarized in Fig. 5 show how the variable

contribution to the global delay reported in Table 1 is due to the output queue term,

10

while the routing delay alone requires constantly about 1.2 µs. Table 1 summarizes

the Click latency for various packet sizes and rates. It makes clear the strict relation

between packet delay and rate.

3.2 Forwarding delay analysis

More thorough analyses were done releasing that restriction with the aim to

investigate system bottlenecks. To this end, additional tests were first performed using

64-byte short packets and increasing the input rate with respect to values of Table 1.

The forwarding rate no longer increases and the packet latency remains the same,

while the input interface reports “FIFO Errors” events through its internal registers.

This denotes that the NIC-to-memory DMA transfer of packets is failing, that is the

CPU-Memory subsystem is not capable of releasing DMA descriptors to the NIC fast

enough to handle all the incoming packets. Results reported in [7], where a much

slower CPU was utilized to achieve the same throughput, lead to conclude that the

memory subsystem, rather than the CPU, represents the slowing factor. When using

1518-byte packets, an increase of the input rate produces very different consequences.

In order to perform in depth investigation of different contributions to the routing

delay, a timing diagram of the forwarding activities inside the router is presented in

figure 6. The arrow at the left side of the diagram represents a packet stored on the

NIC FIFO buffer and ready to be transferred to memory. The time spent for a packet

forward can be split in three stages. During the first stage, the datagram is moved

from the NIC towards memory using the I/O bus: the NIC fetches a free receive DMA

descriptor (this takes a time Tpoll_dma) and then the NIC-to-memory transaction on the

bus occurs (Tbus). At the second stage, Click takes the routing decision: it polls the

packet from memory by the PollDevice module (Tpoll), elaborates it and queue it

(Troute); then, ToDevice pulls it from the queue towards the transmit DMA buffer

(Tpull). Finally, the packet is sent (accessing the I/O bus again) to the output NIC: this

fetches a transmit DMA descriptor (Tpoll_dma) and moves the packet from memory to

its own internal FIFO (Tbus). At the end, before the next packet arrival, the routing

process remains inactive for a time Tidle.

Fig. 6. Timing diagram of packet forwarding. The striped square locates the PollDevice

activity, while the dotted one when the ToDevice element pulls packets from the queue

Using 1518-byte packets, the time requested for a complete forward cycle (Tforward)

was first estimated, summing all the preceding contributions:

nsTTTTTT dmapollpullpollbusrouteforward 2502022 _ ≈++++= . (1)

Bus activity Click processing

T poll_dma T poll

Bus activity

T pull T poll_dma

T bus

T route T bus

T idle

11

This corresponds to a theoretical maximum forwarding rate of 39968 packet/s, with

no more margin in time (Tidle becomes zero) before the next packet arrival. The time

required for all the bus accesses can be evaluated as:

nsnsTT dmapollbus 23360)24023120(22 _ =+≈+ , (2)

which is the 93.3% of the global cycle duration. Experimental evidence confirms this

estimation: packet losses suddenly grow at 39800 packet/s. This rate is also an edge

for the average queue latency as shown in figure 7. This reveals that the router is

congested: the input interface persists accepting the incoming packets, but these are

not as much promptly extracted from the Click queue toward the output interface.

This unbalanced functioning was deeper examined using the Click's accounting

mechanisms: the ToDevice module, that pulls packets from the queue and puts them

in the transmit DMA buffer, was frequently idle. ToDevice normally remains idle

when the DMA buffer is full [8], thus the only possible cause of this kind of

performance is the PCI bus overload (a memory overload could also be possible but

should affect the receiving stage, too: however, such event was not encountered). To

further investigate this aspect, the CycleCountAccum module was customized to

collect each per-packet delay within an internal vector, instead of exporting its usual

averaged estimates. This was possible since SetCycleCount appends the CPU internal

cycle count obtained from the RDTSC register in a special packet annotation field. In

combination with CycleCountAccum, it allows to measure how many cycles it takes

for each packet to pass from one section to another.

0

1

2

3

4

5

6

3
7
0
0
0

3
7
5
0
0

3
8
0
0
0

3
8
5
0
0

3
9
0
0
0

3
9
5
0
0

3
9
7
0
0

3
9
8
0
0

4
0
0
0
0

4
0
5
0
0

4
1
0
0
0

4
1
5
0
0

4
2
0
0
0

4
2
5
0
0

4
3
0
0
0

4
3
5
0
0

4
4
0
0
0

Packet Rate (packet/s)

D
el

ay
 (

m
s)

Fig. 7. Average output queue delay (Tqueue) vs. packet rate (1518-byte packets)

Figure 8 sketches an example of the delay distribution obtained using 1518-byte

packets and an input flow of 37000 packet/s. Under the same boundary conditions, the

global average latency reported in Table 1 was 2.49 µs (this comprises a routing delay

of 1.2 µs). Thus, surprisingly, the residual average queue latency (1.29 µs) is the

result of a very scattered delay distribution.

12

100

1000

10000

100000

1000000

0 1000 2000 3000 4000 5000

Packet sequence

D
el

ay
 (

n
s)

Fig. 8. Packet delay (Tqueue) inside the output queue (1518-byte packets at a rate of 37000

packet/s)

Moreover, it’s possible to observe how some delay states prevail, forming three dense

horizontal lines in the graph, located approximately at 600, 1200, 2400 ns. High delay

spikes (vertical lines) up to 300µs are also evident and will be discussed in Subsect.

3.4. Further increases of the flow rate gradually drag the average packet latency up to

higher values and when the threshold rate of 39800 packet/s is reached, the packet

latency is consistently positioned around a central value of 4.8 ms, as outlined in

figure 9 and coherently with the graph in figure 7.

0

1

2

3

4

5

6

7

4000 4200 4400 4600 4800 5000

Packet sequence

D
el

ay
 (

m
s)

Fig. 9. Packet delay (Tqueue) inside the output queue (1518-byte packets at a rate of 39800

packet/s)

3.3 Burst effects

A fraction of an horizontal delay line extracted from figure 8 is enlarged in figure 10,

showing a surprising behavior: packets flow out of the Click queue with decreasing

delays, instead of increasing ones, as it would be normally expected. An additional

analysis was necessary to understand why this happens: the timing diagram in figure

11 shows the activities required inside the router to forward a two-packet burst,

already stored inside the NIC internal FIFO. Let us call the two packets A and B

respectively. At first, the NIC retrieves a couple of free receive DMA descriptor; then,

13

A and B are moved through the PCI bus to be placed in the receive DMA buffer.

Next, the PollDevice element polls both of them (it can manage bursts up to 8 packets

long) and pushes them inside the Click configuration. At this point, they are routed

and stored in the output queue. From here, ToDevice pulls them (it can manage bursts

up to 16 packets long) to the transmit DMA buffer, to be sent to the output NIC via

the PCI bus.

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Packet sequence

D
el

ay
 (

n
s)

Fig. 10. Magnification of the packet delay graph reported in figure 8

Bus activity Bus activity Click processing

AB

A B
B

A B

Troute

A

Fig. 11. Timing diagram of a two-packet burst forwarding

Since ToDevice pulls both A and B as a single burst, they respectively collect the

delays in the output queue expressed by equation (3).

nsTnsTT BqueuerouteAqueue 600,1200 __ ≈≈= . (3)

In fact, A must wait for B to be routed (this takes a time Troute) before being pulled

from the queue. Instead, Tqueue_B should in theory be zero, but a lower bound for

packet delay is always experimentally measured for any datagram traversing the

output queue. Equation (3) can be generalized as follows:

=≈

<⋅−≈

NinsT

NiTiNT

iqueue

routeiqueue

,600

,)(

_

_
(4)

with i = 1,…, N , being N the burst length (i.e. the number of packets admitted by

PollDevice). This model is consistent with the experimental graph showed in Fig. 8

and justifies delay values up to 8400ns (PollDevice can poll up to 8 packets in each

burst). Thus, the horizontal delay lines depicted in figure 8 are due to packet bursts

stored in the input NIC FIFO.

14

3.4 Effects of bus sharing

Previous discussions do not explain either the presence of high delay spikes in figure

8 or packet bursts formation. When the routing task does not use the bus, other

devices can obtain to move their own data. Two time windows permit this to happen:

before a new packet arrival (Tidle) or during the Click processing stage. In the first

case, the bus is kept locked and the input NIC can not transfer any packet to memory

till the extraneous bus activity ends up: the whole routing process is shifted in time,

while the input NIC stores incoming packets in its FIFO, forming new packets bursts.

The magnification of a delay spike is showed in figure 12, as an example of what

happens if the extraneous bus activity arises during the Click stage. This performance

is justified in figure 13: when Click has finished its processing, the packet cannot be

extracted from the output queue, since the bus is locked and ToDevice cannot start its

pulling stage. Thus, the datagram hangs inside the output queue for the whole

duration of the noise (Tnoise), acquiring a delay that has no upper bound.

0

20

40

60

80

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Packet sequence

D
el

ay
 (

u
s)

Fig. 12. Enlargement of a packet delay spike extracted from figure 8

 Tnoise

Fig. 13. Effects of an extraneous bus access (the black square) during the forwarding process

This kind of bus activity can form packet bursts, too: as the bus is kept locked, the

input NIC receives new packets. It can be noticed that the collected extra latency does

not apparently affect the subsequent routing cycles (as the packet latency is measured

at the queue level): the queue delay rapidly decreases, since the pull stage is again

straightly following the routing phase. Detailed bus monitoring would allow a more

precise knowledge of bus-sharing effects but unfortunately the Linux kernel does not

actually offer adequate tools yet.

15

4 Performance Evaluation of a Multiprocessor PCI-X Platform

The previous section clearly showed how the main performance problems of a

“desktop” PC-based router are represented by both the CPU computing power (when

short packets are injected at high rates) and the standard PCI bus throughput. To

overcome these limits, a different test-bed was set up. In particular, to increment the

computing power a dual processor platform was chosen, while the PCI-X bus was

selected as a shared structure to plug the network interfaces. Multiprocessor systems

can achieve high processing power thanks to a high level of parallelism between a

certain number of CPUs. Given the great availability of multiprocessor systems, SMP

Click [9] was developed with the aim of improving the Click software routers

performance. Obviously, to really take advantage of a multiprocessor system, making

a good use of the parallelism, great attention to the CPU task assignment techniques is

necessary.

4.1 SMP Click Schedulable Elements

The main aim of SMP Click is to run Click configurations on multiprocessor PC

architectures, through the parallel execution of packet processing tasks among

different CPUs. SMP Click creates a different thread for each CPU available in the

system. A CPU thread can schedule only a few elements, the so-called schedulable

elements, of a Click configuration. All the schedulable elements in the configuration

are placed in a task array as tasks. In addition, each CPU has its private work list.

Each task is then assigned to the work list of one of the CPUs, in order to be

processed by this CPU in a round robin order. Click schedulable elements are

PollDevice, ToDevice and all the PullToPush elements. When a PollDevice is

scheduled by a CPU, it examines the network device for new incoming packets, then

pushes them to the downstream element: the whole push path, that is, the path starting

from the PollDevice, and ending with a Queue element, is demanded to the CPU

which schedules the PollDevice. In the same way, the path starting with a Queue

element and ending with a ToDevice, called pull path, is demanded to the CPU which

schedules the ToDevice element, and therefore starts the execution of a pull

processing.

4.2 CPU Scheduling Management Techniques

SMP Click supports static and adaptive CPU scheduling. When the static CPU

scheduling is used, all the schedulable elements are statically distributed between the

work lists; in this way each of them is always processed by the same CPU. If adaptive

CPU scheduling is used, on the other hand, Click maintains the average processing

cost for each schedulable element, in terms of consumed CPU cycles, and the work

list of each CPU is periodically updated according to these costs, in order to keep the

load among the different CPUs balanced. The work list updating interval is a

parameter which can be set in the configuration file. Then, a global scheduler runs

through the task array again, by assigning each element to the CPU work list with the

16

lowest load, in order to achieve a good load balancing. It should be noticed that the

adaptive scheduling algorithm takes only into account the load balancing among the

CPUs, in order to avoid CPUs idle times: no attention is paid to other important

aspects, like cache misses and cache coherency maintenance mechanisms [10], [11],

which negatively affect the performance of multiprocessor systems. When packets,

buffers or other data structures are handled by more than a single CPU, multiple CPU

private caches can have a copy of a given memory location. As soon as one CPU

modifies shared data in its private cache, the copies in the caches of the other CPUs

must be invalidated. The mechanisms, which have to be used in order to ensure the

consistence of the caches content (cache coherency protocols), introduce an overhead

which degrades router performance. Instead, if a given data structure is always

managed by the same CPU, this structure is present in its private cache only. This

enforces cache affinity, by reducing the processing time, so increasing router

performance.

By taking into account these considerations, a few simple rules can be followed for a

good use of parallelism. For example, every mutable data structure, such as a queue,

should be managed by as few CPUs as possible. In addition, any single packet, or

packets belonging to the same flow, should be processed by a single CPU during its

forwarding path. As a consequence of this last suggestion, if we consider that it is

likely that a packet coming from a network interface leaves the router from another

interface, the PollDevice and the ToDevice of the same interface should not be

scheduled by the same CPU.

4.3 Performance Analysis

The following investigations were conducted to strictly respect the RFC1242-2544

specifications proposed by the IETF Benchmarking Methodology Working Group

(BMWG). For instance, throughput is specified as the maximum forwarding rate at

which none of the offered frames are dropped, and results are obtained as the average

of 20 successive 120-second runs. The testing configuration depicted in Fig. 12

consists of five PC-based systems running the Linux kernel 2.4.18 and Click release

1.3.

Fig. 12. The server-based test-bed layout

One PC implements a RFC1812-compliant router (with a basic FIFO output queuing

scheme), two are packet generators, and two are packet receivers. During every test,

each of the two sources injects, by means of the FastUDPSource element, a constant-

rate balanced flow of 64-byte UDP packets into the input ports of the router, while

receivers collect the traffic coming from the router. The edge router is equipped with

a dual Intel Xeon 2.80 GHz CPU (with the HyperThreading technology disabled), an

17

Intel E7501 chipset motherboard with a 533 MHz FSB and four distinct PCI-X slots.

The router has four Intel 82544EI Gigabit Ethernet controllers directly connected by

copper point-to-point links to the packet generators and receivers. Two of them are

plugged to the 64-bit/133 MHz PCI-X bus, while the two others are attached onto the

slower 64-bit/100 MHz PCI-X slots. The choice of this NIC allows to use the polling-

based driver extensions developed by the MIT for these adapters. Like most of recent

network cards, this NIC disposes of an on-board FIFO buffer to store datagrams

received from the wire or waiting to be transmitted. In addition, it contains dedicated

registers maintaining statistics about its internal state. The MLFFR (Maximum Loss-

Free Forwarding Rate) versus input rate for a Click-based router with SMP disabled

(the 1-CPU case) is 737,000 64-byte packets per second (Fig. 13). More thorough

analyses were done, increasing the input rate further with the aim to investigate

system bottlenecks: the forwarding rate no longer increases, while the input interfaces

report “FIFO Errors” events through their internal registers (Fig. 14). This denotes

that the NIC-to-memory DMA transfer of packets is failing, that is the system is not

capable of releasing DMA descriptors to the NIC fast enough to handle all the

incoming packets, causing the FIFO overflow. This evidence shows how the main

performance problem is the CPU computing limitation. To overcome this limit, SMP

Click allows the usage of multiple CPUs (with the adaptive and static scheduling

techniques described so far), with automatic or user-defined parallel execution of

packet processing tasks to maximize performance, exposing the advantage of multi-

processor architectures. In order to illustrate how the hardware/software choice affects

the performance, in Table 2 we further considered the MLFFR values obtained with

different configurations.

Fig. 13. Forwarding rate vs. input rate for a 1-CPU Click-based RFC-1812 router using 64-byte

packets (20 120-second runs)

18

Fig. 14. FIFO errors vs. input rate for a 1-CPU Click-based router using 64-byte packets

Table 2. MLFFR for different router configurations using 64-byte packets

C1 consists of the 1.6 GHz Pentium III platform with 32bit/33MHz bus described in

Section 3, while C2-C3-C4 is the dual-Xeon platform described at the beginning of

this section, with Click SMP support disabled, and enabled with adaptive scheduling

and static scheduling, respectively. Comparison between C1 and C2 shows how the

technological improvement of FSB (CPU-memory) and PCI-X buses influences the

forwarding rate: C2 CPU is less than twice as fast as C1 CPU, but the MLFFR is

more than twice. C3 performs somewhat better than C2, but it seems that in these

conditions (i.e. two distinct flows traversing the router) adaptive scheduling algorithm

cannot take so much advantage by the presence of an additional CPU . Figures 15 and

15b show how different is the router behavior for C3 in comparison with C2. In fact,

despite maximum throughput reaches absolute higher values for C3 (around 1,000

Kpps), packet losses (i.e. FIFO Errors) arise at the NIC level, indicating that all the

available computing power is not efficiently utilized.

