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Abstract. The interest of the scientific and commercial telecommunications 

community for the use of software routers running in general purpose (PC) 

hardware, as an alternative to the traditional special purpose hardware routers, 

has grown quickly in the last few years. This is due to the high level of 

flexibility of this solution: the support for new protocols and network 

architectures and services, in fact, is easily obtained by re-programming the 

router itself. On the other end, the low cost of PCs and the continuous progress 

in their performance are making the design of a software packet switch, based 

on standard hardware platform, more and more attractive. In recent years, 

several proposals emerged, and a very promising architecture is the Click 

Modular Router, which is not only easily extensible, but also very effective: on 

a multiprocessor hardware, its maximum loss-free forwarding rate for IP 

routing reaches 1,250,000 64-byte packets per second. It allows the simple 

design and rapid implementation of new services: we first used it for the 

development of flow-based classifiers of real time traffic. Then, we introduced 

a traffic measurement mechanism and exploited several dynamical allocation 

schemes of the inter-domain link bandwidth, to maximize the bandwidth usage 

efficiency. Finally, we implemented a congestion and admission control 

technique, to preserve the bandwidth usage efficiency and avoid network 

congestion. These new functions were evaluated in terms of latency, jitter and 

bandwidth usage efficiency. 
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Chapter I.   A General Overview 

 

 

 

 

The quality of a communication service is usually related to the users' expectation that 

a functionality will be furnished when necessary and in a reliable way. At the same 

time, under a technical point of view, the quality of a multimedia session is usually 

measured in terms of delay, losses and errors occurring in the data transfer. For 

example, a common application such as VoIP is not so helpful if affected by high 

delay (which makes a conversation rather arduous), by losses (which discontinue the 

interaction) or by errors (which disturb the voice quality). Fundamentally, the quality 

of a network service is strictly related to the traffic amount inside the network, which 

depends on the load and profile of the traffic traversing the infrastructure. A common 

way to obtain a requested quality for an application is given by network over-

dimension. This solution, even if simple, does not take into account its economical 

cost and waste of resources. For this reason, in the last few years an intense research 

activity has focused on models for service differentiation and techniques for resource 

management in IP networks. A variety of architectures have been proposed: ATM, 

RSVP, the Integrated Services and the Differentiated Services represent different 

solutions concerning similar necessities.  

Since Internet traffic is commonly the result of a wide aggregate of different 

communications, classifying and distinguishing this traffic is the first step in order to 

offer different performance for the different applications’ needs. A possible 

classification of the Internet traffic distinguishes it in “elastic traffic flows” and 

“streaming traffic flows”. For our purposes, a flow is identified as a unidirectional 

sequence of packets close in time and having a common identifier (for instance, a 

tuple like source and destination address and a port number). Elastic traffic is based 

on closed-loop control, as commonly happens during a TCP connection, and is named 

“elastic” since is able to react to changing network load: each elastic flow essentially 

varies its transmitting rate depending on packet loss probability. Streaming traffic 

instead is normally emitted from multimedia applications, which generate packets at a 

rate that should be conserved traversing the network, by avoiding losses and delay 

dispersion. A possible solution to meet these requirements could rely on fixing a 

deterministic delay limit for the incoming flows. The main drawback of this solution 

is that it usually brings to bandwidth over-provisioning, since the limit should be 

dimensioned for a worst-case situation. Thus, if link usage efficiency is considered a 

key factor, dynamic bandwidth allocation mechanisms should be introduced at the 

edge of the network, to preserve delay bounds on the fly. At the same time, efficiency 

can be maximized if both the two traffic categories are considered together: for 

instance, if streaming flows are high prioritized, they normally traverse the network 

with low delay and losses; elastic flows, instead, can take benefit from the bandwidth 

that is temporarily not utilized from multimedia flows. The feasible dynamic 

bandwidth allocation schemes are many; in the following chapters, we have 

experienced two of them: the first uses a threshold-based approach and it was then 
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compared with a new algorithm, which uses the logarithmic function for the same 

purpose. Both the systems have then been provided with an optional congestion 

avoidance control, which provides expedited bandwidth increases, to promptly solve 

short-term bandwidth increases. The congestion control mechanism can also be 

designed to allow flow deletion, when the bandwidth update cannot be performed. 

This process can be driven using different policies (e.g. we can cancel the largest 

flow, the smallest, the oldest, etc., or choose one randomly). 

Another important mandatory capability for a reliable network functioning is the 

restriction of the incoming flows of traffic: this approach, commonly named 

“admission control”, should be implemented at the edges of the network to preserve 

performance, in case bandwidth request exceeds link throughput. Obviously, this can 

be accomplished only if each individual flow is identified, classified and inserted in a 

proper list of admitted flows and if, at the same time, bandwidth usage measurement 

is performed. When the incoming packets of a new flow reach the edge router of a 

network, this should be able to control if they satisfy the admission criteria or discard 

them. At the same time, if an application does not generate packets for a long amount 

of time, its corresponding flow identifier should be properly removed from the list. 

Thus, this approach is helpful to preserve the bandwidth usage efficiency and avoid 

network congestion. It can be easily realized that the admission control service could 

be applied smoothly, assigning different policies to different service classes (e.g. 

regular flows could be rejected before than premium flows). This mechanism assures 

that all the admitted flows take advantage of adequate quality guarantees. 

Additionally, the kind of service provided to each individual user from the network 

administrator should be regularly arranged by a contract. This accordance, usually 

named Service Level Agreement (SLA), fixes the maximum amount of the network 

resources that such a user can rely on. This mechanism is not only interesting under 

an economical perspective, but is also helpful for the network link dimensioning. 

A few years ago, the introduction of a hierarchical two-tier architecture into the 

Differentiated Services model, which is interesting for scalability aspects, has been 

proposed for end-to-end QoS support. This model requires some functions to be 

implemented in the edge routers, such as packet assignment to service classes on the 

basis of explicit signaling or classification mechanisms, and class management in the 

core routers. The Differentiated Services architecture considered in the following 

chapters supports a scalable solution to QoS in IP networks being it based on few 

fundamental concepts and components: the identification of the packet QoS class 

through a code point and the differentiated treatment of that packet within a DiffServ 

node. More recently, an intense research activity on models for service differentiation 

has been developed and lately it has focused on the techniques for resource 

management. Among these, the scheme based on the Bandwidth Broker concept can 

be considered as suitable to cope with the Differentiated Services model. Although 

this approach is fairly centralized, it can be made scalable through hierarchical 

organization of its functions. In fact, this scheme separates the intra- and inter-domain 

resource management problems apart: while the first one is delegated to the 

bandwidth broker inside the domain, the latter is provided by the agreements of the 

bandwidth brokers belonging to adjacent domains. At the same time, the edge router 

must be able to solve the classes of traffic designated for a privileged treatment, and 

to manage efficiently the resources arranged by its bandwidth broker.  
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Concerning this, leading routers’ producers nowadays offer proprietary solutions, 

which are often complex or impossible to improve and adapt. Instead, there is a 

growing attention of the international scientific and industrial community for open 

and standard platforms supporting free software. To this end, the Click Modular 

Router, realized at the MIT a few years ago, is a flexible and modular framework for 

the simple design and the rapid implementation of new services. It offers excellent 

performance (in particular if executed with Symmetric Multi Processing 

architectures), quite impressive when compared with most of other existing software 

routers (the Linux kernel, BSD, Scout, CrossBow, etc.). It is easily extensible: for this 

main reason, we have preferred it to other similar frameworks. We first used it for the 

development of flow-based protocol and statistical classifiers of real time traffic; then, 

we introduced the traffic measurement and exploited the dynamic allocation of the 

inter-domain link bandwidth; finally, we implemented the congestion and admission 

control mechanisms previously depicted. These new functions were evaluated in 

terms of latency, efficiency and number of requests for the bandwidth broker. 
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Chapter II.   Performance Measurements of PC-based 

Routers 

1   Introduction 

The interest of the scientific and commercial telecommunications community for the 

use of software routers running in general purpose (PC) hardware, as an alternative to 

the traditional special purpose hardware routers, is risen quickly in the last few years. 

Open routing approaches have been developed with the aim to use standard hardware 

platforms to support free and open software [1]. In recent years, several proposals 

have been made, most of which are suitable for the Linux environment and assume 

standard PCs as hardware platforms. This is due to the high level of flexibility and 

extensibility of this solution: the support for new protocols and network architectures 

and services, in fact, is easily obtained by re-programming the router itself. In 

addition, the diffusion of multiprocessor systems due to the progress in the 

semiconductor technologies allows software routers to obtain high performance if 

supported by multiprocessor PC hardware. Of course, in order to achieve a good use 

of the potentiality offered by multiprocessor architectures, the distribution of the tasks 

among the CPUs, and the parallel execution of the different operations, requires to be 

performed with some care. Moreover, different CPU scheduling techniques, that is, 

different approaches in the assignment of the tasks to the different CPUs, affect the 

router performance. This chapter addresses the problem of performance evaluation of 

routers implemented using open source software running on a general purpose PC. It 

evidences the need of the availability of flexible platforms to easily and timely 

implement new router functionalities in relation to the service scenario evolution. At 

the same time, the chapter presents measurements performed on a PC router 

implementation to evidence the performance bottlenecks of present-day PCs when 

used as routers and the main effects of the operating environment that influence 

packet forwarding. In fact, even if PC hardware limitations are well known in general, 

at the time of these writing limited contributions have been given to the knowledge of 

performance and bottlenecks of a PC when used as a router. The chapter is organized 

as follows: in section 2 basic concepts related to Personal Computers architectures are 

withdrawn, together with a very brief description of the MIT Click Modular Router; 

section 3 describes the performance tests conducted using a typical Desktop PC 

platform and analyzes in dept the bottlenecks of this kind of architecture; section 4 

shows how is possible to use a multiprocessor PC platform combined with the SMP 

Click Modular Router to build very fast software routers. 
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2   PC Router Architecture 

A software router can be characterized as a general purpose PC, governed by an 

application able to move data (packets) among different devices (the network 

interface cards). The hardware architecture of a modern PC includes at least the 

following elements, outlined in figure 1: one or several CPUs; a main memory bank; a 

shared I/O bus which interconnects various devices; a bridge chipset implementing 

the connection among CPUs, memory and I/O bus. A particular example of an I/O 

bus is the Peripheral Component Interconnect (PCI) bus. In the past years the PCI bus 

specifications and performance remained relatively stable over different PC 

generations and this situation should persist for further years. On the contrary, 

impressive improvements have concerned the CPU-Memory subsystem. 
 

Main 
Memory 

CPU CPU 

Bridge

DISK 

Graphic 

device

Printer 

Network 

Interface Card

I/O bus 

 

Fig. 1. A common PC architecture 

The routing process generally involves all the subsystems summarized in Fig.1 and 

can be divided into three distinct steps. At first, the datagram is transferred from the 

input network interface card to memory using the I/O bus; in a second phase, the CPU 

reads the necessary data from memory and uses them to take the routing decision; 

then, the packet is sent to the output NIC, accessing again the I/O bus. Thus, the I/O 

bus subsystem, besides being the slowest path traversed by data, is also utilized twice. 

In the near future, if hardware evolution will follow the actual trends, the PCI bus will 

probably represent the bottleneck of a PC system. For this reason, if in the past many 

works had converged about the issue of the fair sharing of the CPU and memory 

resources [3] [4], more recently the management of the I/O bus resources has become 

a more crucial problem [5]. Furthermore, being it a single common communication 

line at the disposal of several devices (this architecture is named “Multiple Bus 

Master”) poses some problems. In fact, access conflicts must be avoided, and thus an 

arbiter should manage the admission of the devices to the shared bus; moreover, the 

policy adopted by the arbiter should be carefully chosen to obtain a fair share of the 

bus resource, but the PCI specifications do not establish any constraint to obtain this 

result. A round-robin scheduling technique is usually adopted for the admission of the 

devices to the PCI bus. This choice is directed to minimize the access latency: the bus 

arbitration protocol is access-based instead of being time-slotted. The devices plugged 

into the PCI bus can communicate with software running on the host processor(s) 

using two distinct techniques: Programmed I/O and Direct Memory Access (DMA). 

The second mechanism uses shared data structures that can be manipulated by both 
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the processor and devices: its main advantage is evident with large amounts of data to 

transfer to or from main memory, since it does not lock the CPU during the 

relocation. Most modern NICs support DMA as the favorite method for moving 

packets and offer an integrated DMA controller to manage all DMA associated 

operations. These interfaces can request the bus arbiter to access the I/O bus, become 

the bus master and move the data from/to memory independently from the CPU 

activity.  

2.1   The Click Modular Router 

The functions of packet forwarding can be implemented by the operating system 

kernel itself, or by other software layers, like in the case of the Click Modular Router, 

a Linux-based software framework developed at the MIT [2]. It permits the design of 

PC routers or other packet processors offering an extensive library of simple modular 

components. The principal advantages of such a modular system are flexibility and 

extensibility: the designer can easily create various services simply connecting the 

basic modules, called elements. An IETF RFC-1812 router was proved quite simple 

to realize, since only 16 click elements must be employed, as described in [2]. 
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Fig. 2. Hardware/software elements traversed by a packet during forwarding 

Even if performance is not the main goal of the project, Click can be dynamically 

linked as a module to the Linux kernel, taking advantage of the kernel-space 

execution priority and substituting the standard kernel networking functions. 

Moreover, some network cards can be managed with polling drivers, instead of using 

the more expensive interrupt-based technique [3], eliminating the livelock problem 

and improving the forwarding rate. The standard library also furnishes an effective 

support for measurements: the SetCycleCount and CycleCountAccum modules can be 

used to collect the average number of CPU-cycles required for a packet to traverse the 

elements comprised between them. Inserted at the sections outlined in figure 2, they 

permitted the latency evaluations (entirely done inside the Click configuration) 

presented in the rest of the chapter. This measurement support, which is based on the 

Intel Pentium RDTSC register, offers an excellent timing accuracy (using a 1.6 GHz 

CPU the resolution is 0.625 ns). In addition, the new functionalities we added to these 

elements permit a good insight into the PC based routers’ functioning limitations, 

which cannot be so easily evaluated within the Linux kernel networking structures or 

in any way appreciated if measuring performance outside the router. 
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3   Performance Evaluation of a PCI Desktop Platform 

In order to execute performance tests, the trial configuration outlined in Figure 3 was 

created to simulate functions of a real network environment. The test-bed consists of 

four PC-based systems, plugged in a Gigabit Ethernet layer2-switch. The edge router 

is equipped with a 1.6 GHz Pentium IV CPU and implements the RFC1812-compliant 

router, with a basic FIFO output queuing scheme. The other three PCs have got a 

1Ghz–Pentium III processor. Every PC is equipped with the Intel PRO1000 network 

cards. On our router, two of them were plugged on the 32-bit/33 MHz PCI bus, even 

if they would be ready for the more advanced 64-bit/133 MHz PCI-X buses. The 

choice of this NIC permits to use the polling-based driver already developed by the 

MIT for these adapters. Like most of recent network cards, it disposes of an on-board 

FIFO buffer to store datagrams received from the wire or waiting to be transmitted. In 

addition, it contains dedicated registers maintaining statistics about its internal state. 

All the PCs mount the Linux kernel 2.4.18 and Click release 1.3. Two PCs work as 

traffic generators for injecting two distinct flows of UDP traffic at a constant rate into 

the input port of the router. Another PC collects the packets coming from the router. 