Since the adaptive scheduling does not take into account the cost of cache misses, but

only tries to reach a balanced load among the available processors, if two schedulable

elements handling the same packet are assigned onto different CPUs, the cost of

processing increases, leading to unsatisfactory performance.

19

Fig. 15. Forwarding rate vs. input rate for a 2-CPU Click router with adaptive scheduling, using

64-byte packets (20 120-second runs)

0

5

10

15

20

25

30

50 250 450 650 850 1050 1250

Packet rate (Kpps)

F
IF

O
_

E
rr

o
rs

 (
%

)

Fig. 15b. FIFO Errors rate vs. input rate for a 2-CPU Click router with adaptive scheduling,

using 64-byte packets (20 120-second runs)

On the contrary, the static scheduling technique offers the network manager the

possibility to improve router behavior starting from the knowledge of traffic statistics.

For instance, in our experimental layout, which fundamentally emulates a border

router, most of the traffic is exchanged between the inner and outer networks (i.e.

different network interfaces). In these circumstances, the PollDevice and ToDevice

elements referring to the same interface rarely handle the same packets and thus can

be allocated onto different CPUs, while elements mostly involved in packet

forwarding are assigned onto the same CPUs, preventing the expensive cache misses.

With these guidelines in mind, Fig. 16 depicts how traffic flows are assigned onto the

available processors.

20

PollDevice eth1PollDevice eth0 PollDevice eth3 PollDevice eth4

ToDevice eth1ToDevice eth0 ToDevice eth3 ToDevice eth4

IP Router

CPU 1 CPU 2

PollDevice eth1PollDevice eth0 PollDevice eth3 PollDevice eth4

ToDevice eth1ToDevice eth0 ToDevice eth3 ToDevice eth4

IP Router

CPU 1 CPU 2

Fig. 16. Assignment of traffic flows to the CPUs, evidencing the parallel processing of

forwarding activities

Fig. 17. FIFO errors events for the two distinct network interfaces vs. input rate for a SMP

Click router using the “static scheduling” technique

This makes evident the parallel processing of the incoming packets, while numerical

performance results are reported in Table 2 (row C4), showing how this technique can

take full advantage of the available power computing. A further point to mention is

how differences between the two PCI-X buses affect the performance. Figure 17

highlights how the main throughput limitation (using the static scheduling

configuration) is due to the card connected onto the 100MHz/PCI-X bus, where

“FIFO errors” events appear first, persuading us that a hardware platform equipped

with four identical 64-bit/133MHz PCI-X slots should exploit all the available

computing power, and could probably reach a maximum loss-free forwarding rate of

1,350,000 64-byte packet/s. Figure 18 resumes the throughput and bus occupancy of

the router as a function of the packet length: it can be noticed how the limit NIC

throughput (1 Gbit/s) is reached (the bus is traversed twice for each packet) when the

packet length is over 256 byte.

21

0

200

400

600

800

1000

1200

1400

1600

64 128 256 512 1024 1280 1518

Packet Length (byte)

T
h

ro
u

g
h

p
u

t
(k

p
a
c
k

e
t/

s)

0

500

1000

1500

2000

2500

B
u

s
o

c
c
u

p
a
n

c
y

 (
M

b
it

/s
)

Throughput

Bus

occupancy

Fig. 18. Maximum loss-free forwarding rate and corresponding bus occupancy vs. packet

length for a 2-CPU Click router with static scheduling

5 Conclusions

In this chapter measurements performed on a PC-based router have been presented

and discussed. Investigation of system bottlenecks lead to the conclusion that the PCI

bus represents the major cause of throughput limitation. The effects on this

performance figure of different system parameters and bus sharing occurrences have

been thoroughly evaluated also in terms of forwarding delay. The main conclusion is

that the time-sharing performed by the PC bus does not guarantee delay fairness and

leads to unbounded forwarding delays. The bus arbiter logics is in fact implemented

having in mind the usage of a PC as an end user system, while, when using it as a

network node, different arbiter programming should be made to assure fair sharing of

the bus resource.

Then, it has been demonstrated how the usage of modern PCIX buses combined with

the insertion of software routers able to parallelize the tasks among different

processors allows to overcome these limits and permits to take full advantage of the

potentiality offered by multiprocessor architectures.

Chapter References

1. Keshav S., Sharma R.: Issues and trends in router design. IEEE Communication

Magazine, vol.36, n.5, pp.144-151, May 1998

2. E.Kohler, R.Morris, B.Chen, J.Jannotti, M.F.Kaashoek: The Click modular router. ACM

Trans. Computer Systems Vol. 18, August 2000

3. J.C.Mogul, K.K.Ramakrishnan: Eliminating receive livelock in an interrupt-driven kernel.

ACM Trans. Computer Systems Volume 15, August 1997

4. A. Bavier, S.Karlin, L.Peterson, X. Qie: Scheduling Computations on a Software-Based

Router. ACM SIGMETRICS Volume 29, June 2001

22

5. Oscar- Ivàn Lepe-Aldama, Jorge Garcia: I/O Bus Usage Control in PC-based software

routers. IFIP 2002, LNCS Volume 2345 pp.1135-1140, January 2002

6. G.Calarco, C.Raffaelli: An open modular router with QoS capabilities. HSNMC 2003,

Lecture Notes in Computer Science, Volume 2720 pp.146-155, July 2003

7. E.Kohler, R.Morris, B.Chen: Programming language optimizations for modular router

configurations. ACM SIGPLAN Notices, Volume 37, October 2002

8. E.Kohler, the ICSI Center for Internet Research, private communication, Available:

https://amsterdam.lcs.mit.edu/pipermail/click/ , July 2003

9. B. Chen, R. Morris: Flexible Control of Parallelism in a Multiprocessor PC Router.

Proceedings of the 2001 USENIX Annual Technical Conference (USENIX '01), June

2001, Boston, Massachusetts

10. J. Archibald, J.L. Baer: Cache Coherence Protocols: Evaluation Using a Multiprocessor

Simulation Model. ACM Trans. Computer Systems Vol. 4, No. 4, November 1986

11. M. S. Papamarcos, J. H. Patel: A Low-Overhead Coherence Solution for Multiprocessors

with Private Cache Memories. The 11th Intl. Symposium on Computer Architecture, pp.

348-354, June 1984

23

Chapter III. Introducing Quality of Service

Capabilities within Open Routers

1 Introduction

Today users ask forever increasing bandwidth and especially require services with

quality of service guarantees. Being the network built on a set of different sub-

networks, service access control is necessary through procedures coordinated among

different domains and quality of service requires to be managed during information.

To this end new routing and queuing techniques must be investigated and new

functionalities to manage different application flows must be introduced within the

network [1], [2]. As regards the international scientific community, the IETF has

defined models for quality of service management in the Internet and in particular the

Differentiated Services model, which is interesting for scalability aspects. This model

requires some functions to be implemented in the edge routers, such as packet

assignment to service classes on the basis of explicit signalling or classification

mechanisms, and class management in the core routers. Solutions for Differentiated

Services implementation are available by main router manufacturers as proprietary

solutions that are difficult to modify and optimize. Recently, open routing approaches

have been developed with the aim to use standard hardware platforms to support free

and open software [1].

The main aim of this new router design strategy is the definition of flexible and

modular design environment and tools that allow fast router design and modification

in order to meet user and context needs. The focus is on the edge router where users

are required to register as willing to generate real time traffic: this information is

stored at the edge router as Service Level Agreements (SLA) and then used for on line

authentication. The main target of the Quality of service (QoS) function is to

recognize real time flows without explicit user signalling on the basis of the protocol

used or, as an alternative, on the basis of statistical analysis of user traffic. In this

chapter a new approach to end-to-end QoS is proposed to allow QoS unaware users to

access network QoS capabilities in a “plug and play” fashion. The basic idea behind it

is a DSCP marking of the traffic based on a content-oriented micro flow

classification. The flow classification is made by the edge routers by looking at the

traffic aggregate generated within the stub network. The proposed classification

process is developed for real time traffic and considers both protocol and statistical

analysis of stub network traffic. It is implemented in two distinct open frameworks:

the Linux Traffic Control and the Click Modular Router.

The chapter is organized as follows. In section 2 interactive multimedia traffic

characteristics are analysed; section 3 introduces the Linux Traffic Control and the

real time classifier implementation, describes the corresponding test bed and

illustrates the obtained performance, particularly in terms of packet latency and jitter;

section 4 focuses on the Click Modular Router, how the real time flow classification

24

was implemented using this different framework and which performance were

obtained.

2 Differentiated Services Model and Interactive Multimedia

Traffic

Quality of Service (QoS) is the capability of a network to forward packets in

different ways by grouping them into traffic categories called classes. Several

different solutions to the QoS problem have been devised: ATM (Asynchronous

Transfer Mode), RSVP (Resource ReSerVation Protocol) [3], the Integrated Services

[4] and the Differentiated Services [5] architectures are examples of complementary

and interoperable approaches addressing different needs. The Differentiated Services

architecture, that is considered here, supports a scalable solution to QoS in IP

networks being it based on few fundamental concepts and components: the

identification of the packet QoS class through a code point and the differentiated

treatment of that packet within a DiffServ node as Per Hop Behaviour (PHB). Two

main PHBs have been standardised so far: the Expedited Forwarding PHB[6] - for the

support of services requiring time guarantees - and the Assured Forwarding PHB[7] -

for packet treatment according to three types of drop precedence. PHBs are identified

through a 6 bits label, called Differentiated Services Code Point (DSCP) which is

placed into the DiffServ Field of the IP header. In order to permit the end-to-end QoS

management a hierarchical, two-tier [8] architecture was also proposed. This model

defines the inter- and intra-domain resource allocation, needed to achieve the end-to-

end QoS support. The approach requires the interaction between the RSVP signalling

in the stub networks and the bandwidth brokers within the DiffServ domains [9]. So

the user application should be RSVP capable in order to take benefit from traffic

differentiation.

2.1 Interactive Multimedia Traffic

From the overall performance point of view interactive multimedia applications are

more resistant to packet loss than to high end-to-end delay or jitter when they are

transmitted across IP networks. TCP flow control mechanisms assure the correctness

of TCP streams but the delay introduced by the retransmission of lost packets creates

a bigger damage than the loss itself, if this is reasonable small (i.e. 10%) [10].

Typically, these applications are based on the UDP protocol [11]. The impossibility

for current best effort IP networks to assure a better service to real-time applications

has lead to the development of special protocols. The main contributors on this

direction are the IETF and ITU. To address the previous problems, the IETF Audio-

Video Transport and Multiparty Multimedia Session Control working groups have

developed RTP/RTCP [12] protocols for the transport of real-time content, and RTSP

[13] protocol optimised for multimedia streaming. The benefits introduced by these

protocols, together with the need for a common standard base, have given RTP the

role of standard protocol for the transport of real-time contents over the Internet. The

25

RTP protocol is being used by the most common interactive multimedia applications

covering both the commercial and the scientific community as shown in table 1. This

means that the use of RTP by an application is a sufficient condition to classify the

transmitted data as real-time data. The key concept, behind our classification and

marking scheme, is to try to recognise RTP as the protocol used above layer four,

typically above UDP.

Table 3. Most commonly used interactive multimedia tools

 RTP/RTCP RTSP RVSP Audio/Video

Netmeeting Yes No Yes AV

Vic Yes No No V

Rat Yes No No A

Real Server Yes (live) Yes No AV

As regards specific delay requirements, the ITU [14] studies the transmission delay

constraints for PSTN. Three different classes of delay that satisfy most of the

applications have been identified for connections with adequately controlled echo

[14]. In order to keep the end-to-end delay as low as possible, it is better to transmit

the audio stream as a bigger number of small packets, instead of a smaller number of

big packets [15]. There are different reasons that justify this choice. Smaller packets

are more unlikely to be fragmented or dropped due to buffer management problems

and moreover the loss of one packet introduces a very limited source of noise at the

receiver side.

The packet size depends also on audio and protocol aspects. The audio part

depends in its turn on the codec frame size and bandwidth while the protocol one is

related to the use of different headers (i.e. IP, UDP, RTP). In the case of very limited

transmission bandwidth (i.e. analog dial-up modems) the transmission of different

audio frame within the same IP packet is required in order to limit the protocol

overhead [16]. Given a set of codecs, it is possible to estimate the typical mean packet

frequency and size for audio conference applications over IP networks in order to

keep the end-to-end delay in the range of few hundreds of milliseconds as specified in

ITU-T G.114 to assure acceptable quality to delay-aware users [14]. The lower bound

for this packet frequency can be considered about 10 packets per second. This value

can be drawn from Table 2 where the values of packet size and frequency are shown

for G.723.1 codec, assuming 24 byte audio frames generated every 20 ms.

These considerations about delay, with minor differences, can be applied also for

interactive videoconference applications and videophone connections. Both packet

size and frequency values are considered in the classification process.

Table 4. Flow rate and packet sizes for G.723.1 codec with 24 byte frames every 20 ms

IP Packets per second Coding Delay (msec) Audio payload size (byte)

1 1000 1200

5 200 240

10 100 120

26

3 Using the Linux Traffic Control to implement a QoS Router

This section describes the design, implementation and testing of a Linux test-bed

supporting flow-based classification functions for multiservice traffic. Protocol and

statistical analysis of application flows is performed in the edge routers to provide EF

treatment to multimedia traffic without any user signalling. These functions take

advantage of the Linux Traffic Control utilities and implement SLA management and

traffic statistics collection. Sample measurement performed on the test bed shows the

effectiveness and feasibility of the proposed solution.

3.1 Test-bed Layout and Configuration

In order to perform quality of service trials, a local test bed was designed to

emulate functions of a real network environment that offers real time services with

quality of service guarantees. Figure 1 shows the test bed layout, which consists of

five Intel i810-board systems connected through a Layer2-switch and equipped with a

1Ghz– Pentium III processor and a 256MB bank of RAM. An Internet link is also

provided for geographical connection and testing. The edge router (called Alfa) is

based on the popular Linux operating system. In detail, a 2.2.19 version of this kernel

was used as a developing platform and partially modified to satisfy our aims. It

represents the core of the test bed, since it performs the quality of service functions.

To this end, it takes advantage of classification, SLA, and bandwidth management

utilities, eventually by the interaction with a bandwidth broker (called DeisBB),

connected through the switch.

Alfa

Eth2
100Mbit

(Layer 2)

Real time
queue

Best effort
queue

Linux Traffic Control
(Layer 3)

Classifier

BMM

Edge Router

Delta

Eth1

100Mbit

Internet

Real Time Best Effort

Cops-Dra

Beta

Switch

Gamma

DeisBB

Alfa

Eth2
100Mbit

(Layer 2)

Real time
queue

Best effort
queue

Linux Traffic Control
(Layer 3)

Classifier

BMM

Edge Router

Delta

Eth1

100Mbit

Internet

Real Time Best Effort

Cops-Dra

Beta

Switch

Gamma

DeisBB

Fig. 5. Functional diagram of the test layout

It is worth noting that the output link of the router is represented by a 10 Mbit/s

network card, so that it can be easily saturated; the input interface instead is a 100

Mbit/s card. The other three computers (called Beta, Gamma and Delta) are dual-boot

27

systems having Linux and Windows 2000 installed; they are exclusively utilised for

traffic generation and analysis. In particular, Rude, a traffic generator [17] was

installed on Beta and Gamma and used for injecting three distinct flows of traffic into

the input port of the router. Specifically, these are a real time flow, a non real time

flow (both at 64 Kbit/s), and a best effort flow (at 16 Mbit/s, thus sufficient to saturate

alone the output port of the router). Access to the router by Beta and Gamma is

obtained through the 10/100 Mbit/s Ethernet switch. A traffic receiver, Crude [17], is

set up on Delta: it collects information about the packets coming from the output

interface of the router, helping us to verify if the real time flow had been correctly

treated. Other applications were also useful for generating the real time flow and

evaluating how the system can significantly improve the quality of the

communication under a human perspective. Examples of these are the popular

Microsoft “NetMeeting”, GnomeMeeting and RAT. The traffic control can be

configured via the “tc” command, a user-space application which interacts with the

Linux kernel to create various objects as queues, classes, SLAs, etc and to initialise

them. A graphical front-end interface was also released for easiness of use. The Linux

Traffic Control queuing discipline chosen for service differentiation is here based on

the CBQ (Class Based Queuing) algorithm. Its configuration assumes two classes,

with 1 Mbit/s and 9 Mbit/s rates, respectively, each with a 100 packet-long FIFO

buffer attached. Figure 2 shows the basic software architecture of the system.

Fig. 6. Software architecture

The Bandwidth Management Module (BMM), is a Unix bash script which interacts

with both the Linux Traffic Control and the Bandwidth Broker through the COPS

client/server protocol (Common Open Policy Service) [18]. By measuring the real

time traffic flows, the BMM decides if the utilised bandwidth is adequate or not. If a

bandwidth increase is necessary, it interacts with the bandwidth broker trying to

obtain additional bandwidth. The BB keeps the value of the residual bandwidth

continuously updated.

Time

Edge router

COPS

Bandwidth
broker

LTC + Real Time Filter

COPS

Client

Edge router

Bandwidth
broker

Bandwidth

Management Module

COPS

Server

28

3.2 The Real Time Classifier

In this section the approach to allow QoS unaware users of multimedia tools to

take benefit of network QoS is described. The new functionality is introduced into the

edge router in relation to the network scenario of figure 3, although it can be even

introduced within user equipments. The new feature consists in a classifier that,

according to a given set of SLAs, performs both protocol and statistical analysis on

the traffic incoming from the stub network. The new functionality and its prototype

implementation are called Real Time Classifier (RTC). RTC is designed for

interactive multimedia applications and, at this moment, is able to recognize and mark

that kind of traffic. In terms of DiffServ PHB, RTC marks the traffic recognized as

belonging to real-time multimedia streams as EF, setting the IP packet DSCP field.

The number of packets necessary used for classification can be chosen independently

for each classification algorithm with the aim to optimise the classification delay and

failure rate trade-off.

Fig. 7. RTC classifier functionality on the DiffServ Architecture

RTC is actually composed by the following four logical units:

• Classifier: performs traffic classification on protocol and statistical basis;

• Marker: marks the packets according to the classifier policy;

• Meter: meters the incoming traffic;

• Control Unit: manages the SLAs and performs supervision of other units

actions.

The control unit has in charge the management of SLA's and the supervision of the

whole classification process. For our purposes a 7th-tuple as shown in the table 3

defines a SLA.

Table 5. SLA Format

ID IP Mask BW Shared DSCP Policy

29

The ID parameter is the unique SLA identifier. The fields IP and MASK are used

to identify the host/network belonging to the SLA. The BW parameter is the

bandwidth allowed for the considered SLA. The policy parameter can take different

values according with the policy adopted for the out-profile traffic of the considered

SLA. In particular, at the moment the following values are allowed: OK when the out-

profile traffic is forwarded as in-profile and no actions is taken; DROP when the out-

profile traffic is discarded. Finally, "shared" is used to specify the degree of fairness

to among flows belonging to the same SLA. The value of the field ranges between 0

and 100, and represents the percentage of the bandwidth used on a FCFS basis, with

zero meaning that all the bandwidth is equally split between the flows and 100

meaning all bandwidth used on a FCFS basis. RTC control unit has in charge the

supervision of whole classification, marking and policing process as a filter between

the input interface and the scheduler.

Let consider two user A, and B, using a videoconferencing tool (i.e. NetMeeting)

across a DiffServ capable network. Suppose to have a RTC capable router as Edge

Router. For each packet coming from the stub network, the RTC control unit performs

the following algorithm:

while (packet from stub network is received)
{
 if (exists SLA entry for Sender)
 {
 if (packet flow is already classified)
 Mark(Flow_DSCP);
 else Classify();
 if (Meter(packet,SLA)==out-profile)
 Policy(SLA policy);
 }
 else
 {
 Mark(Best Effort);
 }
 Forward();
}

The "Classify ()" procedure tries a classification of the incoming packet using both

RTP protocol header and statistical information. Once sufficient information has been

collected, the flow is classified and its socket tuple is recorded in the hashing table of

classified flows. All its subsequent packets are recognized and marked accordingly by

matching the value of the tuple. The RTC classifier is the first functional unit

encountered by the traffic entering the Differentiated Services domain from a stub

network. RTC is integrated in the Linux Kernel QoS framework named Linux Traffic

Control, so once classified and marked a packet can be forwarded using a Linux QoS

scheduler. RTC classifies traffic using both statistical and protocol analysis. The

protocol analysis is based on the RTP header characteristics; in particular there are a

few parameters within the RTP header keeping constant their values during the whole

session. The RTP header has a minimum length of 96 bits and 42 of them remain

constants during the whole session. The protocol-based classification algorithm can

be tuned changing the size of the population used to classify. This tuning affects both

30

the precision of the results and the time needed to obtain them. The presence of the

RTP protocol in the analysed flow is considered a sufficient, but not necessary,

condition to classify the flow as an interactive multimedia stream.

For this reason, the statistical classification algorithm adds classification capability

in the case of real time applications that are not RTP compliant. It takes into account

the flow rate and the packet size as main parameters for the classification process. As

described in section 2.1, the flow rate depends on the codec used and bandwidth.

Typically each IP packet contains one single audio frame. On the other hand when the

introduced overhead becomes an issue two or more audio frames are grouped in one

IP packet. The number of audio frames per packet is kept as small as possible in

relation to the line bandwidth. For example, the codec G.723.1 [19] produces audio

frames of 30 ms (33 audio frames per second) and they are generally transmitted one

per IP packet if the link bandwidth is enough, but considering a 14.4 kbps modem,

they are grouped in three audio frames per IP packet in order to satisfy the bandwidth

constraints (table 4).

Table 6. Flow rate and coding delay

 Modem 14.4 LAN

Packet size (Byte) 100 (3 audio frames) 52 (1 audio frame)

Packet/s 11 33

Bit/s 8800 13728

Overhead 28% 52%

Coding Delay 90 ms 30 ms

Taking into account all the parameters, a flow is supposed to be interactive

multimedia flow if the number of packets per second is greater than 10 packets per

second. This is the lower bound to keep the delay in the constraints defined by G.114

[19]. In this scenario, in order to obtain an acceptable delay for end users, an

application has to encode the audio using more than 10 packets per second.

Finally RTC marker unit writes the DSCP value in the DSFIELD of the classified

packets according to the classification results. RTC meter unit, in conjunction with

the policy unit, performs the enforcement of the traffic profiles.

3.3 Experimental Evaluation

The RTC tool has been implemented hacking a Linux kernel (release 2.2.19) and

the command TC included in the package iproute2 [20] in order to realize a new filter

(called RTC) of the Linux Traffic Control. Several tests have been done in order to

evaluate classification effectiveness and the amount of resources, in terms of memory

and time per classified flow, required for the classification process. Three different

traffic flows have been generated by Rude [17] in order to saturate the 10 Mbit/s

router output link: a real time flow and a non real time flow, both at 64 Kbit/s, and a

best effort flow at 16 Mbit/s. Access to the router by Beta and Gamma is obtained

through a 100 Mbit/s Ethernet switch. The Linux Traffic Control queuing discipline

for service differentiation is here based on the CBQ (Class Based Queuing). Its

configuration assumes two classes, with 1 Mbit/s and 9 Mbit/s rates, respectively,

31

each with 100 packet FIFO queues attached. The main performance figures of interest

are the bandwidth used by each flow, the packet loss rate and the time jitter. Jitter is

defined with reference to figure 4 as J_tx – J_rx.

J_tx

T_tx

T_rx

n

J_rxnDelay n

n + 1

n + 1

Delay n+1

J_tx

T_tx

T_rx

n

J_rxn J_rxnDelay n

n + 1

n + 1

Delay n+1

Fig. 8. Main quantities for jitter evaluation

Figure 5 shows the bandwidth usage for real time and non real time traffic during

congestion. It is evident that the real time traffic, after the classification process has

recognized this kind of traffic, obtains the required bandwidth of 64 Kbit/s even if

saturation is present. The bandwidth used by non-real time traffic is on the other hand

not stable. Some losses are present for real time traffic due to the layer 2 transmission

buffer overflow, where both EF and BE traffics are considered in the same way .

0

20

40

60

80

100

0 5 10 15 20

Time [sec]

B
a

n
d

 [
K

b
it

/s
]

Real time flow

Non real time flow

Fig. 9. Link bandwidth usage as a function of time for real time and non real time 64 Kbit/s

flows in the presence of a 16 Mbit/s best effort flow over a 10 Mbit/s link

This losses can be eliminated by reducing the upstream CBQ queue size for the BE

class, thus limiting the BE traffic offered to the transmission queue. The packet losses

in time are represented in figure 6 where is evident the different behaviour of the two

flows. The packet loss rate for real time traffic has been calculated to be lower than 2

%. The analysis of transmission delay is presented in figure 7 and 8. Figure 7 shows

the percentage of packets at different delay for the to 64 Kbit/s flows. The real time

flow has a delay limited at 5 ms, much lower than the delay for the non real time

flow.

32

0

50

100

150

200

250

300

0 5 10 15 20

Time [sec]

#
 o

f
p

a
c

k
e

t

real time flow

non real time flow

Fig. 10. Packets lost during test for real time and non real time traffic, both at 64 Kbit/s, in the

presence of a 16 Mbit/s best effort flow over a 10 Mbit/s link

0

5

10

15

20

0 5 10 15 20 25 30 35 40 45 50

Delay [msec]

#
 o

f
p

a
c

k
e

t

Real time flow

Non real time flow

Fig. 11. Distribution of delay for real time and non real time traffic

0

5

10

15

20

25

30

35

40

0

1
0

2
0

3
0

4
0

5
0

of packet

D
e

la
y

 [
m

s
e

c
] Real time flow

Non real time flow

Fig. 12. Packet delay during test for real time and non real time traffic

Figure 8 evidences the effect of the RTC after the time necessary for recognizing

the real time flow. At the beginning the two flows are dealt in the same way, then,

33

after less then 10 ms, when the classification procedure is completed, the different

behaviour in terms of delay is evident. Figure 9 shows the temporal jitter as

previously defined for real time and non real time traffic. The values of the jitter for

real time traffic are acceptable being within 5 ms after the flow has been classified.

As regards the jitter for non real time traffic, it is limited only because almost all-non

real time traffic is lost and the small percentage of packets that enters the queue

typically finds it full.

-5

5

15

25

35

0 20 40 60 80 100

of packet

J
it

te
r[

m
s

e
c

] Real time flow

Non real time flow

Fig. 13. Time Jitter for real time and non real time traffic

A temporal analysis focused only on real time traffic has been also performed in

the presence of best effort traffic at 16 Mbit/s with the insertion at a given time of the

RTC function. In figure 10 the time behaviour for the bandwidth used by real time

traffic is considered, showing the transition from a situation with not guaranteed

bandwidth to a stable one when the RTC function is active.

0

10

20

30

0 5 10 15 20 25 30 35 40

Time [sec]

B
a

n
d

w
id

th
 [

K
b

it
/s

]

Fig. 14. Effect of the introduction of the RTC function on the behaviour of real time traffic

34

4 Using the Click Modular Router to implement a QoS Router

The large number of hardware producers, low costs of PCs, and the continuous

progress in performance are important factors which are making the design of a

packet switch based on a free and open-source platform more attractive [21][22].

Another important demand is nowadays the modularity of the software structure,

which would help network manufacturers’ revision and design of new functionalities

in a router, according to different types of needs. For instance, edge routers, contrary

to core routers, usually need more specialized tasks, like packet filtering and

classification for Quality of Service. This section describes the design,

implementation, and testing of an edge router supporting flow-based classification

functions for real time traffic. Protocol and statistical analysis of application flows is

performed to provide EF treatment to multimedia traffic without any user signalling.

These functions take advantage of the Click Modular Router [23], which is assumed

as a starting point to develop flow-based classification of real time services and to

demonstrate a viable design procedure to support new multi-service router

functionalities Sample measurement shows the effectiveness and feasibility of the

proposed approach as a step beyond in the field of open routing design.

4.1 Real-time Flow Classification

The classification procedures require modification of the reference Click router

diagram and new output queue management modules. The new functionalities have

been evaluated in terms of latency and classification effectiveness. Comparisons of

performance are presented to show the processing overhead introduced by

classification. In the following, the approach to allow QoS unaware users of

multimedia tools to take benefit of network QoS is described. The new service is

introduced into the edge router and consists in a classifier that, according to a given

set of SLAs, performs both protocol and statistical analysis on the traffic incoming

from the stub network. The new functionality and its prototype implementation are

called Real Time Classifier (RTC). Figure 11 depicts the modules inserted in the

Click framework to realize the RTC. Comparing it with the RFC1812 router described

in [24], the RTC replaces here the simple FIFO-based output queuing scheme, being it

inserted between the basic router and the output device interface.

35

SLA Manager

Protocol Classifier

Statistical Classifier

 Priority Scheduler

ToDevice (ethX)

SLA 1 SLA N

no RTP

RTP

queue

real

time

queue

best

effort

queue

IP Router

RTC

BwTraffic

Shaper

Fig. 15. The RTC internal structure

The RTC is designed for interactive multimedia applications and is able to

recognize and mark that kind of traffic. In terms of DiffServ PHB, RTC marks the

traffic recognized as belonging to real-time multimedia streams as EF, setting the IP

packet DSCP field. The number of packets required for classification can be chosen

independently for each classification algorithm with the aim to optimize the

classification delay and failure rate trade-off. With reference to figure 11, the SLA

Manager module is dedicated to identify the traffic belonging to a certain SLA (see

table 3). The SLA Manager is implemented using an existing Click element,

IPClassifier, which performs a pattern-based filtering to examine the source IP

address and checking if it pertains to a specific SLA. If so, the packet is passed to the

Protocol Classifier, which is as a new Click compound element designed and added to

the library; otherwise, it is pushed into the BE (low-prioritized) output queue.

The Protocol Classifier, depicted in Figure 12, is able to filter the RTP-marked

traffic flows. The IETF RFC1889 [25] establishes that the RTP packet must always

contain a 32-bit field called SSRC (Synchronization SouRCe identifier), which is kept

constant and distinct for each single flow. The GetSSRC element extracts these useful

bits from the RTP header and passes them to the RTPClassifier, which is able to hook

each distinct RTP flow if obtaining N occurrences of its SSRC value in a T-seconds

interval of time. Once a flow is identified, an internal table keeps the flow in the

“classified” state, deleting it only after 30s of inactivity. The SetIPDSCP element is

then involved in marking the TOS field of the IP header. The presence of the RTP

protocol in the analyzed flow is considered a sufficient, but not necessary, condition

to classify it as a multimedia stream. For this reason, the Statistical Classifier does an

additional analysis. Figure 12 also depicts the structure of this other new compound

36

element. The statistical classification algorithm adds classification capability in the

case of real time applications, which are not RTP compliant. It takes into account the

flow rate and the packet size as main parameters for the classification process.

Typically, these parameters depend on the source encoding used and bandwidth, as

mentioned in section 2: for instance, a flow can be considered an interactive

multimedia flow if the packet rate is greater than 15 packets/s and the packet size is

less than 200 bytes. Once sufficient information is collected, the flow is classified as

real-time. Obviously, since no SSRC field is present in this case, miscellaneous flows

cannot be distinguished from each other. The SplitFirst(J) block is destined to redirect

(in the BE queue) the leading J packets: this mechanism should guarantee the

cascading modules to receive stable data. CheckAverageLength(K), instead, is able to

monitor the mean size of the last 15 received packets: if greater than K bytes, the

current packet is passed to the BE queue.

RTPClassifier

SetIPDSCP (M)

GetSSRC

SLA Manager

Out 0: RTP Flow Out 1: no-RTP

RTP queue and
BwTraffic
Shaper

Protocol

Classifier

Statistical
Classifier

SplitFirst(J)

CheckAverage

Length(K)

Meter(L)

SetIPDSCP(M)

Statistical

Classifier

Best Effort QueueReal Time Queue

Protocol Classifier

Fig. 16. Protocol based and statistical classification

Otherwise, it is pushed in the Meter(L) element, which measures the packet rate

and classifies the real-time flow, when that is greater than L packets/s. Accordingly to

the SLA “BW” and “Policy” parameters, another new block was designed to manage

the out-of-profile traffic with more flexibility, the BwTrafficShaper, similar to the

standard BandwidthShaper, but with a secondary output dedicated to the out-of-

profile traffic. While the in-profile traffic is shaped as required, it allows to apply

various policies to the out-of-profile one: besides being discarded, this can be

redirected elsewhere (for instance, to the BE queue).