 

 

Fig. 3. The testbed layout 

3.1 Performance evaluation with no packet losses 

The results presented in the following are the average of 20 successive 120-seconds 

runs, as proposed in the RFC1242-2544, at the maximum forwarding rate and 

avoiding packet losses. Figure 4 shows the throughput and the bus occupancy of the 

router as a function of the packet length. Only with long datagrams, the maximum 

theoretical bus capacity of 1.056 Gbit/s is approached (the bus is traversed twice for 

each packet). Another important figure of interest for a router is packet delay (see 

Table 1). As well, the latency is not dependent on packet length: this behavior is 

expected, since only data (i.e. packet) pointers are passed through the Click modules, 

avoiding time-expensive data-touches. 
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Fig. 4. Loss-free maximum forwarding rate and corresponding bus occupancy vs. packet length 

for a Click-based RFC-1812 router (20 120-seconds runs) 

 

Table 1. Average packet latency in microseconds for a RFC1812-based Click router for 

different values of packet rate in kpacket/s (columns) and length in byte (rows), evaluated at the 

highest loss-free rates 

 350 200 140 85 53 43 37 

64 8,43 4,63  3,83  3,23  2,49  2,43  2,42  

128  4,68 3,82 3,20 2,46 2,40 2,39 

256   3,78 3,14 2,43 2,34 2,35 

512    2,99 2,37 2,32 2,30 

1024     2,50  2,39 2,42 

1280      2,48 2,45 

1518       2,49  
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Fig. 5. Average delay vs. packet lenght for a Click-based RFC-1812 router (20 120-seconds 

runs) 

Evaluations reported in [6] and summarized in Fig. 5 show how the variable 

contribution to the global delay reported in Table 1 is due to the output queue term, 
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while the routing delay alone requires constantly about 1.2 µs. Table 1 summarizes 

the Click latency for various packet sizes and rates. It makes clear the strict relation 

between packet delay and rate. 

3.2 Forwarding delay analysis 

More thorough analyses were done releasing that restriction with the aim to 

investigate system bottlenecks. To this end, additional tests were first performed using 

64-byte short packets and increasing the input rate with respect to values of Table 1. 

The forwarding rate no longer increases and the packet latency remains the same, 

while the input interface reports “FIFO Errors” events through its internal registers. 

This denotes that the NIC-to-memory DMA transfer of packets is failing, that is the 

CPU-Memory subsystem is not capable of releasing DMA descriptors to the NIC fast 

enough to handle all the incoming packets. Results reported in [7], where a much 

slower CPU was utilized to achieve the same throughput, lead to conclude that the 

memory subsystem, rather than the CPU, represents the slowing factor. When using 

1518-byte packets, an increase of the input rate produces very different consequences. 

In order to perform in depth investigation of different contributions to the routing 

delay, a timing diagram of the forwarding activities inside the router is presented in 

figure 6. The arrow at the left side of the diagram represents a packet stored on the 

NIC FIFO buffer and ready to be transferred to memory. The time spent for a packet 

forward can be split in three stages. During the first stage, the datagram is moved 

from the NIC towards memory using the I/O bus: the NIC fetches a free receive DMA 

descriptor (this takes a time Tpoll_dma) and then the NIC-to-memory transaction on the 

bus occurs (Tbus). At the second stage, Click takes the routing decision: it polls the 

packet from memory by the PollDevice module (Tpoll), elaborates it and queue it 

(Troute); then, ToDevice pulls it from the queue towards the transmit DMA buffer 

(Tpull). Finally, the packet is sent (accessing the I/O bus again) to the output NIC: this 

fetches a transmit DMA descriptor (Tpoll_dma) and moves the packet from memory to 

its own internal FIFO (Tbus). At the end, before the next packet arrival, the routing 

process remains inactive for a time Tidle. 

 

 

Fig. 6. Timing diagram of packet forwarding. The striped square locates the PollDevice 

activity, while the dotted one when the ToDevice element pulls packets from the queue 

Using 1518-byte packets, the time requested for a complete forward cycle (Tforward) 

was first estimated, summing all the preceding contributions: 

nsTTTTTT dmapollpullpollbusrouteforward 2502022 _ ≈++++=  . (1) 
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This corresponds to a theoretical maximum forwarding rate of 39968 packet/s, with 

no more margin in time (Tidle becomes zero) before the next packet arrival. The time 

required for all the bus accesses can be evaluated as: 

nsnsTT dmapollbus 23360)24023120(22 _ =+≈+  , (2) 

which is the 93.3% of the global cycle duration. Experimental evidence confirms this 

estimation: packet losses suddenly grow at 39800 packet/s. This rate is also an edge 

for the average queue latency as shown in figure 7. This reveals that the router is 

congested: the input interface persists accepting the incoming packets, but these are 

not as much promptly extracted from the Click queue toward the output interface. 

This unbalanced functioning was deeper examined using the Click's accounting 

mechanisms: the ToDevice module, that pulls packets from the queue and puts them 

in the transmit DMA buffer, was frequently idle. ToDevice normally remains idle 

when the DMA buffer is full [8], thus the only possible cause of this kind of 

performance is the PCI bus overload (a memory overload could also be possible but 

should affect the receiving stage, too: however, such event was not encountered). To 

further investigate this aspect, the CycleCountAccum module was customized to 

collect each per-packet delay within an internal vector, instead of exporting its usual 

averaged estimates. This was possible since SetCycleCount appends the CPU internal 

cycle count obtained from the RDTSC register in a special packet annotation field. In 

combination with CycleCountAccum, it allows to measure how many cycles it takes 

for each packet to pass from one section to another.  
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Fig. 7. Average output queue delay (Tqueue) vs. packet rate (1518-byte packets) 

Figure 8 sketches an example of the delay distribution obtained using 1518-byte 

packets and an input flow of 37000 packet/s. Under the same boundary conditions, the 

global average latency reported in Table 1 was 2.49 µs (this comprises a routing delay 

of 1.2 µs). Thus, surprisingly, the residual average queue latency (1.29 µs) is the 

result of a very scattered delay distribution. 
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Fig. 8. Packet delay (Tqueue) inside the output queue (1518-byte packets at a rate of 37000 

packet/s) 

Moreover, it’s possible to observe how some delay states prevail, forming three dense 

horizontal lines in the graph, located approximately at 600, 1200, 2400 ns. High delay 

spikes (vertical lines) up to 300µs are also evident and will be discussed in Subsect. 

3.4. Further increases of the flow rate gradually drag the average packet latency up to 

higher values and when the threshold rate of 39800 packet/s is reached, the packet 

latency is consistently positioned around a central value of 4.8 ms, as outlined in 

figure 9 and coherently with the graph in figure 7. 
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Fig. 9. Packet delay (Tqueue) inside the output queue (1518-byte packets at a rate of 39800 

packet/s) 

3.3 Burst effects 

A fraction of an horizontal delay line extracted from figure 8 is enlarged in figure 10, 

showing a surprising behavior: packets flow out of the Click queue with decreasing 

delays, instead of increasing ones, as it would be normally expected. An additional 

analysis was necessary to understand why this happens: the timing diagram in figure 

11 shows the activities required inside the router to forward a two-packet burst, 

already stored inside the NIC internal FIFO. Let us call the two packets A and B 

respectively. At first, the NIC retrieves a couple of free receive DMA descriptor; then, 
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A and B are moved through the PCI bus to be placed in the receive DMA buffer. 

Next, the PollDevice element polls both of them (it can manage bursts up to 8 packets 

long) and pushes them inside the Click configuration. At this point, they are routed 

and stored in the output queue. From here, ToDevice pulls them (it can manage bursts 

up to 16 packets long) to the transmit DMA buffer, to be sent to the output NIC via 

the PCI bus.  
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Fig. 10. Magnification of the packet delay graph reported in figure 8 
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Fig. 11. Timing diagram of a two-packet burst forwarding 

Since ToDevice pulls both A and B as a single burst, they respectively collect the 

delays in the output queue expressed by equation (3). 

nsTnsTT BqueuerouteAqueue 600,1200 __ ≈≈=  . (3) 

In fact, A must wait for B to be routed (this takes a time Troute) before being pulled 

from the queue. Instead, Tqueue_B should in theory be zero, but a lower bound for 

packet delay is always experimentally measured for any datagram traversing the 

output queue. Equation (3) can be generalized as follows: 
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with i = 1,…, N , being N the burst length (i.e. the number of packets admitted by 

PollDevice). This model is consistent with the experimental graph showed in Fig. 8 

and justifies delay values up to 8400ns (PollDevice can poll up to 8 packets in each 

burst). Thus, the horizontal delay lines depicted in figure 8 are due to packet bursts 

stored in the input NIC FIFO. 
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3.4 Effects of bus sharing 

Previous discussions do not explain either the presence of high delay spikes in figure 

8 or packet bursts formation. When the routing task does not use the bus, other 

devices can obtain to move their own data. Two time windows permit this to happen: 

before a new packet arrival (Tidle) or during the Click processing stage. In the first 

case, the bus is kept locked and the input NIC can not transfer any packet to memory 

till the extraneous bus activity ends up: the whole routing process is shifted in time, 

while the input NIC stores incoming packets in its FIFO, forming new packets bursts. 

The magnification of a delay spike is showed in figure 12, as an example of what 

happens if the extraneous bus activity arises during the Click stage. This performance 

is justified in figure 13: when Click has finished its processing, the packet cannot be 

extracted from the output queue, since the bus is locked and ToDevice cannot start its 

pulling stage. Thus, the datagram hangs inside the output queue for the whole 

duration of the noise (Tnoise), acquiring a delay that has no upper bound. 
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Fig. 12. Enlargement of a packet delay spike extracted from figure 8 

 

 Tnoise 

 

Fig. 13. Effects of an extraneous bus access (the black square) during the forwarding process 

This kind of bus activity can form packet bursts, too: as the bus is kept locked, the 

input NIC receives new packets. It can be noticed that the collected extra latency does 

not apparently affect the subsequent routing cycles (as the packet latency is measured 

at the queue level): the queue delay rapidly decreases, since the pull stage is again 

straightly following the routing phase. Detailed bus monitoring would allow a more 

precise knowledge of bus-sharing effects but unfortunately the Linux kernel does not 

actually offer adequate tools yet. 
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4 Performance Evaluation of a Multiprocessor PCI-X Platform 

The previous section clearly showed how the main performance problems of a 

“desktop” PC-based router are represented by both the CPU computing power (when 

short packets are injected at high rates) and the standard PCI bus throughput. To 

overcome these limits, a different test-bed was set up. In particular, to increment the 

computing power a dual processor platform was chosen, while the PCI-X bus was 

selected as a shared structure to plug the network interfaces. Multiprocessor systems 

can achieve high processing power thanks to a high level of parallelism between a 

certain number of CPUs. Given the great availability of multiprocessor systems, SMP 

Click [9] was developed with the aim of improving the Click software routers 

performance. Obviously, to really take advantage of a multiprocessor system, making 

a good use of the parallelism, great attention to the CPU task assignment techniques is 

necessary. 

4.1   SMP Click Schedulable Elements 

The main aim of SMP Click is to run Click configurations on multiprocessor PC 

architectures, through the parallel execution of packet processing tasks among 

different CPUs. SMP Click creates a different thread for each CPU available in the 

system. A CPU thread can schedule only a few elements, the so-called schedulable 

elements, of a Click configuration. All the schedulable elements in the configuration 

are placed in a task array as tasks. In addition, each CPU has its private work list. 

Each task is then assigned to the work list of one of the CPUs, in order to be 

processed by this CPU in a round robin order. Click schedulable elements are 

PollDevice, ToDevice and all the PullToPush elements. When a PollDevice is 

scheduled by a CPU, it examines the network device for new incoming packets, then 

pushes them to the downstream element: the whole push path, that is, the path starting 

from the PollDevice, and ending with a Queue element, is demanded to the CPU 

which schedules the PollDevice. In the same way, the path starting with a Queue 

element and ending with a ToDevice, called pull path, is demanded to the CPU which 

schedules the ToDevice element, and therefore starts the execution of a pull 

processing. 

4.2   CPU Scheduling Management Techniques 

SMP Click supports static and adaptive CPU scheduling. When the static CPU 

scheduling is used, all the schedulable elements are statically distributed between the 

work lists; in this way each of them is always processed by the same CPU. If adaptive 

CPU scheduling is used, on the other hand, Click maintains the average processing 

cost for each schedulable element, in terms of consumed CPU cycles, and the work 

list of each CPU is periodically updated according to these costs, in order to keep the 

load among the different CPUs balanced. The work list updating interval is a 

parameter which can be set in the configuration file. Then, a global scheduler runs 

through the task array again, by assigning each element to the CPU work list with the 
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lowest load, in order to achieve a good load balancing. It should be noticed that the 

adaptive scheduling algorithm takes only into account the load balancing among the 

CPUs, in order to avoid CPUs idle times: no attention is paid to other important 

aspects, like cache misses and cache coherency maintenance mechanisms [10], [11], 

which negatively affect the performance of multiprocessor systems. When packets, 

buffers or other data structures are handled by more than a single CPU, multiple CPU 

private caches can have a copy of a given memory location. As soon as one CPU 

modifies shared data in its private cache, the copies in the caches of the other CPUs 

must be invalidated. The mechanisms, which have to be used in order to ensure the 

consistence of the caches content (cache coherency protocols), introduce an overhead 

which degrades router performance. Instead, if a given data structure is always 

managed by the same CPU, this structure is present in its private cache only. This 

enforces cache affinity, by reducing the processing time, so increasing router 

performance.  

By taking into account these considerations, a few simple rules can be followed for a 

good use of parallelism. For example, every mutable data structure, such as a queue, 

should be managed by as few CPUs as possible. In addition, any single packet, or 

packets belonging to the same flow, should be processed by a single CPU during its 

forwarding path. As a consequence of this last suggestion, if we consider that it is 

likely that a packet coming from a network interface leaves the router from another 

interface, the PollDevice and the ToDevice of the same interface should not be 

scheduled by the same CPU. 

4.3 Performance Analysis 

The following investigations were conducted to strictly respect the RFC1242-2544 

specifications proposed by the IETF Benchmarking Methodology Working Group 

(BMWG). For instance, throughput is specified as the maximum forwarding rate at 

which none of the offered frames are dropped, and results are obtained as the average 

of 20 successive 120-second runs. The testing configuration depicted in Fig. 12 

consists of five PC-based systems running the Linux kernel 2.4.18 and Click release 

1.3. 

 

Fig. 12. The server-based test-bed layout 

One PC implements a RFC1812-compliant router (with a basic FIFO output queuing 

scheme), two are packet generators, and two are packet receivers. During every test, 

each of the two sources injects, by means of the FastUDPSource element, a constant-

rate balanced flow of 64-byte UDP packets into the input ports of the router, while 

receivers collect the traffic coming from the router. The edge router is equipped with 

a dual Intel Xeon 2.80 GHz CPU (with the HyperThreading technology disabled), an 
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Intel E7501 chipset motherboard with a 533 MHz FSB and four distinct PCI-X slots. 

The router has four Intel 82544EI Gigabit Ethernet controllers directly connected by 

copper point-to-point links to the packet generators and receivers. Two of them are 

plugged to the 64-bit/133 MHz PCI-X bus, while the two others are attached onto the 

slower 64-bit/100 MHz PCI-X slots. The choice of this NIC allows to use the polling-

based driver extensions developed by the MIT for these adapters. Like most of recent 

network cards, this NIC disposes of an on-board FIFO buffer to store datagrams 

received from the wire or waiting to be transmitted. In addition, it contains dedicated 

registers maintaining statistics about its internal state. The MLFFR (Maximum Loss-

Free Forwarding Rate) versus input rate for a Click-based router with SMP disabled 

(the 1-CPU case) is 737,000 64-byte packets per second (Fig. 13). More thorough 

analyses were done, increasing the input rate further with the aim to investigate 

system bottlenecks: the forwarding rate no longer increases, while the input interfaces 

report “FIFO Errors” events through their internal registers (Fig. 14). This denotes 

that the NIC-to-memory DMA transfer of packets is failing, that is the system is not 

capable of releasing DMA descriptors to the NIC fast enough to handle all the 

incoming packets, causing the FIFO overflow. This evidence shows how the main 

performance problem is the CPU computing limitation. To overcome this limit, SMP 

Click allows the usage of multiple CPUs (with the adaptive and static scheduling 

techniques described so far), with automatic or user-defined parallel execution of 

packet processing tasks to maximize performance, exposing the advantage of multi-

processor architectures. In order to illustrate how the hardware/software choice affects 

the performance, in Table 2 we further considered the MLFFR values obtained with 

different configurations. 