37

4.2 Test-bed Layout and Configuration

In order to perform quality of service trials, a testing configuration was designed to

emulate functions of a real network environment and to offer real time services with

quality of service. Figure 13 shows the test-bed layout, which consists of four PC-

based systems, connected through a Gigabit Ethernet layer2-switch. The edge router

(Alpha) is equipped with a 1.6 GHz Pentium IV Processor. The other PCs (Beta,

Gamma, and Delta) are exclusively utilized for traffic generation and analysis and

have an on-board 1Ghz–Pentium III processor. Every PC is equipped with the Intel

PRO1000XT-Server network adapters. On our router, we plugged two of them on the

32-bit/33 MHz PCI bus, even if they would be ready to work with the more advanced

64-bit/133 MHz PCI-X bus. The choice of this NIC was led by the necessity of using

the same polling-based driver already developed by the MIT for the Intel PRO1000

family cards.

Beta

Gamma
Delta

 RFC-1812
Routing

RTP/Real

time
queue

Best Effort
queue

 Real Time
Classifier

Drops

Alpha

RTP flow

BE flows

Fig. 17. Functional diagram of the test-bed layout

All the PCs were installed with the 2.4.9 version of the Linux operating system and

Click release 1.2.4 (with the Intel Pro1000 4.3.15 driver added). The edge router

performs the quality of service functions. To this end, it offers RTP-based and

statistical classification of multimedia traffic, and SLA management. When

necessary, the output link of the router was also tightened to work at 10 Mbit/s, so

that it can be easily saturated. RUDE, a traffic generator, was installed on Beta and

Gamma, which were used for injecting three distinct flows of traffic into the input

port of the router. Specifically, these are a real time flow, a non real-time flow, and a

best effort flow (at 16 Mbit/s, thus sufficient to saturate alone the output port of the

router). Access to the router by Beta and Gamma is obtained through the Gigabit

Ethernet switch. A traffic receiver, CRUDE, is set up on Delta: it collects information

about the packets coming from the output interface of the router, helping us to verify

if the real time flow was correctly treated. Other applications, the popular Microsoft

“NetMeeting” or RAT, were also useful for generating the real time flows and

evaluating how the system can significantly improve the quality of the

38

communication under a human perspective. Other more general measurements were

done using Click installed on Beta and Delta as a traffic generator and collector.

4.3 Experimental Evaluation

Figure 14 shows performance offered by the described hardware platform. The

router can manage a maximum loss-free forwarding rate of 120,000 packet/s with the

interrupt-based drivers and 370,000 packet/s using the polling technique. The main

performance figures of interest for a QoS capable router, however, are the packet

delay and the time jitter. Figure 15 depicts the average delay time of an RFC-1812

polling-based router, at different input packet rates with 60 s runs of traffic.

100

200

300

400

100 200 300 400 500

In pu t rate [K p ackets/s]

O
u

tp
u

t
ra

te
 [

K
p

a
c
k
e
ts

/s
]

P olling

In te rrup t

Fig. 18. Forwarding rate as a function of input rate for a Click-based RFC-1812 router using

interrupt and polling techniques (64-byte packets)

0
1
2
3
4
5
6
7
8
9

1 5 10 50 60 70 80 90 100 200 300 330

Packet rate [Kpackets/s]

A
v
e
ra

g
e
 d

e
la

y
 [
µ

s
e

c
]

Routing delay

Output queue delay

Fig. 19. Average delay time for a Click-based RFC-1812 router as a function of input rate (64-

byte packets and 60 seconds runs)

The main contribution to the global delay is due to the output queue term (a FIFO

with 100 elements), while the routing process alone requires about 1.2 µs. Under

39

these conditions, no packet loss is observed. It is to mention that 10 elements FIFOs

were also tested: the global delay is much smaller (about 2-3 µs), but packets drops

are observed when coming up to the maximum input rate. More detailed analyses

were done for the QoS capable router, after the insertion of the Real Time Classifier.

In this case, its output link was tightened to 10Mbit/s, inserting a BandwidthShaper

before the ToDevice block (which interfaces the Click environment to the NIC). The

RUDEs installed on Beta and Gamma were used for injecting three distinct flows of

traffic into the input port of the router. Specifically, a real time flow, a non real-time

flow (at 512 Kbit/s), and a best effort flow (at 16 Mbit/s, thus sufficient to saturate

alone the output port of the router). Table 5 illustrates the average delay time for the

RTP and the best-effort traffic, and the maximum output queues length reached

during the runs (the output queues are 100 elements FIFOs). As expected, the RTP

traffic is forwarded with a much smaller delay (≈32 µs) than best effort traffic

(typically 5 ms).

Table 7. Average delay time and maximum output queues length for a RTP 512 Kbit/s flow in

the presence of a 16 Mbit/s best effort flow over a 10 Mbit/s link

Traffic Average IP

Routing Delay

Average RTC

Delay

Average Click

Delay

Max

Queue

Length

RTP 1.19 µs 30.75 µs 31.94 µs 13

Best

Effort

1.19 µs > 5000 µs > 5000 µs Overflo

w

With the same contour conditions, an additional evaluation was done about the

end-to-end delay of the RTP traffic. This is feasible since RUDE marks any packet

with a sequential time-stamp, making possible to determine the total delay of the

packets, due to the path from the generator to the receiver. This measurement is

influenced by all the delay factors inside the test-bed (the traffic generator and

collector inner delays, the switch latency, the Click delay, and the NIC-to-Click

transit time). Figure 16 shows how the end-to-end delay for the RTP flow is about

120 µs. It is determined in the presence of the implemented functions and compared

with a wired generator-to-receiver connection. The latency introduced by all the

functions inserted in the Click environment is denoted with Tclick and is given by

Tclick = Trouting + Trtc, (5)

where Trouting is the delay introduced by the RFC1812 router part, and Trtc is the

delay due to the RTP classifier blocks. The values of these contributions were

measured through the Click support. The end-to-end lag can be resumed as

Tdelay_with_click = Tgen + 2*Tsw + 2*Tnic + Tclick + Tcoll, (6)

where Tgen is the time spent by the traffic generator to put the packets on the wire,

Tsw is the switch latency (2,5 µsec), Tnic is the NIC-to-Click transfer time, and Tcoll is

the time spent by the traffic collector to retrieve the packets from the wire. The direct

wire connection instead is

Tdelay_with_wire = Tgen + Tsw + Tcoll . (7)

40

Thus, knowing that Tclick = 31,94 µsec, Tdelay_with_click =123 µsec, Tdelay_with_wire= 58,2

µsec, it is possible to estimate the value of

Trouter ≡ Tnic + Tclick + Tnic = 62,3 µsec ; Tnic ≈ 15,18 µsec. (8)

1

10

100

1000

10000

0 1000 2000 3000

packets

D
e

la
y

 [
µ

s
e

c
]

Fig. 16. End-to-end delay for a RTP 512 Kbit/s flow in the presence of a 16 Mbit/s best effort

flow over a 10 Mbit/s link

A point to mention regards the graphed data in figure 16: it is possible to notice a

few high delay peaks in the picture. The same spikes were also observable in the case

of the wire connection delay and are not due to an odd behaviour of the router, but to

some extraneous synchronism activity on the traffic generator and collector systems.

An additional analysis of the transmission delay (inside the Click environment) is

presented in figure 17 and 18.

Figure 17 shows the distribution of the delay for the RTP and BE flows, while

figure 18 depicts the temporal jitter for the same kinds of traffic. Most of the values of

the jitter for real-time traffic are acceptable being within 100 µs after the flow has

been classified. As regards the jitter for non real time traffic, it is limited to some

hundreds of microseconds only because almost all non-real time traffic is dropped and

the small percentage of packets that enters the queue typically finds it full.

41

1

10

100

1000

10000

0 2000 4000 6000 8000

Delay [µs]

#
 p

a
c
k

e
ts

 RTP Best Effort

1000 3000 5000 7000

Fig. 17. Delay time distribution for a RTP 512 Kbit/s flow in the presence of a 16 Mbit/s

best effort flow over a 10 Mbit/s link

1

10

100

1000

10000

-1000 1000 2000 3000 4000 5000 6000

Jitter [µs]

#
 p

a
c

k
e

ts

RTP Best Effort

-2000 0

Fig. 18. Jitter distribution for a RTP 512 Kbit/s flow in the presence of a 16 Mbit/s

best effort flow over a 10 Mbit/s link

5 Conclusions

In this chapter the design, implementation and testing of a flow based real-time

classifier called RTC was described. RTC uses different methodology to perform its

function, based on protocol analysis and traffic patterns. Being it flow-oriented, it can

perform functions such as bandwidth usage measurement and thus can be fruitfully

used in a dynamic bandwidth management scheme. The results show effectiveness of

RTC in recognizing real time flows and in guaranteeing bandwidth as limited delays

for these kinds of applications. The RTC was implemented in both the Linux kernel

environment and Click Modular Router.

42

Chapter References

1. Keshav S., Sharma R.: Issues and trends in router design, IEEE Communication Magazine,

vol.36, n.5, pp.144-151, May 1998

2. Xipeng Xiao, Ni L.M: Internet QoS: a big picture, IEEE Network , Volume: 13 Issue: 2 ,

March/April 1999 Page(s): 8 –18

3. R. Braden Ed., L. Zhang, S. Berson, S. Herzog, S. Jamin: Resource ReSerVation Protocol

RSVP) Version 1 Functional Specification, Request For Comment 2205, IETF, 1997

4. R. Braden, D. Clark, S. Shenker: Integrated Services in the Internet Architecture: an

Overview, Request for Comments 1633, Internet Engineering Task Force, June 1994

5. S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, W. Weiss: An Architecture for

Differentiated Service, Request For Comment 2475, IETF, Dec. 1998

6. V. Jacobson, K. Nichols, K. Poduri : An Expedited Forwarding PHB, Request for

Comments 2598, Internet Engineering Task Force, June 1999

7. J. Heinanen, F. Baker, W. Weiss, J. Wroclawski: Assured Forwarding PHB Group, Request

for Comments 2597, Internet Engineering Task Force, June 1999

8. K. Nichols, V. Jacobson, L. Zhang. A Two-bit Differentiated Services Architecture for the

Internet. Request for Comments 2638, Internet Engineering Task Force,. July 1999

9. Andreas Terzis, Jun Ogawa, Sonia Tsui, Lan Wang, Lixia Zhang: A Prototype

Implementation of the Two-Tier Architecture for Differentiated Services, RTAS99,

Vancouver, Canada, 1999

10. D. Su and J. Srivastava, and Jey-Hsin Yao. Investigating factors influencing {QoS} of

Internet phone. In Proc. of IEEE International Conference on Multimedia Computing and

System, pages 308-313,June 1999

11. J. Postel. User Datagram Protocol. Request for Comments 768, IETF, Aug 1980

12. H. Schulzrinne, and S. Casner, and R. Frederick, and V. Jacobson. RTP:a Transport Protocol

for Real-Time Applications. Request for Comments 1889, Internet Engineering Task Force,

Jan. 1996

13. H. Schulzrinne, and A. Rao, and R. Lanphier. Real Time Streaming Protocol (RTSP).

Request for Comments 2326, IETF, Apr. 1998

14. International Telecommunication Union (ITU). Transmission Systems and Media, General

Recommendation on the Transmission Quality for an Entire International Telephone

Connection; One-Way Transmission Time. Recommendation G.114, Telecommunication

Standardization Sector of ITU, Geneva, Switzerland, Mar. 1993

15. J.C. Bolot, A.V. Garcia: Control Mechanisms for Packet Audio in the Internet, INFOCOM,

San Francisco, California, Mar. 1996

16. Opens H.323 group. Codec Bandwidth and Latency Calculations.

http://www.openh323.org/bandwidth.html, June 2000

17. http://www.atm.tut.fi/rude/

18. R. Mameli, S. Salsano: Use of COPS for Intserv Operations over Diffserv: Architectural

Issues, Protocol Design and Test-bed implementation, ICC 2001, Helsinky

19. http://www.itu.int

20. ftp://ftp.sunet.se/pub/Linux/ip-routing/

21. Click Modular Router, http://www.pdos.lcs.mit.edu/click/, MIT, Cambridge, MA

22. E.Kohler, R.Morris, B.Chen, J.Jannotti, M.F.Kaashoek: The Click modular router. ACM

Trans. Computer Systems 18, August 2000

23. J.C.Mogul, K.K.Ramakrishnan: Eliminating receive livelock in an interrupt-driven kernel.

ACM Trans. Computer Systems 15, August 1997

24. E.Kohler, R.Morris, B.Chen: Programming language optimizations for modular router

configurations. ACM SIGPLAN Notices, Volume 37, October 2002

25. http://www.cis.ohio-state.edu/cgi-bin/rfc/rfc1889.html - RTP, Real Time Protocol

43

Chapter IV. Design and Implementation of Adaptive

Algorithms for Inter-domain Dynamic Bandwidth

Allocation

1 Introduction

The evolution of the Internet to support different quality of service classes,

especially needed for real time services, requires models and techniques for network

engineering and resource management, which should be suitable for large

communication infrastructures and meet efficiency and scalability requirements. An

intense research activity on models for service differentiation [1],[2], [3] has been

developed in the last few years and, more recently, on the techniques for resource

management [4], [5], [6], [9], [10]. Among these, the scheme based on the Bandwidth

Broker concept has been considered as suitable to cope with the Differentiated

Services model proposed for QoS support [4]. Although this approach is fairly

centralized it can be made scalable through hierarchical organization of functions as

proposed in [6]. This proposal split the resource management problem into intra-

domain and inter-domain functions with different administrative scope: intra-domain

resource management is referred to the bandwidth broker of the domain and is

typically controlled by a single organization, while inter-domain resource

management involves interactions between bandwidth brokers of different

organizations and, on the basis of the proposal, it is achieved by bilateral agreements

between adjacent domains. The aim is to optimize the usage of the inter-domain link

and, at the same time, enhancing system scalability through the reduction of the

number of requests issued to the bandwidth brokers of the interworking domains.

At the same time the edge router must be equipped with new functionalities, in

order to resolve the classes of traffic designated for a privileged treatment, and to

manage efficiently the resources arranged by its bandwidth broker. Concerning this,

leading routers’ producers nowadays offer proprietary solutions, which are often

complex or impossible to improve and adapt. Instead there is a growing attention of

the international scientific and industrial community for open and standard platforms

supporting free software. To this end, the Click router [7] is a flexible and modular

framework for the simple design and the rapid implementation of new services. In the

previous chapter, it was used for the development of flow-based protocol and

statistical classifiers of real time traffic. New functionalities are now going to be

presented to meter the aggregated traffic of a service class in order to dynamically

modulate the inter-domain link bandwidth and accomplish its effective usage. These

new functions have been evaluated in terms of latency, efficiency and number of

requests for the bandwidth broker.

The chapter is organized as follows: in section 2 the general model for resource

management is introduced; in section 3 a simplified threshold-based model for

resource management is discussed, focusing on the problems of design parameters,

44

and measurement process of traffic; the effect of the measurements process will also

be discussed and exploited to manage bandwidth allocation even in the presence of

congestion and a combination of the original algorithm with a strategy for congestion

management is proposed to overcome the instability problems that could arise in real

operating environments; in section 4 a new bandwidth update algorithm based on the

use of the logarithmic function is introduced, together with the performance analysis

and design procedures presentation; the new algorithm is characterized by few design

parameters whose main effects on performance are mostly independent of each other.

Both sections 3 and 4 demonstrate how the bandwidth allocation schemes were

implemented within the Click Modular Router environment: system performance

measurements are presented and discussed. A comparison of the two different

bandwidth allocation schemes is also presented in terms of time behaviour, efficiency

and packet latency.

2 The System Model

The network model that has been considered is represented by multiple

interconnected domains each equipped with a resource manager called Bandwidth

Broker (BB) [4]. The BB is supposed to be responsible for call admission functions

and resource management within the single domain and resource management on

inter-domain links. This last is of particular interest in network design because it

involves the interaction between different administrations to achieve a trade-off

between performance and costs by optimizing the bandwidth allocated on inter-

domain links in relation to the real link usage. A threshold-based mechanism is here

considered based on the proposal presented in [5] and is briefly summarized as

regards the interactions with the BB to increase/decrease the bandwidth allocated to

inter-domain links. The mechanism is applied to a single class of service to which a

given amount of bandwidth bd is initially allocated by network manager. The basic

operations are sketched in figure 1 and involve the edge routers (ERs) that interface

with the inter-domain link and the bandwidth broker of each domain. The inter-

domain link bandwidth is assumed shared among different service classes. Dynamic

allocation of the link bandwidth to service classes is provided for each domain to

achieve efficient bandwidth utilization. Bandwidth allocation management is

performed in relation to the aggregate traffic of a single class that transits through

adjacent domains. The following operations are performed as illustrated in figure 1:

- the originating edge router ER1 sends a request for bandwidth

increase/decrease to the bandwidth broker BB1;

- BB1 forwards this request to BB2 that verify through a query to ER2 the

bandwidth availability;

- BB2 notifies BB1 of the result;

- BB1 enables ER1 for its request.

45

c c
BB

1

BB

2

2

1

6

4

5

ER

3

c c
BB1

BB2

2

1

6

4

5

ER1 ER2

3

Fig. 20. Network model based on the bandwidth broker concept for inter-domain resource

allocation

The interactions between ERs and BBs can be implemented using protocols like

COPS [8]. With this scheme each BB manages a number of interactions that is related

only to the ERs of its domain and to the BBs of directly connected domains, thus

enhancing the scalability of the whole system. The mechanism is here applied to a

single class of service, which is initially equipped with the amount of bandwidth

allocated by the network manager. ERs accessing network links are responsible of

monitoring bandwidth usage by the aggregate traffic of a class and of asking the

related BBs for the necessary increase/decrease of allocated bandwidth; an

increase/decrease request is assumed here always followed by a positive answer

within a time Tbb.

3 Threshold-based Dynamic Bandwidth Allocation

3.1 The threshold-based mechanism

A well-known approach is based on a threshold-based system that behaves as

explained in the following [6][8]. Let us introduce the following symbols:

- bd the bandwidth currently allocated to the service class;

- bo the bandwidth currently used by the aggregate traffic of the class;

- tu = bd*lmax upper threshold;

- tl = bd*lmin lower threshold.

The following assumption is made: the initial bandwidth is allocated by BBs on

inter-domain links to an application session in relation to parameters specified during

a call admission procedure. If call admission is not provided no initial bandwidth is

allocated. No per flow information is kept in any case in the BBs. ERs accessing

inter-domain links are responsible of monitoring link bandwidth usage by aggregate

traffic and of asking the related BBs for the necessary increase/decrease of allocated

bandwidth. A request for additional bandwidth is sent to the BB only when bo> tu and

46

a request for release is sent to the BB when bo< tl. No requests are sent to the

responsible BB if tl <bo< tu. Bandwidth increments/decrements are performed by

means of coefficients i and d, respectively, that update the allocated resources bd on

the basis of the following relationships: bd’=bd*i, in the case of bandwidth increase,

and bd’=bd*d, in the case of bandwidth decrease. An increase/decrease request is

always followed by a positive answer within a time Tbb. It should be noticed that this

system has a main drawback consisting in the large number of parameters to set up for

system design.

Time

B
an

d
w

id
th

bo

tu

tl

bd

Time

B
an

d
w

id
th

bo

tu

tl

bd

Fig. 21. Sketch of the threshold-based mechanism

Figure 2 gives a sketch of the threshold-based mechanism by neglecting the time

required for bandwidth updating. The algorithm described requires the system to

know the existence of a flow, as it can result from a classification process. The

parameter bo can be ideally assumed exactly known (ideal system) or be the result of a

measurement procedure (measurement-based system) whose characteristics and

effects will be analyzed in the following.

3.2 Bounds for design parameters

The choice of the correct parameter configuration of system described is crucial to

achieve bandwidth utilization efficiency, scalability and system stability. In fact,

under particular conditions of traffic patterns, bandwidth oscillations could arise as a

consequence of wrong parameter configuration. These oscillations could be

unavoidable for traffic patterns with rapid and consistent fluctuations. In figure 3 a

configuration that causes bandwidth oscillations is presented. Starting from

bandwidth assignment B, oscillation can arise after an increment if the new bandwidth

B’=i*B causes b0 to be lower than B’*lmin; similarly, after a decrement, oscillation

arises if the resulting bandwidth B’’=d*B cause b0 to be higher than B’’*lmax. Both

these situations require a new bandwidth update in the opposite direction.

Under the hypothesis of slowly variable traffic behaviours during the update time,

sufficient conditions can be obtained to avoid oscillating bandwidth updates, that are

47

minminmax)(' liBlBlB ⋅⋅=⋅>⋅ and maxmaxmin)('' ldBlBlB ⋅⋅=⋅<⋅

that result in minmax lil ⋅> and minmax

1
l

d
l ⋅> respectively.

The two conditions can then be simultaneously expressed by:

minmax lkl ⋅= with)
1

,max(
d

ik = >1.

B x Lmin B x Lmax

B’ x Lmin B’ x Lmax

iBB ×=′

dBB ×=′′

B

B x Lmin B x Lmax

B’ x Lmin B’ x Lmax

iBB ×=′ iBB ×=′

dBB ×=′′ dBB ×=′′

B

B’’ x LmaxB’’ x Lmin

Request to increase
Request to decrease

Allocated bandwidth

Starting condition

B x Lmin B x Lmax

B’ x Lmin B’ x Lmax

iBB ×=′ iBB ×=′

dBB ×=′′ dBB ×=′′

B

B x Lmin B x Lmax

B’ x Lmin B’ x Lmax

iBB ×=′ iBB ×=′

dBB ×=′′ dBB ×=′′

B

B’’ x LmaxB’’ x Lmin

dBB ×=′′ dBB ×=′′

B

B’’ x LmaxB’’ x Lmin

Request to increase
Request to decrease

Allocated bandwidth

Starting condition

B x Lmin B x Lmax

B’ x Lmin B’ x Lmax

iBB ×=′

dBB ×=′′

B

B x Lmin B x Lmax

B’ x Lmin B’ x Lmax

iBB ×=′ iBB ×=′

dBB ×=′′ dBB ×=′′

B

B’’ x LmaxB’’ x Lmin

Request to increase
Request to decrease

Allocated bandwidth

Starting condition

B x Lmin B x Lmax

B’ x Lmin B’ x Lmax

iBB ×=′ iBB ×=′

dBB ×=′′ dBB ×=′′

B

B x Lmin B x Lmax

B’ x Lmin B’ x Lmax

iBB ×=′ iBB ×=′

dBB ×=′′ dBB ×=′′

B

B’’ x LmaxB’’ x Lmin

dBB ×=′′ dBB ×=′′

B

B’’ x LmaxB’’ x Lmin

Request to increase
Request to decrease

Allocated bandwidth

Starting condition

Fig. 22. Configurations of system parameters that give rise to bandwidth oscillations

48

0,75

Lmin

Lmax

0,5
1

0,5

1

0
0,35 1/k

minmax LL =

minmax LkL ×=

Fig. 23. Admissible configurations of system parameters

The previous relationships can be graphically represented as shown in figure 4,

which gives the area of admissible configurations for lmin and lmax depending on the

slope of the limiting line. The limiting line is determined by only one of the values d

and i, the one which gives rise to the most requiring condition. Further delimitations

of this area are consequences of considerations related to efficiency and congestion

limitation, which will be discussed later in the paper; in the example they are fixed at

0.35 and 0.75 for lmax and lmin respectively. In practical implementations of the

mechanism, the bandwidth is constrained to assume values on a discrete range, being

it updated through fixed amount of bandwidth. In this case a further relationship

between d and i can be obtained by observing that the value after the decrement

(increment) that follows an increment (decrement) results to be equal to the starting

value so that B=B’·d=B·i·d that turns in i·d=1 and B=B’’·i=B·d·i that turns in i·d=1

again.

In order to gives a guideline for the choice of the parameters let us refer to

bandwidth efficiency as the main performance target. To this end the driving

parameter of the set up procedure is represented by lmin. The procedure starts from a

reference value for lmin and tries to increase it, to improve bandwidth usage as far as

other constraints, represented, for example, by the frequency of interactions with the

bandwidth broker or by the percentage of traffic overlimit, are satisfied. At this point

different strategies must be followed depending on the condition that is taken into

account. If the percentage of traffic overlimit is considered, it is possible to further

increase lmin by decreasing accordingly lmax . If the frequency of interactions is

considered it is possible to optimize the efficiency by increasing lmax accordingly. As

regards d and i, they should be both decreased to diminish the overlimit traffic while i

should be increased and d decreased to reduce the number of interactions. The

diagram of the empirical optimization procedure for efficiency is sketched in figure 5.

49

Lmax

Lmin

Constraint on overlimit traffic

Constraint on interactions

Lmin

i

d

Lmax

Lmin

i

d

Lmax

Lmin

Constraint on overlimit traffic

Constraint on interactions

Lmin

i

d

Lmax

Lmin

i

d

Fig. 24. Diagram of parameters set up in the efficiency optimization procedure

3.3 Effects of the measurements process

Previous considerations on the threshold based mechanism refer to the ideal

situation of exact knowledge of current bandwidth usage. In practice the evaluation of

bandwidth usage is the result of a measurement process that influences the values

which are available for the algorithm. A simple time window mechanism is assumed

here to evaluate the influence of the measurement process on the knowledge of the

parameters. The measurement process assumes the time divided into interval of size T

each in its turn further divided in intervals of size S. The average bandwidth is

calculated over each S-interval and the measure updated each time the results is

greater than the current value. The maximum over T of these values is maintained as

bandwidth estimate until the end of one subsequent T interval as a maximum. This

measurement process has the advantage to be very simple and to take into account

possible correlation in traffic at the same time. It tends to capture the envelope of the

traffic, depending on traffic behaviour and on the values of parameter T and S. Some

evaluations of the measurement algorithm have been performed by simulation to

investigate the effect of parameters S and T in relation to traffic characteristics. The

results presented here a related to a traffic aggregate resulting from 60 Pareto sources

with the following characteristics:

TON TOFF Peak transmission

rate

Pareto

α =1.2, k=0.4

Pareto

α =1.2, k=0.4

32 Kbit/s

thus obtaining a traffic aggregate with long range dependent characteristics. Figure

6 shows a comparison between the real behaviour, the simple algorithm with window

T=1·S and the window based algorithm with T=10·S.

50

0

200

400

600

800

1000

1200

1400

200 210 220 230 240 250 260 270 280 290 300

Time (s)

B
a
n

d
w

id
th

 (
k
b

it
/s

)

ideal

S=0.8s, T=S

S=0.8s, T=10 S

Fig. 25. Time behaviour of bandwidth for different configurations of the measurement process

The simple algorithm better follows the dynamics of the trace but is delayed and

averaged on S thus typically giving an underestimate of the bandwidth usage. On the

contrary, by extending the window T, a more stable value is produced by the

measurement process although in excess with respect to the real requirements. In

order to suitably choose the values of T and S the difference between the average of

real and estimated behaviour has to be minimized while trying to maximize the

fraction of time during which the estimate is greater than the real behaviour.

3.4 An algorithm for congestion management

Real time services require low delay within the node that can be assured by a

suitable set up of the bandwidth allocated for the corresponding EF class in the

Differentiated Services model. In any case congestion can temporarily arise due to

delays in bandwidth estimate and update, that causes packets to be queued waiting for

transmission resources. The introduction of lmax can reduce the occurrence of these

events, but a trade off must be reached between system performance and efficiency.

So the threshold-based mechanism can be fruitfully coupled with a congestion

resolution mechanism based on the monitoring of the queue occupancy. The main aim

of the algorithm is to limit the time to get through the system by setting the maximum

acceptable time Ts to empty the queue. So the queue threshold Sq in bytes is given by

Sq=Ts*Bd/8, being Bd the allocated bandwidth at time t. The threshold Sq varies as a

function of Bd. As a consequence of the previous definition, congestion is defined as a

system state with queue occupancy greater than Sq. When congestion arises, the

measurement-based algorithm is excluded and the following operations take place:

- bandwidth update is performed such that the new threshold Sq’ is greater than

queue occupancy; to this end a margin MS is introduced as a percentage of the

51

current queue occupancy Q such that Sq’= (1+Ms/100)*Q=Ts*Bd’/8 from which

the new value of bandwidth that assure the target delay Ts can be obtained.

- after a bandwidth update, if the queue occupancy is still greater than the

threshold (due to further arrivals during the update time) a new update is

performed with the same rule;

- when congestion finishes, that is when the queue occupancy gets below the

threshold, the normal algorithm is used after a guard time Tg: this is important

to allow the measurement process to produce the new output value and thus

avoiding unsafe oscillations. The value Tg should be at least two times Sq to

obtain the stable value.

The packet transfer delay is thus bounded by Ts+2 Tbb. For example for a target

maximum packet transfer delay of 30 ms in the router with Tbb= 10 ms, Ts must be

limited to 10 ms. On the other hand Ts should be large enough to avoid too frequent

activation of the congestion control algorithm. In all other cases the threshold-based

algorithm prevents congestion through lmax. The frequency of activation of the

congestion management algorithm can be reduced through the adoption of a larger

guard bandwidth corresponding to lower values of lmax.

3.5 Performance Analysis

Performance analysis has been developed by simulation with the aim to compare a

system with static bandwidth allocation, a system with dynamic bandwidth allocation

based on the exact knowledge of the real behaviour and the measurement based

system with the congestion control algorithm. The following general hypothesis are

made for the dynamic cases:

- the answer time for the bandwidth broker is assumed equal to 10 ms;

- the result of the answer is always positive;

- the edge router output link capacity is 10 Mbit/s.

Evaluations has been performed with two kinds of ON/OFF traffic whose

characteristics are summarized below.

Table 8. Traffic configurations used in the simulations

Type

sources
TON TOFF Peak transmission rate

1 60
Pareto

α=1.2, k=0.4

Pareto

α=1.2, k=0.6
32Kbit/s

2 60
Pareto

α=1.2, k=0.04

Pareto

α=1.2, k=0.6
128Kbit/s

Static allocation – The static allocation is considered related to the sum of the peak

bandwidths required by each flow of the aggregate. This results in a very low

efficiency although the time transparency is good as shown in the table for the traffic

types previously described.

52

Table 9. Efficiency and delay for static peak rate allocation

Type Static bandwidth Efficiency (%) Average delay (ms)

1 1920000 40,77% 0,0187

2 7680000 9,29% 0,0175

Ideal system – Performance for a system that works on the basis of the ideal

knowledge of the real behaviour are here reported for type 1 traffic in terms of

efficiency, defined as the ratio between the average occupied bandwidth and the

average available bandwidth, average delay and number of interaction with the

bandwidth broker. In figure 7 the efficiency is shown to increase with the threshold

lmin; at the same time the average delay increases as shown in figure 8 thus calling for

a trade off between these two aspects. Also the number of interactions increases with

lmin (figure 9).

0

0,01

0,02

0,03

0,04

0,05

0,06

20 25 30 35 40 45 50 55 60 65

Bd

A
v
e

ra
g

e
 d

e
la

y
 (

m
s
)

i,d = 5%

i,d = 10%

i,d = 15%

i,d = 20%

Fig. 26. Average delay for the dynamic allocation as a function of the lower threshold lmin with

exact knowledge of bandwidth usage

53

50

55

60

65

70

75

20 25 30 35 40 45 50 55 60 65

Bd (%)

E
ff

ic
ie

n
c
y
 (

%
)

i,d = 5%

i,d = 10%

i,d = 15%

i,d = 20%

Fig. 27. Efficiency for the dynamic allocation as a function of the lower threshold lmin with

exact knowledge of bandwidth usage

0

100

200

300

400

500

600

700

800

900

1000

20 25 30 35 40 45 50 55 60 65

bd

#
 o

f
re

q
u

e
s
ts

i,d = 5%

i,d = 10%

i,d = 15%

i,d = 20%

Fig. 28. Number of interactions as a function of the lower threshold lmin with exact knowledge

of the bandwidth usage

Measurement based system without congestion control – The dynamic bandwidth

allocation is here considered in relation to the time window measurement process

described in section 2.3. A system with S=0.8s and T=10 S has been simulated and its

time behaviour was shown in figure 6. It is evident the difference between the output

of the measurement process and the real behaviour. In particular the dynamic of the

measurement bandwidth is delayed and, in this case, always within the guard band of

54

the dynamic allocation algorithm. This causes the allocated bandwidth to be stable

although the real bandwidth has a more dynamic behaviour. This is expected to lead

to lower efficiency but at the same time to a lower number of interactions with the

bandwidth broker while the delay is expected to be lower too.