 

Fig. 13. Forwarding rate vs. input rate for a 1-CPU Click-based RFC-1812 router using 64-byte 

packets (20 120-second runs) 
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Fig. 14. FIFO errors vs. input rate for a 1-CPU Click-based router using 64-byte packets 

Table 2. MLFFR for different router configurations using 64-byte packets 

 
 

 

C1 consists of the 1.6 GHz Pentium III platform with 32bit/33MHz bus described in 

Section 3, while C2-C3-C4 is the dual-Xeon platform described at the beginning of 

this section, with Click SMP support disabled, and enabled with adaptive scheduling 

and static scheduling, respectively. Comparison between C1 and C2 shows how the 

technological improvement of FSB (CPU-memory) and PCI-X buses influences the 

forwarding rate: C2 CPU is less than twice as fast as C1 CPU, but the MLFFR is 

more than twice. C3 performs somewhat better than C2, but it seems that in these 

conditions (i.e. two distinct flows traversing the router) adaptive scheduling algorithm 

cannot take so much advantage by the presence of an additional CPU . Figures 15 and 

15b show how different is the router behavior for C3 in comparison with C2. In fact, 

despite maximum throughput reaches absolute higher values for C3 (around 1,000 

Kpps), packet losses (i.e. FIFO Errors) arise at the NIC level, indicating that all the 

available computing power is not efficiently utilized.  

Since the adaptive scheduling does not take into account the cost of cache misses, but 

only tries to reach a balanced load among the available processors, if two schedulable 

elements handling the same packet are assigned onto different CPUs, the cost of 

processing increases, leading to unsatisfactory performance.  
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Fig. 15. Forwarding rate vs. input rate for a 2-CPU Click router with adaptive scheduling, using 

64-byte packets (20 120-second runs) 
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Fig. 15b. FIFO Errors rate vs. input rate for a 2-CPU Click router with adaptive scheduling, 

using 64-byte packets (20 120-second runs) 

On the contrary, the static scheduling technique offers the network manager the 

possibility to improve router behavior starting from the knowledge of traffic statistics. 

For instance, in our experimental layout, which fundamentally emulates a border 

router, most of the traffic is exchanged between the inner and outer networks (i.e. 

different network interfaces). In these circumstances, the PollDevice and ToDevice 

elements referring to the same interface rarely handle the same packets and thus can 

be allocated onto different CPUs, while elements mostly involved in packet 

forwarding are assigned onto the same CPUs, preventing the expensive cache misses. 

With these guidelines in mind, Fig. 16 depicts how traffic flows are assigned onto the 

available processors. 
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Fig. 16. Assignment of traffic flows to the CPUs, evidencing the parallel processing of 

forwarding activities 

 

Fig. 17. FIFO errors events for the two distinct network interfaces vs. input rate for a SMP 

Click router using the “static scheduling” technique 

This makes evident the parallel processing of the incoming packets, while numerical 

performance results are reported in Table 2 (row C4), showing how this technique can 

take full advantage of the available power computing. A further point to mention is 

how differences between the two PCI-X buses affect the performance. Figure 17 

highlights how the main throughput limitation (using the static scheduling 

configuration) is due to the card connected onto the 100MHz/PCI-X bus, where 

“FIFO errors” events appear first, persuading us that a hardware platform equipped 

with four identical 64-bit/133MHz PCI-X slots should exploit all the available 

computing power, and could probably reach a maximum loss-free forwarding rate of 

1,350,000 64-byte packet/s. Figure 18 resumes the throughput and bus occupancy of 

the router as a function of the packet length: it can be noticed how the limit NIC 

throughput (1 Gbit/s) is reached (the bus is traversed twice for each packet) when the 

packet length is over 256 byte. 
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Fig. 18. Maximum loss-free forwarding rate and corresponding bus occupancy vs. packet 

length for a 2-CPU Click router with static scheduling 

5 Conclusions 

In this chapter measurements performed on a PC-based router have been presented 

and discussed. Investigation of system bottlenecks lead to the conclusion that the PCI 

bus represents the major cause of throughput limitation. The effects on this 

performance figure of different system parameters and bus sharing occurrences have 

been thoroughly evaluated also in terms of forwarding delay. The main conclusion is 

that the time-sharing performed by the PC bus does not guarantee delay fairness and 

leads to unbounded forwarding delays. The bus arbiter logics is in fact implemented 

having in mind the usage of a PC as an end user system, while, when using it as a 

network node, different arbiter programming should be made to assure fair sharing of 

the bus resource.  

Then, it has been demonstrated how the usage of modern PCIX buses combined with 

the insertion of software routers able to parallelize the tasks among different 

processors allows to overcome these limits and permits to take full advantage of the 

potentiality offered by multiprocessor architectures. 
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Chapter III.   Introducing Quality of Service 

Capabilities within Open Routers 

1   Introduction 

Today users ask forever increasing bandwidth and especially require services with 

quality of service guarantees. Being the network built on a set of different sub-

networks, service access control is necessary through procedures coordinated among 

different domains and quality of service requires to be managed during information. 

To this end new routing and queuing techniques must be investigated and new 

functionalities to manage different application flows must be introduced within the 

network [1], [2]. As regards the international scientific community, the IETF has 

defined models for quality of service management in the Internet and in particular the 

Differentiated Services model, which is interesting for scalability aspects. This model 

requires some functions to be implemented in the edge routers, such as packet 

assignment to service classes on the basis of explicit signalling or classification 

mechanisms, and class management in the core routers. Solutions for Differentiated 

Services implementation are available by main router manufacturers as proprietary 

solutions that are difficult to modify and optimize. Recently, open routing approaches 

have been developed with the aim to use standard hardware platforms to support free 

and open software [1].  

The main aim of this new router design strategy is the definition of flexible and 

modular design environment and tools that allow fast router design and modification 

in order to meet user and context needs. The focus is on the edge router where users 

are required to register as willing to generate real time traffic: this information is 

stored at the edge router as Service Level Agreements (SLA) and then used for on line 

authentication. The main target of the Quality of service (QoS) function is to 

recognize real time flows without explicit user signalling on the basis of the protocol 

used or, as an alternative, on the basis of statistical analysis of user traffic. In this 

chapter a new approach to end-to-end QoS is proposed to allow QoS unaware users to 

access network QoS capabilities in a “plug and play” fashion. The basic idea behind it 

is a DSCP marking of the traffic based on a content-oriented micro flow 

classification. The flow classification is made by the edge routers by looking at the 

traffic aggregate generated within the stub network. The proposed classification 

process is developed for real time traffic and considers both protocol and statistical 

analysis of stub network traffic. It is implemented in two distinct open frameworks: 

the Linux Traffic Control and the Click Modular Router.  

The chapter is organized as follows. In section 2 interactive multimedia traffic 

characteristics are analysed; section 3 introduces the Linux Traffic Control and the 

real time classifier implementation, describes the corresponding test bed and 

illustrates the obtained performance, particularly in terms of packet latency and jitter; 

section 4 focuses on the Click Modular Router, how the real time flow classification 
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was implemented using this different framework and which performance were 

obtained. 

2   Differentiated Services Model and Interactive Multimedia 

Traffic 

Quality of Service (QoS) is the capability of a network to forward packets in 

different ways by grouping them into traffic categories called classes. Several 

different solutions to the QoS problem have been devised: ATM (Asynchronous 

Transfer Mode), RSVP (Resource ReSerVation Protocol) [3], the Integrated Services 

[4] and the Differentiated Services [5] architectures are examples of complementary 

and interoperable approaches addressing different needs. The Differentiated Services 

architecture, that is considered here, supports a scalable solution to QoS in IP 

networks being it based on few fundamental concepts and components: the 

identification of the packet QoS class through a code point and the differentiated 

treatment of that packet within a DiffServ node as Per Hop Behaviour (PHB). Two 

main PHBs have been standardised so far: the Expedited Forwarding PHB[6] - for the 

support of services requiring time guarantees - and the Assured Forwarding PHB[7]  - 

for packet treatment according to three types of drop precedence. PHBs are identified 

through a 6 bits label, called Differentiated Services Code Point (DSCP) which is 

placed into the DiffServ Field of the IP header. In order to permit the end-to-end QoS 

management a hierarchical, two-tier [8] architecture was also  proposed. This model 

defines the inter- and intra-domain resource allocation, needed to achieve the end-to-

end QoS support. The approach requires the interaction between the RSVP signalling 

in the stub networks and the bandwidth brokers within the DiffServ domains [9]. So 

the user application should be RSVP capable in order to take benefit from traffic 

differentiation. 

2.1   Interactive Multimedia Traffic 

From the overall performance point of view interactive multimedia applications are 

more resistant to packet loss than to high end-to-end delay or jitter when they are 

transmitted across IP networks. TCP flow control mechanisms assure the correctness 

of TCP streams but the delay introduced by the retransmission of lost packets creates 

a bigger damage than the loss itself, if this is reasonable small (i.e. 10%) [10]. 

Typically, these applications are based on the UDP protocol [11]. The impossibility 

for current best effort IP networks to assure a better service to real-time applications 

has lead to the development of special protocols. The main contributors on this 

direction are the IETF and ITU. To address the previous problems, the IETF Audio-

Video Transport and Multiparty Multimedia Session Control working groups have 

developed RTP/RTCP [12] protocols for the transport of real-time content, and RTSP 

[13] protocol optimised for multimedia streaming. The benefits introduced by these 

protocols, together with the need for a common standard base, have given RTP the 

role of standard protocol for the transport of real-time contents over the Internet. The 
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RTP protocol is being used by the most common interactive multimedia applications 

covering both the commercial and the scientific community as shown in table 1. This 

means that the use of RTP by an application is a sufficient condition to classify the 

transmitted data as real-time data. The key concept, behind our classification and 

marking scheme, is to try to recognise RTP as the protocol used above layer four, 

typically above UDP.  

Table 3. Most commonly used interactive multimedia tools 

 RTP/RTCP RTSP RVSP Audio/Video 

Netmeeting Yes No Yes AV 

Vic Yes No No V 

Rat Yes No No A 

Real Server Yes (live) Yes No AV 

 

As regards specific delay requirements, the ITU [14] studies the transmission delay 

constraints for PSTN. Three different classes of delay that satisfy most of the 

applications have been identified for connections with adequately controlled echo 

[14]. In order to keep the end-to-end delay as low as possible, it is better to transmit 

the audio stream as a bigger number of small packets, instead of a smaller number of 

big packets [15]. There are different reasons that justify this choice. Smaller packets 

are more unlikely to be fragmented or dropped due to buffer management problems 

and moreover the loss of one packet introduces a very limited source of noise at the 

receiver side. 

The packet size depends also on audio and protocol aspects. The audio part 

depends in its turn on the codec frame size and bandwidth while the protocol one is 

related to the use of different headers (i.e. IP, UDP, RTP). In the case of very limited 

transmission bandwidth (i.e. analog dial-up modems) the transmission of different 

audio frame within the same IP packet is required in order to limit the protocol 

overhead [16]. Given a set of codecs, it is possible to estimate the typical mean packet 

frequency and size for audio conference applications over IP networks in order to 

keep the end-to-end delay in the range of few hundreds of milliseconds as specified in 

ITU-T G.114 to assure acceptable quality to delay-aware users [14]. The lower bound 

for this packet frequency can be considered about 10 packets per second. This value 

can be drawn from Table 2 where the values of packet size and frequency are shown 

for G.723.1 codec, assuming 24 byte audio frames generated every 20 ms. 

These considerations about delay, with minor differences, can be applied also for 

interactive videoconference applications and videophone connections. Both packet 

size and frequency values are considered in the classification process. 

Table 4. Flow rate and packet sizes for G.723.1 codec with 24 byte frames every 20 ms 

 

IP Packets per second Coding Delay (msec) Audio payload size (byte) 

1 1000 1200 

5 200 240 

10 100 120 
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3   Using the Linux Traffic Control to implement a QoS Router 

This section describes the design, implementation and testing of a Linux test-bed 

supporting flow-based classification functions for multiservice traffic. Protocol and 

statistical analysis of application flows is performed in the edge routers to provide EF 

treatment to multimedia traffic without any user signalling. These functions take 

advantage of the Linux Traffic Control utilities and implement SLA management and 

traffic statistics collection. Sample measurement performed on the test bed shows the 

effectiveness and feasibility of the proposed solution. 

3.1 Test-bed Layout and Configuration 

In order to perform quality of service trials, a local test bed was designed to 

emulate functions of a real network environment that offers real time services with 

quality of service guarantees. Figure 1 shows the test bed layout, which consists of 

five Intel i810-board systems connected through a Layer2-switch and equipped with a 

1Ghz– Pentium III processor and a 256MB bank of RAM. An  Internet link is also 

provided for geographical connection and testing. The edge router (called Alfa) is 

based on the popular Linux operating system. In detail, a 2.2.19 version of this kernel 

was used as a developing platform and partially modified to satisfy our aims. It 

represents the core of the test bed, since it performs the quality of service functions. 

To this end, it takes advantage of classification, SLA, and bandwidth management 

utilities, eventually by the interaction with a bandwidth broker (called DeisBB), 

connected through the switch.  
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Fig. 5. Functional diagram of the test layout 

It is worth noting that the output link of the router is represented by a 10 Mbit/s 

network card, so that it can be easily saturated; the input interface instead is a 100 

Mbit/s card. The other three computers (called Beta, Gamma and Delta) are dual-boot 
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systems having Linux and Windows 2000 installed; they are exclusively utilised for 

traffic generation and analysis. In particular, Rude, a traffic generator [17] was 

installed on Beta and Gamma and used for injecting three distinct flows of traffic into 

the input port of the router. Specifically, these are a real time flow, a non real time 

flow (both at 64 Kbit/s), and a best effort flow (at 16 Mbit/s, thus sufficient to saturate 

alone the output port of the router). Access to the router by Beta and Gamma is 

obtained through the 10/100 Mbit/s Ethernet switch. A traffic receiver, Crude [17], is 

set up on Delta: it collects information about the packets coming from the output 

interface of the router, helping us to verify if the real time flow had been correctly 

treated. Other applications were also useful for generating the real time flow and 

evaluating how the system can significantly improve the quality of the 

communication under a human perspective. Examples of these are the popular 

Microsoft “NetMeeting”, GnomeMeeting and RAT. The traffic control can be 

configured via the “tc” command, a user-space application which interacts with the 

Linux kernel to create various objects as queues, classes, SLAs, etc and to initialise 

them. A graphical front-end interface was also released for easiness of use. The Linux 

Traffic Control queuing discipline chosen for service differentiation is here based on 

the CBQ (Class Based Queuing) algorithm. Its configuration assumes two classes, 

with 1 Mbit/s and 9 Mbit/s rates, respectively, each with a 100 packet-long FIFO 

buffer attached. Figure 2 shows the basic software architecture of the system.  