50,00%

55,00%

60,00%

65,00%

70,00%

75,00%

80,00%

85,00%

20 30 40 50 60 70 80

bd

E
ff

ic
ie

n
c
y
 (

%
)

measured

ideal

Fig. 29. Comparison of efficiency for the measurement based algorithm and the ideal approach

with traffic type 1, with S=0.8s, T=10·S, i=d=10%, lmax=90%

In figure 10 a comparison in terms of efficiency with the ideal case is presented

and shows the lower efficiency of the measurement based system that in any case is

much higher than in the static case. On the other hand the delay is better as shown in

figure 11 and the system can be considered more suitable for quality of service

guarantees. Also the number of interactions with the bandwidth broker presented in

figure 12 is much lower and stable thus assuring the scalability of the solution.

55

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,18

0,2

20 30 40 50 60 70 80

Livello minimo (%Bd)

A
v
e

ra
g

e
 d

e
la

y
 (

m
s
)

measured

ideal

Fig. 30. Comparison of the average delay for the measurement based algorithm and the ideal

approach with traffic type1, with S=0.8s, T=10·S, i=d=10%, lmax=90%

0

200

400

600

800

1000

1200

1400

1600

20 30 40 50 60 70 80

lmin(%)

#
 o

f
re

q
u

e
s
ts

measured

ideal

Fig. 31. Comparison of the number of interactions for the measurement based algorithm and

the ideal approach with traffic type1, with S=0.8s, T=10·S, i=d=10%, lmax=90%

56

0

10

20

30

40

50

60

70

80

90

20 30 40 50 60 70 80

lmin (%)

#
 o

f
re

q
u

e
s
ts

i,d = 5%

i,d = 10%

i,d = 15%

Fig. 32. Dependence of the number of requests on lmin for the measurement based algorithm

with traffic type 1, S=0.8s, T=10·S, lmax=90%,, for different values of i=d

Measurement based system with congestion control - Finally the introduction of

the congestion control algorithm in the measurement based system is evaluated. In

table 3 results regarding the maximum delay are given and show that it is always less

than 35ms, as expected, being TBB =10 ms and Ts =15ms. The delay without

congestion control is also reported.

Table 10. Maximum delay: comparisons for the measurement based system with and without

congestion control. (i=d=10%, Ts=15ms, Ms=20%, Tg=1.6s)

Type (S,T) lmin% lmax%
Max delay without

control [ms]

Max delay with

control [ms]

1
(0.8s,

10S)
70% 90% 61.8 34.5

2
(0.8s,

50S)
60% 80% 37.6 22.1

The following results are given for type 1 traffic. Figure 14 shows the efficiency as

a function of the threshold and figure 15 shows the number of interactions. The

efficiency increases with Ts and accordingly the number of interactions decreases. On

the other hand Ts must be limited for QoS guarantees, being it involved in the

expression of maximum delay. In figure 16 efficiency degradation for the system with

QoS control is shown for Ts =15ms.

57

50,00%

52,00%

54,00%

56,00%

58,00%

60,00%

62,00%

64,00%

66,00%

68,00%

70,00%

5 10 15 20 25 30
TS (ms)

E
ff

ic
ie

n
c
y
(%

)

Fig. 33. Efficiency as a function of the lower threshold for type 1 traffic for the dynamic

allocation algorithm with congestion control (S=0.8s, T=10·S, lmax=90%, lmin=70%, i=d=10%,

MS=20%, Tg =1.6s)

0

50

100

150

200

250

5 10 15 20 25 30

Ts (ms)

#
 o

f
re

q
u

e
s
ts

Fig. 34. Number of interactions as a function of the lower threshold for type 1 traffic for the

dynamic allocation algorithm with congestion control (S=0.8s, T=10·S, lmax=90%, lmin=70%,

i=d=10%, MS=20%, Tg =1.6s)

58

40,00%

45,00%

50,00%

55,00%

60,00%

65,00%

70,00%

75,00%

80,00%

30 35 40 45 50 55 60 65 70 75

lmin(%)

E
ff

ic
ie

n
c
y
 (

%
)

without congestion

control

with congestion control

Fig. 35. Comparison in terms of efficiency as a function of the lower threshold for type 1 traffic

for the dynamic allocation algorithm with congestion control (S=0.8s, T=10·S, lmax=90%,

i=d=10%, TS=15ms, MS=20%, Tg =1.6s)

3.6 Dynamic Bandwidth Management Design and Implementation

In the previous chapter, the Click modular router was utilized for implementing

flow-based classification of real time services. A set of new modules (the Real Time

Classifier) was inserted into the edge router to change the simple FIFO-based output

queuing scheme of a RFC1812-compliant router. Coherently with a given set of

Service Level Agreements (SLA), it proved the possibility of achieving protocol and

statistical analysis of the traffic incoming from the stub network, real time flows

recognition and privileged treatment (i.e. limited delays). The RTC is designed for

interactive multimedia applications and is able to recognize and mark that kind of

traffic. In terms of DiffServ PHB, RTC also marks the traffic recognized as belonging

to real-time multimedia streams as EF, setting the IP packet DSCP field. The former

scheme is here enhanced with new functions, which implement the algorithms for the

measurement and dynamic allocation of bandwidth exposed in the previous chapter.

Figure 17 resumes the modules inserted into the Click environment to realize all the

described functions:

- the SLA Manager, implemented using an existing Click element, is dedicated to

select the traffic belonging to a set of existing SLAs;

- the RTC compound module contains the Protocol and the Statistical Classifiers:

the first is able to hook and filter the RTP-marked traffic; the latter, analyzing

the flow rate and the packet size, adds classification capability in the case of real

time applications that are not RTP compliant (thus the presence of the RTP

protocol is considered a sufficient but not necessary condition to classify a

59

multimedia stream);

- the RoundRobinScheduler is introduced to multiplex and balance the distinct

traffic flows pertaining to different SLAs;

- the PriorityScheduler implements different policies for the real time (high-

prioritized) and best effort (low-prioritized) packets;

- the MeterShaper module is designed to implement the threshold-based algorithm

previously described for aggregated bandwidth measurement and management.

IP Router

Priority Scheduler

SLA Manager

Protocol Classifier

Statistical Classifier

BandwidthShaper
(SLA Bandwidth)

RoundRobinScheduler

MeterShaper

ToDevice (ethX)

RTC

RTP

BE

+ -

SLA 1

SLA 1

…SLA n

…SLA n

IP Router

Priority Scheduler

SLA Manager

Protocol Classifier

Statistical Classifier

(SLA Bandwidth)

RoundRobinScheduler

BB MeterShaper

ToDevice (ethX)

RTC

BE and non-SLA traffic

Real Time

RTP

BE

+ -

SLA 1

BE queue

SLA 1

…SLA n

…SLA n

Real time

queue

Fig. 36. The QoS router internal structure. The BB module represents the domain Bandwidth

Broker (external to the Edge Router)

The internal structure of this new compound element, depicted in figure 18, shows

the primitive modules composing it. The BwTrafficShaper is inherited from the

BandwidthShaper C++ class (available in the Click standard libraries) and is enriched

with a more flexible functionality: while the in-profile traffic is shaped as required, it

branches out the out-of-profile packets to its secondary output. These can be

discarded or, accordingly to a different policy, redirected to the best effort queue. The

BwTrafficShaper is also interfaced with the Meter element, which implements the

time-window measurement algorithm (metering the amount of traffic passing through

the shaper) and modulates the allocated bandwidth (modifying the shaper parameters).

It’s important to remark here that Click elements are C++ objects and their methods

are always called when a “trigger signal” appears (i.e. a packet arriving to their input

ports): thus they are executed asynchronously. On the contrary, the Meter module

must measure the used bandwidth on a strict synchronous basis and independently

60

from the real-time packets’ arrivals: in fact the measurement process assumes the time

divided into intervals of size S while the arrival of the real-time packets is not

predictable. A time reference (i.e. clock signal) is thus supplied to the Meter using the

TimedSource module as a synchronous source of dummy packets. These packets also

contain the value of the S interval inside their payload, so that the Meter module is

informed about the timing currently imposed. The MeterShaper element can be

configured using several handlers: besides admitting the values of i, d, lmin and lmax,

the “inc_parameter” and “dec_parameter” can be used to notify the Bandwidth Broker

about the demand or release of bandwidth; the boolean “BB_response” reports the

arrival of the BB answer. Others are available for performance monitoring and have

been used extensively for the evaluations reported below: “allocated_bit_rate” and

“current_bit_rate” export the value of the allocated and measured bandwidth, while

“BB_connections_inc” e “BB_connections_dec” count the number of increments or

decrements requests sent to the bandwidth broker.

 Timed
Source

Meter

Aggregated
traffic

In - profile
traffic Out - of - profile

traffic

Sync time =
0,8 sec

Allocated bandwidth
updates

BwTrafficShaper

Timed
Source

Meter

Aggregated
traffic

In - profile
traffic Out - of - profile

traffic

Sync time =
0,8 sec

Allocated bandwidth
updates

BwTrafficShaper

MeterShaper

Fig. 37. The Meter Shaper element

3.7 Implementation issues

In order to perform quality of service trials, the testing configuration already

described in Chapter III (§ 4.2) is used. Figure 19 recalls the test-bed layout, which

consists of four PC-based systems, connected through a Gigabit Ethernet layer2-

switch. The edge router (Alpha) performs the quality of service functions and its

output link is tightened to work at 10 Mbit/s, so that it can be easily saturated. The

other PCs (Beta, Gamma, and Delta) are exclusively utilized for traffic generation and

analysis. All the PCs are installed with the 2.4.9 version of the Linux operating

system and Click release 1.3.

61

Beta

Gamma
Delta

 RFC-1812
Routing

RTP/Real

time
queue

Best Effort
queue

 Real Time
Classifier

Drops

Alpha

RTP flow

BE flows

Fig. 38. Functional diagram of the test-bed layout

3.8 Performance measurements

Measurements were done using Beta and Gamma as traffic generators and Delta as

a collector. Three distinct flows of traffic are injected into the input port of the router.

Specifically, a real time flow, a non real-time flow, and a best effort flow (at 16

Mbit/s thus sufficient to saturate alone the output port of the router), have been used.

Under these contour conditions, Table 4 illustrates the average delays for the real-time

traffic, obtained by twenty 60-second runs (all output queues are 100 elements

FIFOs). It is important to remark that the real time traffic rate is kept constant and

small enough not to activate the bandwidth management algorithm. The multimedia

traffic is forwarded with a much smaller delay (≈32 µs) than best effort traffic

(typically 5 ms), and with no losses, showing the effectiveness of the introduced

functions; the latency is independent from the packet size and rate used for the real-

time flow itself.

Table 11. Average latency in microseconds for real-time traffic traversing the Click router.

Rows correspond to the packet sizes used. Columns represent the multimedia flow rate. A 64-

byte best-effort flow at 16Mb/s is also injected. The router output link is tightened to 10 Mbit/s

Delay

(µs)

64

kb/s

128

kb/s

256

kb/s

512

kb/s

1024

kb/s

64 byte 31,51 31,33 31,05 30,99 30,84

128 byte 31,60 31,59 31,50 31,09 31,29

256 byte 31,85 31,69 31,61 31,54 31,16

512 byte 32,09 32,16 31,78 31,63 31,72

The delay contribution of all the QoS modules inserted in the Click environment

has been evaluated: Table 5 reports the typical values registered during the trials. If no

62

best effort traffic is contemporary injected, conducted tests not reported here show

how the delay for the multimedia flow is much lower (typically about 4 µs). On the

contrary, packet length variations for the best effort traffic modify the real time packet

latency, as reported in fig. 20.

Table 12. Delay contribution of the modules composing the QoS router. This measure is

obtained with a real-time flow of 1024 kb/s (512-byte packets). A 64-byte best-effort flow at

16Mb/s is contemporary injected. The router output link is tightened to 10 Mbit/s

IP Router 1200 ns

SLA Manager 150 ns

Protocol Classifier 1320 ns

Statistical Classifier 1110 ns

RTP/Real Time Queue 27700

ns

BwTrafficShaper 60 ns

Round Robin Scheduler 60 ns

MeterShaper 60 ns

Priority Scheduler 60 ns

0

50

100

150

200

250

64 128 256 512

BE packet length (byte)

R
e

a
lt
im

e
 l
a

te
n

c
y
 (

u
s
)

Fig. 39. Latency of the real time packets as a function of the best effort packets length

To investigate the proper behaviour of the MeterShaper module, the real-time

traffic shape has then been varied. Measurements were obtained by soliciting the

system through steps of bandwidth variations of the RTP flow, as shown in figure 21.

At the same time, the best effort flow has been removed. The response time of the

bandwidth broker is here neglected and the result of the answer is always positive. A

good tracking of the measured bandwidth obtained by the allocation algorithm can be

observed.

63

500

1000

1500

2000

2500

3000

3500

0

4
0

8
0

1
2

0

1
6

0

2
0

0

2
4

0

2
8

0

3
2

0

3
6

0

4
0

0

4
4

0

4
8

0

5
2

0

Time (s)

B
a
n

d
w

id
th

 (
K

b
it
/s

)

Measured

Allocated

Fig. 40. Measured vs. allocated bandwidth with steps size of bandwidth variations of 512Kbit/s

(S=0.8s, T=10·S, i = 1.2, d = 0.8, lmax = 90%, lmin = 70%)

In figure 22 the efficiency in the bandwidth usage is shown as a function of the

bandwidth variations. Efficiency is here defined as the ratio of the average values of

the measured and allocated bandwidth. Figure 23 illustrates how the frequency of

requests to the bandwidth broker varies, depending on the step size. Figure 24

sketches how the bandwidth constraint introduced by the MeterShaper element

influences the packets’ latency. The delay suddenly rises up when the step size is

2048 kbit/s, since a ramp peak transmission rate of 8192 kbit/s is reached, thus close

to the output link capacity (which is limited at 10Mbit/s).

50

60

70

80

90

100

64 128 256 512 1024 2048

Step size (Kbit/s)

E
ff

ic
ie

n
c
y
 (

%
)

Fig. 41. Efficiency in the bandwidth usage, varying the step size (lmax=90%, lmin=70%, i=1.2,

d=0.8)

64

0,005

0,01

0,015

0,02

0,025

0,03

0,035

0,04

0,045

0,05

64 128 256 512 1024 2048

Step size (Kbit/s)

F
re

q
u

e
n

c
y
 (

re
q

/s
)

Fig. 42. Frequency of interactions with the bandwidth broker depending on the step size

0

5000

10000

15000

20000

25000

64 128 256 512 1024 2048

Step size (kbit/s)

P
a

c
k
e

t
la

te
n

c
y
 (

n
s
)

Fig. 43. Average packet latency for the RTP traffic as a function of the step size

4 A New Approach for Bandwidth Update: the Log-based

Dynamic Allocation Scheme

4.1 The logarithmic-based algorithm

The choice of the correct parameters’ configuration of the threshold-based system

described above is crucial to achieve bandwidth utilization efficiency, scalability and

system stability. In fact, under particular conditions of traffic patterns, bandwidth

oscillations could arise as a consequence of approximate parameter configuration. On

the other hand, the parameters of the threshold-based model are strictly related to each

other and strongly dependent on the traffic behaviour, thus making the parameters set

65

up a very critical point. A new procedure is here proposed, where the bandwidth

update is based on a logarithmic function that reduces the number of design

parameters. It uses the output of a measurement-based process to know the value Bm

of the bandwidth currently used by the aggregate traffic of the service class. So Bm

replaces bo of the threshold-based scheme described before. The traffic measurement

is based on the same time-window measurement system already explained in the

previous paragraph. The choice of the logarithmic function was suggested by the need

to carefully increment the bandwidth, when necessary, in order to avoid sudden

congestion and, at the same time, to rapidly decrement the bandwidth to promptly

reduce its waste. The chosen function intrinsically meets these characteristics when

used to calculate the bandwidth update ∆B as

=∆
SB

B
KB

d

m

*
ln* ,

(9)

being Bm the measured bandwidth, Bd the allocated bandwidth, and having

indicated with ln(x) the natural logarithm of x. The parameter K is the constant of the

feedback system and S is a margin to avoid sudden congestion. So the new bandwidth

value after the update is given by

B’d=Bd+∆B . (10)

In order to avoid too frequent requests to the bandwidth broker, the update

procedure is applied only if the following condition holds:

∆B > ∆Bmin . (11)

So ∆Bmin must be suitably chosen to assure the scalability of the approach.

This system requires three parameters to be defined: K, S and ∆Bmin whose

influence on bandwidth efficiency, scalability and delay will be evaluated in the next

paragraph.

4.2 Performance analysis

Performance analysis has been developed by simulation with the aim to prove the

effectiveness of the logarithmic algorithm. The following general hypotheses are

made:

- the answer time for the bandwidth broker (TBB) is assumed equal to 10 ms;

- the result of the answer is always positive;

- the edge router output link capacity is 10 Mbit/s.

Evaluations have been performed with three kinds of ON/OFF traffic whose

characteristics are summarized below in table 6. The aggregate traffic is considered as

generated by the superposition of 60 sources. The instantaneous bandwidth used is

given by the sum of contributions of sources that are in the ON state at the instant

considered. The value of the bandwidth used during the ON period (peak transmission

rate) is suitably modified to obtain the same average for all traffic types.

66

Table 13. Traffic configurations used in the simulations

Type

sources
TON TOFF

Peak transmission

rate

1 60 Pareto,α=1.2, k=0.4 Pareto,α=1.2, k=0.6 32Kbit/s

2 60 Exp λ=1 Exp λ=1 26 Kbit/s

3 60 Pareto,α=1.2, k=0.04 Pareto,α=1.2, k=0.6 128Kbit/s

The main performance figure evaluated is the bandwidth efficiency, defined as

()
()∫ ≅=

T dm

m

d

b
b

b
dt

tb

tb

T

001
ρ ,

(12)

being bdm and bom the average values of available and occupied bandwidth. In the

following evaluations K is chosen as a constant: its value mainly influences the

number of interactions with the bandwidth broker while having practically no effects

on efficiency and delay. It has been set equal to 600 Kbit/s to minimize the number of

interactions for all kinds of traffic considered (figure 25).

0,00

0,02

0,04

0,06

0,08

0,10

0,12

0 200 400 600 800 1000 1200

K (Kbit/s)

F
re

q
u

e
n

c
y
 o

f
re

q
u

e
s
ts

 (
In

t/
s
)

1

2

3

Fig. 44. Frequency of requests at the bandwidth broker as a function of K for the three kinds of

traffic for ∆Bmin =50 Kbit/s and S=10%

0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,16

0,18

0,20

0 25 50 75 100 125

∆Bmin (Kbit/s)

F
re

q
u

e
n

c
y
 o

f
re

q
u

e
s
ts

 (
In

t/
s
) 1

2

3

Fig. 45. Frequency of requests as a function of ∆Bmin for the three kinds of traffic,

K=600Kbit/s and S=10%

67

∆Bmin has been shown to sensibly influence the number of interactions. Results are

presented in figure 26 for S=10% and can be used to choose a value for ∆Bmin to meet

the constraint on the maximum acceptable request frequency. In figure 27 ∆Bmin=50

Kbit/s is considered, to show the influence of the margin S on average delay.

0

1

2

3

4

5

6

7

8

9

10

0 2,5 5 7,5 10 12,5 15 17,5 20 22,5

S (%)

A
v
e

ra
g

e
 D

e
la

y
 (

m
s
)

1

2

3

Fig. 46. Average delay as a function of the margin S for the three kinds of traffic, K=600Kbit/s

and ∆Bmin =50 Kbit/s

4.3 Implementation issues

In the previous chapter, we showed how the Click modular router was utilized for

implementing flow-based classification of real time services. In paragraph §2 of this

chapter, a new set of modules was then added to implement a threshold-based

dynamic allocation algorithm, which was then evaluated in terms of efficiency and

packet latency. Now the new proposed logarithmic algorithm was implemented on the

same test bed based on the Click environment. The main difficulty was the

unavailability of a function at this level that calculates the needed natural logarithmic.

Different numerical methodologies have been used to achieve this target with

satisfactory approximation for the whole range of argument values. Power series

expression has been applied when argument was in the range near the unit where the

method gives a very good approximation. Outside this range a calculation of the

natural logarithm based on the expression of the base 10 logarithm as the sum of the

characteristic and the mantissa and a following base conversion has been adopted.

Figure 28 resumes the Click configuration used for the performance evaluations:

compared to the scheme previously outlined in paragraph §2, the LogMeterShaper

element still implements the time-window measurement algorithm (metering the

amount of traffic passing through the shaper) but modulates the allocated bandwidth

using the new logarithmic algorithm previously described. The SLA Manager is

dedicated to select the traffic belonging to a set of existing Service Level Agreements,

the RTC compound module contains the Protocol and the Statistical Classifiers to

hook the real-time traffic, the RoundRobinScheduler is introduced to multiplex and

balance the distinct traffic flows pertaining to different SLAs, while the Priority

68

Scheduler implements different policies for the real time (high-prioritized) and best

effort (low-prioritized) packets.

IP Router

Priority Scheduler

SLA Manager

Protocol Classifier

Statistical Classifier

BandwidthShaper
(SLA Bandwidth)

RoundRobinScheduler

LogMeterShaper

ToDevice (ethX)

RTC

RTP

BE

+ -

SLA 1

SLA 1

…SLA n

…SLA n

IP Router

Priority Scheduler

SLA Manager

Protocol Classifier

Statistical Classifier

(SLA Bandwidth)

RoundRobinScheduler

BB

ToDevice (ethX)

RTC

BE and non-SLA traffic

Real Time

RTP

BE

+ -

SLA 1

BE queue

SLA 1

…SLA n

…SLA n

Real time

queue

Fig. 47. The QoS router internal structure. The BB module represents the domain Bandwidth

Broker (external to the Edge Router).

4.4 Performance measurements and comparison with the threshold-based

algorithm

Measurements have been performed by soliciting the system through steps of

bandwidth variation of an RTP flow as shown in figure 29. No best effort flow is

contemporary injected, the response time of the bandwidth broker is here neglected

and the result of the answer is assumed always positive. It can be seen a good tracking

of the measured bandwidth obtained by the logarithmic bandwidth allocation when

the step size is less or equal than 256 Kbit/s. Figure 30 compares the behaviour of the

threshold-based and logarithmic algorithms with traffic variations of 512 Kbit/s.

69

800000

1000000

1200000

1400000

1600000

1800000

2000000

0

4
0

8
0

1
2

0

1
6

0

2
0

0

2
4

0

2
8

0

3
2

0

3
6

0

4
0

0

4
4

0

4
8

0

5
2

0

Time (s)

B
a

n
d

w
id

th
(b

it
/s

)

Measured

Allocated

800000

1000000

1200000

1400000

1600000

1800000

2000000

0

4
0

8
0

1
2

0

1
6

0

2
0

0

2
4

0

2
8

0

3
2

0

3
6

0

4
0

0

4
4

0

4
8

0

5
2

0

Time (s)

B
a

n
d

w
id

th
(b

it
/s

)

Measured

Allocated

Fig. 48. Measured and allocated bandwidth in the test bed for the logarithmic algorithm with

K=600Kbit/s, S=10% and ∆Bmin=50 Kbit/s (with steps size of bandwidth variations of

256Kbit/s)

500000

1000000

1500000

2000000

2500000

3000000

3500000

80 160 240 320 400 480

Time (s)

B
a

n
d

w
id

th
 (

b
it

/s
)

Measured

Threshold

Logarithmic

Fig. 49. Measured and allocated bandwidth in the test bed for the logarithmic and threshold-

based algorithms with steps size of bandwidth variations of 512Kbit/s

It is evident that the two algorithms match the measured bandwidth differently. This

causes different responses when the traffic behaviour presents sudden raisings. The

threshold algorithm tends to bandwidth overprovision and this explains the lower

efficiency that it presents. On the other hand the logarithmic algorithm is slower in the

bandwidth update process and typically tends to loose more packets because the

bandwidth is not sufficient. In figure 31 the efficiency in the bandwidth usage as a

function of the bandwidth steps’ size is shown in comparison with the same

evaluation performed with traditional threshold algorithms (we should remember that

70

efficiency was defined as the ratio of the average values of the measured and

allocated bandwidth).

70

75

80

85

90

95

100

64 128 256 512 1024 2048

Step Size (Kbit/s)

E
ff

ic
ie

n
c

y
 (

%
)

Threshold

Logarithmic

Fig. 50. Efficiency in the bandwidth usage for threshold based and logarithmic algorithms

varying the step size for K=600Kbit/s, S=10% and ∆Bmin=50 Kbit/s, as regards the logarithmic

algorithm, and lmin=70%, lmax=90%,i=1.2, d=0.8, as regards the threshold algorithm

1000

10000

100000

64 128 256 512 1024 2048

Step size (Kbit/s)

A
v
e
ra

g
e

 D
e
la

y
 (

n
s
)

Logarithmic

Threshold

Fig. 51. Average packet latency (in nanoseconds) for threshold-based and logarithmic

algorithms varying the step size and using the same configuration parameters of figure 8

In figure 32 the average packet latency is shown in comparison with the threshold–

based scheme and sketches how the bandwidth constraint introduced by the

LogMeterShaper element influences the packets’ latency.

71

5 Conclusions

In this chapter resource management is considered for quality of service provisioning

in IP network. A threshold based scheme is initially introduced and design guidelines

for its parameters are given. Implementation issues are considered with particular

reference to the measurement process that gives the information on which the

dynamic bandwidth allocation algorithm works. Extension of the basic algorithm is

proposed to deal with congestion situation that is suitable to be used with the

threshold-based scheme to absorb transient overload conditions. Performance of the

algorithms in terms of bandwidth usage efficiency, average and maximum delay and

scalability (in terms of needed interactions with the bandwidth broken) are given in

the presence of realistic internet traffic. Then, a new bandwidth allocation algorithm

for Differentiated Services environment is proposed based on a bandwidth broker

model. A logarithmic function is assumed to control bandwidth update. The proposed

algorithm introduces a limited number of parameters that can be set up more easily

then in the threshold-based system. The new design is less dependent on traffic

characteristics, except for highly time variable traffic patterns.

Implementation issues are considered, with particular reference to the Click Modular

Router, which offers a flexible environment for the development of new

functionalities. Performance of the system in terms of bandwidth usage efficiency and

latency are given. The main conclusion is that the logarithmic scheme provides a

reduced transfer delay as required by real time traffic. The comparison between the

two algorithms also shows how under heavy traffic conditions the packet loss could

reach unacceptable values: the introduction of a congestion control mechanism also

for the logarithmic function to promptly solve short-term contention in relation to

delay constraints will be further discussed inside the next chapter.

Chapter References

12. Xipeng Xiao, Ni L.M: Internet QoS: a big picture. IEEE Network , Volume: 13 Issue: 2 ,

March/April 1999 Page(s): 8 –18

13. R. Braden, D. Clark, S. Sheneker: Integrated Services in the Internet Architecture: an

Overview, IETF RFC 1633, June 1994

14. S. Blake et. Al.: An Architecture for Differentiated Services, RFC2475, December 1998.

15. K. Nichols, V. Jacobson, L. Zhang: A two-bit Differentiated Services Architecture for the

Internet, IETF RFC 2638, June 1999

16. E. W. Knightly, N.B. Shroff: Admission Control for Statistical QoS: Theory and practice,

IEEE Network, Vol. 13, No. 2, March/April 1999

17. A.Terzis, L. Wang, J. Ogava, L. Zhang: A Two-tier Resource Management Model for the

Internet, IEEE Globecom 1999

18. E.Kohler, R.Morris, B.Chen, J.Jannotti, M.F.Kaashoek: The Click modular router. ACM

Trans. Computer Systems 18, August 2000

19. R. Mameli, S. Salsano: Use of COPS for Intserv operations over Diffserv: Architectural

issues, Protocol Design and Test-bed Implementation, ICC 2001, Helsinky

72

20. E. W. Fulp, D. S. Reeves: On line Dynamic Bandwidth Allocation, IEEE International

Conference on Network Protocols, 1997

21. C.P.W. Kulatunga, P. Malone, M.O.Foghlu: Adaptive Measurement Based QoS

Management in DiffServ Networks, First International Workshop on Inter-domain

Performance and Simulation (IPS 2003, February 20-21, Salzburg (A)

73

Chapter V. Implicit Flow-based Admission and

Congestion Control

1 Introduction

As described in the previous chapters, the scheme based on the Bandwidth Broker

concept has been considered as suitable to cope with the Differentiated Services

model proposed for QoS support. Although this approach is fairly centralized it can

be made scalable through hierarchical organization of functions. This proposal splits

the resource management problem into intra-domain and inter-domain functions with

different administrative scopes: intra-domain resource management is within the

competence of the bandwidth broker of the domain and is typically controlled by a

single organization, while inter-domain resource management involves interactions

between bandwidth brokers of different organizations and, on the basis of the

proposal, it is achieved by bilateral agreements between adjacent domains. A critical

discussion is ongoing on suitability of the proposed models to effectively support the

convergence of different communication services such as voice, video and data [1].

New concepts for service differentiation are under consideration to better take into

account the statistical nature of traffic as evidenced by practical measurements [2].

A still open issue is related to control signaling that impacts on user behavior and

protocols to provide quality of service guarantees to legacy application programs. The

strategy for graceful evolution towards fully operating QoS networks is to maintain

the same user network interface to legacy application program while enhancing

network intelligence to manage information flows with different requirements without

the introduction of explicit signaling. This approach is referred as implicit service

differentiation. The definition of the flow concept seems to easy this task [2] allowing

the implementation of efficient algorithms to recognize information produced by

different applications and to perform the needed QoS related functions within the

network. In this chapter an implicit QoS model is proposed, suitable to manage, as an

example, real time services, but that can be applied also to a larger variety of service

classes. It takes advantage of a call admission procedure to limit the bandwidth

requirements of a service class coupled with dynamic bandwidth management

performed by the edge router within each class to optimize the bandwidth usage. No

explicit signaling is required to legacy application program while the concept of flow

is introduced in the edge router to implement implicit QoS concept. In order to

achieve QoS targets the implicit admission control is coupled with dynamic

bandwidth management algorithms, previously evaluated as stand alone procedures.

The evaluation of the effects of the joint application of the admission control and

bandwidth management procedures within the proposed QoS model is one of the

main target of the chapter. The proposed model could cope with the differentiated

service model implemented in the core, being its role played at the internetworking

between edge and core networks. The role of the bandwidth broker is here played

74

within the core network for call and bandwidth management purposes. In any case

users willing to obtain such enhanced service should declare this intention to the

network and subscribe a contract in terms of Service Level Agreement (SLA) with the

service provider [3]. The implementation of such a concept requires the addition of

new functionalities in the edge router that interfaces peripheral QoS unaware network

with the QoS enabled core network. The feasibility of the approach is proved with

reference to two different service classes (i.e. best effort and real time) and their

implementation in a modular software environment on a PC-based test bed. The

sensitivity of the system to the main design parameters and the effectiveness of the

QoS algorithms in terms of bandwidth usage efficiency and congestion limitation are

obtained by practical measurements.

The chapter is organized as follows. In section 2 the general model for implicit QoS

management is described with particular reference to the call admission procedures.

In section 3 we recall the logarithmic-based dynamic bandwidth management

algorithm, which is now modified in comparison with the description furnished in

chapter §4, by adding a congestion control mechanism to promptly solve rapid rising

of the used bandwidth. In section 4 system implementation and measurements are

presented and discussed. In section 5 some conclusions of the work are drawn.

2 Implicit Service Differentiation and Admission Control

This paragraph introduces a flow-aware QoS model for implicit service differentiation

in the Internet to maintain end user best effort interface while differentiating services

within the core network. The basic operations to access QoS enabled networking in

the core network are performed by the edge router (ER) at the interface between the

legacy networks and the QoS domain. The end user that expects to obtain service

differentiation registers a SLA at the pertinent ingress edge router before the start of

any communication sessions, with off line procedures that are out of the scope of this

work. After then the edge router performs two main functions related to

communication sessions:

- implicit call admission control for real time flows; call admission control

acts only for real time flows that belong to a SLA while best effort traffic is

considered as an aggregate; implicit admission control was considered in [1];

- dynamic bandwidth management within the service class with the aim of

efficient link bandwidth usage and time constraints. The access link

bandwidth is assumed to be shared among different service classes.

Bandwidth allocation management is performed in relation to the aggregate

traffic of each class that accesses the QoS domain.

A flow is here identified by packets closely spaced in time [4]. A communication

session is a sequence of flows alternating with silence periods. If a silence longer than

a time out is detected, the previously related flow is considered finished.