 

 

Fig. 6. Software architecture 

The Bandwidth Management Module (BMM), is a Unix bash script which interacts 

with both the Linux Traffic Control and the Bandwidth Broker through the COPS 

client/server protocol (Common Open Policy Service) [18]. By measuring the real 

time traffic flows, the BMM decides if the utilised bandwidth is adequate or not. If a 

bandwidth increase is necessary, it interacts with the bandwidth broker trying to 

obtain additional bandwidth. The BB keeps the value of the residual bandwidth 

continuously updated.   
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3.2 The Real Time Classifier 

In this section the approach to allow QoS unaware users of multimedia tools to 

take benefit of network QoS is described. The new functionality is introduced into the 

edge router in relation to the network scenario of figure 3, although it can be even 

introduced within user equipments. The new feature consists in a classifier that, 

according to a given set of SLAs, performs both protocol and statistical analysis on 

the traffic incoming from the stub network.  The new functionality and its prototype 

implementation are called Real Time Classifier (RTC). RTC is designed for 

interactive multimedia applications and, at this moment, is able to recognize and mark 

that kind of traffic. In terms of DiffServ PHB, RTC marks the traffic recognized as 

belonging to real-time multimedia streams as EF, setting the IP packet DSCP field. 

The number of packets necessary used for classification can be chosen independently 

for each classification algorithm with the aim to optimise the classification delay and 

failure rate trade-off. 

 
 

Fig. 7. RTC classifier functionality on the DiffServ Architecture 

RTC is actually composed by the following four logical units: 

• Classifier: performs traffic classification on protocol and statistical basis; 

• Marker: marks the packets according to the classifier policy; 

• Meter: meters the incoming traffic; 

• Control Unit: manages the SLAs and performs supervision of other units 

actions. 

The control unit has in charge the management of SLA's and the supervision of the 

whole classification process. For our purposes a 7th-tuple as shown in the table 3 

defines a SLA. 

Table 5. SLA Format 

ID IP Mask BW Shared DSCP Policy 
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The ID parameter is the unique SLA identifier. The fields IP and MASK are used 

to identify the host/network belonging to the SLA. The BW parameter is the 

bandwidth allowed for the considered SLA. The policy parameter can take different 

values according with the policy adopted for the out-profile traffic of the considered 

SLA. In particular, at the moment the following values are allowed: OK when the out-

profile traffic is forwarded as in-profile and  no actions is taken; DROP when the out-

profile traffic is discarded. Finally, "shared" is used to specify the degree of fairness 

to among flows belonging to the same SLA. The value of the field ranges between 0 

and 100, and represents the percentage of the bandwidth used on a FCFS basis, with 

zero meaning that all the bandwidth is equally split between the flows and 100 

meaning all bandwidth used on a FCFS basis. RTC control unit has in charge the 

supervision of whole classification, marking and policing process as a filter between 

the input interface and the scheduler.  

Let consider two user A, and B, using a videoconferencing tool (i.e. NetMeeting) 

across a DiffServ capable network. Suppose to have a RTC capable router as Edge 

Router. For each packet coming from the stub network, the RTC control unit performs 

the following algorithm: 

 
while (packet from stub network is received) 
{ 
 if (exists SLA entry for Sender) 
 { 
   if (packet flow is already classified) 
      Mark(Flow_DSCP); 
   else Classify(); 
   if (Meter(packet,SLA)==out-profile)  
 Policy(SLA policy); 
 } 
 else 
 { 
   Mark(Best Effort); 
 } 
 Forward();  
} 

 

The "Classify ()" procedure tries a classification of the incoming packet using both 

RTP protocol header and statistical information. Once sufficient information has been 

collected, the flow is classified and its socket tuple is recorded in the  hashing table of 

classified flows. All its subsequent packets are recognized and marked accordingly by 

matching the value of the tuple. The RTC classifier is the first functional unit 

encountered by the traffic entering the Differentiated Services domain from a stub 

network. RTC is integrated in the Linux Kernel QoS framework named Linux Traffic 

Control, so once classified and marked a packet can be forwarded using a Linux QoS 

scheduler. RTC classifies traffic using both statistical and protocol analysis. The 

protocol analysis is based on the RTP header characteristics; in particular there are a 

few parameters within the RTP header keeping constant their values during the whole 

session. The RTP header has a minimum length of 96 bits and 42 of them remain 

constants during the whole session. The protocol-based classification algorithm can 

be tuned changing the size of the population used to classify. This tuning affects both 
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the precision of the results and the time needed to obtain them. The presence of the 

RTP protocol in the analysed flow is considered a sufficient, but not necessary, 

condition to classify the flow as an interactive multimedia stream. 

For this reason, the statistical classification algorithm adds classification capability 

in the case of real time applications that are not RTP compliant. It takes into account 

the flow rate and the packet size as main parameters for the classification process. As 

described in section 2.1, the flow rate depends on the codec used and bandwidth. 

Typically each IP packet contains one single audio frame. On the other hand when the 

introduced overhead becomes an issue two or more audio frames are grouped in one 

IP packet. The number of audio frames per packet is kept as small as possible in 

relation to the line bandwidth.  For example, the codec G.723.1 [19] produces audio 

frames of 30 ms (33 audio frames per second) and they are generally transmitted one 

per IP packet if the link bandwidth is enough, but considering a 14.4 kbps modem, 

they are grouped in three audio frames per IP packet in order to satisfy the bandwidth 

constraints (table 4). 

Table 6. Flow rate and coding delay 

 Modem 14.4 LAN 

Packet size (Byte) 100 (3 audio frames) 52 (1 audio frame) 

Packet/s 11 33 

Bit/s 8800 13728 

Overhead 28% 52% 

Coding Delay 90 ms 30 ms 

   

Taking into account all the parameters, a flow is supposed to be interactive 

multimedia flow if the number of packets per second is greater than 10 packets per 

second. This is the lower bound to keep the delay in the constraints defined by G.114 

[19]. In this scenario, in order to obtain an acceptable delay for end users, an 

application has to encode the audio using more than 10 packets per second. 

Finally RTC marker unit writes the DSCP value in the DSFIELD of the classified 

packets according to the classification results. RTC meter unit, in conjunction with 

the policy unit, performs the enforcement of the traffic profiles. 

3.3   Experimental Evaluation 

The RTC tool has been implemented hacking a Linux kernel (release 2.2.19) and 

the command TC included in the package iproute2 [20] in order to realize a new filter 

(called RTC) of the Linux Traffic Control. Several tests have been done in order to 

evaluate classification effectiveness and the amount of resources, in terms of memory 

and time per classified flow, required for the classification process. Three different 

traffic flows have been generated by Rude [17] in order to saturate the 10 Mbit/s 

router output link: a real time flow and a non real time flow, both at 64 Kbit/s, and a 

best effort flow at 16 Mbit/s. Access to the router by Beta and Gamma is obtained 

through a 100 Mbit/s Ethernet switch. The Linux Traffic Control queuing discipline 

for service differentiation is here based on the CBQ (Class Based Queuing). Its 

configuration assumes two classes, with 1 Mbit/s and 9 Mbit/s rates, respectively, 
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each with 100 packet FIFO queues attached. The main performance figures of interest 

are the bandwidth used by each flow, the packet loss rate and the time jitter. Jitter is 

defined with reference to figure 4 as J_tx – J_rx. 
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Fig. 8. Main quantities for jitter evaluation 

Figure 5 shows the bandwidth usage for real time and non real time traffic during 

congestion. It is evident that the real time traffic, after the classification process has 

recognized this kind of traffic, obtains the required bandwidth of 64 Kbit/s even if 

saturation is present. The bandwidth used by non-real time traffic is on the other hand 

not stable.  Some losses are present for real time traffic due to the layer 2 transmission 

buffer overflow, where both EF and BE traffics are considered in the same way .  
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Fig. 9. Link bandwidth usage as a function of time for real time and non real time 64 Kbit/s 

flows in the presence of a 16 Mbit/s best effort flow over a 10 Mbit/s link 

This losses can be eliminated by reducing the upstream CBQ queue size for the BE 

class, thus limiting the BE traffic offered to the transmission queue. The packet losses 

in time are represented in figure 6 where is evident the different behaviour of the two 

flows. The packet loss rate for real time traffic has been calculated to be lower than 2 

%. The analysis of transmission delay is presented in figure 7 and 8. Figure 7 shows 

the percentage of packets at different delay for the to 64 Kbit/s flows. The real time 

flow has a delay limited at 5 ms, much lower than the delay for the non real time 

flow.  
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Fig. 10. Packets lost during test for real time and non real time traffic, both at 64 Kbit/s, in the 

presence of a 16 Mbit/s best effort flow over a 10 Mbit/s link 

0

5

10

15

20

0 5 10 15 20 25 30 35 40 45 50

Delay [msec]

#
 o

f 
p

a
c

k
e

t

Real time flow

Non real time flow

 

Fig. 11. Distribution of delay for real time and non real time traffic 

0

5

10

15

20

25

30

35

40

0

1
0

2
0

3
0

4
0

5
0

# of packet

D
e

la
y

 [
m

s
e

c
] Real time flow

Non real time flow

 

Fig. 12. Packet delay during test for real time and non real time traffic 

 

Figure 8 evidences the effect of the RTC after the time necessary for recognizing 

the real time flow. At the beginning the two flows are dealt in the same way, then, 
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after less then 10 ms, when the classification procedure is completed, the different 

behaviour in terms of delay is evident. Figure 9 shows the temporal jitter as 

previously defined for real time and non real time traffic. The values of the jitter for 

real time traffic are acceptable being within 5 ms after the flow has been classified. 

As regards the jitter for non real time traffic, it is limited only because almost all-non 

real time traffic is lost and the small percentage of packets that enters the queue 

typically finds it full. 
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Fig. 13. Time Jitter for real time and non real time traffic 

A temporal analysis focused only on real time traffic has been also performed in 

the presence of best effort traffic at 16 Mbit/s with the insertion at a given time of the 

RTC function. In figure 10 the time behaviour for the bandwidth used by real time 

traffic is considered, showing the transition from a situation with not guaranteed 

bandwidth to a stable one when the RTC function is active. 
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Fig. 14. Effect of the introduction of the RTC function on the behaviour of real time traffic 
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4   Using the Click Modular Router to implement a QoS Router 

The large number of hardware producers, low costs of PCs, and the continuous 

progress in performance are important factors which are making the design of a 

packet switch based on a free and open-source platform more attractive [21][22]. 

Another important demand is nowadays the modularity of the software structure, 

which would help network manufacturers’ revision and design of new functionalities 

in a router, according to different types of needs. For instance, edge routers, contrary 

to core routers, usually need more specialized tasks, like packet filtering and 

classification for Quality of Service. This section describes the design, 

implementation, and testing of an edge router supporting flow-based classification 

functions for real time traffic. Protocol and statistical analysis of application flows is 

performed to provide EF treatment to multimedia traffic without any user signalling. 

These functions take advantage of the Click Modular Router [23], which is assumed 

as a starting point to develop flow-based classification of real time services and to 

demonstrate a viable design procedure to support new multi-service router 

functionalities Sample measurement shows the effectiveness and feasibility of the 

proposed approach as a step beyond in the field of open routing design.  

4.1   Real-time Flow Classification 

The classification procedures require modification of the reference Click router 

diagram and new output queue management modules. The new functionalities have 

been evaluated in terms of latency and classification effectiveness. Comparisons of 

performance are presented to show the processing overhead introduced by 

classification. In the following, the approach to allow QoS unaware users of 

multimedia tools to take benefit of network QoS is described. The new service is 

introduced into the edge router and consists in a classifier that, according to a given 

set of SLAs, performs both protocol and statistical analysis on the traffic incoming 

from the stub network. The new functionality and its prototype implementation are 

called Real Time Classifier (RTC). Figure 11 depicts the modules inserted in the 

Click framework to realize the RTC. Comparing it with the RFC1812 router described 

in [24], the RTC replaces here the simple FIFO-based output queuing scheme, being it 

inserted between the basic router and the output device interface. 
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Fig. 15. The RTC internal structure 

The RTC is designed for interactive multimedia applications and is able to 

recognize and mark that kind of traffic. In terms of DiffServ PHB, RTC marks the 

traffic recognized as belonging to real-time multimedia streams as EF, setting the IP 

packet DSCP field. The number of packets required for classification can be chosen 

independently for each classification algorithm with the aim to optimize the 

classification delay and failure rate trade-off. With reference to figure 11, the SLA 

Manager module is dedicated to identify the traffic belonging to a certain SLA (see 

table 3). The SLA Manager is implemented using an existing Click element, 

IPClassifier, which performs a pattern-based filtering to examine the source IP 

address and checking if it pertains to a specific SLA. If so, the packet is passed to the 

Protocol Classifier, which is as a new Click compound element designed and added to 

the library; otherwise, it is pushed into the BE (low-prioritized) output queue.  

The Protocol Classifier, depicted in Figure 12, is able to filter the RTP-marked 

traffic flows. The IETF RFC1889 [25] establishes that the RTP packet must always 

contain a 32-bit field called SSRC (Synchronization SouRCe identifier), which is kept 

constant and distinct for each single flow. The GetSSRC element extracts these useful 

bits from the RTP header and passes them to the RTPClassifier, which is able to hook 

each distinct RTP flow if obtaining N occurrences of its SSRC value in a T-seconds 

interval of time. Once a flow is identified, an internal table keeps the flow in the 

“classified” state, deleting it only after 30s of inactivity. The SetIPDSCP element is 

then involved in marking the TOS field of the IP header. The presence of the RTP 

protocol in the analyzed flow is considered a sufficient, but not necessary, condition 

to classify it as a multimedia stream. For this reason, the Statistical Classifier does an 

additional analysis. Figure 12 also depicts the structure of this other new compound 
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element. The statistical classification algorithm adds classification capability in the 

case of real time applications, which are not RTP compliant. It takes into account the 

flow rate and the packet size as main parameters for the classification process. 

Typically, these parameters depend on the source encoding used and bandwidth, as 

mentioned in section 2: for instance, a flow can be considered an interactive 

multimedia flow if the packet rate is greater than 15 packets/s and the packet size is 

less than 200 bytes. Once sufficient information is collected, the flow is classified as 

real-time. Obviously, since no SSRC field is present in this case, miscellaneous flows 

cannot be distinguished from each other. The SplitFirst(J) block is destined to redirect 

(in the BE queue) the leading J packets: this mechanism should guarantee the 

cascading modules to receive stable data. CheckAverageLength(K), instead, is able to 

monitor the mean size of the last 15 received packets: if greater than K bytes, the 

current packet is passed to the BE queue. 
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Fig. 16. Protocol based and statistical classification 

Otherwise, it is pushed in the Meter(L) element, which measures the packet rate 

and classifies the real-time flow, when that is greater than L packets/s. Accordingly to 

the SLA “BW” and “Policy” parameters, another new block was designed to manage 

the out-of-profile traffic with more flexibility, the BwTrafficShaper, similar to the 

standard BandwidthShaper, but with a secondary output dedicated to the out-of-

profile traffic. While the in-profile traffic is shaped as required, it allows to apply 

various policies to the out-of-profile one: besides being discarded, this can be 

redirected elsewhere (for instance, to the BE queue). 
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4.2   Test-bed Layout and Configuration 

In order to perform quality of service trials, a testing configuration was designed to 

emulate functions of a real network environment and to offer real time services with 

quality of service. Figure 13 shows the test-bed layout, which consists of four PC-

based systems, connected through a Gigabit Ethernet layer2-switch. The edge router 

(Alpha) is equipped with a 1.6 GHz Pentium IV Processor. The other PCs (Beta, 

Gamma, and Delta) are exclusively utilized for traffic generation and analysis and 

have an on-board 1Ghz–Pentium III processor. Every PC is equipped with the Intel 

PRO1000XT-Server network adapters. On our router, we plugged two of them on the 

32-bit/33 MHz PCI bus, even if they would be ready to work with the more advanced 

64-bit/133 MHz PCI-X bus. The choice of this NIC was led by the necessity of using 

the same polling-based driver already developed by the MIT for the Intel PRO1000 

family cards. 
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Fig. 17. Functional diagram of the test-bed layout 

All the PCs were installed with the 2.4.9 version of the Linux operating system and 

Click release 1.2.4 (with the Intel Pro1000 4.3.15 driver added). The edge router 

performs the quality of service functions. To this end, it offers RTP-based and 

statistical classification of multimedia traffic, and SLA management. When 

necessary, the output link of the router was also tightened to work at 10 Mbit/s, so 

that it can be easily saturated. RUDE, a traffic generator, was installed on Beta and 

Gamma, which were used for injecting three distinct flows of traffic into the input 

port of the router. Specifically, these are a real time flow, a non real-time flow, and a 

best effort flow (at 16 Mbit/s, thus sufficient to saturate alone the output port of the 

router). Access to the router by Beta and Gamma is obtained through the Gigabit 

Ethernet switch. A traffic receiver, CRUDE, is set up on Delta: it collects information 

about the packets coming from the output interface of the router, helping us to verify 

if the real time flow was correctly treated. Other applications, the popular Microsoft 

“NetMeeting” or RAT, were also useful for generating the real time flows and 

evaluating how the system can significantly improve the quality of the 
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communication under a human perspective. Other more general measurements were 

done using Click installed on Beta and Delta as a traffic generator and collector.  