The model can take advantage of the Bandwidth Broker concept as regard bandwidth

updates required by the dynamic procedure [5]. Its action is related to core operations

75

and in this case, signaling within the QoS domain could be implemented through

protocols like COPS [6].

2.1 Implicit call admission

Real time flows are assumed here to adopt the RTP protocol. In any case the model

can suit other approaches such as native UDP flow by applying the statistical analysis

for real time flow recognition available in the classification process (see Chapter §3).

Under this hypothesis, a new RTP flow is recognized by the ingress edge router

through a flow oriented classification process on the basis of a predefined SLA and of

the SSRC field of the RTP header. The SLA contains, among its parameters, the

specification of quality of service requirements through a DSCP value and the IP

source address, thus allowing its correspondence with incoming RTP flows. After a

new flow is recognized, it is accepted if the following condition holds:

Bo<Ta (13)

where Bo is the estimation of the bandwidth currently used by the service class and Ta

is a design parameter called admission threshold.

An accepted flow is maintained active until one of the following conditions is

verified:

- a time out expires indicating that the flow has been idle for a long time

(some seconds) and probably has no more information to transmit;

- Bo>Td , that indicates an aggregated bandwidth usage approaching the

maximum allowed for the service class. Td is called dropping threshold.

When this condition is true a random choice is performed to drop one of the

admitted flows. Other choices could be studied for system optimization.

The value Bo is typically the results of a measurement procedure [7].

2.2 Dynamic bandwidth management

A service class is initially equipped with the amount of bandwidth allocated by the

network manager. ERs accessing network links are responsible of monitoring

bandwidth usage by the aggregate traffic of a class and of asking the related BBs for

the necessary increase/decrease of allocated bandwidth; an increase/decrease request

is assumed here always followed by a positive answer within a time Tbb. The point is

to decide when to generate the requests for the broker.

A well-known approach is based on the threshold-based system explained in Chapter

4. This system has a main drawback consisting in the large number of parameters to

set up for system design. Two components characterize this system: the bandwidth

increment/decrement mechanism and the calculation of the bandwidth update needed.

The choice of the correct parameters’ configuration of the system described above is

crucial to achieve bandwidth utilization efficiency, scalability and system stability. In

fact, under particular conditions of traffic patterns, bandwidth oscillations could arise

76

as a consequence of approximate parameter configuration (see § IV.3.2). Moreover

the parameters of the threshold-based model are strictly related to each other and

strongly dependent on the traffic behavior thus making the parameters set up a very

critical point.

3 Combining Logarithmic Bandwidth Update and Congestion

Control

In order to overcome the main limitations of the threshold-based system and to reduce

the number of design parameters, in the previous chapter we adopted a logarithmic

function to control the update events. It uses the output of a measurement-based

process to know the value Bm of the bandwidth currently used by the aggregate traffic

of the service class. So Bm replaces Bo of the threshold-based scheme described

before. The choice of the logarithmic function was suggested by the need to carefully

increment the bandwidth, when necessary, in order to follow the bandwidth variation

as better as possible and, in case of bandwidth decrease, to promptly reduce

bandwidth waste. In Chapter §4, we showed that the chosen function intrinsically

meets these characteristics when used to calculate the bandwidth update ∆B as

=∆
SB

B
KB

d

m

*
ln* ,

(14)

being Bm the measured bandwidth, Bd the allocated bandwidth, and having indicated

with ln(x) the natural logarithm of x. The parameter K is the constant of the feedback

system and S is a margin to avoid sudden congestion. So the new bandwidth value

after the update is given by

B’d=Bd+∆B . (15)

In order to avoid too frequent requests to the bandwidth broker, the update procedure

is applied only if the following condition is verified:

∆B > ∆Bmin . (16)

This system requires three parameters to be defined: K, S and ∆Bmin. Experimental

evaluations and measurements also showed that under heavy traffic conditions the

packet loss percentage can reach unacceptable values: the introduction of a congestion

control mechanism combined with the logarithmic function is required to promptly

solve short-term contention in relation to delay constraints. In fact, due to delays in

bandwidth estimate and increase, congestion can temporarily arise, that causes

packets to be queued waiting for transmission resources. The effect of parameter S is

to reduce the occurrence of these events, but a trade off must be reached between

system performance and efficiency. So, the mechanism can be fruitfully coupled with

a congestion resolution mechanism based on the monitoring of the queue occupancy,

as already done for the threshold-based algorithm. The main aim of the algorithm is to

limit the time needed for a packet to pass through the system by setting the maximum

acceptable time Ts to empty the queue. Thus, as sketched in figure 1, a queue

77

threshold Sq in packets is considered given by Sq=Ts*Ba/Lp ,being Ba the allocated

bandwidth and Lp the packet length in bit. When queue occupancy S(t) at a generic

instant t overcomes Sq , the system enters a congestion state during which bandwidth

is quickly updated to empty the queue within Ts. The new value Ba’ is calculated as

Ba’=S(t)·Lp/Ts , that assures that the queue will be emptied within the time constraint.

The system stays in the congestion time for at least a guard time Tg; after then, if

queue occupancy is less than Sq the regular algorithm is applied. The packet transfer

delay is thus bounded by Ts+2·Tbb., being Tbb the time required for the Bandwidth

Broker to answer.

Ba
Sq

Fig. 52. The congestion control queue

For example, for a target maximum packet transfer delay of 30 ms in the router with

Tbb= 10 ms, Ts must be limited to 10 ms. In all other cases the regular algorithm

prevents congestion through S. The frequency of activation of the congestion

management algorithm is related to the occurrence of the congestion state that can be

reduced through the adoption of a larger guard bandwidth.

4 System Implementation and Measurements

In the previous chapters, the Click modular router was adopted for implementing

flow-based classification of real time services. We recall here the basic functionalities

introduced with the set of modules which were added and modified here to implement

implicit admission and congestion control mechanisms. Figure 2 outlines the main

components of the Click configuration:

- the MeterShaper element implements the time-window measurement

algorithm (metering the amount of traffic passing through the shaper) that

calculates the value Bo and updates the allocated bandwidth using the

logarithmic algorithm previously described. Moreover, it implements the

implicit admission control and the interaction with the bandwidth broker of the

service domain;

- the SLA Manager is dedicated to select a flow as belonging to a set of existing

Service Level Agreements. A time out is set to detect the end of a flow.

- the RoundRobin Scheduler performs multiplexing of distinct traffic flows

pertaining to different SLAs;

- the Priority Scheduler implements different policies for the real time (high-

prioritized) and best effort (low-prioritized) packets.

78

IP Router

RoundRobinScheduler

ToDevice (ethX)

+ -

SLA 1

SLA 1

…SLA n

…SLA n

Priority Scheduler

Protocol Classifier

Statistical

MeterShaper

()

+ -

SLA 1

SLA 1

…SLA n

…SLA n

Priority Scheduler

Protocol Classifier

Statistical classifier

)

Real Time

RTP

+

SLA 1

BE queue

…SLA n

…SLA n

Real time
queue

BwAverageCounter

Export Bw Rated Splitter

(SLA Bandwidth)

Discard

pull

SLA Manager

IP Router

RoundRobinScheduler

ToDevice (ethX)

+ -

SLA 1

SLA 1

…SLA n

…SLA n

Priority Scheduler

Protocol Classifier

Statistical

MeterShaper

()

+ -

SLA 1

SLA 1

…SLA n

…SLA n

Priority Scheduler

Protocol Classifier

Statistical classifier

)

Real Time

RTP

+

SLA 1

BE queue

…SLA n

…SLA n

Real time
queue

BwAverageCounter

Export Bw Rated Splitter

(SLA Bandwidth)

Discard

pull

SLA Manager

Fig. 53. QoS router internal structure

Other related functions are performed by ExportBwRatedSplitter, that limits the

bandwidth of flows to the value specified in the corresponding SLAs, and

BwAverageCounter that collects information about average bandwidth usage that will

be processed by the MeterShaper element. In addition, the MeterShaper element is

now able to lock the admission of new flows or to cancel an existing flow to

implement the admission control policy previously described; finally, it monitors the

state of each realtime output queue and, if congestion arises, updates the allocated

bandwidth to respect the packet timing constraints.

Measurements have been performed by soliciting the system through steps of

bandwidth variation of an RTP flow (figure 3). In any case, the effectiveness of this

approach with other traffic types such as the superposition of Pareto sources has been

verified by simulation in Chapter §4, leading to the same conditions. No best effort

flow is contemporary injected, the response time of the bandwidth broker is here

neglected and the result of its answer is assumed always positive. A good tracking of

the measured bandwidth is obtained by the logarithmic bandwidth allocation when the

step size is less or equal than 256 Kbit/s, as shown in figure 3.

79

Fig. 3. Measured and allocated bandwidth in the test bed for the logarithmic algorithm with

K=600Kbit/s, S=10% and ∆Bmin =50 Kbit/s (bandwidth variations of 256Kbit/s)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 51 101 151 201 251 301 351 401 451 501 551

Time (s)

B
a

n
d

w
id

th
 (

K
b

it
/s

)

Measured

bandwidth

Allocated

bandwidth

Fig. 4. Measured and allocated bandwidth in the test bed for the logarithmic algorithm with

K=600Kbit/s, S=10% and ∆Bmin =50 Kbit/s (bandwidth variations of 1024 Kbit/s)

When the bandwidth increase is wider, the system is no longer so prompt to follow

sudden variations as reported in figure 4, for step size equal to 1024 Kbit/s. As a

consequence the logarithmic algorithm typically tends to loose packets because the

bandwidth is not sufficient. Figure 5 shows the improvement introduced by the

congestion control algorithm with step size 1024 Kbit/s. Congestion control tends to

bandwidth over provisioning, and at the same time decreases packet dropping. As a

consequence efficiency reduction is expected for the largest bandwidth increases as

shown in figure 6. In any case, the delay is maintained at controlled values as shown

in figure 7, obtained with Ts=100 µs.

800

1000

1200

1400

1600

1800

2000

1 51 101 151 201 251 301 351 401 451 501 551

Time (s)

B
a

n
d

w
id

th
 (

K
b

it
/s

)

Measured

bandwidth

Allocated

bandwidth

80

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 100 200 300 400 500 600

Tempo (s)

B
a

n
d

a
 (

K
b

it
/s

)

Measured

Bandwidth
with CC

without CC

Fig. 5. Comparison of performance with and without the congestion control (CC) algorithm

with K=600Kbit/s, S=10% and ∆Bmin =50 Kbit/s (steps size of bandwidth variations of 1024

Kbit/s)

65

70

75

80

85

90

95

100

64 128 256 512 1024 2048

Step size (Kbit/s)

E
ff

ic
ie

n
cy

 (
%

)

without CC

with CC

Fig. 6. Efficiency in the bandwidth usage with and without the congestion control (CC) varying

the step size, with K=600Kbit/s, S=10% and ∆Bmin =50 Kbit/s, Ts=100 µs

Figures 8-10 are related to implicit call admission control evaluation for 16 RTP

flows. They have been obtained by injecting step traffic generated by 3 PCs with step

size cyclically assuming the values 0, 8 16 packets/s with step duration uniformly

distributed between 0 and 20 seconds and packet size of 256 bytes. Admission and

dropping thresholds are given in terms of percentage of the bandwidth assigned to the

real time class, which is established to 300 Kbit/s. Figure 8 depicts the timing

behaviour of admitted and cancelled calls when the admission and dropping threshold

are set to 90% and 95 %. The logarithmic algorithm is applied for dynamic bandwidth

management with K=600Kbit/s, S=10% and ∆Bmin =50 Kbit/s. Then, varying the

admission threshold, the refused and dropped flows are plotted with dropping

threshold set at 95 % (figures 9 and 10). It can be seen that the percentage of refused

flows decreases as the admission threshold increases while the percentage of dropped

flows increases with the admission threshold. This is due to the greater number of

flows that are admitted and possibly cancelled after then.

81

1

10

100

1000

10000

100000

64 128 256 512 1024 2048

Step size (Kbit/s)

A
v
e

ra
g

e
 q

u
e

u
e

 d
e

la
y
 (
µ

s
)

without CC

with CC

Fig. 7. Average packet latency (µs) with and without the congestion control (CC) algorithm and

varying the step size, with K=600Kbit/s, S=10% and ∆Bmin =50 Kbit/s, Ts=100 µs

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Time (sec.)

N
o

rm
a
liz

e
d

 b
a

n
d

w
id

th

Admitted traffic

Offered traffic

Refused flows
Cancelled flows

Fig. 8. Timing behaviour of bandwidth normalized to the available bandwidth Bd=300Kbit/s

with admission threshold Ta =90% and dropping threshold Td =95%

0

5

10

15

20

25

30

35

40

45

50

40 45 50 55 60 65 70 75 80 85 90

Admission threshold (%)

R
e

fu
s
e

d
 f

lo
w

s
 (

%
)

Fig. 9. Percentage of refused flows as a function of the admission threshold with dropping

threshold Td=95%

82

0

0,5

1

1,5

2

2,5

3

40 45 50 55 60 65 70 75 80 85 90

Admission threshold (%)

D
ro

p
p

e
d

 f
lo

w
s
 (

%
)

Fig. 10. Percentage of dropped flows as a function of the admission threshold with dropping

threshold Td=95%

5 Conclusions

In this chapter a model for implicit QoS support is introduced and implemented in a

modular software router context. An implicit call admission procedure is designed for

the edge router coupled with a dynamic bandwidth allocation algorithm that uses a

logarithmic function. The proposed algorithm introduces a limited number of

parameters that can be set up more easily then previously proposed systems The

model achieves the target to limit the router transfer delay for real time traffic at an

assigned value. The sensitivity of the system to the main model parameters is

analyzed by measurements showing the choices for design optimization both in terms

of usage efficiency and in terms of the number of successful flows. Moreover the field

trial showed the feasibility of the introduction of new network concepts in a PC-based

router for next generation Internet.

Chapter References

22. R. Mortier, I. Pratt, C. Clark, S. Crosby : Implicit Admission Control, IEEE Journal on

Selected Areas in Communications, vol. 18, pp. 2629-2639, December 2000

23. A. Kortebi, S. Oueslati, J. W. Roberts: Cross-protect: implicit service differentiation and

admission control, Workshop on High Performance Switching and Routing, Phoenix

(USA), 2004

24. Dinesh C. Verma, “Service Level Agreements on IP Networks”, Proceedings of IEEE,

Vol. 92, No 9, September 2004

25. J. W. Roberts: Internet Traffic, QoS and Pricing, Proceedings of IEEE, Vol. 92, No 9,

September 2004

26. A.Terzis, L. Wang, J. Ogava, L. Zhang: A Two-tier Resource Management Model for the

Internet, IEEE Globecom 1999

83

27. R. Mameli, S. Salsano: Use of COPS for Intserv operations over Diffserv: Architectural

issues, Protocol Design and Test-bed Implementation, ICC 2001, Helsinky (SF), 2001

28. S. Jamin, P.B. Danzig, S.J. Shenker, L. Zang: A Measurement-based Admission Control

Algorithm for Integrated Services Packet Networks, IEEE/ACM Transactions on

Networking, Vol. 5 No 1, February 1997

84

Related publications

I. G.Calarco, C.Raffaelli, "Algorithms for Inter-domain Dynamic Bandwidth Allocation",

IPS 2003, Salzburg (A), February 2003

II. G.Calarco, R.Maccaferri, G.Pau, C.Raffaelli, "Design and Implementation of a Test Bed

for QoS Trials",QOS-IP2003, Lecture Notes in Computer Science Vol. 2601 pp.606-

618, Milano (I), February 2003

III. G.Calarco, C.Raffaelli, "An Open Modular Router with QoS

Capabilities",HSNMC2003, LNCS vol. 2720, Estoril (P), July 2003

IV. G.Calarco, C.Raffaelli, "Implementation of Dynamic bandwidth Allocation within Open

Modular Router", ICN2004, Guadalupe (F), March 2004

V. G.Calarco, C.Raffaelli, "Design and Implementation of a New Adaptive Algorithm for

Dynamic Bandwidth Allocation", HSNMC 2004, LNCS vol.3079, Toulose (F), July

2004

VI. G.Calarco, C.Raffaelli, “Implementation of implicit QoS control in a modular software

router context”, QOS-IP2005, Lecture Notes in Computer Science Vol.3375 pp. 390-

399, Catania (I)

VII. G.Calarco, C.Raffaelli, G.Schembra, G.Tusa, “Comparative Analysis of SMP Click

Scheduling Techniques”, QOS-IP 2005, Lecture Notes in Computer Science Vol.3375,

Catania (I)