4.3   Experimental Evaluation 

Figure 14 shows performance offered by the described hardware platform. The 

router can manage a maximum loss-free forwarding rate of 120,000 packet/s with the 

interrupt-based drivers and 370,000 packet/s using the polling technique. The main 

performance figures of interest for a QoS capable router, however, are the packet 

delay and the time jitter. Figure 15 depicts the average delay time of an RFC-1812 

polling-based router, at different input packet rates with 60 s runs of traffic. 

 

100  

200  

300  

400  

100 200  300  400  500  

In pu t rate [K p ackets/s ] 

O
u

tp
u

t 
ra

te
 [

K
p

a
c
k
e
ts

/s
] 

P olling  

In te rrup t 

 

Fig. 18. Forwarding rate as a function of input rate for a Click-based RFC-1812 router using 

interrupt and polling techniques (64-byte packets) 
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Fig. 19. Average delay time for a Click-based RFC-1812 router as a function of input rate (64-

byte packets and 60 seconds runs) 

The main contribution to the global delay is due to the output queue term (a FIFO 

with 100 elements), while the routing process alone requires about 1.2 µs. Under 
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these conditions, no packet loss is observed. It is to mention that 10 elements FIFOs 

were also tested: the global delay is much smaller (about 2-3 µs), but packets drops 

are observed when coming up to the maximum input rate. More detailed analyses 

were done for the QoS capable router, after the insertion of the Real Time Classifier. 

In this case, its output link was tightened to 10Mbit/s, inserting a BandwidthShaper 

before the ToDevice block (which interfaces the Click environment to the NIC). The 

RUDEs installed on Beta and Gamma were used for injecting three distinct flows of 

traffic into the input port of the router. Specifically, a real time flow, a non real-time 

flow (at 512 Kbit/s), and a best effort flow (at 16 Mbit/s, thus sufficient to saturate 

alone the output port of the router). Table 5 illustrates the average delay time for the 

RTP and the best-effort traffic, and the maximum output queues length reached 

during the runs (the output queues are 100 elements FIFOs). As expected, the RTP 

traffic is forwarded with a much smaller delay (≈32 µs) than best effort traffic 

(typically 5 ms). 

Table 7. Average delay time and maximum output queues length for a RTP 512 Kbit/s flow in 

the presence of a 16 Mbit/s best effort flow over a 10 Mbit/s link 

Traffic Average IP  

Routing Delay 

Average RTC 

Delay 

Average Click 

Delay 

Max 

Queue 

Length 

RTP  1.19 µs 30.75 µs 31.94 µs 13 

Best 

Effort 

1.19 µs > 5000 µs > 5000 µs Overflo

w 

 

With the same contour conditions, an additional evaluation was done about the 

end-to-end delay of the RTP traffic. This is feasible since RUDE marks any packet 

with a sequential time-stamp, making possible to determine the total delay of the 

packets, due to the path from the generator to the receiver. This measurement is 

influenced by all the delay factors inside the test-bed (the traffic generator and 

collector inner delays, the switch latency, the Click delay, and the NIC-to-Click 

transit time). Figure 16 shows how the end-to-end delay for the RTP flow is about 

120 µs. It is determined in the presence of the implemented functions and compared 

with a wired generator-to-receiver connection. The latency introduced by all the 

functions inserted in the Click environment is denoted with Tclick and is given by 

Tclick = Trouting + Trtc, (5) 

where Trouting is the delay introduced by the RFC1812 router part, and Trtc is the 

delay due to the RTP classifier blocks. The values of these contributions were 

measured through the Click support. The end-to-end lag can be resumed as 

Tdelay_with_click = Tgen + 2*Tsw + 2*Tnic + Tclick + Tcoll, (6) 

where Tgen is the time spent by the traffic generator to put the packets on the wire, 

Tsw is the switch latency (2,5 µsec), Tnic is the NIC-to-Click transfer time, and Tcoll is 

the time spent by the traffic collector to retrieve the packets from the wire. The direct 

wire connection instead is 

Tdelay_with_wire = Tgen + Tsw + Tcoll  . (7) 
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Thus, knowing that Tclick = 31,94 µsec, Tdelay_with_click =123 µsec, Tdelay_with_wire= 58,2 

µsec, it is possible to estimate the value of  

Trouter ≡ Tnic + Tclick + Tnic = 62,3 µsec ;  Tnic ≈ 15,18 µsec. (8) 
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Fig. 16. End-to-end delay for a RTP 512 Kbit/s flow in the presence of a 16 Mbit/s best effort 

flow over a 10 Mbit/s link 

A point to mention regards the graphed data in figure 16: it is possible to notice a 

few high delay peaks in the picture. The same spikes were also observable in the case 

of the wire connection delay and are not due to an odd behaviour of the router, but to 

some extraneous synchronism activity on the traffic generator and collector systems. 

An additional analysis of the transmission delay (inside the Click environment) is 

presented in figure 17 and 18.  

Figure 17 shows the distribution of the delay for the RTP and BE flows, while 

figure 18 depicts the temporal jitter for the same kinds of traffic. Most of the values of 

the jitter for real-time traffic are acceptable being within 100 µs after the flow has 

been classified. As regards the jitter for non real time traffic, it is limited to some 

hundreds of microseconds only because almost all non-real time traffic is dropped and 

the small percentage of packets that enters the queue typically finds it full. 
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Fig. 17. Delay time distribution for a RTP 512 Kbit/s flow in the presence of a 16 Mbit/s  

best effort flow over a 10 Mbit/s link 
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Fig. 18. Jitter distribution for a RTP 512 Kbit/s flow in the presence of a 16 Mbit/s  

best effort flow over a 10 Mbit/s link 

5   Conclusions 

In this chapter the design, implementation and testing of a flow based real-time 

classifier called RTC was described. RTC uses different methodology to perform its 

function, based on protocol analysis and traffic patterns. Being it flow-oriented, it can 

perform functions such as bandwidth usage measurement and thus can be fruitfully 

used in a dynamic bandwidth management scheme. The results show effectiveness of 

RTC in recognizing real time flows and in guaranteeing bandwidth as limited delays 

for these kinds of applications. The RTC was implemented in both the Linux kernel 

environment and Click Modular Router. 
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Chapter IV.   Design and Implementation of Adaptive 

Algorithms for Inter-domain Dynamic Bandwidth 

Allocation 

1   Introduction 

The evolution of the Internet to support different quality of service classes, 

especially needed for real time services, requires models and techniques for network 

engineering and resource management, which should be suitable for large 

communication infrastructures and meet efficiency and scalability requirements. An 

intense research activity on models for service differentiation [1],[2], [3] has been 

developed in the last few years and, more recently, on the techniques for resource 

management [4], [5], [6], [9], [10]. Among these, the scheme based on the Bandwidth 

Broker concept has been considered as suitable to cope with the Differentiated 

Services model proposed for QoS support [4]. Although this approach is fairly 

centralized it can be made scalable through hierarchical organization of functions as 

proposed in [6]. This proposal split the resource management problem into intra-

domain and inter-domain functions with different administrative scope: intra-domain 

resource management is referred to the bandwidth broker of the domain and is 

typically controlled by a single organization, while inter-domain resource 

management involves interactions between bandwidth brokers of different 

organizations and, on the basis of the proposal, it is achieved by bilateral agreements 

between adjacent domains. The aim is to optimize the usage of the  inter-domain link 

and, at the same time,  enhancing system scalability through the reduction of the 

number of requests issued to the bandwidth brokers of the interworking domains.  

At the same time the edge router must be equipped with new functionalities, in 

order to resolve the classes of traffic designated for a privileged treatment, and to 

manage efficiently the resources arranged by its bandwidth broker. Concerning this, 

leading routers’ producers nowadays offer proprietary solutions, which are often 

complex or impossible to improve and adapt. Instead there is a growing attention of 

the international scientific and industrial community for open and standard platforms 

supporting free software. To this end, the Click router [7] is a flexible and modular 

framework for the simple design and the rapid implementation of new services. In the  

previous chapter, it was used for the development of flow-based protocol and 

statistical classifiers of real time traffic. New functionalities are now going to be 

presented to meter the aggregated traffic of a service class in order to dynamically 

modulate the inter-domain link bandwidth and accomplish its effective usage. These 

new functions have been evaluated in terms of latency, efficiency and number of 

requests for the bandwidth broker.  

The chapter is organized as follows: in section 2 the general model for resource 

management is introduced;  in section 3 a simplified threshold-based model for 

resource management is discussed, focusing on the problems of design parameters, 
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and measurement process of traffic; the effect of the measurements process will also 

be discussed and exploited to manage bandwidth allocation even in the presence of 

congestion and a combination of the original algorithm with a strategy for congestion 

management is proposed to overcome the instability problems that could  arise in real 

operating environments; in section 4 a new bandwidth update algorithm based on the 

use of the logarithmic function is introduced, together with the performance analysis 

and design procedures presentation; the new algorithm is characterized by few design 

parameters whose main effects on performance are mostly independent of each other. 

Both sections 3 and 4 demonstrate how the bandwidth allocation schemes were 

implemented within the Click Modular Router environment: system performance 

measurements are presented and discussed. A comparison of the two different 

bandwidth allocation schemes is also presented in terms of time behaviour, efficiency 

and packet latency. 

2   The System Model 

The network model that has been considered is represented by multiple 

interconnected domains each equipped with a resource manager called Bandwidth 

Broker (BB) [4]. The BB is supposed to be responsible for call admission functions 

and resource management within the single domain and resource management on 

inter-domain links. This last is of particular interest in network design because it 

involves the interaction between different administrations to achieve a trade-off 

between performance and costs by optimizing the bandwidth allocated on inter-

domain links in relation to the real link usage. A threshold-based mechanism is here 

considered based on the proposal presented in [5] and is briefly summarized as 

regards the interactions with the BB to increase/decrease the bandwidth allocated to 

inter-domain links. The mechanism is applied to a single class of service to which a 

given amount of bandwidth bd is initially allocated by network manager. The basic 

operations are sketched in figure 1 and involve the edge routers (ERs) that interface 

with the inter-domain link and the bandwidth broker of each domain. The inter-

domain link bandwidth is assumed shared among different service classes. Dynamic 

allocation of the link bandwidth to service classes is provided for each domain to 

achieve efficient bandwidth utilization. Bandwidth allocation management is 

performed in relation to the aggregate traffic of a single class that transits through 

adjacent domains. The following operations are performed as illustrated in figure 1: 

 

- the originating edge router ER1 sends a request for bandwidth 

increase/decrease to the bandwidth broker BB1; 

- BB1 forwards this request to BB2 that verify through a query to ER2 the 

bandwidth availability; 

- BB2 notifies BB1 of the result; 

- BB1 enables ER1 for its request. 
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Fig. 20. Network model based on the bandwidth broker concept for inter-domain resource 

allocation 

The interactions between ERs and BBs can be implemented using protocols like 

COPS [8]. With this scheme each BB manages a number of interactions that is related 

only to the ERs of its domain and to the BBs of directly connected domains, thus 

enhancing the scalability of the whole system. The mechanism is here applied to a 

single class of service, which is initially equipped with the amount of bandwidth 

allocated by the network manager. ERs accessing network links are responsible of 

monitoring bandwidth usage by the aggregate traffic of a class and of asking the 

related BBs for the necessary increase/decrease of allocated bandwidth; an 

increase/decrease request is assumed here always followed by a positive answer 

within a time Tbb. 

3   Threshold-based Dynamic Bandwidth Allocation 

3.1   The threshold-based mechanism 

A well-known approach is based on a threshold-based system that behaves as 

explained in the following [6][8]. Let us introduce the following symbols: 

 

- bd the bandwidth currently allocated to the service class; 

- bo the bandwidth currently used by the aggregate traffic of the class; 

- tu = bd*lmax upper threshold; 

- tl = bd*lmin lower threshold. 

 

The following assumption is made: the initial bandwidth is allocated by BBs on 

inter-domain links to an application session in relation to parameters specified during 

a call admission procedure. If call admission is not provided no initial bandwidth is 

allocated. No per flow information is kept in any case in the BBs. ERs accessing 

inter-domain links are responsible of monitoring link bandwidth usage by aggregate 

traffic and of asking the related BBs for the necessary increase/decrease of allocated 

bandwidth. A request for additional bandwidth is sent to the BB only when bo> tu and 
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a request for release is sent to the BB when bo< tl. No requests are sent to the 

responsible BB if tl <bo< tu. Bandwidth increments/decrements are performed by 

means of coefficients i and d, respectively, that update the allocated resources bd on 

the basis of the following relationships: bd’=bd*i, in the case of bandwidth increase, 

and bd’=bd*d, in the case of bandwidth decrease. An increase/decrease request is 

always followed by a positive answer within a time Tbb. It should be noticed that this 

system has a main drawback consisting in the large number of parameters to set up for 

system design. 
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Fig. 21. Sketch of the threshold-based mechanism 

Figure 2 gives a sketch of the threshold-based mechanism by neglecting the time 

required for bandwidth updating. The algorithm described requires the system to 

know the existence of a flow, as it can result from a classification process.  The 

parameter bo can be ideally assumed exactly known (ideal system) or be the result of a 

measurement procedure (measurement-based system) whose characteristics and 

effects will be analyzed in the following. 

3.2   Bounds for design parameters 

The choice of the correct parameter configuration of system described is crucial to 

achieve bandwidth utilization efficiency, scalability and system stability. In fact, 

under particular conditions of traffic patterns, bandwidth oscillations could arise as a 

consequence of wrong parameter configuration. These oscillations could be 

unavoidable for traffic patterns with rapid and consistent fluctuations.  In figure 3 a 

configuration that causes bandwidth oscillations is presented. Starting from 

bandwidth assignment B, oscillation can arise after an increment if the new bandwidth 

B’=i*B causes b0 to be lower than B’*lmin; similarly, after a decrement, oscillation 

arises if the resulting bandwidth B’’=d*B cause b0 to be higher than B’’*lmax. Both 

these situations require a new bandwidth update in the opposite direction.  

Under the hypothesis of slowly variable traffic behaviours during the update time, 

sufficient conditions can be obtained to avoid oscillating bandwidth updates, that are 
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minminmax )(' liBlBlB ⋅⋅=⋅>⋅  and   maxmaxmin )('' ldBlBlB ⋅⋅=⋅<⋅  

that result in minmax lil ⋅>  and minmax
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l ⋅>  respectively. 

 

The two conditions can then be simultaneously expressed by: 
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Fig. 22. Configurations of system parameters that give rise to bandwidth oscillations 

  

 



 

48 

0,75 

Lmin 

Lmax 

0,5 
1 

0,5 

1 

0 
0,35 1/k 

minmax LL =

minmax LkL ×=

 

Fig. 23. Admissible configurations of system parameters 

The previous relationships can be graphically represented as shown in figure 4, 

which gives the area of admissible configurations for lmin and lmax depending on the 

slope of the limiting line. The limiting line is determined by only one of the values d 

and i, the one which gives rise to the most requiring condition. Further delimitations 

of this area are consequences of considerations related to efficiency and congestion 

limitation, which will be discussed later in the paper; in the example they are fixed at 

0.35 and 0.75 for lmax and lmin respectively. In practical implementations of the 

mechanism, the bandwidth is constrained to assume values on a discrete range, being 

it updated through fixed amount of bandwidth. In this case a further relationship 

between d and i can be obtained by observing that the value after the decrement 

(increment) that follows an increment (decrement) results to be equal to the starting 

value so that B=B’·d=B·i·d that turns in i·d=1 and B=B’’·i=B·d·i that turns in i·d=1 

again. 

In order to gives a guideline for the choice of the parameters let us refer to 

bandwidth efficiency as the main performance target. To this end the driving 

parameter of the set up procedure is represented by lmin. The procedure starts from a 

reference value for lmin and tries to increase it, to improve bandwidth usage as far as 

other constraints, represented, for example, by the frequency of interactions with the 

bandwidth broker or by the percentage of traffic overlimit, are satisfied.  At this point 

different strategies must be followed depending on the condition that is taken into 

account. If the percentage of traffic overlimit is considered, it is possible to further 

increase lmin by decreasing accordingly lmax . If the frequency of interactions is 

considered it is possible to optimize the efficiency by increasing lmax accordingly. As 

regards d and i, they should be both decreased to diminish the overlimit traffic while i 

should be increased and d decreased to reduce the number of interactions. The 

diagram of the empirical optimization procedure for efficiency is sketched in figure 5.  
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Fig. 24. Diagram of parameters set up in the efficiency optimization procedure 

3.3   Effects of the measurements process 

Previous considerations on the threshold based mechanism refer to the ideal 

situation of exact knowledge of current bandwidth usage. In practice the evaluation of 

bandwidth usage is the result of a measurement process that influences the values 

which are available for the algorithm. A simple time window mechanism is assumed 

here to evaluate the influence of the measurement process on the knowledge of the 

parameters. The measurement process assumes the time divided into interval of size T 

each in its turn further divided in intervals of size S. The average bandwidth is 

calculated over each S-interval and the measure updated each time the results is 

greater than the current value. The maximum over T of these values is maintained as 

bandwidth estimate until the end of one subsequent T interval as a maximum. This 

measurement process has the advantage to be very simple and to take into account 

possible correlation in traffic at the same time. It tends to capture the envelope of the 

traffic, depending on traffic behaviour and on the values of parameter T and S. Some 

evaluations of the measurement algorithm have been performed by simulation to 

investigate the effect of parameters S and T in relation to traffic characteristics. The 

results presented here a related to a traffic aggregate resulting from 60 Pareto sources 

with the following characteristics: 

 

TON TOFF Peak transmission 

rate 

Pareto 

α =1.2, k=0.4 

Pareto 

α =1.2, k=0.4 

32 Kbit/s 

 

thus obtaining a traffic aggregate with long range dependent characteristics. Figure 

6 shows a comparison between the real behaviour, the simple algorithm with window 

T=1·S and the window based algorithm with T=10·S. 
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Fig. 25. Time behaviour of bandwidth for different configurations of the measurement process 

The simple algorithm better follows the dynamics of the trace but is delayed and 

averaged on S thus typically giving an underestimate of the bandwidth usage. On the 

contrary, by extending the window T, a more stable value is produced by the 

measurement process although in excess with respect to the real requirements. In 

order to suitably choose the values of T and S the difference between the average of 

real and estimated behaviour has to be minimized while trying to maximize the 

fraction of time during which the estimate is greater than the real behaviour.  

3.4   An algorithm for congestion management 

Real time services require low delay within the node that can be assured by a 

suitable set up of the bandwidth allocated for the corresponding EF class in the 

Differentiated Services model. In any case congestion can temporarily arise due to 

delays in bandwidth estimate and update, that causes packets to be queued waiting for 

transmission resources. The introduction of lmax can reduce the occurrence of these 

events, but a trade off must be reached between system performance and efficiency. 

So the threshold-based mechanism can be fruitfully coupled with a congestion 

resolution mechanism based on the monitoring of the queue occupancy. The main aim 

of the algorithm is to limit the time to get through the system by setting the maximum 

acceptable time Ts to empty the queue.  So the queue threshold Sq in bytes is given by 

Sq=Ts*Bd/8, being Bd the allocated bandwidth at time t. The threshold Sq varies as a 

function of Bd. As a consequence of the previous definition, congestion is defined as a 

system state with queue occupancy greater than Sq. When congestion arises, the 

measurement-based algorithm is excluded and the following operations take place: 

- bandwidth update is performed such that the new threshold Sq’ is greater than 

queue occupancy; to this end a margin MS is introduced as a percentage of the 
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current queue occupancy Q such that Sq’= (1+Ms/100)*Q=Ts*Bd’/8 from which 

the new value of bandwidth that assure the target delay Ts can be obtained. 

- after a bandwidth update, if the queue occupancy is still greater than the 

threshold (due to further arrivals during the update time) a new update is 

performed with the same rule; 

- when congestion finishes, that is when the queue occupancy gets below the 

threshold, the normal algorithm is used after a guard time Tg: this is important 

to allow the measurement process to produce the new output value and thus 

avoiding unsafe oscillations. The value Tg should be at least two times Sq to 

obtain the stable value. 

The packet transfer delay is thus bounded by Ts+2 Tbb. For example for a target 

maximum packet transfer delay of  30 ms in the router with Tbb= 10 ms, Ts must be 

limited to 10 ms. On the other hand Ts should be large enough to avoid too frequent 

activation of the congestion control algorithm. In all other cases the threshold-based 

algorithm prevents congestion through lmax. The frequency of activation of the 

congestion management algorithm can be reduced through the adoption of a larger 

guard bandwidth corresponding to lower values of lmax. 

3.5   Performance Analysis 

Performance analysis has been developed by simulation with the aim to compare a 

system with static bandwidth allocation, a system with dynamic bandwidth allocation 

based on the exact knowledge of the real behaviour and the measurement based 

system with the congestion control algorithm. The following general hypothesis are 

made for the dynamic cases: 

 

- the answer time for the bandwidth broker is assumed equal to 10 ms; 

- the result of the answer is always positive; 

- the edge router output link capacity is 10 Mbit/s. 

 

Evaluations has been performed with two kinds of ON/OFF traffic whose 

characteristics are summarized below. 

Table 8. Traffic configurations used in the simulations 

Type 
# 

sources 
TON TOFF Peak transmission rate 

1 60 
Pareto 

α=1.2, k=0.4 

Pareto 

α=1.2, k=0.6 
32Kbit/s 

2 60 
Pareto 

α=1.2, k=0.04 

Pareto 

α=1.2, k=0.6 
128Kbit/s 

 

 

Static allocation – The static allocation is considered related to the sum of the peak 

bandwidths required by each flow of the aggregate. This results in a very low 

efficiency although the time transparency is good as shown in the table for the traffic 

types previously described. 
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Table 9. Efficiency and delay for static peak rate allocation 

Type Static bandwidth Efficiency (%) Average delay (ms) 

1 1920000 40,77% 0,0187 

2 7680000 9,29% 0,0175 

 

 

Ideal system – Performance for a system that works on the basis of the ideal 

knowledge of the real behaviour are here reported for type 1 traffic in terms of 

efficiency, defined as the ratio between the average occupied bandwidth and the 

average available bandwidth, average delay and number of interaction with the 

bandwidth broker. In figure 7 the efficiency is shown to increase with the threshold 

lmin; at the same time the average delay increases as shown in figure 8 thus calling for 

a trade off between these two aspects. Also the number of interactions increases with 

lmin (figure 9). 
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Fig. 26. Average delay for the dynamic allocation as a function of the lower threshold lmin with 

exact knowledge of bandwidth usage 
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Fig. 27. Efficiency for the dynamic allocation as a function of the lower threshold lmin with 

exact knowledge of bandwidth usage 
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Fig. 28. Number of interactions as a function of the lower threshold lmin with exact knowledge 

of the bandwidth usage 

Measurement based system without congestion control – The dynamic bandwidth 

allocation is here considered in relation to the time window measurement process 

described in section 2.3. A system with S=0.8s and T=10 S has been simulated and its 

time behaviour was shown in figure 6. It is evident the difference between the output 

of the measurement process and the real behaviour. In particular the dynamic of the 

measurement bandwidth is delayed and, in this case, always within the guard band of 
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the dynamic allocation algorithm. This causes the allocated bandwidth to be stable 

although the real bandwidth has a more dynamic behaviour. This is expected to lead 

to lower efficiency but at the same time to a lower number of interactions with the 

bandwidth broker while the delay is expected to be lower too.  
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Fig. 29. Comparison of efficiency for the measurement based algorithm and the ideal approach 

with traffic type 1, with S=0.8s, T=10·S, i=d=10%, lmax=90% 

In figure 10 a comparison in terms of efficiency with the ideal case is presented 

and shows the lower efficiency of the measurement based system that in any case is 

much higher than in the static case. On the other hand the delay is better as shown in 

figure 11 and the system can be considered more suitable for quality of service 

guarantees. Also the number of interactions with the bandwidth broker presented in 

figure 12 is much lower and stable thus assuring the scalability of the solution. 
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Fig. 30. Comparison of the average delay for the measurement based algorithm and the ideal 

approach with traffic type1, with S=0.8s, T=10·S, i=d=10%, lmax=90% 
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Fig. 31. Comparison of the number of interactions for the measurement based algorithm and 

the ideal approach with traffic type1, with S=0.8s, T=10·S, i=d=10%, lmax=90% 
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Fig. 32. Dependence of the number of requests on lmin  for the measurement based algorithm 

with traffic type 1,  S=0.8s, T=10·S, lmax=90%,, for different values of  i=d 

Measurement based system with congestion control - Finally the introduction of 

the congestion control algorithm in the measurement based system is evaluated. In 

table 3 results regarding the maximum delay are given and show that it is always less 

than 35ms, as expected, being TBB =10 ms and Ts =15ms. The delay without 

congestion control is also reported. 

Table 10. Maximum delay: comparisons for the measurement based system with and without 

congestion control. (i=d=10%,  Ts=15ms, Ms=20%, Tg=1.6s) 

Type  (S,T) lmin% lmax% 
Max delay without 

control [ms] 

Max delay with 

control [ms] 

1 
(0.8s, 

10S) 
70% 90% 61.8 34.5 

2 
(0.8s, 

50S) 
60% 80% 37.6 22.1 

 

 

The following results are given for type 1 traffic. Figure 14 shows the efficiency as 

a function of the threshold  and figure 15 shows the number of interactions. The 

efficiency increases with Ts and accordingly the number of interactions decreases. On 

the other hand Ts must  be limited for QoS guarantees, being it involved in the 

expression of maximum delay. In figure 16 efficiency degradation for the system with 

QoS control is shown for Ts =15ms.  
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Fig. 33. Efficiency as a function of the lower threshold for type 1 traffic for the dynamic 

allocation algorithm with congestion control (S=0.8s, T=10·S, lmax=90%, lmin=70%, i=d=10%, 

MS=20%, Tg =1.6s) 
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Fig. 34. Number of interactions  as a function of the lower threshold for type 1 traffic for the 

dynamic allocation algorithm with congestion control  (S=0.8s, T=10·S, lmax=90%, lmin=70%, 

i=d=10%, MS=20%, Tg =1.6s) 
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Fig. 35. Comparison in terms of efficiency as a function of the lower threshold for type 1 traffic 

for the dynamic allocation algorithm with congestion control (S=0.8s, T=10·S, lmax=90%, 

i=d=10%, TS=15ms, MS=20%, Tg =1.6s) 

3.6   Dynamic Bandwidth Management Design and Implementation 

In the previous chapter, the Click modular router was utilized for implementing 

flow-based classification of real time services. A set of new modules (the Real Time 

Classifier) was inserted into the edge router to change the simple FIFO-based output 

queuing scheme of a RFC1812-compliant router. Coherently with a given set of 

Service Level Agreements (SLA), it proved the possibility of achieving protocol and 

statistical analysis of the traffic incoming from the stub network, real time flows 

recognition and privileged treatment (i.e. limited delays). The RTC is designed for 

interactive multimedia applications and is able to recognize and mark that kind of 

traffic. In terms of DiffServ PHB, RTC also marks the traffic recognized as belonging 

to real-time multimedia streams as EF, setting the IP packet DSCP field. The former 

scheme is here enhanced with new functions, which implement the algorithms for the 

measurement and dynamic allocation of bandwidth exposed in the previous chapter. 

Figure 17 resumes the modules inserted into the Click environment to realize all the 

described functions: 

- the SLA Manager, implemented using an existing Click element, is dedicated to 

select the traffic belonging to a set of existing SLAs;  

- the RTC compound module contains the Protocol and the Statistical Classifiers: 

the first is able to hook and filter the RTP-marked traffic; the latter, analyzing 

the flow rate and the packet size, adds classification capability in the case of real 

time applications that are not RTP compliant (thus the presence of the RTP 

protocol is considered a sufficient but not necessary condition to classify a 
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multimedia stream); 

- the RoundRobinScheduler is introduced to multiplex and balance the distinct 

traffic flows pertaining to different SLAs; 

- the PriorityScheduler implements different policies for the real time (high-

prioritized) and best effort (low-prioritized) packets; 

- the MeterShaper module is designed to implement the threshold-based algorithm 

previously described for aggregated bandwidth measurement and management. 
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Fig. 36. The QoS router internal structure. The BB module represents the domain Bandwidth 

Broker (external to the Edge Router) 

The internal structure of this new compound element, depicted in figure 18, shows 

the primitive modules composing it. The BwTrafficShaper is inherited from the 

BandwidthShaper C++ class (available in the Click standard libraries) and is enriched 

with a more flexible functionality: while the in-profile traffic is shaped as required, it 

branches out the out-of-profile packets to its secondary output. These can be 

discarded or, accordingly to a different policy, redirected to the best effort queue. The 

BwTrafficShaper is also interfaced with the Meter element, which implements the 

time-window measurement algorithm (metering the amount of traffic passing through 

the shaper) and modulates the allocated bandwidth (modifying the shaper parameters). 

It’s important to remark here that Click elements are C++ objects and their methods 

are always called when a “trigger signal” appears (i.e. a packet arriving to their input 

ports): thus they are executed asynchronously. On the contrary, the Meter module 

must measure the used bandwidth on a strict synchronous basis and independently 
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from the real-time packets’ arrivals: in fact the measurement process assumes the time 

divided into intervals of size S while the arrival of the real-time packets is not 

predictable. A time reference (i.e. clock signal) is thus supplied to the Meter using the 

TimedSource module as a synchronous source of dummy packets. These packets also 

contain the value of the S interval inside their payload, so that the Meter module is 

informed about the timing currently imposed. The MeterShaper element can be 

configured using several handlers: besides admitting the values of i, d, lmin and lmax, 

the “inc_parameter” and “dec_parameter” can be used to notify the Bandwidth Broker 

about the demand or release of bandwidth; the boolean “BB_response” reports the 

arrival of the BB answer. Others are available for performance monitoring and have 

been used extensively for the evaluations reported below: “allocated_bit_rate” and 

“current_bit_rate” export the value of the allocated and measured bandwidth, while 

“BB_connections_inc” e “BB_connections_dec” count the number of increments or 

decrements requests sent to the bandwidth broker.  
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Fig. 37. The Meter Shaper element 

3.7   Implementation issues 

In order to perform quality of service trials, the testing configuration already 

described in Chapter III (§ 4.2) is used. Figure 19 recalls the test-bed layout, which 

consists of four PC-based systems, connected through a Gigabit Ethernet layer2-

switch. The edge router (Alpha) performs the quality of service functions and its 

output link is tightened to work at 10 Mbit/s, so that it can be easily saturated. The 

other PCs (Beta, Gamma, and Delta) are exclusively utilized for traffic generation and 

analysis. All the PCs are installed with the 2.4.9 version of the Linux operating 

system and Click release 1.3. 
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Fig. 38. Functional diagram of the test-bed layout 

3.8   Performance measurements 

Measurements were done using Beta and Gamma as traffic generators and Delta as 

a collector. Three distinct flows of traffic are injected into the input port of the router. 

Specifically, a real time flow, a non real-time flow, and a best effort flow (at 16 

Mbit/s thus sufficient to saturate alone the output port of the router), have been used. 

Under these contour conditions, Table 4 illustrates the average delays for the real-time 

traffic, obtained by twenty 60-second runs (all output queues are 100 elements 

FIFOs). It is important to remark that the real time traffic rate is kept constant and 

small enough not to activate the bandwidth management algorithm. The multimedia 

traffic is forwarded with a much smaller delay (≈32 µs) than best effort traffic 

(typically 5 ms), and with no losses, showing the effectiveness of the introduced 

functions; the latency is independent from the packet size and rate used for the real-

time flow itself. 

Table 11. Average latency in microseconds for real-time traffic traversing the Click router. 

Rows correspond to the packet sizes used. Columns represent the multimedia flow rate. A 64-

byte best-effort flow at 16Mb/s is also injected. The router output link is tightened to 10 Mbit/s 

Delay 

(µs) 

64 

kb/s 

128 

kb/s 

256 

kb/s 

512 

kb/s 

1024 

kb/s 

64 byte 31,51 31,33 31,05 30,99 30,84 

128 byte 31,60 31,59 31,50 31,09 31,29 

256 byte 31,85 31,69 31,61 31,54 31,16 

512 byte 32,09 32,16 31,78 31,63 31,72 

 

The delay contribution of all the QoS modules inserted in the Click environment 

has been evaluated: Table 5 reports the typical values registered during the trials. If no 
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best effort traffic is contemporary injected, conducted tests not reported here show 

how the delay for the multimedia flow is much lower (typically about 4 µs). On the 

contrary, packet length variations for the best effort traffic modify the real time packet 

latency, as reported in fig. 20.  

Table 12. Delay contribution of the modules composing the QoS router. This measure is 

obtained with a real-time flow of 1024 kb/s (512-byte packets). A 64-byte best-effort flow at 

16Mb/s is contemporary injected. The router output link is tightened to 10 Mbit/s 

IP Router 1200 ns 

SLA Manager 150 ns 

Protocol Classifier 1320 ns 

Statistical Classifier 1110 ns 

RTP/Real Time Queue 27700 

ns 

BwTrafficShaper 60 ns 

Round Robin Scheduler 60 ns 

MeterShaper 60 ns 

Priority Scheduler 60 ns 
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Fig. 39. Latency of the real time packets as a function of the best effort packets length 

To investigate the proper behaviour of the MeterShaper module, the real-time 

traffic shape has then been varied. Measurements were obtained by soliciting the 

system through steps of bandwidth variations of the RTP flow, as shown in figure 21. 

At the same time, the best effort flow has been removed. The response time of the 

bandwidth broker is here neglected and the result of the answer is always positive. A 

good tracking of the measured bandwidth obtained by the allocation algorithm can be 

observed. 
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Fig. 40. Measured vs. allocated bandwidth with steps size of bandwidth variations of 512Kbit/s 

(S=0.8s, T=10·S, i = 1.2, d = 0.8, lmax = 90%, lmin = 70%) 

In figure 22 the efficiency in the bandwidth usage is shown as a function of the 

bandwidth variations. Efficiency is here defined as the ratio of the average values of 

the measured and allocated bandwidth. Figure 23 illustrates how the frequency of 

requests to the bandwidth broker varies, depending on the step size. Figure 24 

sketches how the bandwidth constraint introduced by the MeterShaper element 

influences the packets’ latency. The delay suddenly rises up when the step size is 

2048 kbit/s, since a ramp peak transmission rate of 8192 kbit/s is reached, thus close 

to the output link capacity (which is limited at 10Mbit/s). 
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Fig. 41. Efficiency in the bandwidth usage, varying the step size (lmax=90%, lmin=70%, i=1.2, 

d=0.8) 
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Fig. 42. Frequency of interactions with the bandwidth broker depending on the step size 
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Fig. 43. Average packet latency for the RTP traffic as a function of the step size 

4   A New Approach for Bandwidth Update: the Log-based 

Dynamic Allocation Scheme 

4.1   The logarithmic-based algorithm 

The choice of the correct parameters’ configuration of the threshold-based system 

described above is crucial to achieve bandwidth utilization efficiency, scalability and 

system stability. In fact, under particular conditions of traffic patterns, bandwidth 

oscillations could arise as a consequence of approximate parameter configuration. On 

the other hand, the parameters of the threshold-based model are strictly related to each 

other and strongly dependent on the traffic behaviour, thus making the parameters set 



65 

up a very critical point. A new procedure is here proposed, where the bandwidth 

update is based on a logarithmic function that reduces the number of design 

parameters. It uses the output of a measurement-based process to know the value Bm 

of the bandwidth currently used by the aggregate traffic of the service class. So Bm 

replaces bo of the threshold-based scheme described before. The traffic measurement 

is based on the same time-window measurement system already explained in the 

previous paragraph. The choice of the logarithmic function was suggested by the need 

to carefully increment the bandwidth, when necessary, in order to avoid sudden 

congestion and, at the same time, to rapidly decrement the bandwidth to promptly 

reduce its waste. The chosen function intrinsically meets these characteristics when 

used to calculate the bandwidth update ∆B as 
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KB
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(9) 

being Bm the measured bandwidth, Bd the allocated bandwidth, and having 

indicated with ln(x) the natural logarithm of x. The parameter K is the constant of the 

feedback system and S is a margin to avoid sudden congestion. So the new bandwidth 

value after the update is given by 

B’d=Bd+∆B . (10) 

 

In order to avoid too frequent requests to the bandwidth broker, the update 

procedure is applied only if the following condition holds: 

∆B > ∆Bmin . (11) 

So ∆Bmin must be suitably chosen to assure the scalability of the approach. 

This system requires three parameters to be defined: K, S and ∆Bmin whose 

influence on bandwidth efficiency, scalability and delay will be evaluated in the next 

paragraph. 

4.2  Performance analysis 

Performance analysis has been developed by simulation with the aim to prove the 

effectiveness of the logarithmic algorithm. The following general hypotheses are 

made: 

- the answer time for the bandwidth broker (TBB) is assumed equal to 10 ms; 

- the result of the answer is always positive; 

- the edge router output link capacity is 10 Mbit/s. 

 

Evaluations have been performed with three kinds of ON/OFF traffic whose 

characteristics are summarized below in table 6. The aggregate traffic is considered as 

generated by the superposition of 60 sources. The instantaneous bandwidth used is 

given by the sum of contributions of sources that are in the ON state at the instant 

considered. The value of the bandwidth used during the ON period (peak transmission 

rate) is suitably modified to obtain the same average for all traffic types. 



 

66 

Table 13. Traffic configurations used in the simulations 

Type 
# 

sources 
TON TOFF 

Peak transmission 

rate 

1 60 Pareto,α=1.2, k=0.4 Pareto,α=1.2, k=0.6 32Kbit/s 

2 60 Exp λ=1 Exp λ=1 26 Kbit/s 

3 60 Pareto,α=1.2, k=0.04 Pareto,α=1.2, k=0.6 128Kbit/s 

 

The main performance figure evaluated is the bandwidth efficiency, defined as 

( )
( )∫ ≅=

T dm

m

d

b
b

b
dt

tb

tb

T

001
ρ  , 

(12) 

being  bdm and bom the average values of available and occupied bandwidth. In the 

following evaluations K is chosen as a constant: its value mainly influences the 

number of interactions with the bandwidth broker while having practically no effects 

on efficiency and delay. It has been set equal to 600 Kbit/s to minimize the number of 

interactions for all kinds of traffic considered (figure 25). 
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Fig. 44. Frequency of requests at the bandwidth broker as a function of K for the three kinds of 

traffic for ∆Bmin =50 Kbit/s and S=10% 
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Fig. 45. Frequency of requests as a function of ∆Bmin for the three kinds of traffic, 

K=600Kbit/s and S=10% 



67 

∆Bmin has been shown to sensibly influence the number of interactions. Results are 

presented in figure 26 for S=10% and can be used to choose a value for ∆Bmin to meet 

the constraint on the maximum acceptable request frequency. In figure 27 ∆Bmin=50 

Kbit/s is considered, to show the influence of the margin S on average delay. 
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Fig. 46. Average delay as a function of the margin S for the three kinds of traffic, K=600Kbit/s 

and ∆Bmin =50 Kbit/s 

4.3   Implementation issues 

In the previous chapter, we showed how the Click modular router was utilized for 

implementing flow-based classification of real time services. In paragraph §2 of this 

chapter, a new set of modules was then added to implement a threshold-based 

dynamic allocation algorithm, which was then evaluated in terms of efficiency and 

packet latency. Now the new proposed logarithmic algorithm was implemented on the 

same test bed based on the Click environment. The main difficulty was the 

unavailability of a function at this level that calculates the needed natural logarithmic. 

Different numerical methodologies have been used to achieve this target with 

satisfactory approximation for the whole range of argument values. Power series 

expression has been applied when argument was in the range near the unit where the 

method gives a very good approximation. Outside this range a calculation of the 

natural logarithm based on the expression of the base 10 logarithm as the sum of the 

characteristic and the mantissa and a following base conversion has been adopted. 

Figure 28 resumes the Click configuration used for the performance evaluations: 

compared to the scheme previously outlined in paragraph §2, the LogMeterShaper 

element still implements the time-window measurement algorithm (metering the 

amount of traffic passing through the shaper) but modulates the allocated bandwidth 

using the new logarithmic algorithm previously described. The SLA Manager is 

dedicated to select the traffic belonging to a set of existing Service Level Agreements, 

the RTC compound module contains the Protocol and the Statistical Classifiers to 

hook the real-time traffic, the RoundRobinScheduler is introduced to multiplex and 

balance the distinct traffic flows pertaining to different SLAs, while the Priority 
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Scheduler implements different policies for the real time (high-prioritized) and best 

effort (low-prioritized) packets. 
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Fig. 47. The QoS router internal structure. The BB module represents the domain Bandwidth 

Broker (external to the Edge Router). 

4.4   Performance measurements and comparison with the threshold-based 

algorithm 

Measurements have been performed by soliciting the system through steps of 

bandwidth variation of an RTP flow as shown in figure 29. No best effort flow is 

contemporary injected, the response time of the bandwidth broker is here neglected 

and the result of the answer is assumed always positive. It can be seen a good tracking 

of the measured bandwidth obtained by the logarithmic bandwidth allocation when 

the step size is less or equal than 256 Kbit/s. Figure 30 compares the behaviour of the 

threshold-based and logarithmic algorithms with traffic variations of 512 Kbit/s.  
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Fig. 48. Measured and allocated bandwidth in the test bed for the logarithmic algorithm with 

K=600Kbit/s, S=10% and ∆Bmin=50 Kbit/s (with steps size of bandwidth variations of 

256Kbit/s) 
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Fig. 49. Measured and allocated bandwidth in the test bed for the logarithmic and threshold-

based algorithms with steps size of bandwidth variations of 512Kbit/s 

It is evident that the two algorithms match the measured bandwidth differently. This 

causes different responses when the traffic behaviour presents sudden raisings. The 

threshold algorithm tends to bandwidth overprovision and this explains the lower 

efficiency that it presents. On the other hand the logarithmic algorithm is slower in the 

bandwidth update process and typically tends to loose more packets because the 

bandwidth is not sufficient. In figure 31 the efficiency in the bandwidth usage as a 

function of the bandwidth steps’ size is shown in comparison with the same 

evaluation performed with traditional threshold algorithms (we should remember that 
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efficiency was defined as the ratio of the average values of the measured and 

allocated bandwidth).  
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Fig. 50. Efficiency in the bandwidth usage for threshold based and logarithmic algorithms 

varying the step size for K=600Kbit/s, S=10% and ∆Bmin=50 Kbit/s, as regards the logarithmic 

algorithm, and lmin=70%, lmax=90%,i=1.2, d=0.8, as regards the threshold algorithm 
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Fig. 51. Average packet latency (in nanoseconds) for threshold-based and logarithmic 

algorithms varying the step size and using the same configuration parameters of figure 8 

In figure 32 the average packet latency is shown in comparison with the threshold–

based scheme and sketches how the bandwidth constraint introduced by the 

LogMeterShaper element influences the packets’ latency. 
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5   Conclusions 

In this chapter resource management is considered for quality of service provisioning 

in IP network. A threshold based scheme is initially introduced and design guidelines 

for its parameters are given. Implementation issues are considered with particular 

reference to the measurement process that gives the information on which the 

dynamic bandwidth allocation algorithm works. Extension of the basic algorithm is 

proposed to deal with congestion situation that is suitable to be used with the 

threshold-based scheme to absorb transient overload conditions. Performance of the 

algorithms in terms of bandwidth usage efficiency, average and maximum delay and 

scalability (in terms of needed interactions with the bandwidth broken) are given in 

the presence of realistic internet traffic. Then, a new bandwidth allocation algorithm 

for Differentiated Services environment is proposed based on a bandwidth broker 

model. A logarithmic function is assumed to control bandwidth update. The proposed 

algorithm introduces a limited number of parameters that can be set up more easily 

then in the threshold-based system. The new design is less dependent on traffic 

characteristics, except for highly time variable traffic patterns.  

Implementation issues are considered, with particular reference to the Click Modular 

Router, which offers a flexible environment for the development of new 

functionalities. Performance of the system in terms of bandwidth usage efficiency and 

latency are given. The main conclusion is that the logarithmic scheme provides a 

reduced transfer delay as required by real time traffic. The comparison between the 

two algorithms also shows how under heavy traffic conditions the packet loss could 

reach unacceptable values: the introduction of a congestion control mechanism also 

for the logarithmic function to promptly solve short-term contention in relation to 

delay constraints will be further discussed inside the next chapter. 
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Chapter V.   Implicit Flow-based Admission and 

Congestion Control 

1   Introduction 

As described in the previous chapters, the scheme based on the Bandwidth Broker 

concept has been considered as suitable to cope with the Differentiated Services 

model proposed for QoS support. Although this approach is fairly centralized it can 

be made scalable through hierarchical organization  of functions. This proposal splits 

the resource management problem into intra-domain and inter-domain functions with 

different administrative scopes: intra-domain resource management is within the 

competence of the bandwidth broker of the domain and is typically controlled by a 

single organization, while inter-domain resource management involves interactions 

between bandwidth brokers of different organizations and, on the basis of the 

proposal, it is achieved by bilateral agreements between adjacent domains. A critical 

discussion is ongoing on suitability of the proposed models to effectively support the 

convergence of different communication services such as voice, video and data [1]. 

New concepts for service differentiation are under consideration to better take into 

account the statistical nature of traffic as evidenced by practical measurements [2].  

A still open issue is related to control signaling that impacts on user behavior and 

protocols to provide quality of service guarantees to legacy application programs. The 

strategy for graceful evolution towards fully operating QoS networks is to maintain 

the same user network interface to legacy application program while enhancing 

network intelligence to manage information flows with different requirements without 

the introduction of explicit signaling. This approach is referred as implicit service 

differentiation. The definition of the flow concept seems to easy this task [2] allowing 

the implementation of efficient algorithms to recognize information produced by 

different applications and to perform the needed QoS related functions within the 

network. In this chapter an implicit QoS model is proposed, suitable to manage, as an 

example, real time services, but that can be applied also to a larger variety of service 

classes. It takes advantage of a call admission procedure to limit the bandwidth 

requirements of a service class coupled with dynamic bandwidth management 

performed by the edge router within each class to optimize the bandwidth usage. No 

explicit signaling is required to legacy application program while the concept of flow 

is introduced in the edge router to implement implicit QoS concept. In order to 

achieve QoS targets the implicit admission control is coupled with dynamic 

bandwidth management algorithms, previously evaluated as stand alone procedures. 

The evaluation of the effects of the joint application of the admission control and 

bandwidth management procedures within the proposed QoS model is one of the 

main target of the chapter. The proposed model could cope with the differentiated 

service model implemented in the core, being its role played at the internetworking 

between edge and core networks. The role of the bandwidth broker is here played 
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within the core network for call and bandwidth management purposes. In any case 

users willing to obtain such enhanced service should declare this intention to the 

network and subscribe a contract in terms of Service Level Agreement (SLA) with the 

service provider [3]. The implementation of such a concept requires the addition of 

new functionalities in the edge router that interfaces peripheral QoS unaware network 

with the QoS enabled core network. The feasibility of the approach is proved with 

reference to two different service classes (i.e. best effort and real time) and their 

implementation in a modular software environment on a PC-based test bed. The 

sensitivity of the system to the main design parameters and the effectiveness of the 

QoS algorithms in terms of bandwidth usage efficiency and congestion limitation are 

obtained by practical measurements. 

The chapter is organized as follows. In section 2 the general model for implicit QoS 

management is described with particular reference to the call admission procedures. 

In section 3 we recall the logarithmic-based dynamic bandwidth management 

algorithm, which is now modified in comparison with the description furnished in 

chapter §4, by adding a congestion control mechanism to promptly solve rapid rising 

of the used bandwidth. In section 4 system implementation and measurements are 

presented and discussed.  In section 5 some conclusions of the work are drawn. 

2   Implicit Service Differentiation and Admission Control 

This paragraph introduces a flow-aware QoS model for implicit service differentiation 

in the Internet to maintain end user best effort interface while differentiating services 

within the core network. The basic operations to access QoS enabled networking in 

the core network are performed by the edge router (ER) at the interface between the 

legacy networks and the QoS domain. The end user that expects to obtain service 

differentiation registers a SLA at the pertinent ingress edge router before the start of 

any communication sessions, with off line procedures that are out of the scope of this 

work. After then the edge router performs two main functions related to 

communication sessions: 

 

- implicit call admission control for real time flows; call admission control 

acts only for real time flows that belong to a SLA while best effort traffic is 

considered as an aggregate; implicit admission control was considered in [1]; 

- dynamic bandwidth management within the service class with the aim of 

efficient link bandwidth usage and time constraints. The access link 

bandwidth is assumed to be shared among different service classes. 

Bandwidth allocation management is performed in relation to the aggregate 

traffic of each class that accesses the QoS domain.  

 

A flow is here identified by packets closely spaced in time [4]. A communication 

session is a sequence of flows alternating with silence periods. If a silence longer than 

a time out is detected, the previously related flow is considered finished. 

The model can take advantage of the Bandwidth Broker concept as regard bandwidth 

updates required by the dynamic procedure [5]. Its action is related to core operations 
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and in this case, signaling within the QoS domain could be implemented through 

protocols like COPS [6]. 

2.1 Implicit call admission 

Real time flows are assumed here to adopt the RTP protocol. In any case the model 

can suit other approaches such as native UDP flow by applying the statistical analysis 

for real time flow recognition available in the classification process (see Chapter §3). 

Under this hypothesis, a new RTP flow is recognized by the ingress edge router 

through a flow oriented classification process on the basis of a predefined SLA and of 

the SSRC field of the RTP header. The SLA contains, among its parameters, the 

specification of quality of service requirements through a DSCP value and the IP 

source address, thus allowing its correspondence with incoming RTP flows. After a 

new flow is recognized, it is accepted if the following condition holds: 

Bo<Ta (13) 

 

where Bo is the estimation of the bandwidth currently used by the service class and Ta 

is a design parameter called admission threshold. 

An accepted flow is maintained active until one of the following conditions is 

verified: 

- a time out expires indicating that the flow has been idle for a long time 

(some seconds) and probably has no more information to transmit; 

- Bo>Td , that indicates an aggregated bandwidth usage approaching the 

maximum allowed for the service class. Td is called dropping threshold. 

When this condition is true a random choice is performed to drop one of the 

admitted flows. Other choices could be studied for system optimization. 

 

The value Bo is typically the results of a measurement procedure [7].  

2.2 Dynamic bandwidth management 

A service class is initially equipped with the amount of bandwidth allocated by the 

network manager. ERs accessing network links are responsible of monitoring 

bandwidth usage by the aggregate traffic of a class and of asking the related BBs for 

the necessary increase/decrease of allocated bandwidth; an increase/decrease request 

is assumed here always followed by a positive answer within a time Tbb. The point is 

to decide when to generate the requests for the broker. 

A well-known approach is based on the threshold-based system explained in Chapter 

4. This system has a main drawback consisting in the large number of parameters to 

set up for system design. Two components characterize this system: the bandwidth 

increment/decrement mechanism and the calculation of the bandwidth update needed. 

The choice of the correct parameters’ configuration of the system described above is 

crucial to achieve bandwidth utilization efficiency, scalability and system stability. In 

fact, under particular conditions of traffic patterns, bandwidth oscillations could arise 
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as a consequence of approximate parameter configuration (see § IV.3.2). Moreover 

the parameters of the threshold-based model are strictly related to each other and 

strongly dependent on the traffic behavior thus making the parameters set up a very 

critical point. 

3   Combining Logarithmic Bandwidth Update and Congestion 

Control 

In order to overcome the main limitations of the threshold-based system and to reduce 

the number of design parameters, in the previous chapter we adopted a logarithmic 

function to control the update events. It uses the output of a measurement-based 

process to know the value Bm of the bandwidth currently used by the aggregate traffic 

of the service class. So Bm replaces Bo of the threshold-based scheme described 

before. The choice of the logarithmic function was suggested by the need to carefully 

increment the bandwidth, when necessary, in order to follow the bandwidth variation 

as better as possible and, in case of bandwidth decrease, to promptly reduce 

bandwidth waste. In Chapter §4, we showed that the chosen function intrinsically 

meets these characteristics when used to calculate the bandwidth update ∆B as 
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being Bm the measured bandwidth, Bd the allocated bandwidth, and having indicated 

with ln(x) the natural logarithm of x. The parameter K is the constant of the feedback 

system and S is a margin to avoid sudden congestion. So the new bandwidth value 

after the update is given by 

B’d=Bd+∆B . (15) 

In order to avoid too frequent requests to the bandwidth broker, the update procedure 

is applied only if the following condition is verified: 

∆B > ∆Bmin . (16) 

This system requires three parameters to be defined: K, S and ∆Bmin. Experimental 

evaluations and measurements also showed that under heavy traffic conditions the 

packet loss percentage can reach unacceptable values: the introduction of a congestion 

control mechanism combined with the logarithmic function is required to promptly 

solve short-term contention in relation to delay constraints. In fact, due to delays in 

bandwidth estimate and increase, congestion can temporarily arise, that causes 

packets to be queued waiting for transmission resources. The effect of parameter S is 

to reduce the occurrence of these events, but a trade off must be reached between 

system performance and efficiency. So, the mechanism can be fruitfully coupled with 

a congestion resolution mechanism based on the monitoring of the queue occupancy, 

as already done for the threshold-based algorithm. The main aim of the algorithm is to 

limit the time needed for a packet to pass through the system by setting the maximum 

acceptable time Ts to empty the queue.  Thus, as sketched in figure 1, a queue 
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threshold Sq in packets is considered given by Sq=Ts*Ba/Lp ,being Ba the allocated 

bandwidth and Lp the packet length in bit. When queue occupancy S(t) at a generic 

instant t overcomes Sq , the system enters a congestion state during which bandwidth 

is quickly updated to empty the queue within Ts. The new value Ba’ is calculated as 

Ba’=S(t)·Lp/Ts , that assures that the queue will be emptied within the time constraint. 

The system stays in the congestion time for at least a guard time Tg; after then, if 

queue occupancy is less than Sq the regular algorithm is applied. The packet transfer 

delay is thus bounded by Ts+2·Tbb., being Tbb the time required for the Bandwidth 

Broker to answer. 

 

Ba
Sq

 

Fig. 52. The congestion control queue 

For example, for a target maximum packet transfer delay of 30 ms in the router with 

Tbb= 10 ms, Ts must be limited to 10 ms. In all other cases the regular algorithm 

prevents congestion through S. The frequency of activation of the congestion 

management algorithm is related to the occurrence of the congestion state that can be 

reduced through the adoption of a larger guard bandwidth.  

4   System Implementation and Measurements 

In the previous chapters, the Click modular router was adopted for implementing 

flow-based classification of real time services. We recall here the basic functionalities 

introduced with the set of modules which were added and modified here to implement 

implicit admission and congestion control mechanisms. Figure 2 outlines the main 

components of the Click configuration: 

- the MeterShaper element implements the time-window measurement 

algorithm (metering the amount of traffic passing through the shaper) that 

calculates the value Bo and updates the allocated bandwidth using the 

logarithmic algorithm previously described. Moreover, it implements the 

implicit admission control and the interaction with the bandwidth broker of the 

service domain; 

- the SLA Manager is dedicated to select a flow as belonging to a set of existing 

Service Level Agreements. A time out is set to detect the end of a flow. 

- the RoundRobin Scheduler performs multiplexing of distinct traffic flows 

pertaining to different SLAs; 

- the Priority Scheduler implements different policies for the real time (high-

prioritized) and best effort (low-prioritized) packets.  
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Fig. 53. QoS router internal structure 

 

Other related functions are performed by ExportBwRatedSplitter, that limits the 

bandwidth of flows to the value specified in the corresponding SLAs, and 

BwAverageCounter that collects information about average bandwidth usage that will 

be processed by the MeterShaper element. In addition, the MeterShaper element is 

now able to lock the admission of new flows or to cancel an existing flow to 

implement the admission control policy previously described; finally, it monitors the 

state of each realtime output queue and, if congestion arises, updates the allocated 

bandwidth to respect the packet timing constraints.  

Measurements have been performed by soliciting the system through steps of 

bandwidth variation of an RTP flow (figure 3). In any case, the effectiveness of this 

approach with other traffic types such as the superposition of Pareto sources has been 

verified by simulation in Chapter §4, leading to the same conditions. No best effort 

flow is contemporary injected, the response time of the bandwidth broker is here 

neglected and the result of its answer is assumed always positive. A good tracking of 

the measured bandwidth is obtained by the logarithmic bandwidth allocation when the 

step size is less or equal than 256 Kbit/s, as shown in figure 3. 
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Fig. 3. Measured and allocated bandwidth in the test bed for the logarithmic algorithm with 

K=600Kbit/s, S=10% and ∆Bmin =50 Kbit/s (bandwidth variations of 256Kbit/s) 
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Fig. 4. Measured and allocated bandwidth in the test bed for the logarithmic algorithm with 

K=600Kbit/s, S=10% and ∆Bmin =50 Kbit/s (bandwidth variations of 1024 Kbit/s) 

When the bandwidth increase is wider, the system is no longer so prompt to follow 

sudden variations as reported in figure 4, for step size equal to 1024 Kbit/s. As a 

consequence the logarithmic algorithm typically tends to loose packets because the 

bandwidth is not sufficient. Figure 5 shows the improvement introduced by the 

congestion control algorithm with step size 1024 Kbit/s. Congestion control tends to 

bandwidth over provisioning, and at the same time decreases packet dropping. As a 

consequence efficiency reduction is expected for the largest bandwidth increases as 

shown in figure 6. In any case, the delay is maintained at controlled values as shown 

in figure 7, obtained with Ts=100 µs. 

 

800

1000

1200

1400

1600

1800

2000

1 51 101 151 201 251 301 351 401 451 501 551

Time (s)

B
a

n
d

w
id

th
 (

K
b

it
/s

)

Measured

bandwidth

Allocated

bandwidth



 

80 

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 100 200 300 400 500 600

Tempo (s)

B
a

n
d

a
 (

K
b

it
/s

)

Measured

Bandwidth
with CC

without CC

 

Fig. 5. Comparison of performance with and without the congestion control (CC) algorithm 

with K=600Kbit/s, S=10% and ∆Bmin =50 Kbit/s (steps size of bandwidth variations of 1024 

Kbit/s) 
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Fig. 6. Efficiency in the bandwidth usage with and without the congestion control (CC) varying 

the step size, with K=600Kbit/s, S=10% and ∆Bmin =50 Kbit/s, Ts=100 µs 

Figures 8-10 are related to implicit call admission control evaluation for 16 RTP 

flows. They have been obtained by injecting step traffic generated by 3 PCs with step 

size cyclically assuming the values 0, 8 16 packets/s with step duration uniformly 

distributed between 0 and 20 seconds and packet size of 256 bytes. Admission and 

dropping thresholds are given in terms of percentage of the bandwidth assigned to the 

real time class, which is established to 300 Kbit/s. Figure 8 depicts the timing 

behaviour of admitted and cancelled calls when the admission and dropping threshold 

are set to 90% and 95 %. The logarithmic algorithm is applied for dynamic bandwidth 

management with K=600Kbit/s, S=10% and ∆Bmin =50 Kbit/s. Then, varying the 

admission threshold, the refused and dropped flows are plotted with dropping 

threshold set at 95 % (figures 9 and 10). It can be seen that the percentage of refused 

flows decreases as the admission threshold increases while the percentage of dropped 

flows increases with the admission threshold. This is due to the greater number of 

flows that are admitted and possibly cancelled after then.  
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Fig. 7. Average packet latency (µs) with and without the congestion control (CC) algorithm and 

varying the step size, with K=600Kbit/s, S=10% and ∆Bmin =50 Kbit/s, Ts=100 µs 
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Fig. 8. Timing behaviour of bandwidth normalized to the available bandwidth Bd=300Kbit/s 

with admission threshold Ta =90% and dropping threshold Td =95% 
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Fig. 9. Percentage of refused flows as a function of the admission threshold with dropping 

threshold Td=95% 
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Fig. 10. Percentage of dropped flows as a function of the admission threshold with dropping 

threshold Td=95% 

5   Conclusions 

In this chapter a model for implicit QoS support is introduced and implemented in a 

modular software router context. An implicit call admission procedure is designed for 

the edge router coupled with a dynamic bandwidth allocation algorithm that uses a 

logarithmic function. The proposed algorithm introduces a limited number of 

parameters that can be set up more easily then previously proposed systems The 

model achieves the target to limit the router transfer delay for real time traffic at an 

assigned value. The sensitivity of the system to the main model parameters is 

analyzed by measurements showing the choices for design optimization both in terms 

of usage efficiency and in terms of the number of successful flows. Moreover the field 

trial showed the feasibility of the introduction of new network concepts in a PC-based 

router for next generation Internet. 
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